[X86][BMI] Pull out schedule classes from bmi_andn<> and bmi_bls<>
[llvm-core.git] / lib / Target / AArch64 / AArch64ISelDAGToDAG.cpp
blob1f08505f37e797354f731c6561661324fc763714
1 //===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the AArch64 target.
11 //===----------------------------------------------------------------------===//
13 #include "AArch64TargetMachine.h"
14 #include "MCTargetDesc/AArch64AddressingModes.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/IR/Function.h" // To access function attributes.
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/Intrinsics.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/KnownBits.h"
23 #include "llvm/Support/MathExtras.h"
24 #include "llvm/Support/raw_ostream.h"
26 using namespace llvm;
28 #define DEBUG_TYPE "aarch64-isel"
30 //===--------------------------------------------------------------------===//
31 /// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
32 /// instructions for SelectionDAG operations.
33 ///
34 namespace {
36 class AArch64DAGToDAGISel : public SelectionDAGISel {
38 /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
39 /// make the right decision when generating code for different targets.
40 const AArch64Subtarget *Subtarget;
42 bool ForCodeSize;
44 public:
45 explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
46 CodeGenOpt::Level OptLevel)
47 : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr),
48 ForCodeSize(false) {}
50 StringRef getPassName() const override {
51 return "AArch64 Instruction Selection";
54 bool runOnMachineFunction(MachineFunction &MF) override {
55 ForCodeSize = MF.getFunction().hasOptSize();
56 Subtarget = &MF.getSubtarget<AArch64Subtarget>();
57 return SelectionDAGISel::runOnMachineFunction(MF);
60 void Select(SDNode *Node) override;
62 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
63 /// inline asm expressions.
64 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
65 unsigned ConstraintID,
66 std::vector<SDValue> &OutOps) override;
68 bool tryMLAV64LaneV128(SDNode *N);
69 bool tryMULLV64LaneV128(unsigned IntNo, SDNode *N);
70 bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
71 bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
72 bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
73 bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
74 return SelectShiftedRegister(N, false, Reg, Shift);
76 bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
77 return SelectShiftedRegister(N, true, Reg, Shift);
79 bool SelectAddrModeIndexed7S8(SDValue N, SDValue &Base, SDValue &OffImm) {
80 return SelectAddrModeIndexed7S(N, 1, Base, OffImm);
82 bool SelectAddrModeIndexed7S16(SDValue N, SDValue &Base, SDValue &OffImm) {
83 return SelectAddrModeIndexed7S(N, 2, Base, OffImm);
85 bool SelectAddrModeIndexed7S32(SDValue N, SDValue &Base, SDValue &OffImm) {
86 return SelectAddrModeIndexed7S(N, 4, Base, OffImm);
88 bool SelectAddrModeIndexed7S64(SDValue N, SDValue &Base, SDValue &OffImm) {
89 return SelectAddrModeIndexed7S(N, 8, Base, OffImm);
91 bool SelectAddrModeIndexed7S128(SDValue N, SDValue &Base, SDValue &OffImm) {
92 return SelectAddrModeIndexed7S(N, 16, Base, OffImm);
94 bool SelectAddrModeIndexedS9S128(SDValue N, SDValue &Base, SDValue &OffImm) {
95 return SelectAddrModeIndexedBitWidth(N, true, 9, 16, Base, OffImm);
97 bool SelectAddrModeIndexedU6S128(SDValue N, SDValue &Base, SDValue &OffImm) {
98 return SelectAddrModeIndexedBitWidth(N, false, 6, 16, Base, OffImm);
100 bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
101 return SelectAddrModeIndexed(N, 1, Base, OffImm);
103 bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
104 return SelectAddrModeIndexed(N, 2, Base, OffImm);
106 bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
107 return SelectAddrModeIndexed(N, 4, Base, OffImm);
109 bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
110 return SelectAddrModeIndexed(N, 8, Base, OffImm);
112 bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
113 return SelectAddrModeIndexed(N, 16, Base, OffImm);
115 bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
116 return SelectAddrModeUnscaled(N, 1, Base, OffImm);
118 bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
119 return SelectAddrModeUnscaled(N, 2, Base, OffImm);
121 bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
122 return SelectAddrModeUnscaled(N, 4, Base, OffImm);
124 bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
125 return SelectAddrModeUnscaled(N, 8, Base, OffImm);
127 bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
128 return SelectAddrModeUnscaled(N, 16, Base, OffImm);
131 template<int Width>
132 bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset,
133 SDValue &SignExtend, SDValue &DoShift) {
134 return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
137 template<int Width>
138 bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset,
139 SDValue &SignExtend, SDValue &DoShift) {
140 return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
144 /// Form sequences of consecutive 64/128-bit registers for use in NEON
145 /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
146 /// between 1 and 4 elements. If it contains a single element that is returned
147 /// unchanged; otherwise a REG_SEQUENCE value is returned.
148 SDValue createDTuple(ArrayRef<SDValue> Vecs);
149 SDValue createQTuple(ArrayRef<SDValue> Vecs);
151 /// Generic helper for the createDTuple/createQTuple
152 /// functions. Those should almost always be called instead.
153 SDValue createTuple(ArrayRef<SDValue> Vecs, const unsigned RegClassIDs[],
154 const unsigned SubRegs[]);
156 void SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);
158 bool tryIndexedLoad(SDNode *N);
160 bool trySelectStackSlotTagP(SDNode *N);
161 void SelectTagP(SDNode *N);
163 void SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
164 unsigned SubRegIdx);
165 void SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
166 unsigned SubRegIdx);
167 void SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
168 void SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
170 void SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
171 void SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc);
172 void SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
173 void SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
175 bool tryBitfieldExtractOp(SDNode *N);
176 bool tryBitfieldExtractOpFromSExt(SDNode *N);
177 bool tryBitfieldInsertOp(SDNode *N);
178 bool tryBitfieldInsertInZeroOp(SDNode *N);
179 bool tryShiftAmountMod(SDNode *N);
181 bool tryReadRegister(SDNode *N);
182 bool tryWriteRegister(SDNode *N);
184 // Include the pieces autogenerated from the target description.
185 #include "AArch64GenDAGISel.inc"
187 private:
188 bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
189 SDValue &Shift);
190 bool SelectAddrModeIndexed7S(SDValue N, unsigned Size, SDValue &Base,
191 SDValue &OffImm) {
192 return SelectAddrModeIndexedBitWidth(N, true, 7, Size, Base, OffImm);
194 bool SelectAddrModeIndexedBitWidth(SDValue N, bool IsSignedImm, unsigned BW,
195 unsigned Size, SDValue &Base,
196 SDValue &OffImm);
197 bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
198 SDValue &OffImm);
199 bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
200 SDValue &OffImm);
201 bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base,
202 SDValue &Offset, SDValue &SignExtend,
203 SDValue &DoShift);
204 bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base,
205 SDValue &Offset, SDValue &SignExtend,
206 SDValue &DoShift);
207 bool isWorthFolding(SDValue V) const;
208 bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend,
209 SDValue &Offset, SDValue &SignExtend);
211 template<unsigned RegWidth>
212 bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
213 return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
216 bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width);
218 bool SelectCMP_SWAP(SDNode *N);
221 } // end anonymous namespace
223 /// isIntImmediate - This method tests to see if the node is a constant
224 /// operand. If so Imm will receive the 32-bit value.
225 static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
226 if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
227 Imm = C->getZExtValue();
228 return true;
230 return false;
233 // isIntImmediate - This method tests to see if a constant operand.
234 // If so Imm will receive the value.
235 static bool isIntImmediate(SDValue N, uint64_t &Imm) {
236 return isIntImmediate(N.getNode(), Imm);
239 // isOpcWithIntImmediate - This method tests to see if the node is a specific
240 // opcode and that it has a immediate integer right operand.
241 // If so Imm will receive the 32 bit value.
242 static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
243 uint64_t &Imm) {
244 return N->getOpcode() == Opc &&
245 isIntImmediate(N->getOperand(1).getNode(), Imm);
248 bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
249 const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) {
250 switch(ConstraintID) {
251 default:
252 llvm_unreachable("Unexpected asm memory constraint");
253 case InlineAsm::Constraint_i:
254 case InlineAsm::Constraint_m:
255 case InlineAsm::Constraint_Q:
256 // We need to make sure that this one operand does not end up in XZR, thus
257 // require the address to be in a PointerRegClass register.
258 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
259 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF);
260 SDLoc dl(Op);
261 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i64);
262 SDValue NewOp =
263 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
264 dl, Op.getValueType(),
265 Op, RC), 0);
266 OutOps.push_back(NewOp);
267 return false;
269 return true;
272 /// SelectArithImmed - Select an immediate value that can be represented as
273 /// a 12-bit value shifted left by either 0 or 12. If so, return true with
274 /// Val set to the 12-bit value and Shift set to the shifter operand.
275 bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
276 SDValue &Shift) {
277 // This function is called from the addsub_shifted_imm ComplexPattern,
278 // which lists [imm] as the list of opcode it's interested in, however
279 // we still need to check whether the operand is actually an immediate
280 // here because the ComplexPattern opcode list is only used in
281 // root-level opcode matching.
282 if (!isa<ConstantSDNode>(N.getNode()))
283 return false;
285 uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
286 unsigned ShiftAmt;
288 if (Immed >> 12 == 0) {
289 ShiftAmt = 0;
290 } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
291 ShiftAmt = 12;
292 Immed = Immed >> 12;
293 } else
294 return false;
296 unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
297 SDLoc dl(N);
298 Val = CurDAG->getTargetConstant(Immed, dl, MVT::i32);
299 Shift = CurDAG->getTargetConstant(ShVal, dl, MVT::i32);
300 return true;
303 /// SelectNegArithImmed - As above, but negates the value before trying to
304 /// select it.
305 bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
306 SDValue &Shift) {
307 // This function is called from the addsub_shifted_imm ComplexPattern,
308 // which lists [imm] as the list of opcode it's interested in, however
309 // we still need to check whether the operand is actually an immediate
310 // here because the ComplexPattern opcode list is only used in
311 // root-level opcode matching.
312 if (!isa<ConstantSDNode>(N.getNode()))
313 return false;
315 // The immediate operand must be a 24-bit zero-extended immediate.
316 uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
318 // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
319 // have the opposite effect on the C flag, so this pattern mustn't match under
320 // those circumstances.
321 if (Immed == 0)
322 return false;
324 if (N.getValueType() == MVT::i32)
325 Immed = ~((uint32_t)Immed) + 1;
326 else
327 Immed = ~Immed + 1ULL;
328 if (Immed & 0xFFFFFFFFFF000000ULL)
329 return false;
331 Immed &= 0xFFFFFFULL;
332 return SelectArithImmed(CurDAG->getConstant(Immed, SDLoc(N), MVT::i32), Val,
333 Shift);
336 /// getShiftTypeForNode - Translate a shift node to the corresponding
337 /// ShiftType value.
338 static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) {
339 switch (N.getOpcode()) {
340 default:
341 return AArch64_AM::InvalidShiftExtend;
342 case ISD::SHL:
343 return AArch64_AM::LSL;
344 case ISD::SRL:
345 return AArch64_AM::LSR;
346 case ISD::SRA:
347 return AArch64_AM::ASR;
348 case ISD::ROTR:
349 return AArch64_AM::ROR;
353 /// Determine whether it is worth it to fold SHL into the addressing
354 /// mode.
355 static bool isWorthFoldingSHL(SDValue V) {
356 assert(V.getOpcode() == ISD::SHL && "invalid opcode");
357 // It is worth folding logical shift of up to three places.
358 auto *CSD = dyn_cast<ConstantSDNode>(V.getOperand(1));
359 if (!CSD)
360 return false;
361 unsigned ShiftVal = CSD->getZExtValue();
362 if (ShiftVal > 3)
363 return false;
365 // Check if this particular node is reused in any non-memory related
366 // operation. If yes, do not try to fold this node into the address
367 // computation, since the computation will be kept.
368 const SDNode *Node = V.getNode();
369 for (SDNode *UI : Node->uses())
370 if (!isa<MemSDNode>(*UI))
371 for (SDNode *UII : UI->uses())
372 if (!isa<MemSDNode>(*UII))
373 return false;
374 return true;
377 /// Determine whether it is worth to fold V into an extended register.
378 bool AArch64DAGToDAGISel::isWorthFolding(SDValue V) const {
379 // Trivial if we are optimizing for code size or if there is only
380 // one use of the value.
381 if (ForCodeSize || V.hasOneUse())
382 return true;
383 // If a subtarget has a fastpath LSL we can fold a logical shift into
384 // the addressing mode and save a cycle.
385 if (Subtarget->hasLSLFast() && V.getOpcode() == ISD::SHL &&
386 isWorthFoldingSHL(V))
387 return true;
388 if (Subtarget->hasLSLFast() && V.getOpcode() == ISD::ADD) {
389 const SDValue LHS = V.getOperand(0);
390 const SDValue RHS = V.getOperand(1);
391 if (LHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(LHS))
392 return true;
393 if (RHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(RHS))
394 return true;
397 // It hurts otherwise, since the value will be reused.
398 return false;
401 /// SelectShiftedRegister - Select a "shifted register" operand. If the value
402 /// is not shifted, set the Shift operand to default of "LSL 0". The logical
403 /// instructions allow the shifted register to be rotated, but the arithmetic
404 /// instructions do not. The AllowROR parameter specifies whether ROR is
405 /// supported.
406 bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
407 SDValue &Reg, SDValue &Shift) {
408 AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N);
409 if (ShType == AArch64_AM::InvalidShiftExtend)
410 return false;
411 if (!AllowROR && ShType == AArch64_AM::ROR)
412 return false;
414 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
415 unsigned BitSize = N.getValueSizeInBits();
416 unsigned Val = RHS->getZExtValue() & (BitSize - 1);
417 unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val);
419 Reg = N.getOperand(0);
420 Shift = CurDAG->getTargetConstant(ShVal, SDLoc(N), MVT::i32);
421 return isWorthFolding(N);
424 return false;
427 /// getExtendTypeForNode - Translate an extend node to the corresponding
428 /// ExtendType value.
429 static AArch64_AM::ShiftExtendType
430 getExtendTypeForNode(SDValue N, bool IsLoadStore = false) {
431 if (N.getOpcode() == ISD::SIGN_EXTEND ||
432 N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
433 EVT SrcVT;
434 if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
435 SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
436 else
437 SrcVT = N.getOperand(0).getValueType();
439 if (!IsLoadStore && SrcVT == MVT::i8)
440 return AArch64_AM::SXTB;
441 else if (!IsLoadStore && SrcVT == MVT::i16)
442 return AArch64_AM::SXTH;
443 else if (SrcVT == MVT::i32)
444 return AArch64_AM::SXTW;
445 assert(SrcVT != MVT::i64 && "extend from 64-bits?");
447 return AArch64_AM::InvalidShiftExtend;
448 } else if (N.getOpcode() == ISD::ZERO_EXTEND ||
449 N.getOpcode() == ISD::ANY_EXTEND) {
450 EVT SrcVT = N.getOperand(0).getValueType();
451 if (!IsLoadStore && SrcVT == MVT::i8)
452 return AArch64_AM::UXTB;
453 else if (!IsLoadStore && SrcVT == MVT::i16)
454 return AArch64_AM::UXTH;
455 else if (SrcVT == MVT::i32)
456 return AArch64_AM::UXTW;
457 assert(SrcVT != MVT::i64 && "extend from 64-bits?");
459 return AArch64_AM::InvalidShiftExtend;
460 } else if (N.getOpcode() == ISD::AND) {
461 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
462 if (!CSD)
463 return AArch64_AM::InvalidShiftExtend;
464 uint64_t AndMask = CSD->getZExtValue();
466 switch (AndMask) {
467 default:
468 return AArch64_AM::InvalidShiftExtend;
469 case 0xFF:
470 return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
471 case 0xFFFF:
472 return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
473 case 0xFFFFFFFF:
474 return AArch64_AM::UXTW;
478 return AArch64_AM::InvalidShiftExtend;
481 // Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
482 static bool checkHighLaneIndex(SDNode *DL, SDValue &LaneOp, int &LaneIdx) {
483 if (DL->getOpcode() != AArch64ISD::DUPLANE16 &&
484 DL->getOpcode() != AArch64ISD::DUPLANE32)
485 return false;
487 SDValue SV = DL->getOperand(0);
488 if (SV.getOpcode() != ISD::INSERT_SUBVECTOR)
489 return false;
491 SDValue EV = SV.getOperand(1);
492 if (EV.getOpcode() != ISD::EXTRACT_SUBVECTOR)
493 return false;
495 ConstantSDNode *DLidx = cast<ConstantSDNode>(DL->getOperand(1).getNode());
496 ConstantSDNode *EVidx = cast<ConstantSDNode>(EV.getOperand(1).getNode());
497 LaneIdx = DLidx->getSExtValue() + EVidx->getSExtValue();
498 LaneOp = EV.getOperand(0);
500 return true;
503 // Helper for SelectOpcV64LaneV128 - Recognize operations where one operand is a
504 // high lane extract.
505 static bool checkV64LaneV128(SDValue Op0, SDValue Op1, SDValue &StdOp,
506 SDValue &LaneOp, int &LaneIdx) {
508 if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) {
509 std::swap(Op0, Op1);
510 if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx))
511 return false;
513 StdOp = Op1;
514 return true;
517 /// SelectMLAV64LaneV128 - AArch64 supports vector MLAs where one multiplicand
518 /// is a lane in the upper half of a 128-bit vector. Recognize and select this
519 /// so that we don't emit unnecessary lane extracts.
520 bool AArch64DAGToDAGISel::tryMLAV64LaneV128(SDNode *N) {
521 SDLoc dl(N);
522 SDValue Op0 = N->getOperand(0);
523 SDValue Op1 = N->getOperand(1);
524 SDValue MLAOp1; // Will hold ordinary multiplicand for MLA.
525 SDValue MLAOp2; // Will hold lane-accessed multiplicand for MLA.
526 int LaneIdx = -1; // Will hold the lane index.
528 if (Op1.getOpcode() != ISD::MUL ||
529 !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
530 LaneIdx)) {
531 std::swap(Op0, Op1);
532 if (Op1.getOpcode() != ISD::MUL ||
533 !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
534 LaneIdx))
535 return false;
538 SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64);
540 SDValue Ops[] = { Op0, MLAOp1, MLAOp2, LaneIdxVal };
542 unsigned MLAOpc = ~0U;
544 switch (N->getSimpleValueType(0).SimpleTy) {
545 default:
546 llvm_unreachable("Unrecognized MLA.");
547 case MVT::v4i16:
548 MLAOpc = AArch64::MLAv4i16_indexed;
549 break;
550 case MVT::v8i16:
551 MLAOpc = AArch64::MLAv8i16_indexed;
552 break;
553 case MVT::v2i32:
554 MLAOpc = AArch64::MLAv2i32_indexed;
555 break;
556 case MVT::v4i32:
557 MLAOpc = AArch64::MLAv4i32_indexed;
558 break;
561 ReplaceNode(N, CurDAG->getMachineNode(MLAOpc, dl, N->getValueType(0), Ops));
562 return true;
565 bool AArch64DAGToDAGISel::tryMULLV64LaneV128(unsigned IntNo, SDNode *N) {
566 SDLoc dl(N);
567 SDValue SMULLOp0;
568 SDValue SMULLOp1;
569 int LaneIdx;
571 if (!checkV64LaneV128(N->getOperand(1), N->getOperand(2), SMULLOp0, SMULLOp1,
572 LaneIdx))
573 return false;
575 SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64);
577 SDValue Ops[] = { SMULLOp0, SMULLOp1, LaneIdxVal };
579 unsigned SMULLOpc = ~0U;
581 if (IntNo == Intrinsic::aarch64_neon_smull) {
582 switch (N->getSimpleValueType(0).SimpleTy) {
583 default:
584 llvm_unreachable("Unrecognized SMULL.");
585 case MVT::v4i32:
586 SMULLOpc = AArch64::SMULLv4i16_indexed;
587 break;
588 case MVT::v2i64:
589 SMULLOpc = AArch64::SMULLv2i32_indexed;
590 break;
592 } else if (IntNo == Intrinsic::aarch64_neon_umull) {
593 switch (N->getSimpleValueType(0).SimpleTy) {
594 default:
595 llvm_unreachable("Unrecognized SMULL.");
596 case MVT::v4i32:
597 SMULLOpc = AArch64::UMULLv4i16_indexed;
598 break;
599 case MVT::v2i64:
600 SMULLOpc = AArch64::UMULLv2i32_indexed;
601 break;
603 } else
604 llvm_unreachable("Unrecognized intrinsic.");
606 ReplaceNode(N, CurDAG->getMachineNode(SMULLOpc, dl, N->getValueType(0), Ops));
607 return true;
610 /// Instructions that accept extend modifiers like UXTW expect the register
611 /// being extended to be a GPR32, but the incoming DAG might be acting on a
612 /// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
613 /// this is the case.
614 static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) {
615 if (N.getValueType() == MVT::i32)
616 return N;
618 SDLoc dl(N);
619 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
620 MachineSDNode *Node = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
621 dl, MVT::i32, N, SubReg);
622 return SDValue(Node, 0);
626 /// SelectArithExtendedRegister - Select a "extended register" operand. This
627 /// operand folds in an extend followed by an optional left shift.
628 bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
629 SDValue &Shift) {
630 unsigned ShiftVal = 0;
631 AArch64_AM::ShiftExtendType Ext;
633 if (N.getOpcode() == ISD::SHL) {
634 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
635 if (!CSD)
636 return false;
637 ShiftVal = CSD->getZExtValue();
638 if (ShiftVal > 4)
639 return false;
641 Ext = getExtendTypeForNode(N.getOperand(0));
642 if (Ext == AArch64_AM::InvalidShiftExtend)
643 return false;
645 Reg = N.getOperand(0).getOperand(0);
646 } else {
647 Ext = getExtendTypeForNode(N);
648 if (Ext == AArch64_AM::InvalidShiftExtend)
649 return false;
651 Reg = N.getOperand(0);
653 // Don't match if free 32-bit -> 64-bit zext can be used instead.
654 if (Ext == AArch64_AM::UXTW &&
655 Reg->getValueType(0).getSizeInBits() == 32 && isDef32(*Reg.getNode()))
656 return false;
659 // AArch64 mandates that the RHS of the operation must use the smallest
660 // register class that could contain the size being extended from. Thus,
661 // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
662 // there might not be an actual 32-bit value in the program. We can
663 // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
664 assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX);
665 Reg = narrowIfNeeded(CurDAG, Reg);
666 Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N),
667 MVT::i32);
668 return isWorthFolding(N);
671 /// If there's a use of this ADDlow that's not itself a load/store then we'll
672 /// need to create a real ADD instruction from it anyway and there's no point in
673 /// folding it into the mem op. Theoretically, it shouldn't matter, but there's
674 /// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding
675 /// leads to duplicated ADRP instructions.
676 static bool isWorthFoldingADDlow(SDValue N) {
677 for (auto Use : N->uses()) {
678 if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE &&
679 Use->getOpcode() != ISD::ATOMIC_LOAD &&
680 Use->getOpcode() != ISD::ATOMIC_STORE)
681 return false;
683 // ldar and stlr have much more restrictive addressing modes (just a
684 // register).
685 if (isStrongerThanMonotonic(cast<MemSDNode>(Use)->getOrdering()))
686 return false;
689 return true;
692 /// SelectAddrModeIndexedBitWidth - Select a "register plus scaled (un)signed BW-bit
693 /// immediate" address. The "Size" argument is the size in bytes of the memory
694 /// reference, which determines the scale.
695 bool AArch64DAGToDAGISel::SelectAddrModeIndexedBitWidth(SDValue N, bool IsSignedImm,
696 unsigned BW, unsigned Size,
697 SDValue &Base,
698 SDValue &OffImm) {
699 SDLoc dl(N);
700 const DataLayout &DL = CurDAG->getDataLayout();
701 const TargetLowering *TLI = getTargetLowering();
702 if (N.getOpcode() == ISD::FrameIndex) {
703 int FI = cast<FrameIndexSDNode>(N)->getIndex();
704 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
705 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
706 return true;
709 // As opposed to the (12-bit) Indexed addressing mode below, the 7/9-bit signed
710 // selected here doesn't support labels/immediates, only base+offset.
711 if (CurDAG->isBaseWithConstantOffset(N)) {
712 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
713 if (IsSignedImm) {
714 int64_t RHSC = RHS->getSExtValue();
715 unsigned Scale = Log2_32(Size);
716 int64_t Range = 0x1LL << (BW - 1);
718 if ((RHSC & (Size - 1)) == 0 && RHSC >= -(Range << Scale) &&
719 RHSC < (Range << Scale)) {
720 Base = N.getOperand(0);
721 if (Base.getOpcode() == ISD::FrameIndex) {
722 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
723 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
725 OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
726 return true;
728 } else {
729 // unsigned Immediate
730 uint64_t RHSC = RHS->getZExtValue();
731 unsigned Scale = Log2_32(Size);
732 uint64_t Range = 0x1ULL << BW;
734 if ((RHSC & (Size - 1)) == 0 && RHSC < (Range << Scale)) {
735 Base = N.getOperand(0);
736 if (Base.getOpcode() == ISD::FrameIndex) {
737 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
738 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
740 OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
741 return true;
746 // Base only. The address will be materialized into a register before
747 // the memory is accessed.
748 // add x0, Xbase, #offset
749 // stp x1, x2, [x0]
750 Base = N;
751 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
752 return true;
755 /// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
756 /// immediate" address. The "Size" argument is the size in bytes of the memory
757 /// reference, which determines the scale.
758 bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
759 SDValue &Base, SDValue &OffImm) {
760 SDLoc dl(N);
761 const DataLayout &DL = CurDAG->getDataLayout();
762 const TargetLowering *TLI = getTargetLowering();
763 if (N.getOpcode() == ISD::FrameIndex) {
764 int FI = cast<FrameIndexSDNode>(N)->getIndex();
765 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
766 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
767 return true;
770 if (N.getOpcode() == AArch64ISD::ADDlow && isWorthFoldingADDlow(N)) {
771 GlobalAddressSDNode *GAN =
772 dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
773 Base = N.getOperand(0);
774 OffImm = N.getOperand(1);
775 if (!GAN)
776 return true;
778 if (GAN->getOffset() % Size == 0) {
779 const GlobalValue *GV = GAN->getGlobal();
780 unsigned Alignment = GV->getAlignment();
781 Type *Ty = GV->getValueType();
782 if (Alignment == 0 && Ty->isSized())
783 Alignment = DL.getABITypeAlignment(Ty);
785 if (Alignment >= Size)
786 return true;
790 if (CurDAG->isBaseWithConstantOffset(N)) {
791 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
792 int64_t RHSC = (int64_t)RHS->getZExtValue();
793 unsigned Scale = Log2_32(Size);
794 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
795 Base = N.getOperand(0);
796 if (Base.getOpcode() == ISD::FrameIndex) {
797 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
798 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
800 OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
801 return true;
806 // Before falling back to our general case, check if the unscaled
807 // instructions can handle this. If so, that's preferable.
808 if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
809 return false;
811 // Base only. The address will be materialized into a register before
812 // the memory is accessed.
813 // add x0, Xbase, #offset
814 // ldr x0, [x0]
815 Base = N;
816 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
817 return true;
820 /// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
821 /// immediate" address. This should only match when there is an offset that
822 /// is not valid for a scaled immediate addressing mode. The "Size" argument
823 /// is the size in bytes of the memory reference, which is needed here to know
824 /// what is valid for a scaled immediate.
825 bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
826 SDValue &Base,
827 SDValue &OffImm) {
828 if (!CurDAG->isBaseWithConstantOffset(N))
829 return false;
830 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
831 int64_t RHSC = RHS->getSExtValue();
832 // If the offset is valid as a scaled immediate, don't match here.
833 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 &&
834 RHSC < (0x1000 << Log2_32(Size)))
835 return false;
836 if (RHSC >= -256 && RHSC < 256) {
837 Base = N.getOperand(0);
838 if (Base.getOpcode() == ISD::FrameIndex) {
839 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
840 const TargetLowering *TLI = getTargetLowering();
841 Base = CurDAG->getTargetFrameIndex(
842 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
844 OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i64);
845 return true;
848 return false;
851 static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
852 SDLoc dl(N);
853 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
854 SDValue ImpDef = SDValue(
855 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, MVT::i64), 0);
856 MachineSDNode *Node = CurDAG->getMachineNode(
857 TargetOpcode::INSERT_SUBREG, dl, MVT::i64, ImpDef, N, SubReg);
858 return SDValue(Node, 0);
861 /// Check if the given SHL node (\p N), can be used to form an
862 /// extended register for an addressing mode.
863 bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
864 bool WantExtend, SDValue &Offset,
865 SDValue &SignExtend) {
866 assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
867 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
868 if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue())
869 return false;
871 SDLoc dl(N);
872 if (WantExtend) {
873 AArch64_AM::ShiftExtendType Ext =
874 getExtendTypeForNode(N.getOperand(0), true);
875 if (Ext == AArch64_AM::InvalidShiftExtend)
876 return false;
878 Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
879 SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
880 MVT::i32);
881 } else {
882 Offset = N.getOperand(0);
883 SignExtend = CurDAG->getTargetConstant(0, dl, MVT::i32);
886 unsigned LegalShiftVal = Log2_32(Size);
887 unsigned ShiftVal = CSD->getZExtValue();
889 if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
890 return false;
892 return isWorthFolding(N);
895 bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size,
896 SDValue &Base, SDValue &Offset,
897 SDValue &SignExtend,
898 SDValue &DoShift) {
899 if (N.getOpcode() != ISD::ADD)
900 return false;
901 SDValue LHS = N.getOperand(0);
902 SDValue RHS = N.getOperand(1);
903 SDLoc dl(N);
905 // We don't want to match immediate adds here, because they are better lowered
906 // to the register-immediate addressing modes.
907 if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
908 return false;
910 // Check if this particular node is reused in any non-memory related
911 // operation. If yes, do not try to fold this node into the address
912 // computation, since the computation will be kept.
913 const SDNode *Node = N.getNode();
914 for (SDNode *UI : Node->uses()) {
915 if (!isa<MemSDNode>(*UI))
916 return false;
919 // Remember if it is worth folding N when it produces extended register.
920 bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
922 // Try to match a shifted extend on the RHS.
923 if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
924 SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) {
925 Base = LHS;
926 DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
927 return true;
930 // Try to match a shifted extend on the LHS.
931 if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
932 SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) {
933 Base = RHS;
934 DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
935 return true;
938 // There was no shift, whatever else we find.
939 DoShift = CurDAG->getTargetConstant(false, dl, MVT::i32);
941 AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend;
942 // Try to match an unshifted extend on the LHS.
943 if (IsExtendedRegisterWorthFolding &&
944 (Ext = getExtendTypeForNode(LHS, true)) !=
945 AArch64_AM::InvalidShiftExtend) {
946 Base = RHS;
947 Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0));
948 SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
949 MVT::i32);
950 if (isWorthFolding(LHS))
951 return true;
954 // Try to match an unshifted extend on the RHS.
955 if (IsExtendedRegisterWorthFolding &&
956 (Ext = getExtendTypeForNode(RHS, true)) !=
957 AArch64_AM::InvalidShiftExtend) {
958 Base = LHS;
959 Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0));
960 SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
961 MVT::i32);
962 if (isWorthFolding(RHS))
963 return true;
966 return false;
969 // Check if the given immediate is preferred by ADD. If an immediate can be
970 // encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be
971 // encoded by one MOVZ, return true.
972 static bool isPreferredADD(int64_t ImmOff) {
973 // Constant in [0x0, 0xfff] can be encoded in ADD.
974 if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
975 return true;
976 // Check if it can be encoded in an "ADD LSL #12".
977 if ((ImmOff & 0xffffffffff000fffLL) == 0x0LL)
978 // As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant.
979 return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
980 (ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
981 return false;
984 bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
985 SDValue &Base, SDValue &Offset,
986 SDValue &SignExtend,
987 SDValue &DoShift) {
988 if (N.getOpcode() != ISD::ADD)
989 return false;
990 SDValue LHS = N.getOperand(0);
991 SDValue RHS = N.getOperand(1);
992 SDLoc DL(N);
994 // Check if this particular node is reused in any non-memory related
995 // operation. If yes, do not try to fold this node into the address
996 // computation, since the computation will be kept.
997 const SDNode *Node = N.getNode();
998 for (SDNode *UI : Node->uses()) {
999 if (!isa<MemSDNode>(*UI))
1000 return false;
1003 // Watch out if RHS is a wide immediate, it can not be selected into
1004 // [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into
1005 // ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate
1006 // instructions like:
1007 // MOV X0, WideImmediate
1008 // ADD X1, BaseReg, X0
1009 // LDR X2, [X1, 0]
1010 // For such situation, using [BaseReg, XReg] addressing mode can save one
1011 // ADD/SUB:
1012 // MOV X0, WideImmediate
1013 // LDR X2, [BaseReg, X0]
1014 if (isa<ConstantSDNode>(RHS)) {
1015 int64_t ImmOff = (int64_t)cast<ConstantSDNode>(RHS)->getZExtValue();
1016 unsigned Scale = Log2_32(Size);
1017 // Skip the immediate can be selected by load/store addressing mode.
1018 // Also skip the immediate can be encoded by a single ADD (SUB is also
1019 // checked by using -ImmOff).
1020 if ((ImmOff % Size == 0 && ImmOff >= 0 && ImmOff < (0x1000 << Scale)) ||
1021 isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
1022 return false;
1024 SDValue Ops[] = { RHS };
1025 SDNode *MOVI =
1026 CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
1027 SDValue MOVIV = SDValue(MOVI, 0);
1028 // This ADD of two X register will be selected into [Reg+Reg] mode.
1029 N = CurDAG->getNode(ISD::ADD, DL, MVT::i64, LHS, MOVIV);
1032 // Remember if it is worth folding N when it produces extended register.
1033 bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
1035 // Try to match a shifted extend on the RHS.
1036 if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
1037 SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) {
1038 Base = LHS;
1039 DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
1040 return true;
1043 // Try to match a shifted extend on the LHS.
1044 if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
1045 SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) {
1046 Base = RHS;
1047 DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
1048 return true;
1051 // Match any non-shifted, non-extend, non-immediate add expression.
1052 Base = LHS;
1053 Offset = RHS;
1054 SignExtend = CurDAG->getTargetConstant(false, DL, MVT::i32);
1055 DoShift = CurDAG->getTargetConstant(false, DL, MVT::i32);
1056 // Reg1 + Reg2 is free: no check needed.
1057 return true;
1060 SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
1061 static const unsigned RegClassIDs[] = {
1062 AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
1063 static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1,
1064 AArch64::dsub2, AArch64::dsub3};
1066 return createTuple(Regs, RegClassIDs, SubRegs);
1069 SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
1070 static const unsigned RegClassIDs[] = {
1071 AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
1072 static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1,
1073 AArch64::qsub2, AArch64::qsub3};
1075 return createTuple(Regs, RegClassIDs, SubRegs);
1078 SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
1079 const unsigned RegClassIDs[],
1080 const unsigned SubRegs[]) {
1081 // There's no special register-class for a vector-list of 1 element: it's just
1082 // a vector.
1083 if (Regs.size() == 1)
1084 return Regs[0];
1086 assert(Regs.size() >= 2 && Regs.size() <= 4);
1088 SDLoc DL(Regs[0]);
1090 SmallVector<SDValue, 4> Ops;
1092 // First operand of REG_SEQUENCE is the desired RegClass.
1093 Ops.push_back(
1094 CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], DL, MVT::i32));
1096 // Then we get pairs of source & subregister-position for the components.
1097 for (unsigned i = 0; i < Regs.size(); ++i) {
1098 Ops.push_back(Regs[i]);
1099 Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], DL, MVT::i32));
1102 SDNode *N =
1103 CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
1104 return SDValue(N, 0);
1107 void AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc,
1108 bool isExt) {
1109 SDLoc dl(N);
1110 EVT VT = N->getValueType(0);
1112 unsigned ExtOff = isExt;
1114 // Form a REG_SEQUENCE to force register allocation.
1115 unsigned Vec0Off = ExtOff + 1;
1116 SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
1117 N->op_begin() + Vec0Off + NumVecs);
1118 SDValue RegSeq = createQTuple(Regs);
1120 SmallVector<SDValue, 6> Ops;
1121 if (isExt)
1122 Ops.push_back(N->getOperand(1));
1123 Ops.push_back(RegSeq);
1124 Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
1125 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops));
1128 bool AArch64DAGToDAGISel::tryIndexedLoad(SDNode *N) {
1129 LoadSDNode *LD = cast<LoadSDNode>(N);
1130 if (LD->isUnindexed())
1131 return false;
1132 EVT VT = LD->getMemoryVT();
1133 EVT DstVT = N->getValueType(0);
1134 ISD::MemIndexedMode AM = LD->getAddressingMode();
1135 bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
1137 // We're not doing validity checking here. That was done when checking
1138 // if we should mark the load as indexed or not. We're just selecting
1139 // the right instruction.
1140 unsigned Opcode = 0;
1142 ISD::LoadExtType ExtType = LD->getExtensionType();
1143 bool InsertTo64 = false;
1144 if (VT == MVT::i64)
1145 Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost;
1146 else if (VT == MVT::i32) {
1147 if (ExtType == ISD::NON_EXTLOAD)
1148 Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
1149 else if (ExtType == ISD::SEXTLOAD)
1150 Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost;
1151 else {
1152 Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
1153 InsertTo64 = true;
1154 // The result of the load is only i32. It's the subreg_to_reg that makes
1155 // it into an i64.
1156 DstVT = MVT::i32;
1158 } else if (VT == MVT::i16) {
1159 if (ExtType == ISD::SEXTLOAD) {
1160 if (DstVT == MVT::i64)
1161 Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost;
1162 else
1163 Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost;
1164 } else {
1165 Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost;
1166 InsertTo64 = DstVT == MVT::i64;
1167 // The result of the load is only i32. It's the subreg_to_reg that makes
1168 // it into an i64.
1169 DstVT = MVT::i32;
1171 } else if (VT == MVT::i8) {
1172 if (ExtType == ISD::SEXTLOAD) {
1173 if (DstVT == MVT::i64)
1174 Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost;
1175 else
1176 Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost;
1177 } else {
1178 Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost;
1179 InsertTo64 = DstVT == MVT::i64;
1180 // The result of the load is only i32. It's the subreg_to_reg that makes
1181 // it into an i64.
1182 DstVT = MVT::i32;
1184 } else if (VT == MVT::f16) {
1185 Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost;
1186 } else if (VT == MVT::f32) {
1187 Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost;
1188 } else if (VT == MVT::f64 || VT.is64BitVector()) {
1189 Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost;
1190 } else if (VT.is128BitVector()) {
1191 Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost;
1192 } else
1193 return false;
1194 SDValue Chain = LD->getChain();
1195 SDValue Base = LD->getBasePtr();
1196 ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
1197 int OffsetVal = (int)OffsetOp->getZExtValue();
1198 SDLoc dl(N);
1199 SDValue Offset = CurDAG->getTargetConstant(OffsetVal, dl, MVT::i64);
1200 SDValue Ops[] = { Base, Offset, Chain };
1201 SDNode *Res = CurDAG->getMachineNode(Opcode, dl, MVT::i64, DstVT,
1202 MVT::Other, Ops);
1203 // Either way, we're replacing the node, so tell the caller that.
1204 SDValue LoadedVal = SDValue(Res, 1);
1205 if (InsertTo64) {
1206 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
1207 LoadedVal =
1208 SDValue(CurDAG->getMachineNode(
1209 AArch64::SUBREG_TO_REG, dl, MVT::i64,
1210 CurDAG->getTargetConstant(0, dl, MVT::i64), LoadedVal,
1211 SubReg),
1215 ReplaceUses(SDValue(N, 0), LoadedVal);
1216 ReplaceUses(SDValue(N, 1), SDValue(Res, 0));
1217 ReplaceUses(SDValue(N, 2), SDValue(Res, 2));
1218 CurDAG->RemoveDeadNode(N);
1219 return true;
1222 void AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
1223 unsigned SubRegIdx) {
1224 SDLoc dl(N);
1225 EVT VT = N->getValueType(0);
1226 SDValue Chain = N->getOperand(0);
1228 SDValue Ops[] = {N->getOperand(2), // Mem operand;
1229 Chain};
1231 const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1233 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1234 SDValue SuperReg = SDValue(Ld, 0);
1235 for (unsigned i = 0; i < NumVecs; ++i)
1236 ReplaceUses(SDValue(N, i),
1237 CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
1239 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
1241 // Transfer memoperands.
1242 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1243 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
1245 CurDAG->RemoveDeadNode(N);
1248 void AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs,
1249 unsigned Opc, unsigned SubRegIdx) {
1250 SDLoc dl(N);
1251 EVT VT = N->getValueType(0);
1252 SDValue Chain = N->getOperand(0);
1254 SDValue Ops[] = {N->getOperand(1), // Mem operand
1255 N->getOperand(2), // Incremental
1256 Chain};
1258 const EVT ResTys[] = {MVT::i64, // Type of the write back register
1259 MVT::Untyped, MVT::Other};
1261 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1263 // Update uses of write back register
1264 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
1266 // Update uses of vector list
1267 SDValue SuperReg = SDValue(Ld, 1);
1268 if (NumVecs == 1)
1269 ReplaceUses(SDValue(N, 0), SuperReg);
1270 else
1271 for (unsigned i = 0; i < NumVecs; ++i)
1272 ReplaceUses(SDValue(N, i),
1273 CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
1275 // Update the chain
1276 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
1277 CurDAG->RemoveDeadNode(N);
1280 void AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
1281 unsigned Opc) {
1282 SDLoc dl(N);
1283 EVT VT = N->getOperand(2)->getValueType(0);
1285 // Form a REG_SEQUENCE to force register allocation.
1286 bool Is128Bit = VT.getSizeInBits() == 128;
1287 SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
1288 SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
1290 SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), N->getOperand(0)};
1291 SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
1293 // Transfer memoperands.
1294 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1295 CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
1297 ReplaceNode(N, St);
1300 void AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs,
1301 unsigned Opc) {
1302 SDLoc dl(N);
1303 EVT VT = N->getOperand(2)->getValueType(0);
1304 const EVT ResTys[] = {MVT::i64, // Type of the write back register
1305 MVT::Other}; // Type for the Chain
1307 // Form a REG_SEQUENCE to force register allocation.
1308 bool Is128Bit = VT.getSizeInBits() == 128;
1309 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1310 SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
1312 SDValue Ops[] = {RegSeq,
1313 N->getOperand(NumVecs + 1), // base register
1314 N->getOperand(NumVecs + 2), // Incremental
1315 N->getOperand(0)}; // Chain
1316 SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1318 ReplaceNode(N, St);
1321 namespace {
1322 /// WidenVector - Given a value in the V64 register class, produce the
1323 /// equivalent value in the V128 register class.
1324 class WidenVector {
1325 SelectionDAG &DAG;
1327 public:
1328 WidenVector(SelectionDAG &DAG) : DAG(DAG) {}
1330 SDValue operator()(SDValue V64Reg) {
1331 EVT VT = V64Reg.getValueType();
1332 unsigned NarrowSize = VT.getVectorNumElements();
1333 MVT EltTy = VT.getVectorElementType().getSimpleVT();
1334 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
1335 SDLoc DL(V64Reg);
1337 SDValue Undef =
1338 SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
1339 return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg);
1342 } // namespace
1344 /// NarrowVector - Given a value in the V128 register class, produce the
1345 /// equivalent value in the V64 register class.
1346 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
1347 EVT VT = V128Reg.getValueType();
1348 unsigned WideSize = VT.getVectorNumElements();
1349 MVT EltTy = VT.getVectorElementType().getSimpleVT();
1350 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
1352 return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy,
1353 V128Reg);
1356 void AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
1357 unsigned Opc) {
1358 SDLoc dl(N);
1359 EVT VT = N->getValueType(0);
1360 bool Narrow = VT.getSizeInBits() == 64;
1362 // Form a REG_SEQUENCE to force register allocation.
1363 SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
1365 if (Narrow)
1366 transform(Regs, Regs.begin(),
1367 WidenVector(*CurDAG));
1369 SDValue RegSeq = createQTuple(Regs);
1371 const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1373 unsigned LaneNo =
1374 cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
1376 SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
1377 N->getOperand(NumVecs + 3), N->getOperand(0)};
1378 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1379 SDValue SuperReg = SDValue(Ld, 0);
1381 EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
1382 static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
1383 AArch64::qsub2, AArch64::qsub3 };
1384 for (unsigned i = 0; i < NumVecs; ++i) {
1385 SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg);
1386 if (Narrow)
1387 NV = NarrowVector(NV, *CurDAG);
1388 ReplaceUses(SDValue(N, i), NV);
1391 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
1392 CurDAG->RemoveDeadNode(N);
1395 void AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs,
1396 unsigned Opc) {
1397 SDLoc dl(N);
1398 EVT VT = N->getValueType(0);
1399 bool Narrow = VT.getSizeInBits() == 64;
1401 // Form a REG_SEQUENCE to force register allocation.
1402 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1404 if (Narrow)
1405 transform(Regs, Regs.begin(),
1406 WidenVector(*CurDAG));
1408 SDValue RegSeq = createQTuple(Regs);
1410 const EVT ResTys[] = {MVT::i64, // Type of the write back register
1411 RegSeq->getValueType(0), MVT::Other};
1413 unsigned LaneNo =
1414 cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
1416 SDValue Ops[] = {RegSeq,
1417 CurDAG->getTargetConstant(LaneNo, dl,
1418 MVT::i64), // Lane Number
1419 N->getOperand(NumVecs + 2), // Base register
1420 N->getOperand(NumVecs + 3), // Incremental
1421 N->getOperand(0)};
1422 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1424 // Update uses of the write back register
1425 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
1427 // Update uses of the vector list
1428 SDValue SuperReg = SDValue(Ld, 1);
1429 if (NumVecs == 1) {
1430 ReplaceUses(SDValue(N, 0),
1431 Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg);
1432 } else {
1433 EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
1434 static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
1435 AArch64::qsub2, AArch64::qsub3 };
1436 for (unsigned i = 0; i < NumVecs; ++i) {
1437 SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT,
1438 SuperReg);
1439 if (Narrow)
1440 NV = NarrowVector(NV, *CurDAG);
1441 ReplaceUses(SDValue(N, i), NV);
1445 // Update the Chain
1446 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
1447 CurDAG->RemoveDeadNode(N);
1450 void AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
1451 unsigned Opc) {
1452 SDLoc dl(N);
1453 EVT VT = N->getOperand(2)->getValueType(0);
1454 bool Narrow = VT.getSizeInBits() == 64;
1456 // Form a REG_SEQUENCE to force register allocation.
1457 SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
1459 if (Narrow)
1460 transform(Regs, Regs.begin(),
1461 WidenVector(*CurDAG));
1463 SDValue RegSeq = createQTuple(Regs);
1465 unsigned LaneNo =
1466 cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
1468 SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
1469 N->getOperand(NumVecs + 3), N->getOperand(0)};
1470 SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
1472 // Transfer memoperands.
1473 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1474 CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
1476 ReplaceNode(N, St);
1479 void AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs,
1480 unsigned Opc) {
1481 SDLoc dl(N);
1482 EVT VT = N->getOperand(2)->getValueType(0);
1483 bool Narrow = VT.getSizeInBits() == 64;
1485 // Form a REG_SEQUENCE to force register allocation.
1486 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1488 if (Narrow)
1489 transform(Regs, Regs.begin(),
1490 WidenVector(*CurDAG));
1492 SDValue RegSeq = createQTuple(Regs);
1494 const EVT ResTys[] = {MVT::i64, // Type of the write back register
1495 MVT::Other};
1497 unsigned LaneNo =
1498 cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
1500 SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
1501 N->getOperand(NumVecs + 2), // Base Register
1502 N->getOperand(NumVecs + 3), // Incremental
1503 N->getOperand(0)};
1504 SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1506 // Transfer memoperands.
1507 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1508 CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
1510 ReplaceNode(N, St);
1513 static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
1514 unsigned &Opc, SDValue &Opd0,
1515 unsigned &LSB, unsigned &MSB,
1516 unsigned NumberOfIgnoredLowBits,
1517 bool BiggerPattern) {
1518 assert(N->getOpcode() == ISD::AND &&
1519 "N must be a AND operation to call this function");
1521 EVT VT = N->getValueType(0);
1523 // Here we can test the type of VT and return false when the type does not
1524 // match, but since it is done prior to that call in the current context
1525 // we turned that into an assert to avoid redundant code.
1526 assert((VT == MVT::i32 || VT == MVT::i64) &&
1527 "Type checking must have been done before calling this function");
1529 // FIXME: simplify-demanded-bits in DAGCombine will probably have
1530 // changed the AND node to a 32-bit mask operation. We'll have to
1531 // undo that as part of the transform here if we want to catch all
1532 // the opportunities.
1533 // Currently the NumberOfIgnoredLowBits argument helps to recover
1534 // form these situations when matching bigger pattern (bitfield insert).
1536 // For unsigned extracts, check for a shift right and mask
1537 uint64_t AndImm = 0;
1538 if (!isOpcWithIntImmediate(N, ISD::AND, AndImm))
1539 return false;
1541 const SDNode *Op0 = N->getOperand(0).getNode();
1543 // Because of simplify-demanded-bits in DAGCombine, the mask may have been
1544 // simplified. Try to undo that
1545 AndImm |= maskTrailingOnes<uint64_t>(NumberOfIgnoredLowBits);
1547 // The immediate is a mask of the low bits iff imm & (imm+1) == 0
1548 if (AndImm & (AndImm + 1))
1549 return false;
1551 bool ClampMSB = false;
1552 uint64_t SrlImm = 0;
1553 // Handle the SRL + ANY_EXTEND case.
1554 if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
1555 isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, SrlImm)) {
1556 // Extend the incoming operand of the SRL to 64-bit.
1557 Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
1558 // Make sure to clamp the MSB so that we preserve the semantics of the
1559 // original operations.
1560 ClampMSB = true;
1561 } else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE &&
1562 isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL,
1563 SrlImm)) {
1564 // If the shift result was truncated, we can still combine them.
1565 Opd0 = Op0->getOperand(0).getOperand(0);
1567 // Use the type of SRL node.
1568 VT = Opd0->getValueType(0);
1569 } else if (isOpcWithIntImmediate(Op0, ISD::SRL, SrlImm)) {
1570 Opd0 = Op0->getOperand(0);
1571 } else if (BiggerPattern) {
1572 // Let's pretend a 0 shift right has been performed.
1573 // The resulting code will be at least as good as the original one
1574 // plus it may expose more opportunities for bitfield insert pattern.
1575 // FIXME: Currently we limit this to the bigger pattern, because
1576 // some optimizations expect AND and not UBFM.
1577 Opd0 = N->getOperand(0);
1578 } else
1579 return false;
1581 // Bail out on large immediates. This happens when no proper
1582 // combining/constant folding was performed.
1583 if (!BiggerPattern && (SrlImm <= 0 || SrlImm >= VT.getSizeInBits())) {
1584 LLVM_DEBUG(
1585 (dbgs() << N
1586 << ": Found large shift immediate, this should not happen\n"));
1587 return false;
1590 LSB = SrlImm;
1591 MSB = SrlImm + (VT == MVT::i32 ? countTrailingOnes<uint32_t>(AndImm)
1592 : countTrailingOnes<uint64_t>(AndImm)) -
1594 if (ClampMSB)
1595 // Since we're moving the extend before the right shift operation, we need
1596 // to clamp the MSB to make sure we don't shift in undefined bits instead of
1597 // the zeros which would get shifted in with the original right shift
1598 // operation.
1599 MSB = MSB > 31 ? 31 : MSB;
1601 Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
1602 return true;
1605 static bool isBitfieldExtractOpFromSExtInReg(SDNode *N, unsigned &Opc,
1606 SDValue &Opd0, unsigned &Immr,
1607 unsigned &Imms) {
1608 assert(N->getOpcode() == ISD::SIGN_EXTEND_INREG);
1610 EVT VT = N->getValueType(0);
1611 unsigned BitWidth = VT.getSizeInBits();
1612 assert((VT == MVT::i32 || VT == MVT::i64) &&
1613 "Type checking must have been done before calling this function");
1615 SDValue Op = N->getOperand(0);
1616 if (Op->getOpcode() == ISD::TRUNCATE) {
1617 Op = Op->getOperand(0);
1618 VT = Op->getValueType(0);
1619 BitWidth = VT.getSizeInBits();
1622 uint64_t ShiftImm;
1623 if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRL, ShiftImm) &&
1624 !isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
1625 return false;
1627 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
1628 if (ShiftImm + Width > BitWidth)
1629 return false;
1631 Opc = (VT == MVT::i32) ? AArch64::SBFMWri : AArch64::SBFMXri;
1632 Opd0 = Op.getOperand(0);
1633 Immr = ShiftImm;
1634 Imms = ShiftImm + Width - 1;
1635 return true;
1638 static bool isSeveralBitsExtractOpFromShr(SDNode *N, unsigned &Opc,
1639 SDValue &Opd0, unsigned &LSB,
1640 unsigned &MSB) {
1641 // We are looking for the following pattern which basically extracts several
1642 // continuous bits from the source value and places it from the LSB of the
1643 // destination value, all other bits of the destination value or set to zero:
1645 // Value2 = AND Value, MaskImm
1646 // SRL Value2, ShiftImm
1648 // with MaskImm >> ShiftImm to search for the bit width.
1650 // This gets selected into a single UBFM:
1652 // UBFM Value, ShiftImm, BitWide + SrlImm -1
1655 if (N->getOpcode() != ISD::SRL)
1656 return false;
1658 uint64_t AndMask = 0;
1659 if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, AndMask))
1660 return false;
1662 Opd0 = N->getOperand(0).getOperand(0);
1664 uint64_t SrlImm = 0;
1665 if (!isIntImmediate(N->getOperand(1), SrlImm))
1666 return false;
1668 // Check whether we really have several bits extract here.
1669 unsigned BitWide = 64 - countLeadingOnes(~(AndMask >> SrlImm));
1670 if (BitWide && isMask_64(AndMask >> SrlImm)) {
1671 if (N->getValueType(0) == MVT::i32)
1672 Opc = AArch64::UBFMWri;
1673 else
1674 Opc = AArch64::UBFMXri;
1676 LSB = SrlImm;
1677 MSB = BitWide + SrlImm - 1;
1678 return true;
1681 return false;
1684 static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
1685 unsigned &Immr, unsigned &Imms,
1686 bool BiggerPattern) {
1687 assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
1688 "N must be a SHR/SRA operation to call this function");
1690 EVT VT = N->getValueType(0);
1692 // Here we can test the type of VT and return false when the type does not
1693 // match, but since it is done prior to that call in the current context
1694 // we turned that into an assert to avoid redundant code.
1695 assert((VT == MVT::i32 || VT == MVT::i64) &&
1696 "Type checking must have been done before calling this function");
1698 // Check for AND + SRL doing several bits extract.
1699 if (isSeveralBitsExtractOpFromShr(N, Opc, Opd0, Immr, Imms))
1700 return true;
1702 // We're looking for a shift of a shift.
1703 uint64_t ShlImm = 0;
1704 uint64_t TruncBits = 0;
1705 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, ShlImm)) {
1706 Opd0 = N->getOperand(0).getOperand(0);
1707 } else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL &&
1708 N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) {
1709 // We are looking for a shift of truncate. Truncate from i64 to i32 could
1710 // be considered as setting high 32 bits as zero. Our strategy here is to
1711 // always generate 64bit UBFM. This consistency will help the CSE pass
1712 // later find more redundancy.
1713 Opd0 = N->getOperand(0).getOperand(0);
1714 TruncBits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits();
1715 VT = Opd0.getValueType();
1716 assert(VT == MVT::i64 && "the promoted type should be i64");
1717 } else if (BiggerPattern) {
1718 // Let's pretend a 0 shift left has been performed.
1719 // FIXME: Currently we limit this to the bigger pattern case,
1720 // because some optimizations expect AND and not UBFM
1721 Opd0 = N->getOperand(0);
1722 } else
1723 return false;
1725 // Missing combines/constant folding may have left us with strange
1726 // constants.
1727 if (ShlImm >= VT.getSizeInBits()) {
1728 LLVM_DEBUG(
1729 (dbgs() << N
1730 << ": Found large shift immediate, this should not happen\n"));
1731 return false;
1734 uint64_t SrlImm = 0;
1735 if (!isIntImmediate(N->getOperand(1), SrlImm))
1736 return false;
1738 assert(SrlImm > 0 && SrlImm < VT.getSizeInBits() &&
1739 "bad amount in shift node!");
1740 int immr = SrlImm - ShlImm;
1741 Immr = immr < 0 ? immr + VT.getSizeInBits() : immr;
1742 Imms = VT.getSizeInBits() - ShlImm - TruncBits - 1;
1743 // SRA requires a signed extraction
1744 if (VT == MVT::i32)
1745 Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri;
1746 else
1747 Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri;
1748 return true;
1751 bool AArch64DAGToDAGISel::tryBitfieldExtractOpFromSExt(SDNode *N) {
1752 assert(N->getOpcode() == ISD::SIGN_EXTEND);
1754 EVT VT = N->getValueType(0);
1755 EVT NarrowVT = N->getOperand(0)->getValueType(0);
1756 if (VT != MVT::i64 || NarrowVT != MVT::i32)
1757 return false;
1759 uint64_t ShiftImm;
1760 SDValue Op = N->getOperand(0);
1761 if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
1762 return false;
1764 SDLoc dl(N);
1765 // Extend the incoming operand of the shift to 64-bits.
1766 SDValue Opd0 = Widen(CurDAG, Op.getOperand(0));
1767 unsigned Immr = ShiftImm;
1768 unsigned Imms = NarrowVT.getSizeInBits() - 1;
1769 SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
1770 CurDAG->getTargetConstant(Imms, dl, VT)};
1771 CurDAG->SelectNodeTo(N, AArch64::SBFMXri, VT, Ops);
1772 return true;
1775 static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
1776 SDValue &Opd0, unsigned &Immr, unsigned &Imms,
1777 unsigned NumberOfIgnoredLowBits = 0,
1778 bool BiggerPattern = false) {
1779 if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
1780 return false;
1782 switch (N->getOpcode()) {
1783 default:
1784 if (!N->isMachineOpcode())
1785 return false;
1786 break;
1787 case ISD::AND:
1788 return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, Immr, Imms,
1789 NumberOfIgnoredLowBits, BiggerPattern);
1790 case ISD::SRL:
1791 case ISD::SRA:
1792 return isBitfieldExtractOpFromShr(N, Opc, Opd0, Immr, Imms, BiggerPattern);
1794 case ISD::SIGN_EXTEND_INREG:
1795 return isBitfieldExtractOpFromSExtInReg(N, Opc, Opd0, Immr, Imms);
1798 unsigned NOpc = N->getMachineOpcode();
1799 switch (NOpc) {
1800 default:
1801 return false;
1802 case AArch64::SBFMWri:
1803 case AArch64::UBFMWri:
1804 case AArch64::SBFMXri:
1805 case AArch64::UBFMXri:
1806 Opc = NOpc;
1807 Opd0 = N->getOperand(0);
1808 Immr = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
1809 Imms = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
1810 return true;
1812 // Unreachable
1813 return false;
1816 bool AArch64DAGToDAGISel::tryBitfieldExtractOp(SDNode *N) {
1817 unsigned Opc, Immr, Imms;
1818 SDValue Opd0;
1819 if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, Immr, Imms))
1820 return false;
1822 EVT VT = N->getValueType(0);
1823 SDLoc dl(N);
1825 // If the bit extract operation is 64bit but the original type is 32bit, we
1826 // need to add one EXTRACT_SUBREG.
1827 if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) {
1828 SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, MVT::i64),
1829 CurDAG->getTargetConstant(Imms, dl, MVT::i64)};
1831 SDNode *BFM = CurDAG->getMachineNode(Opc, dl, MVT::i64, Ops64);
1832 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
1833 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
1834 MVT::i32, SDValue(BFM, 0), SubReg));
1835 return true;
1838 SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
1839 CurDAG->getTargetConstant(Imms, dl, VT)};
1840 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
1841 return true;
1844 /// Does DstMask form a complementary pair with the mask provided by
1845 /// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
1846 /// this asks whether DstMask zeroes precisely those bits that will be set by
1847 /// the other half.
1848 static bool isBitfieldDstMask(uint64_t DstMask, const APInt &BitsToBeInserted,
1849 unsigned NumberOfIgnoredHighBits, EVT VT) {
1850 assert((VT == MVT::i32 || VT == MVT::i64) &&
1851 "i32 or i64 mask type expected!");
1852 unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits;
1854 APInt SignificantDstMask = APInt(BitWidth, DstMask);
1855 APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth);
1857 return (SignificantDstMask & SignificantBitsToBeInserted) == 0 &&
1858 (SignificantDstMask | SignificantBitsToBeInserted).isAllOnesValue();
1861 // Look for bits that will be useful for later uses.
1862 // A bit is consider useless as soon as it is dropped and never used
1863 // before it as been dropped.
1864 // E.g., looking for useful bit of x
1865 // 1. y = x & 0x7
1866 // 2. z = y >> 2
1867 // After #1, x useful bits are 0x7, then the useful bits of x, live through
1868 // y.
1869 // After #2, the useful bits of x are 0x4.
1870 // However, if x is used on an unpredicatable instruction, then all its bits
1871 // are useful.
1872 // E.g.
1873 // 1. y = x & 0x7
1874 // 2. z = y >> 2
1875 // 3. str x, [@x]
1876 static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);
1878 static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
1879 unsigned Depth) {
1880 uint64_t Imm =
1881 cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
1882 Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
1883 UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
1884 getUsefulBits(Op, UsefulBits, Depth + 1);
1887 static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
1888 uint64_t Imm, uint64_t MSB,
1889 unsigned Depth) {
1890 // inherit the bitwidth value
1891 APInt OpUsefulBits(UsefulBits);
1892 OpUsefulBits = 1;
1894 if (MSB >= Imm) {
1895 OpUsefulBits <<= MSB - Imm + 1;
1896 --OpUsefulBits;
1897 // The interesting part will be in the lower part of the result
1898 getUsefulBits(Op, OpUsefulBits, Depth + 1);
1899 // The interesting part was starting at Imm in the argument
1900 OpUsefulBits <<= Imm;
1901 } else {
1902 OpUsefulBits <<= MSB + 1;
1903 --OpUsefulBits;
1904 // The interesting part will be shifted in the result
1905 OpUsefulBits <<= OpUsefulBits.getBitWidth() - Imm;
1906 getUsefulBits(Op, OpUsefulBits, Depth + 1);
1907 // The interesting part was at zero in the argument
1908 OpUsefulBits.lshrInPlace(OpUsefulBits.getBitWidth() - Imm);
1911 UsefulBits &= OpUsefulBits;
1914 static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
1915 unsigned Depth) {
1916 uint64_t Imm =
1917 cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
1918 uint64_t MSB =
1919 cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1921 getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
1924 static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
1925 unsigned Depth) {
1926 uint64_t ShiftTypeAndValue =
1927 cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1928 APInt Mask(UsefulBits);
1929 Mask.clearAllBits();
1930 Mask.flipAllBits();
1932 if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) {
1933 // Shift Left
1934 uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
1935 Mask <<= ShiftAmt;
1936 getUsefulBits(Op, Mask, Depth + 1);
1937 Mask.lshrInPlace(ShiftAmt);
1938 } else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) {
1939 // Shift Right
1940 // We do not handle AArch64_AM::ASR, because the sign will change the
1941 // number of useful bits
1942 uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
1943 Mask.lshrInPlace(ShiftAmt);
1944 getUsefulBits(Op, Mask, Depth + 1);
1945 Mask <<= ShiftAmt;
1946 } else
1947 return;
1949 UsefulBits &= Mask;
1952 static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
1953 unsigned Depth) {
1954 uint64_t Imm =
1955 cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1956 uint64_t MSB =
1957 cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();
1959 APInt OpUsefulBits(UsefulBits);
1960 OpUsefulBits = 1;
1962 APInt ResultUsefulBits(UsefulBits.getBitWidth(), 0);
1963 ResultUsefulBits.flipAllBits();
1964 APInt Mask(UsefulBits.getBitWidth(), 0);
1966 getUsefulBits(Op, ResultUsefulBits, Depth + 1);
1968 if (MSB >= Imm) {
1969 // The instruction is a BFXIL.
1970 uint64_t Width = MSB - Imm + 1;
1971 uint64_t LSB = Imm;
1973 OpUsefulBits <<= Width;
1974 --OpUsefulBits;
1976 if (Op.getOperand(1) == Orig) {
1977 // Copy the low bits from the result to bits starting from LSB.
1978 Mask = ResultUsefulBits & OpUsefulBits;
1979 Mask <<= LSB;
1982 if (Op.getOperand(0) == Orig)
1983 // Bits starting from LSB in the input contribute to the result.
1984 Mask |= (ResultUsefulBits & ~OpUsefulBits);
1985 } else {
1986 // The instruction is a BFI.
1987 uint64_t Width = MSB + 1;
1988 uint64_t LSB = UsefulBits.getBitWidth() - Imm;
1990 OpUsefulBits <<= Width;
1991 --OpUsefulBits;
1992 OpUsefulBits <<= LSB;
1994 if (Op.getOperand(1) == Orig) {
1995 // Copy the bits from the result to the zero bits.
1996 Mask = ResultUsefulBits & OpUsefulBits;
1997 Mask.lshrInPlace(LSB);
2000 if (Op.getOperand(0) == Orig)
2001 Mask |= (ResultUsefulBits & ~OpUsefulBits);
2004 UsefulBits &= Mask;
2007 static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
2008 SDValue Orig, unsigned Depth) {
2010 // Users of this node should have already been instruction selected
2011 // FIXME: Can we turn that into an assert?
2012 if (!UserNode->isMachineOpcode())
2013 return;
2015 switch (UserNode->getMachineOpcode()) {
2016 default:
2017 return;
2018 case AArch64::ANDSWri:
2019 case AArch64::ANDSXri:
2020 case AArch64::ANDWri:
2021 case AArch64::ANDXri:
2022 // We increment Depth only when we call the getUsefulBits
2023 return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
2024 Depth);
2025 case AArch64::UBFMWri:
2026 case AArch64::UBFMXri:
2027 return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);
2029 case AArch64::ORRWrs:
2030 case AArch64::ORRXrs:
2031 if (UserNode->getOperand(1) != Orig)
2032 return;
2033 return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
2034 Depth);
2035 case AArch64::BFMWri:
2036 case AArch64::BFMXri:
2037 return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
2039 case AArch64::STRBBui:
2040 case AArch64::STURBBi:
2041 if (UserNode->getOperand(0) != Orig)
2042 return;
2043 UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xff);
2044 return;
2046 case AArch64::STRHHui:
2047 case AArch64::STURHHi:
2048 if (UserNode->getOperand(0) != Orig)
2049 return;
2050 UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xffff);
2051 return;
2055 static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
2056 if (Depth >= SelectionDAG::MaxRecursionDepth)
2057 return;
2058 // Initialize UsefulBits
2059 if (!Depth) {
2060 unsigned Bitwidth = Op.getScalarValueSizeInBits();
2061 // At the beginning, assume every produced bits is useful
2062 UsefulBits = APInt(Bitwidth, 0);
2063 UsefulBits.flipAllBits();
2065 APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);
2067 for (SDNode *Node : Op.getNode()->uses()) {
2068 // A use cannot produce useful bits
2069 APInt UsefulBitsForUse = APInt(UsefulBits);
2070 getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth);
2071 UsersUsefulBits |= UsefulBitsForUse;
2073 // UsefulBits contains the produced bits that are meaningful for the
2074 // current definition, thus a user cannot make a bit meaningful at
2075 // this point
2076 UsefulBits &= UsersUsefulBits;
2079 /// Create a machine node performing a notional SHL of Op by ShlAmount. If
2080 /// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
2081 /// 0, return Op unchanged.
2082 static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) {
2083 if (ShlAmount == 0)
2084 return Op;
2086 EVT VT = Op.getValueType();
2087 SDLoc dl(Op);
2088 unsigned BitWidth = VT.getSizeInBits();
2089 unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri;
2091 SDNode *ShiftNode;
2092 if (ShlAmount > 0) {
2093 // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
2094 ShiftNode = CurDAG->getMachineNode(
2095 UBFMOpc, dl, VT, Op,
2096 CurDAG->getTargetConstant(BitWidth - ShlAmount, dl, VT),
2097 CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, dl, VT));
2098 } else {
2099 // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
2100 assert(ShlAmount < 0 && "expected right shift");
2101 int ShrAmount = -ShlAmount;
2102 ShiftNode = CurDAG->getMachineNode(
2103 UBFMOpc, dl, VT, Op, CurDAG->getTargetConstant(ShrAmount, dl, VT),
2104 CurDAG->getTargetConstant(BitWidth - 1, dl, VT));
2107 return SDValue(ShiftNode, 0);
2110 /// Does this tree qualify as an attempt to move a bitfield into position,
2111 /// essentially "(and (shl VAL, N), Mask)".
2112 static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op,
2113 bool BiggerPattern,
2114 SDValue &Src, int &ShiftAmount,
2115 int &MaskWidth) {
2116 EVT VT = Op.getValueType();
2117 unsigned BitWidth = VT.getSizeInBits();
2118 (void)BitWidth;
2119 assert(BitWidth == 32 || BitWidth == 64);
2121 KnownBits Known = CurDAG->computeKnownBits(Op);
2123 // Non-zero in the sense that they're not provably zero, which is the key
2124 // point if we want to use this value
2125 uint64_t NonZeroBits = (~Known.Zero).getZExtValue();
2127 // Discard a constant AND mask if present. It's safe because the node will
2128 // already have been factored into the computeKnownBits calculation above.
2129 uint64_t AndImm;
2130 if (isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm)) {
2131 assert((~APInt(BitWidth, AndImm) & ~Known.Zero) == 0);
2132 Op = Op.getOperand(0);
2135 // Don't match if the SHL has more than one use, since then we'll end up
2136 // generating SHL+UBFIZ instead of just keeping SHL+AND.
2137 if (!BiggerPattern && !Op.hasOneUse())
2138 return false;
2140 uint64_t ShlImm;
2141 if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm))
2142 return false;
2143 Op = Op.getOperand(0);
2145 if (!isShiftedMask_64(NonZeroBits))
2146 return false;
2148 ShiftAmount = countTrailingZeros(NonZeroBits);
2149 MaskWidth = countTrailingOnes(NonZeroBits >> ShiftAmount);
2151 // BFI encompasses sufficiently many nodes that it's worth inserting an extra
2152 // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
2153 // amount. BiggerPattern is true when this pattern is being matched for BFI,
2154 // BiggerPattern is false when this pattern is being matched for UBFIZ, in
2155 // which case it is not profitable to insert an extra shift.
2156 if (ShlImm - ShiftAmount != 0 && !BiggerPattern)
2157 return false;
2158 Src = getLeftShift(CurDAG, Op, ShlImm - ShiftAmount);
2160 return true;
2163 static bool isShiftedMask(uint64_t Mask, EVT VT) {
2164 assert(VT == MVT::i32 || VT == MVT::i64);
2165 if (VT == MVT::i32)
2166 return isShiftedMask_32(Mask);
2167 return isShiftedMask_64(Mask);
2170 // Generate a BFI/BFXIL from 'or (and X, MaskImm), OrImm' iff the value being
2171 // inserted only sets known zero bits.
2172 static bool tryBitfieldInsertOpFromOrAndImm(SDNode *N, SelectionDAG *CurDAG) {
2173 assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
2175 EVT VT = N->getValueType(0);
2176 if (VT != MVT::i32 && VT != MVT::i64)
2177 return false;
2179 unsigned BitWidth = VT.getSizeInBits();
2181 uint64_t OrImm;
2182 if (!isOpcWithIntImmediate(N, ISD::OR, OrImm))
2183 return false;
2185 // Skip this transformation if the ORR immediate can be encoded in the ORR.
2186 // Otherwise, we'll trade an AND+ORR for ORR+BFI/BFXIL, which is most likely
2187 // performance neutral.
2188 if (AArch64_AM::isLogicalImmediate(OrImm, BitWidth))
2189 return false;
2191 uint64_t MaskImm;
2192 SDValue And = N->getOperand(0);
2193 // Must be a single use AND with an immediate operand.
2194 if (!And.hasOneUse() ||
2195 !isOpcWithIntImmediate(And.getNode(), ISD::AND, MaskImm))
2196 return false;
2198 // Compute the Known Zero for the AND as this allows us to catch more general
2199 // cases than just looking for AND with imm.
2200 KnownBits Known = CurDAG->computeKnownBits(And);
2202 // Non-zero in the sense that they're not provably zero, which is the key
2203 // point if we want to use this value.
2204 uint64_t NotKnownZero = (~Known.Zero).getZExtValue();
2206 // The KnownZero mask must be a shifted mask (e.g., 1110..011, 11100..00).
2207 if (!isShiftedMask(Known.Zero.getZExtValue(), VT))
2208 return false;
2210 // The bits being inserted must only set those bits that are known to be zero.
2211 if ((OrImm & NotKnownZero) != 0) {
2212 // FIXME: It's okay if the OrImm sets NotKnownZero bits to 1, but we don't
2213 // currently handle this case.
2214 return false;
2217 // BFI/BFXIL dst, src, #lsb, #width.
2218 int LSB = countTrailingOnes(NotKnownZero);
2219 int Width = BitWidth - APInt(BitWidth, NotKnownZero).countPopulation();
2221 // BFI/BFXIL is an alias of BFM, so translate to BFM operands.
2222 unsigned ImmR = (BitWidth - LSB) % BitWidth;
2223 unsigned ImmS = Width - 1;
2225 // If we're creating a BFI instruction avoid cases where we need more
2226 // instructions to materialize the BFI constant as compared to the original
2227 // ORR. A BFXIL will use the same constant as the original ORR, so the code
2228 // should be no worse in this case.
2229 bool IsBFI = LSB != 0;
2230 uint64_t BFIImm = OrImm >> LSB;
2231 if (IsBFI && !AArch64_AM::isLogicalImmediate(BFIImm, BitWidth)) {
2232 // We have a BFI instruction and we know the constant can't be materialized
2233 // with a ORR-immediate with the zero register.
2234 unsigned OrChunks = 0, BFIChunks = 0;
2235 for (unsigned Shift = 0; Shift < BitWidth; Shift += 16) {
2236 if (((OrImm >> Shift) & 0xFFFF) != 0)
2237 ++OrChunks;
2238 if (((BFIImm >> Shift) & 0xFFFF) != 0)
2239 ++BFIChunks;
2241 if (BFIChunks > OrChunks)
2242 return false;
2245 // Materialize the constant to be inserted.
2246 SDLoc DL(N);
2247 unsigned MOVIOpc = VT == MVT::i32 ? AArch64::MOVi32imm : AArch64::MOVi64imm;
2248 SDNode *MOVI = CurDAG->getMachineNode(
2249 MOVIOpc, DL, VT, CurDAG->getTargetConstant(BFIImm, DL, VT));
2251 // Create the BFI/BFXIL instruction.
2252 SDValue Ops[] = {And.getOperand(0), SDValue(MOVI, 0),
2253 CurDAG->getTargetConstant(ImmR, DL, VT),
2254 CurDAG->getTargetConstant(ImmS, DL, VT)};
2255 unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
2256 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2257 return true;
2260 static bool tryBitfieldInsertOpFromOr(SDNode *N, const APInt &UsefulBits,
2261 SelectionDAG *CurDAG) {
2262 assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
2264 EVT VT = N->getValueType(0);
2265 if (VT != MVT::i32 && VT != MVT::i64)
2266 return false;
2268 unsigned BitWidth = VT.getSizeInBits();
2270 // Because of simplify-demanded-bits in DAGCombine, involved masks may not
2271 // have the expected shape. Try to undo that.
2273 unsigned NumberOfIgnoredLowBits = UsefulBits.countTrailingZeros();
2274 unsigned NumberOfIgnoredHighBits = UsefulBits.countLeadingZeros();
2276 // Given a OR operation, check if we have the following pattern
2277 // ubfm c, b, imm, imm2 (or something that does the same jobs, see
2278 // isBitfieldExtractOp)
2279 // d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
2280 // countTrailingZeros(mask2) == imm2 - imm + 1
2281 // f = d | c
2282 // if yes, replace the OR instruction with:
2283 // f = BFM Opd0, Opd1, LSB, MSB ; where LSB = imm, and MSB = imm2
2285 // OR is commutative, check all combinations of operand order and values of
2286 // BiggerPattern, i.e.
2287 // Opd0, Opd1, BiggerPattern=false
2288 // Opd1, Opd0, BiggerPattern=false
2289 // Opd0, Opd1, BiggerPattern=true
2290 // Opd1, Opd0, BiggerPattern=true
2291 // Several of these combinations may match, so check with BiggerPattern=false
2292 // first since that will produce better results by matching more instructions
2293 // and/or inserting fewer extra instructions.
2294 for (int I = 0; I < 4; ++I) {
2296 SDValue Dst, Src;
2297 unsigned ImmR, ImmS;
2298 bool BiggerPattern = I / 2;
2299 SDValue OrOpd0Val = N->getOperand(I % 2);
2300 SDNode *OrOpd0 = OrOpd0Val.getNode();
2301 SDValue OrOpd1Val = N->getOperand((I + 1) % 2);
2302 SDNode *OrOpd1 = OrOpd1Val.getNode();
2304 unsigned BFXOpc;
2305 int DstLSB, Width;
2306 if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS,
2307 NumberOfIgnoredLowBits, BiggerPattern)) {
2308 // Check that the returned opcode is compatible with the pattern,
2309 // i.e., same type and zero extended (U and not S)
2310 if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) ||
2311 (BFXOpc != AArch64::UBFMWri && VT == MVT::i32))
2312 continue;
2314 // Compute the width of the bitfield insertion
2315 DstLSB = 0;
2316 Width = ImmS - ImmR + 1;
2317 // FIXME: This constraint is to catch bitfield insertion we may
2318 // want to widen the pattern if we want to grab general bitfied
2319 // move case
2320 if (Width <= 0)
2321 continue;
2323 // If the mask on the insertee is correct, we have a BFXIL operation. We
2324 // can share the ImmR and ImmS values from the already-computed UBFM.
2325 } else if (isBitfieldPositioningOp(CurDAG, OrOpd0Val,
2326 BiggerPattern,
2327 Src, DstLSB, Width)) {
2328 ImmR = (BitWidth - DstLSB) % BitWidth;
2329 ImmS = Width - 1;
2330 } else
2331 continue;
2333 // Check the second part of the pattern
2334 EVT VT = OrOpd1Val.getValueType();
2335 assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand");
2337 // Compute the Known Zero for the candidate of the first operand.
2338 // This allows to catch more general case than just looking for
2339 // AND with imm. Indeed, simplify-demanded-bits may have removed
2340 // the AND instruction because it proves it was useless.
2341 KnownBits Known = CurDAG->computeKnownBits(OrOpd1Val);
2343 // Check if there is enough room for the second operand to appear
2344 // in the first one
2345 APInt BitsToBeInserted =
2346 APInt::getBitsSet(Known.getBitWidth(), DstLSB, DstLSB + Width);
2348 if ((BitsToBeInserted & ~Known.Zero) != 0)
2349 continue;
2351 // Set the first operand
2352 uint64_t Imm;
2353 if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
2354 isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT))
2355 // In that case, we can eliminate the AND
2356 Dst = OrOpd1->getOperand(0);
2357 else
2358 // Maybe the AND has been removed by simplify-demanded-bits
2359 // or is useful because it discards more bits
2360 Dst = OrOpd1Val;
2362 // both parts match
2363 SDLoc DL(N);
2364 SDValue Ops[] = {Dst, Src, CurDAG->getTargetConstant(ImmR, DL, VT),
2365 CurDAG->getTargetConstant(ImmS, DL, VT)};
2366 unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
2367 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2368 return true;
2371 // Generate a BFXIL from 'or (and X, Mask0Imm), (and Y, Mask1Imm)' iff
2372 // Mask0Imm and ~Mask1Imm are equivalent and one of the MaskImms is a shifted
2373 // mask (e.g., 0x000ffff0).
2374 uint64_t Mask0Imm, Mask1Imm;
2375 SDValue And0 = N->getOperand(0);
2376 SDValue And1 = N->getOperand(1);
2377 if (And0.hasOneUse() && And1.hasOneUse() &&
2378 isOpcWithIntImmediate(And0.getNode(), ISD::AND, Mask0Imm) &&
2379 isOpcWithIntImmediate(And1.getNode(), ISD::AND, Mask1Imm) &&
2380 APInt(BitWidth, Mask0Imm) == ~APInt(BitWidth, Mask1Imm) &&
2381 (isShiftedMask(Mask0Imm, VT) || isShiftedMask(Mask1Imm, VT))) {
2383 // ORR is commutative, so canonicalize to the form 'or (and X, Mask0Imm),
2384 // (and Y, Mask1Imm)' where Mask1Imm is the shifted mask masking off the
2385 // bits to be inserted.
2386 if (isShiftedMask(Mask0Imm, VT)) {
2387 std::swap(And0, And1);
2388 std::swap(Mask0Imm, Mask1Imm);
2391 SDValue Src = And1->getOperand(0);
2392 SDValue Dst = And0->getOperand(0);
2393 unsigned LSB = countTrailingZeros(Mask1Imm);
2394 int Width = BitWidth - APInt(BitWidth, Mask0Imm).countPopulation();
2396 // The BFXIL inserts the low-order bits from a source register, so right
2397 // shift the needed bits into place.
2398 SDLoc DL(N);
2399 unsigned ShiftOpc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
2400 SDNode *LSR = CurDAG->getMachineNode(
2401 ShiftOpc, DL, VT, Src, CurDAG->getTargetConstant(LSB, DL, VT),
2402 CurDAG->getTargetConstant(BitWidth - 1, DL, VT));
2404 // BFXIL is an alias of BFM, so translate to BFM operands.
2405 unsigned ImmR = (BitWidth - LSB) % BitWidth;
2406 unsigned ImmS = Width - 1;
2408 // Create the BFXIL instruction.
2409 SDValue Ops[] = {Dst, SDValue(LSR, 0),
2410 CurDAG->getTargetConstant(ImmR, DL, VT),
2411 CurDAG->getTargetConstant(ImmS, DL, VT)};
2412 unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
2413 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2414 return true;
2417 return false;
2420 bool AArch64DAGToDAGISel::tryBitfieldInsertOp(SDNode *N) {
2421 if (N->getOpcode() != ISD::OR)
2422 return false;
2424 APInt NUsefulBits;
2425 getUsefulBits(SDValue(N, 0), NUsefulBits);
2427 // If all bits are not useful, just return UNDEF.
2428 if (!NUsefulBits) {
2429 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2430 return true;
2433 if (tryBitfieldInsertOpFromOr(N, NUsefulBits, CurDAG))
2434 return true;
2436 return tryBitfieldInsertOpFromOrAndImm(N, CurDAG);
2439 /// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the
2440 /// equivalent of a left shift by a constant amount followed by an and masking
2441 /// out a contiguous set of bits.
2442 bool AArch64DAGToDAGISel::tryBitfieldInsertInZeroOp(SDNode *N) {
2443 if (N->getOpcode() != ISD::AND)
2444 return false;
2446 EVT VT = N->getValueType(0);
2447 if (VT != MVT::i32 && VT != MVT::i64)
2448 return false;
2450 SDValue Op0;
2451 int DstLSB, Width;
2452 if (!isBitfieldPositioningOp(CurDAG, SDValue(N, 0), /*BiggerPattern=*/false,
2453 Op0, DstLSB, Width))
2454 return false;
2456 // ImmR is the rotate right amount.
2457 unsigned ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits();
2458 // ImmS is the most significant bit of the source to be moved.
2459 unsigned ImmS = Width - 1;
2461 SDLoc DL(N);
2462 SDValue Ops[] = {Op0, CurDAG->getTargetConstant(ImmR, DL, VT),
2463 CurDAG->getTargetConstant(ImmS, DL, VT)};
2464 unsigned Opc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
2465 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2466 return true;
2469 /// tryShiftAmountMod - Take advantage of built-in mod of shift amount in
2470 /// variable shift/rotate instructions.
2471 bool AArch64DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
2472 EVT VT = N->getValueType(0);
2474 unsigned Opc;
2475 switch (N->getOpcode()) {
2476 case ISD::ROTR:
2477 Opc = (VT == MVT::i32) ? AArch64::RORVWr : AArch64::RORVXr;
2478 break;
2479 case ISD::SHL:
2480 Opc = (VT == MVT::i32) ? AArch64::LSLVWr : AArch64::LSLVXr;
2481 break;
2482 case ISD::SRL:
2483 Opc = (VT == MVT::i32) ? AArch64::LSRVWr : AArch64::LSRVXr;
2484 break;
2485 case ISD::SRA:
2486 Opc = (VT == MVT::i32) ? AArch64::ASRVWr : AArch64::ASRVXr;
2487 break;
2488 default:
2489 return false;
2492 uint64_t Size;
2493 uint64_t Bits;
2494 if (VT == MVT::i32) {
2495 Bits = 5;
2496 Size = 32;
2497 } else if (VT == MVT::i64) {
2498 Bits = 6;
2499 Size = 64;
2500 } else
2501 return false;
2503 SDValue ShiftAmt = N->getOperand(1);
2504 SDLoc DL(N);
2505 SDValue NewShiftAmt;
2507 // Skip over an extend of the shift amount.
2508 if (ShiftAmt->getOpcode() == ISD::ZERO_EXTEND ||
2509 ShiftAmt->getOpcode() == ISD::ANY_EXTEND)
2510 ShiftAmt = ShiftAmt->getOperand(0);
2512 if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
2513 SDValue Add0 = ShiftAmt->getOperand(0);
2514 SDValue Add1 = ShiftAmt->getOperand(1);
2515 uint64_t Add0Imm;
2516 uint64_t Add1Imm;
2517 // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
2518 // to avoid the ADD/SUB.
2519 if (isIntImmediate(Add1, Add1Imm) && (Add1Imm % Size == 0))
2520 NewShiftAmt = Add0;
2521 // If we are shifting by N-X where N == 0 mod Size, then just shift by -X to
2522 // generate a NEG instead of a SUB of a constant.
2523 else if (ShiftAmt->getOpcode() == ISD::SUB &&
2524 isIntImmediate(Add0, Add0Imm) && Add0Imm != 0 &&
2525 (Add0Imm % Size == 0)) {
2526 unsigned NegOpc;
2527 unsigned ZeroReg;
2528 EVT SubVT = ShiftAmt->getValueType(0);
2529 if (SubVT == MVT::i32) {
2530 NegOpc = AArch64::SUBWrr;
2531 ZeroReg = AArch64::WZR;
2532 } else {
2533 assert(SubVT == MVT::i64);
2534 NegOpc = AArch64::SUBXrr;
2535 ZeroReg = AArch64::XZR;
2537 SDValue Zero =
2538 CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, ZeroReg, SubVT);
2539 MachineSDNode *Neg =
2540 CurDAG->getMachineNode(NegOpc, DL, SubVT, Zero, Add1);
2541 NewShiftAmt = SDValue(Neg, 0);
2542 } else
2543 return false;
2544 } else {
2545 // If the shift amount is masked with an AND, check that the mask covers the
2546 // bits that are implicitly ANDed off by the above opcodes and if so, skip
2547 // the AND.
2548 uint64_t MaskImm;
2549 if (!isOpcWithIntImmediate(ShiftAmt.getNode(), ISD::AND, MaskImm))
2550 return false;
2552 if (countTrailingOnes(MaskImm) < Bits)
2553 return false;
2555 NewShiftAmt = ShiftAmt->getOperand(0);
2558 // Narrow/widen the shift amount to match the size of the shift operation.
2559 if (VT == MVT::i32)
2560 NewShiftAmt = narrowIfNeeded(CurDAG, NewShiftAmt);
2561 else if (VT == MVT::i64 && NewShiftAmt->getValueType(0) == MVT::i32) {
2562 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, DL, MVT::i32);
2563 MachineSDNode *Ext = CurDAG->getMachineNode(
2564 AArch64::SUBREG_TO_REG, DL, VT,
2565 CurDAG->getTargetConstant(0, DL, MVT::i64), NewShiftAmt, SubReg);
2566 NewShiftAmt = SDValue(Ext, 0);
2569 SDValue Ops[] = {N->getOperand(0), NewShiftAmt};
2570 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2571 return true;
2574 bool
2575 AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
2576 unsigned RegWidth) {
2577 APFloat FVal(0.0);
2578 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
2579 FVal = CN->getValueAPF();
2580 else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) {
2581 // Some otherwise illegal constants are allowed in this case.
2582 if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow ||
2583 !isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)))
2584 return false;
2586 ConstantPoolSDNode *CN =
2587 dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1));
2588 FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF();
2589 } else
2590 return false;
2592 // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
2593 // is between 1 and 32 for a destination w-register, or 1 and 64 for an
2594 // x-register.
2596 // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
2597 // want THIS_NODE to be 2^fbits. This is much easier to deal with using
2598 // integers.
2599 bool IsExact;
2601 // fbits is between 1 and 64 in the worst-case, which means the fmul
2602 // could have 2^64 as an actual operand. Need 65 bits of precision.
2603 APSInt IntVal(65, true);
2604 FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
2606 // N.b. isPowerOf2 also checks for > 0.
2607 if (!IsExact || !IntVal.isPowerOf2()) return false;
2608 unsigned FBits = IntVal.logBase2();
2610 // Checks above should have guaranteed that we haven't lost information in
2611 // finding FBits, but it must still be in range.
2612 if (FBits == 0 || FBits > RegWidth) return false;
2614 FixedPos = CurDAG->getTargetConstant(FBits, SDLoc(N), MVT::i32);
2615 return true;
2618 // Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields
2619 // of the string and obtains the integer values from them and combines these
2620 // into a single value to be used in the MRS/MSR instruction.
2621 static int getIntOperandFromRegisterString(StringRef RegString) {
2622 SmallVector<StringRef, 5> Fields;
2623 RegString.split(Fields, ':');
2625 if (Fields.size() == 1)
2626 return -1;
2628 assert(Fields.size() == 5
2629 && "Invalid number of fields in read register string");
2631 SmallVector<int, 5> Ops;
2632 bool AllIntFields = true;
2634 for (StringRef Field : Fields) {
2635 unsigned IntField;
2636 AllIntFields &= !Field.getAsInteger(10, IntField);
2637 Ops.push_back(IntField);
2640 assert(AllIntFields &&
2641 "Unexpected non-integer value in special register string.");
2643 // Need to combine the integer fields of the string into a single value
2644 // based on the bit encoding of MRS/MSR instruction.
2645 return (Ops[0] << 14) | (Ops[1] << 11) | (Ops[2] << 7) |
2646 (Ops[3] << 3) | (Ops[4]);
2649 // Lower the read_register intrinsic to an MRS instruction node if the special
2650 // register string argument is either of the form detailed in the ALCE (the
2651 // form described in getIntOperandsFromRegsterString) or is a named register
2652 // known by the MRS SysReg mapper.
2653 bool AArch64DAGToDAGISel::tryReadRegister(SDNode *N) {
2654 const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
2655 const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2656 SDLoc DL(N);
2658 int Reg = getIntOperandFromRegisterString(RegString->getString());
2659 if (Reg != -1) {
2660 ReplaceNode(N, CurDAG->getMachineNode(
2661 AArch64::MRS, DL, N->getSimpleValueType(0), MVT::Other,
2662 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2663 N->getOperand(0)));
2664 return true;
2667 // Use the sysreg mapper to map the remaining possible strings to the
2668 // value for the register to be used for the instruction operand.
2669 auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString());
2670 if (TheReg && TheReg->Readable &&
2671 TheReg->haveFeatures(Subtarget->getFeatureBits()))
2672 Reg = TheReg->Encoding;
2673 else
2674 Reg = AArch64SysReg::parseGenericRegister(RegString->getString());
2676 if (Reg != -1) {
2677 ReplaceNode(N, CurDAG->getMachineNode(
2678 AArch64::MRS, DL, N->getSimpleValueType(0), MVT::Other,
2679 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2680 N->getOperand(0)));
2681 return true;
2684 if (RegString->getString() == "pc") {
2685 ReplaceNode(N, CurDAG->getMachineNode(
2686 AArch64::ADR, DL, N->getSimpleValueType(0), MVT::Other,
2687 CurDAG->getTargetConstant(0, DL, MVT::i32),
2688 N->getOperand(0)));
2689 return true;
2692 return false;
2695 // Lower the write_register intrinsic to an MSR instruction node if the special
2696 // register string argument is either of the form detailed in the ALCE (the
2697 // form described in getIntOperandsFromRegsterString) or is a named register
2698 // known by the MSR SysReg mapper.
2699 bool AArch64DAGToDAGISel::tryWriteRegister(SDNode *N) {
2700 const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
2701 const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2702 SDLoc DL(N);
2704 int Reg = getIntOperandFromRegisterString(RegString->getString());
2705 if (Reg != -1) {
2706 ReplaceNode(
2707 N, CurDAG->getMachineNode(AArch64::MSR, DL, MVT::Other,
2708 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2709 N->getOperand(2), N->getOperand(0)));
2710 return true;
2713 // Check if the register was one of those allowed as the pstatefield value in
2714 // the MSR (immediate) instruction. To accept the values allowed in the
2715 // pstatefield for the MSR (immediate) instruction, we also require that an
2716 // immediate value has been provided as an argument, we know that this is
2717 // the case as it has been ensured by semantic checking.
2718 auto PMapper = AArch64PState::lookupPStateByName(RegString->getString());
2719 if (PMapper) {
2720 assert (isa<ConstantSDNode>(N->getOperand(2))
2721 && "Expected a constant integer expression.");
2722 unsigned Reg = PMapper->Encoding;
2723 uint64_t Immed = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
2724 unsigned State;
2725 if (Reg == AArch64PState::PAN || Reg == AArch64PState::UAO || Reg == AArch64PState::SSBS) {
2726 assert(Immed < 2 && "Bad imm");
2727 State = AArch64::MSRpstateImm1;
2728 } else {
2729 assert(Immed < 16 && "Bad imm");
2730 State = AArch64::MSRpstateImm4;
2732 ReplaceNode(N, CurDAG->getMachineNode(
2733 State, DL, MVT::Other,
2734 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2735 CurDAG->getTargetConstant(Immed, DL, MVT::i16),
2736 N->getOperand(0)));
2737 return true;
2740 // Use the sysreg mapper to attempt to map the remaining possible strings
2741 // to the value for the register to be used for the MSR (register)
2742 // instruction operand.
2743 auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString());
2744 if (TheReg && TheReg->Writeable &&
2745 TheReg->haveFeatures(Subtarget->getFeatureBits()))
2746 Reg = TheReg->Encoding;
2747 else
2748 Reg = AArch64SysReg::parseGenericRegister(RegString->getString());
2749 if (Reg != -1) {
2750 ReplaceNode(N, CurDAG->getMachineNode(
2751 AArch64::MSR, DL, MVT::Other,
2752 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2753 N->getOperand(2), N->getOperand(0)));
2754 return true;
2757 return false;
2760 /// We've got special pseudo-instructions for these
2761 bool AArch64DAGToDAGISel::SelectCMP_SWAP(SDNode *N) {
2762 unsigned Opcode;
2763 EVT MemTy = cast<MemSDNode>(N)->getMemoryVT();
2765 // Leave IR for LSE if subtarget supports it.
2766 if (Subtarget->hasLSE()) return false;
2768 if (MemTy == MVT::i8)
2769 Opcode = AArch64::CMP_SWAP_8;
2770 else if (MemTy == MVT::i16)
2771 Opcode = AArch64::CMP_SWAP_16;
2772 else if (MemTy == MVT::i32)
2773 Opcode = AArch64::CMP_SWAP_32;
2774 else if (MemTy == MVT::i64)
2775 Opcode = AArch64::CMP_SWAP_64;
2776 else
2777 llvm_unreachable("Unknown AtomicCmpSwap type");
2779 MVT RegTy = MemTy == MVT::i64 ? MVT::i64 : MVT::i32;
2780 SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3),
2781 N->getOperand(0)};
2782 SDNode *CmpSwap = CurDAG->getMachineNode(
2783 Opcode, SDLoc(N),
2784 CurDAG->getVTList(RegTy, MVT::i32, MVT::Other), Ops);
2786 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
2787 CurDAG->setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
2789 ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0));
2790 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2));
2791 CurDAG->RemoveDeadNode(N);
2793 return true;
2796 bool AArch64DAGToDAGISel::trySelectStackSlotTagP(SDNode *N) {
2797 // tagp(FrameIndex, IRGstack, tag_offset):
2798 // since the offset between FrameIndex and IRGstack is a compile-time
2799 // constant, this can be lowered to a single ADDG instruction.
2800 if (!(isa<FrameIndexSDNode>(N->getOperand(1)))) {
2801 return false;
2804 SDValue IRG_SP = N->getOperand(2);
2805 if (IRG_SP->getOpcode() != ISD::INTRINSIC_W_CHAIN ||
2806 cast<ConstantSDNode>(IRG_SP->getOperand(1))->getZExtValue() !=
2807 Intrinsic::aarch64_irg_sp) {
2808 return false;
2811 const TargetLowering *TLI = getTargetLowering();
2812 SDLoc DL(N);
2813 int FI = cast<FrameIndexSDNode>(N->getOperand(1))->getIndex();
2814 SDValue FiOp = CurDAG->getTargetFrameIndex(
2815 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
2816 int TagOffset = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue();
2818 SDNode *Out = CurDAG->getMachineNode(
2819 AArch64::TAGPstack, DL, MVT::i64,
2820 {FiOp, CurDAG->getTargetConstant(0, DL, MVT::i64), N->getOperand(2),
2821 CurDAG->getTargetConstant(TagOffset, DL, MVT::i64)});
2822 ReplaceNode(N, Out);
2823 return true;
2826 void AArch64DAGToDAGISel::SelectTagP(SDNode *N) {
2827 assert(isa<ConstantSDNode>(N->getOperand(3)) &&
2828 "llvm.aarch64.tagp third argument must be an immediate");
2829 if (trySelectStackSlotTagP(N))
2830 return;
2831 // FIXME: above applies in any case when offset between Op1 and Op2 is a
2832 // compile-time constant, not just for stack allocations.
2834 // General case for unrelated pointers in Op1 and Op2.
2835 SDLoc DL(N);
2836 int TagOffset = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue();
2837 SDNode *N1 = CurDAG->getMachineNode(AArch64::SUBP, DL, MVT::i64,
2838 {N->getOperand(1), N->getOperand(2)});
2839 SDNode *N2 = CurDAG->getMachineNode(AArch64::ADDXrr, DL, MVT::i64,
2840 {SDValue(N1, 0), N->getOperand(2)});
2841 SDNode *N3 = CurDAG->getMachineNode(
2842 AArch64::ADDG, DL, MVT::i64,
2843 {SDValue(N2, 0), CurDAG->getTargetConstant(0, DL, MVT::i64),
2844 CurDAG->getTargetConstant(TagOffset, DL, MVT::i64)});
2845 ReplaceNode(N, N3);
2848 void AArch64DAGToDAGISel::Select(SDNode *Node) {
2849 // If we have a custom node, we already have selected!
2850 if (Node->isMachineOpcode()) {
2851 LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
2852 Node->setNodeId(-1);
2853 return;
2856 // Few custom selection stuff.
2857 EVT VT = Node->getValueType(0);
2859 switch (Node->getOpcode()) {
2860 default:
2861 break;
2863 case ISD::ATOMIC_CMP_SWAP:
2864 if (SelectCMP_SWAP(Node))
2865 return;
2866 break;
2868 case ISD::READ_REGISTER:
2869 if (tryReadRegister(Node))
2870 return;
2871 break;
2873 case ISD::WRITE_REGISTER:
2874 if (tryWriteRegister(Node))
2875 return;
2876 break;
2878 case ISD::ADD:
2879 if (tryMLAV64LaneV128(Node))
2880 return;
2881 break;
2883 case ISD::LOAD: {
2884 // Try to select as an indexed load. Fall through to normal processing
2885 // if we can't.
2886 if (tryIndexedLoad(Node))
2887 return;
2888 break;
2891 case ISD::SRL:
2892 case ISD::AND:
2893 case ISD::SRA:
2894 case ISD::SIGN_EXTEND_INREG:
2895 if (tryBitfieldExtractOp(Node))
2896 return;
2897 if (tryBitfieldInsertInZeroOp(Node))
2898 return;
2899 LLVM_FALLTHROUGH;
2900 case ISD::ROTR:
2901 case ISD::SHL:
2902 if (tryShiftAmountMod(Node))
2903 return;
2904 break;
2906 case ISD::SIGN_EXTEND:
2907 if (tryBitfieldExtractOpFromSExt(Node))
2908 return;
2909 break;
2911 case ISD::OR:
2912 if (tryBitfieldInsertOp(Node))
2913 return;
2914 break;
2916 case ISD::Constant: {
2917 // Materialize zero constants as copies from WZR/XZR. This allows
2918 // the coalescer to propagate these into other instructions.
2919 ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
2920 if (ConstNode->isNullValue()) {
2921 if (VT == MVT::i32) {
2922 SDValue New = CurDAG->getCopyFromReg(
2923 CurDAG->getEntryNode(), SDLoc(Node), AArch64::WZR, MVT::i32);
2924 ReplaceNode(Node, New.getNode());
2925 return;
2926 } else if (VT == MVT::i64) {
2927 SDValue New = CurDAG->getCopyFromReg(
2928 CurDAG->getEntryNode(), SDLoc(Node), AArch64::XZR, MVT::i64);
2929 ReplaceNode(Node, New.getNode());
2930 return;
2933 break;
2936 case ISD::FrameIndex: {
2937 // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
2938 int FI = cast<FrameIndexSDNode>(Node)->getIndex();
2939 unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
2940 const TargetLowering *TLI = getTargetLowering();
2941 SDValue TFI = CurDAG->getTargetFrameIndex(
2942 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
2943 SDLoc DL(Node);
2944 SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, DL, MVT::i32),
2945 CurDAG->getTargetConstant(Shifter, DL, MVT::i32) };
2946 CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops);
2947 return;
2949 case ISD::INTRINSIC_W_CHAIN: {
2950 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
2951 switch (IntNo) {
2952 default:
2953 break;
2954 case Intrinsic::aarch64_ldaxp:
2955 case Intrinsic::aarch64_ldxp: {
2956 unsigned Op =
2957 IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX;
2958 SDValue MemAddr = Node->getOperand(2);
2959 SDLoc DL(Node);
2960 SDValue Chain = Node->getOperand(0);
2962 SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64,
2963 MVT::Other, MemAddr, Chain);
2965 // Transfer memoperands.
2966 MachineMemOperand *MemOp =
2967 cast<MemIntrinsicSDNode>(Node)->getMemOperand();
2968 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
2969 ReplaceNode(Node, Ld);
2970 return;
2972 case Intrinsic::aarch64_stlxp:
2973 case Intrinsic::aarch64_stxp: {
2974 unsigned Op =
2975 IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX;
2976 SDLoc DL(Node);
2977 SDValue Chain = Node->getOperand(0);
2978 SDValue ValLo = Node->getOperand(2);
2979 SDValue ValHi = Node->getOperand(3);
2980 SDValue MemAddr = Node->getOperand(4);
2982 // Place arguments in the right order.
2983 SDValue Ops[] = {ValLo, ValHi, MemAddr, Chain};
2985 SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops);
2986 // Transfer memoperands.
2987 MachineMemOperand *MemOp =
2988 cast<MemIntrinsicSDNode>(Node)->getMemOperand();
2989 CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
2991 ReplaceNode(Node, St);
2992 return;
2994 case Intrinsic::aarch64_neon_ld1x2:
2995 if (VT == MVT::v8i8) {
2996 SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0);
2997 return;
2998 } else if (VT == MVT::v16i8) {
2999 SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0);
3000 return;
3001 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3002 SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0);
3003 return;
3004 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3005 SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0);
3006 return;
3007 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3008 SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0);
3009 return;
3010 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3011 SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0);
3012 return;
3013 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3014 SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
3015 return;
3016 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3017 SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0);
3018 return;
3020 break;
3021 case Intrinsic::aarch64_neon_ld1x3:
3022 if (VT == MVT::v8i8) {
3023 SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0);
3024 return;
3025 } else if (VT == MVT::v16i8) {
3026 SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0);
3027 return;
3028 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3029 SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0);
3030 return;
3031 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3032 SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0);
3033 return;
3034 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3035 SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0);
3036 return;
3037 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3038 SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0);
3039 return;
3040 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3041 SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
3042 return;
3043 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3044 SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0);
3045 return;
3047 break;
3048 case Intrinsic::aarch64_neon_ld1x4:
3049 if (VT == MVT::v8i8) {
3050 SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0);
3051 return;
3052 } else if (VT == MVT::v16i8) {
3053 SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0);
3054 return;
3055 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3056 SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0);
3057 return;
3058 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3059 SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0);
3060 return;
3061 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3062 SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0);
3063 return;
3064 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3065 SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0);
3066 return;
3067 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3068 SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
3069 return;
3070 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3071 SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0);
3072 return;
3074 break;
3075 case Intrinsic::aarch64_neon_ld2:
3076 if (VT == MVT::v8i8) {
3077 SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0);
3078 return;
3079 } else if (VT == MVT::v16i8) {
3080 SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0);
3081 return;
3082 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3083 SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0);
3084 return;
3085 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3086 SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0);
3087 return;
3088 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3089 SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0);
3090 return;
3091 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3092 SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0);
3093 return;
3094 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3095 SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
3096 return;
3097 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3098 SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0);
3099 return;
3101 break;
3102 case Intrinsic::aarch64_neon_ld3:
3103 if (VT == MVT::v8i8) {
3104 SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0);
3105 return;
3106 } else if (VT == MVT::v16i8) {
3107 SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0);
3108 return;
3109 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3110 SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0);
3111 return;
3112 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3113 SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0);
3114 return;
3115 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3116 SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0);
3117 return;
3118 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3119 SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0);
3120 return;
3121 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3122 SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
3123 return;
3124 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3125 SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0);
3126 return;
3128 break;
3129 case Intrinsic::aarch64_neon_ld4:
3130 if (VT == MVT::v8i8) {
3131 SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0);
3132 return;
3133 } else if (VT == MVT::v16i8) {
3134 SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0);
3135 return;
3136 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3137 SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0);
3138 return;
3139 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3140 SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0);
3141 return;
3142 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3143 SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0);
3144 return;
3145 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3146 SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0);
3147 return;
3148 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3149 SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
3150 return;
3151 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3152 SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0);
3153 return;
3155 break;
3156 case Intrinsic::aarch64_neon_ld2r:
3157 if (VT == MVT::v8i8) {
3158 SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0);
3159 return;
3160 } else if (VT == MVT::v16i8) {
3161 SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0);
3162 return;
3163 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3164 SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0);
3165 return;
3166 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3167 SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0);
3168 return;
3169 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3170 SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0);
3171 return;
3172 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3173 SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0);
3174 return;
3175 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3176 SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0);
3177 return;
3178 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3179 SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0);
3180 return;
3182 break;
3183 case Intrinsic::aarch64_neon_ld3r:
3184 if (VT == MVT::v8i8) {
3185 SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0);
3186 return;
3187 } else if (VT == MVT::v16i8) {
3188 SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0);
3189 return;
3190 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3191 SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0);
3192 return;
3193 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3194 SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0);
3195 return;
3196 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3197 SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0);
3198 return;
3199 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3200 SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0);
3201 return;
3202 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3203 SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0);
3204 return;
3205 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3206 SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0);
3207 return;
3209 break;
3210 case Intrinsic::aarch64_neon_ld4r:
3211 if (VT == MVT::v8i8) {
3212 SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0);
3213 return;
3214 } else if (VT == MVT::v16i8) {
3215 SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0);
3216 return;
3217 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3218 SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0);
3219 return;
3220 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3221 SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0);
3222 return;
3223 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3224 SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0);
3225 return;
3226 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3227 SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0);
3228 return;
3229 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3230 SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0);
3231 return;
3232 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3233 SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0);
3234 return;
3236 break;
3237 case Intrinsic::aarch64_neon_ld2lane:
3238 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3239 SelectLoadLane(Node, 2, AArch64::LD2i8);
3240 return;
3241 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3242 VT == MVT::v8f16) {
3243 SelectLoadLane(Node, 2, AArch64::LD2i16);
3244 return;
3245 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3246 VT == MVT::v2f32) {
3247 SelectLoadLane(Node, 2, AArch64::LD2i32);
3248 return;
3249 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3250 VT == MVT::v1f64) {
3251 SelectLoadLane(Node, 2, AArch64::LD2i64);
3252 return;
3254 break;
3255 case Intrinsic::aarch64_neon_ld3lane:
3256 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3257 SelectLoadLane(Node, 3, AArch64::LD3i8);
3258 return;
3259 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3260 VT == MVT::v8f16) {
3261 SelectLoadLane(Node, 3, AArch64::LD3i16);
3262 return;
3263 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3264 VT == MVT::v2f32) {
3265 SelectLoadLane(Node, 3, AArch64::LD3i32);
3266 return;
3267 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3268 VT == MVT::v1f64) {
3269 SelectLoadLane(Node, 3, AArch64::LD3i64);
3270 return;
3272 break;
3273 case Intrinsic::aarch64_neon_ld4lane:
3274 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3275 SelectLoadLane(Node, 4, AArch64::LD4i8);
3276 return;
3277 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3278 VT == MVT::v8f16) {
3279 SelectLoadLane(Node, 4, AArch64::LD4i16);
3280 return;
3281 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3282 VT == MVT::v2f32) {
3283 SelectLoadLane(Node, 4, AArch64::LD4i32);
3284 return;
3285 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3286 VT == MVT::v1f64) {
3287 SelectLoadLane(Node, 4, AArch64::LD4i64);
3288 return;
3290 break;
3292 } break;
3293 case ISD::INTRINSIC_WO_CHAIN: {
3294 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
3295 switch (IntNo) {
3296 default:
3297 break;
3298 case Intrinsic::aarch64_tagp:
3299 SelectTagP(Node);
3300 return;
3301 case Intrinsic::aarch64_neon_tbl2:
3302 SelectTable(Node, 2,
3303 VT == MVT::v8i8 ? AArch64::TBLv8i8Two : AArch64::TBLv16i8Two,
3304 false);
3305 return;
3306 case Intrinsic::aarch64_neon_tbl3:
3307 SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three
3308 : AArch64::TBLv16i8Three,
3309 false);
3310 return;
3311 case Intrinsic::aarch64_neon_tbl4:
3312 SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four
3313 : AArch64::TBLv16i8Four,
3314 false);
3315 return;
3316 case Intrinsic::aarch64_neon_tbx2:
3317 SelectTable(Node, 2,
3318 VT == MVT::v8i8 ? AArch64::TBXv8i8Two : AArch64::TBXv16i8Two,
3319 true);
3320 return;
3321 case Intrinsic::aarch64_neon_tbx3:
3322 SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three
3323 : AArch64::TBXv16i8Three,
3324 true);
3325 return;
3326 case Intrinsic::aarch64_neon_tbx4:
3327 SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four
3328 : AArch64::TBXv16i8Four,
3329 true);
3330 return;
3331 case Intrinsic::aarch64_neon_smull:
3332 case Intrinsic::aarch64_neon_umull:
3333 if (tryMULLV64LaneV128(IntNo, Node))
3334 return;
3335 break;
3337 break;
3339 case ISD::INTRINSIC_VOID: {
3340 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
3341 if (Node->getNumOperands() >= 3)
3342 VT = Node->getOperand(2)->getValueType(0);
3343 switch (IntNo) {
3344 default:
3345 break;
3346 case Intrinsic::aarch64_neon_st1x2: {
3347 if (VT == MVT::v8i8) {
3348 SelectStore(Node, 2, AArch64::ST1Twov8b);
3349 return;
3350 } else if (VT == MVT::v16i8) {
3351 SelectStore(Node, 2, AArch64::ST1Twov16b);
3352 return;
3353 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3354 SelectStore(Node, 2, AArch64::ST1Twov4h);
3355 return;
3356 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3357 SelectStore(Node, 2, AArch64::ST1Twov8h);
3358 return;
3359 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3360 SelectStore(Node, 2, AArch64::ST1Twov2s);
3361 return;
3362 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3363 SelectStore(Node, 2, AArch64::ST1Twov4s);
3364 return;
3365 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3366 SelectStore(Node, 2, AArch64::ST1Twov2d);
3367 return;
3368 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3369 SelectStore(Node, 2, AArch64::ST1Twov1d);
3370 return;
3372 break;
3374 case Intrinsic::aarch64_neon_st1x3: {
3375 if (VT == MVT::v8i8) {
3376 SelectStore(Node, 3, AArch64::ST1Threev8b);
3377 return;
3378 } else if (VT == MVT::v16i8) {
3379 SelectStore(Node, 3, AArch64::ST1Threev16b);
3380 return;
3381 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3382 SelectStore(Node, 3, AArch64::ST1Threev4h);
3383 return;
3384 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3385 SelectStore(Node, 3, AArch64::ST1Threev8h);
3386 return;
3387 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3388 SelectStore(Node, 3, AArch64::ST1Threev2s);
3389 return;
3390 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3391 SelectStore(Node, 3, AArch64::ST1Threev4s);
3392 return;
3393 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3394 SelectStore(Node, 3, AArch64::ST1Threev2d);
3395 return;
3396 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3397 SelectStore(Node, 3, AArch64::ST1Threev1d);
3398 return;
3400 break;
3402 case Intrinsic::aarch64_neon_st1x4: {
3403 if (VT == MVT::v8i8) {
3404 SelectStore(Node, 4, AArch64::ST1Fourv8b);
3405 return;
3406 } else if (VT == MVT::v16i8) {
3407 SelectStore(Node, 4, AArch64::ST1Fourv16b);
3408 return;
3409 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3410 SelectStore(Node, 4, AArch64::ST1Fourv4h);
3411 return;
3412 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3413 SelectStore(Node, 4, AArch64::ST1Fourv8h);
3414 return;
3415 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3416 SelectStore(Node, 4, AArch64::ST1Fourv2s);
3417 return;
3418 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3419 SelectStore(Node, 4, AArch64::ST1Fourv4s);
3420 return;
3421 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3422 SelectStore(Node, 4, AArch64::ST1Fourv2d);
3423 return;
3424 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3425 SelectStore(Node, 4, AArch64::ST1Fourv1d);
3426 return;
3428 break;
3430 case Intrinsic::aarch64_neon_st2: {
3431 if (VT == MVT::v8i8) {
3432 SelectStore(Node, 2, AArch64::ST2Twov8b);
3433 return;
3434 } else if (VT == MVT::v16i8) {
3435 SelectStore(Node, 2, AArch64::ST2Twov16b);
3436 return;
3437 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3438 SelectStore(Node, 2, AArch64::ST2Twov4h);
3439 return;
3440 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3441 SelectStore(Node, 2, AArch64::ST2Twov8h);
3442 return;
3443 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3444 SelectStore(Node, 2, AArch64::ST2Twov2s);
3445 return;
3446 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3447 SelectStore(Node, 2, AArch64::ST2Twov4s);
3448 return;
3449 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3450 SelectStore(Node, 2, AArch64::ST2Twov2d);
3451 return;
3452 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3453 SelectStore(Node, 2, AArch64::ST1Twov1d);
3454 return;
3456 break;
3458 case Intrinsic::aarch64_neon_st3: {
3459 if (VT == MVT::v8i8) {
3460 SelectStore(Node, 3, AArch64::ST3Threev8b);
3461 return;
3462 } else if (VT == MVT::v16i8) {
3463 SelectStore(Node, 3, AArch64::ST3Threev16b);
3464 return;
3465 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3466 SelectStore(Node, 3, AArch64::ST3Threev4h);
3467 return;
3468 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3469 SelectStore(Node, 3, AArch64::ST3Threev8h);
3470 return;
3471 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3472 SelectStore(Node, 3, AArch64::ST3Threev2s);
3473 return;
3474 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3475 SelectStore(Node, 3, AArch64::ST3Threev4s);
3476 return;
3477 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3478 SelectStore(Node, 3, AArch64::ST3Threev2d);
3479 return;
3480 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3481 SelectStore(Node, 3, AArch64::ST1Threev1d);
3482 return;
3484 break;
3486 case Intrinsic::aarch64_neon_st4: {
3487 if (VT == MVT::v8i8) {
3488 SelectStore(Node, 4, AArch64::ST4Fourv8b);
3489 return;
3490 } else if (VT == MVT::v16i8) {
3491 SelectStore(Node, 4, AArch64::ST4Fourv16b);
3492 return;
3493 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3494 SelectStore(Node, 4, AArch64::ST4Fourv4h);
3495 return;
3496 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3497 SelectStore(Node, 4, AArch64::ST4Fourv8h);
3498 return;
3499 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3500 SelectStore(Node, 4, AArch64::ST4Fourv2s);
3501 return;
3502 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3503 SelectStore(Node, 4, AArch64::ST4Fourv4s);
3504 return;
3505 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3506 SelectStore(Node, 4, AArch64::ST4Fourv2d);
3507 return;
3508 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3509 SelectStore(Node, 4, AArch64::ST1Fourv1d);
3510 return;
3512 break;
3514 case Intrinsic::aarch64_neon_st2lane: {
3515 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3516 SelectStoreLane(Node, 2, AArch64::ST2i8);
3517 return;
3518 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3519 VT == MVT::v8f16) {
3520 SelectStoreLane(Node, 2, AArch64::ST2i16);
3521 return;
3522 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3523 VT == MVT::v2f32) {
3524 SelectStoreLane(Node, 2, AArch64::ST2i32);
3525 return;
3526 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3527 VT == MVT::v1f64) {
3528 SelectStoreLane(Node, 2, AArch64::ST2i64);
3529 return;
3531 break;
3533 case Intrinsic::aarch64_neon_st3lane: {
3534 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3535 SelectStoreLane(Node, 3, AArch64::ST3i8);
3536 return;
3537 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3538 VT == MVT::v8f16) {
3539 SelectStoreLane(Node, 3, AArch64::ST3i16);
3540 return;
3541 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3542 VT == MVT::v2f32) {
3543 SelectStoreLane(Node, 3, AArch64::ST3i32);
3544 return;
3545 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3546 VT == MVT::v1f64) {
3547 SelectStoreLane(Node, 3, AArch64::ST3i64);
3548 return;
3550 break;
3552 case Intrinsic::aarch64_neon_st4lane: {
3553 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3554 SelectStoreLane(Node, 4, AArch64::ST4i8);
3555 return;
3556 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3557 VT == MVT::v8f16) {
3558 SelectStoreLane(Node, 4, AArch64::ST4i16);
3559 return;
3560 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3561 VT == MVT::v2f32) {
3562 SelectStoreLane(Node, 4, AArch64::ST4i32);
3563 return;
3564 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3565 VT == MVT::v1f64) {
3566 SelectStoreLane(Node, 4, AArch64::ST4i64);
3567 return;
3569 break;
3572 break;
3574 case AArch64ISD::LD2post: {
3575 if (VT == MVT::v8i8) {
3576 SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0);
3577 return;
3578 } else if (VT == MVT::v16i8) {
3579 SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0);
3580 return;
3581 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3582 SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0);
3583 return;
3584 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3585 SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0);
3586 return;
3587 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3588 SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0);
3589 return;
3590 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3591 SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0);
3592 return;
3593 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3594 SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
3595 return;
3596 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3597 SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0);
3598 return;
3600 break;
3602 case AArch64ISD::LD3post: {
3603 if (VT == MVT::v8i8) {
3604 SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0);
3605 return;
3606 } else if (VT == MVT::v16i8) {
3607 SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0);
3608 return;
3609 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3610 SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0);
3611 return;
3612 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3613 SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0);
3614 return;
3615 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3616 SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0);
3617 return;
3618 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3619 SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0);
3620 return;
3621 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3622 SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
3623 return;
3624 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3625 SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0);
3626 return;
3628 break;
3630 case AArch64ISD::LD4post: {
3631 if (VT == MVT::v8i8) {
3632 SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0);
3633 return;
3634 } else if (VT == MVT::v16i8) {
3635 SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0);
3636 return;
3637 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3638 SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0);
3639 return;
3640 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3641 SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0);
3642 return;
3643 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3644 SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0);
3645 return;
3646 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3647 SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0);
3648 return;
3649 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3650 SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
3651 return;
3652 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3653 SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0);
3654 return;
3656 break;
3658 case AArch64ISD::LD1x2post: {
3659 if (VT == MVT::v8i8) {
3660 SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0);
3661 return;
3662 } else if (VT == MVT::v16i8) {
3663 SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0);
3664 return;
3665 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3666 SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0);
3667 return;
3668 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3669 SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0);
3670 return;
3671 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3672 SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0);
3673 return;
3674 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3675 SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0);
3676 return;
3677 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3678 SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
3679 return;
3680 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3681 SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0);
3682 return;
3684 break;
3686 case AArch64ISD::LD1x3post: {
3687 if (VT == MVT::v8i8) {
3688 SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0);
3689 return;
3690 } else if (VT == MVT::v16i8) {
3691 SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0);
3692 return;
3693 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3694 SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0);
3695 return;
3696 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3697 SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0);
3698 return;
3699 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3700 SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0);
3701 return;
3702 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3703 SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0);
3704 return;
3705 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3706 SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
3707 return;
3708 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3709 SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0);
3710 return;
3712 break;
3714 case AArch64ISD::LD1x4post: {
3715 if (VT == MVT::v8i8) {
3716 SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0);
3717 return;
3718 } else if (VT == MVT::v16i8) {
3719 SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0);
3720 return;
3721 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3722 SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0);
3723 return;
3724 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3725 SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0);
3726 return;
3727 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3728 SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0);
3729 return;
3730 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3731 SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0);
3732 return;
3733 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3734 SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
3735 return;
3736 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3737 SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0);
3738 return;
3740 break;
3742 case AArch64ISD::LD1DUPpost: {
3743 if (VT == MVT::v8i8) {
3744 SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0);
3745 return;
3746 } else if (VT == MVT::v16i8) {
3747 SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0);
3748 return;
3749 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3750 SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0);
3751 return;
3752 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3753 SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0);
3754 return;
3755 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3756 SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0);
3757 return;
3758 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3759 SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0);
3760 return;
3761 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3762 SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0);
3763 return;
3764 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3765 SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0);
3766 return;
3768 break;
3770 case AArch64ISD::LD2DUPpost: {
3771 if (VT == MVT::v8i8) {
3772 SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0);
3773 return;
3774 } else if (VT == MVT::v16i8) {
3775 SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0);
3776 return;
3777 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3778 SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0);
3779 return;
3780 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3781 SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0);
3782 return;
3783 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3784 SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0);
3785 return;
3786 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3787 SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0);
3788 return;
3789 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3790 SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0);
3791 return;
3792 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3793 SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0);
3794 return;
3796 break;
3798 case AArch64ISD::LD3DUPpost: {
3799 if (VT == MVT::v8i8) {
3800 SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0);
3801 return;
3802 } else if (VT == MVT::v16i8) {
3803 SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0);
3804 return;
3805 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3806 SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0);
3807 return;
3808 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3809 SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0);
3810 return;
3811 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3812 SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0);
3813 return;
3814 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3815 SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0);
3816 return;
3817 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3818 SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0);
3819 return;
3820 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3821 SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0);
3822 return;
3824 break;
3826 case AArch64ISD::LD4DUPpost: {
3827 if (VT == MVT::v8i8) {
3828 SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0);
3829 return;
3830 } else if (VT == MVT::v16i8) {
3831 SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0);
3832 return;
3833 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3834 SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0);
3835 return;
3836 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3837 SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0);
3838 return;
3839 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3840 SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0);
3841 return;
3842 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3843 SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0);
3844 return;
3845 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3846 SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0);
3847 return;
3848 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3849 SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0);
3850 return;
3852 break;
3854 case AArch64ISD::LD1LANEpost: {
3855 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3856 SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST);
3857 return;
3858 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3859 VT == MVT::v8f16) {
3860 SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST);
3861 return;
3862 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3863 VT == MVT::v2f32) {
3864 SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST);
3865 return;
3866 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3867 VT == MVT::v1f64) {
3868 SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST);
3869 return;
3871 break;
3873 case AArch64ISD::LD2LANEpost: {
3874 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3875 SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST);
3876 return;
3877 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3878 VT == MVT::v8f16) {
3879 SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST);
3880 return;
3881 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3882 VT == MVT::v2f32) {
3883 SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST);
3884 return;
3885 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3886 VT == MVT::v1f64) {
3887 SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST);
3888 return;
3890 break;
3892 case AArch64ISD::LD3LANEpost: {
3893 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3894 SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST);
3895 return;
3896 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3897 VT == MVT::v8f16) {
3898 SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST);
3899 return;
3900 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3901 VT == MVT::v2f32) {
3902 SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST);
3903 return;
3904 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3905 VT == MVT::v1f64) {
3906 SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST);
3907 return;
3909 break;
3911 case AArch64ISD::LD4LANEpost: {
3912 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3913 SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST);
3914 return;
3915 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3916 VT == MVT::v8f16) {
3917 SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST);
3918 return;
3919 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3920 VT == MVT::v2f32) {
3921 SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST);
3922 return;
3923 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3924 VT == MVT::v1f64) {
3925 SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST);
3926 return;
3928 break;
3930 case AArch64ISD::ST2post: {
3931 VT = Node->getOperand(1).getValueType();
3932 if (VT == MVT::v8i8) {
3933 SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST);
3934 return;
3935 } else if (VT == MVT::v16i8) {
3936 SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST);
3937 return;
3938 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3939 SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST);
3940 return;
3941 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3942 SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST);
3943 return;
3944 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3945 SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST);
3946 return;
3947 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3948 SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST);
3949 return;
3950 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3951 SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST);
3952 return;
3953 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3954 SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
3955 return;
3957 break;
3959 case AArch64ISD::ST3post: {
3960 VT = Node->getOperand(1).getValueType();
3961 if (VT == MVT::v8i8) {
3962 SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST);
3963 return;
3964 } else if (VT == MVT::v16i8) {
3965 SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST);
3966 return;
3967 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3968 SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST);
3969 return;
3970 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3971 SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST);
3972 return;
3973 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3974 SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST);
3975 return;
3976 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3977 SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST);
3978 return;
3979 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3980 SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST);
3981 return;
3982 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3983 SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
3984 return;
3986 break;
3988 case AArch64ISD::ST4post: {
3989 VT = Node->getOperand(1).getValueType();
3990 if (VT == MVT::v8i8) {
3991 SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST);
3992 return;
3993 } else if (VT == MVT::v16i8) {
3994 SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST);
3995 return;
3996 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3997 SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST);
3998 return;
3999 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
4000 SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST);
4001 return;
4002 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4003 SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST);
4004 return;
4005 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4006 SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST);
4007 return;
4008 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4009 SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST);
4010 return;
4011 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4012 SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
4013 return;
4015 break;
4017 case AArch64ISD::ST1x2post: {
4018 VT = Node->getOperand(1).getValueType();
4019 if (VT == MVT::v8i8) {
4020 SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST);
4021 return;
4022 } else if (VT == MVT::v16i8) {
4023 SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST);
4024 return;
4025 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4026 SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST);
4027 return;
4028 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
4029 SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST);
4030 return;
4031 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4032 SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST);
4033 return;
4034 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4035 SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST);
4036 return;
4037 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4038 SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
4039 return;
4040 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4041 SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST);
4042 return;
4044 break;
4046 case AArch64ISD::ST1x3post: {
4047 VT = Node->getOperand(1).getValueType();
4048 if (VT == MVT::v8i8) {
4049 SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST);
4050 return;
4051 } else if (VT == MVT::v16i8) {
4052 SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST);
4053 return;
4054 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4055 SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST);
4056 return;
4057 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
4058 SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST);
4059 return;
4060 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4061 SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST);
4062 return;
4063 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4064 SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST);
4065 return;
4066 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4067 SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
4068 return;
4069 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4070 SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST);
4071 return;
4073 break;
4075 case AArch64ISD::ST1x4post: {
4076 VT = Node->getOperand(1).getValueType();
4077 if (VT == MVT::v8i8) {
4078 SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST);
4079 return;
4080 } else if (VT == MVT::v16i8) {
4081 SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST);
4082 return;
4083 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4084 SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST);
4085 return;
4086 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
4087 SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST);
4088 return;
4089 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4090 SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST);
4091 return;
4092 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4093 SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST);
4094 return;
4095 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4096 SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
4097 return;
4098 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4099 SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST);
4100 return;
4102 break;
4104 case AArch64ISD::ST2LANEpost: {
4105 VT = Node->getOperand(1).getValueType();
4106 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4107 SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST);
4108 return;
4109 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4110 VT == MVT::v8f16) {
4111 SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST);
4112 return;
4113 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4114 VT == MVT::v2f32) {
4115 SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST);
4116 return;
4117 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4118 VT == MVT::v1f64) {
4119 SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST);
4120 return;
4122 break;
4124 case AArch64ISD::ST3LANEpost: {
4125 VT = Node->getOperand(1).getValueType();
4126 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4127 SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST);
4128 return;
4129 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4130 VT == MVT::v8f16) {
4131 SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST);
4132 return;
4133 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4134 VT == MVT::v2f32) {
4135 SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST);
4136 return;
4137 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4138 VT == MVT::v1f64) {
4139 SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST);
4140 return;
4142 break;
4144 case AArch64ISD::ST4LANEpost: {
4145 VT = Node->getOperand(1).getValueType();
4146 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4147 SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST);
4148 return;
4149 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4150 VT == MVT::v8f16) {
4151 SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST);
4152 return;
4153 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4154 VT == MVT::v2f32) {
4155 SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST);
4156 return;
4157 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4158 VT == MVT::v1f64) {
4159 SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST);
4160 return;
4162 break;
4166 // Select the default instruction
4167 SelectCode(Node);
4170 /// createAArch64ISelDag - This pass converts a legalized DAG into a
4171 /// AArch64-specific DAG, ready for instruction scheduling.
4172 FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM,
4173 CodeGenOpt::Level OptLevel) {
4174 return new AArch64DAGToDAGISel(TM, OptLevel);