1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //==-----------------------------------------------------------------------===//
10 /// Defines an instruction selector for the AMDGPU target.
12 //===----------------------------------------------------------------------===//
15 #include "AMDGPUArgumentUsageInfo.h"
16 #include "AMDGPUISelLowering.h" // For AMDGPUISD
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUPerfHintAnalysis.h"
19 #include "AMDGPURegisterInfo.h"
20 #include "AMDGPUSubtarget.h"
21 #include "AMDGPUTargetMachine.h"
22 #include "SIDefines.h"
23 #include "SIISelLowering.h"
24 #include "SIInstrInfo.h"
25 #include "SIMachineFunctionInfo.h"
26 #include "SIRegisterInfo.h"
27 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/CodeGen/SelectionDAGISel.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #ifdef EXPENSIVE_CHECKS
43 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/MC/MCInstrDesc.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MachineValueType.h"
51 #include "llvm/Support/MathExtras.h"
57 #define DEBUG_TYPE "isel"
65 } // end namespace llvm
67 //===----------------------------------------------------------------------===//
68 // Instruction Selector Implementation
69 //===----------------------------------------------------------------------===//
73 static bool isNullConstantOrUndef(SDValue V
) {
77 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(V
);
78 return Const
!= nullptr && Const
->isNullValue();
81 static bool getConstantValue(SDValue N
, uint32_t &Out
) {
82 // This is only used for packed vectors, where ussing 0 for undef should
89 if (const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
)) {
90 Out
= C
->getAPIntValue().getSExtValue();
94 if (const ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
)) {
95 Out
= C
->getValueAPF().bitcastToAPInt().getSExtValue();
102 // TODO: Handle undef as zero
103 static SDNode
*packConstantV2I16(const SDNode
*N
, SelectionDAG
&DAG
,
104 bool Negate
= false) {
105 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& N
->getNumOperands() == 2);
106 uint32_t LHSVal
, RHSVal
;
107 if (getConstantValue(N
->getOperand(0), LHSVal
) &&
108 getConstantValue(N
->getOperand(1), RHSVal
)) {
110 uint32_t K
= Negate
?
111 (-LHSVal
& 0xffff) | (-RHSVal
<< 16) :
112 (LHSVal
& 0xffff) | (RHSVal
<< 16);
113 return DAG
.getMachineNode(AMDGPU::S_MOV_B32
, SL
, N
->getValueType(0),
114 DAG
.getTargetConstant(K
, SL
, MVT::i32
));
120 static SDNode
*packNegConstantV2I16(const SDNode
*N
, SelectionDAG
&DAG
) {
121 return packConstantV2I16(N
, DAG
, true);
124 /// AMDGPU specific code to select AMDGPU machine instructions for
125 /// SelectionDAG operations.
126 class AMDGPUDAGToDAGISel
: public SelectionDAGISel
{
127 // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
128 // make the right decision when generating code for different targets.
129 const GCNSubtarget
*Subtarget
;
130 bool EnableLateStructurizeCFG
;
133 explicit AMDGPUDAGToDAGISel(TargetMachine
*TM
= nullptr,
134 CodeGenOpt::Level OptLevel
= CodeGenOpt::Default
)
135 : SelectionDAGISel(*TM
, OptLevel
) {
136 EnableLateStructurizeCFG
= AMDGPUTargetMachine::EnableLateStructurizeCFG
;
138 ~AMDGPUDAGToDAGISel() override
= default;
140 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
141 AU
.addRequired
<AMDGPUArgumentUsageInfo
>();
142 AU
.addRequired
<LegacyDivergenceAnalysis
>();
143 #ifdef EXPENSIVE_CHECKS
144 AU
.addRequired
<DominatorTreeWrapperPass
>();
145 AU
.addRequired
<LoopInfoWrapperPass
>();
147 SelectionDAGISel::getAnalysisUsage(AU
);
150 bool matchLoadD16FromBuildVector(SDNode
*N
) const;
152 bool runOnMachineFunction(MachineFunction
&MF
) override
;
153 void PreprocessISelDAG() override
;
154 void Select(SDNode
*N
) override
;
155 StringRef
getPassName() const override
;
156 void PostprocessISelDAG() override
;
159 void SelectBuildVector(SDNode
*N
, unsigned RegClassID
);
162 std::pair
<SDValue
, SDValue
> foldFrameIndex(SDValue N
) const;
163 bool isNoNanSrc(SDValue N
) const;
164 bool isInlineImmediate(const SDNode
*N
, bool Negated
= false) const;
165 bool isNegInlineImmediate(const SDNode
*N
) const {
166 return isInlineImmediate(N
, true);
169 bool isVGPRImm(const SDNode
*N
) const;
170 bool isUniformLoad(const SDNode
*N
) const;
171 bool isUniformBr(const SDNode
*N
) const;
173 MachineSDNode
*buildSMovImm64(SDLoc
&DL
, uint64_t Val
, EVT VT
) const;
175 SDNode
*glueCopyToOp(SDNode
*N
, SDValue NewChain
, SDValue Glue
) const;
176 SDNode
*glueCopyToM0(SDNode
*N
, SDValue Val
) const;
177 SDNode
*glueCopyToM0LDSInit(SDNode
*N
) const;
179 const TargetRegisterClass
*getOperandRegClass(SDNode
*N
, unsigned OpNo
) const;
180 virtual bool SelectADDRVTX_READ(SDValue Addr
, SDValue
&Base
, SDValue
&Offset
);
181 virtual bool SelectADDRIndirect(SDValue Addr
, SDValue
&Base
, SDValue
&Offset
);
182 bool isDSOffsetLegal(SDValue Base
, unsigned Offset
,
183 unsigned OffsetBits
) const;
184 bool SelectDS1Addr1Offset(SDValue Ptr
, SDValue
&Base
, SDValue
&Offset
) const;
185 bool SelectDS64Bit4ByteAligned(SDValue Ptr
, SDValue
&Base
, SDValue
&Offset0
,
186 SDValue
&Offset1
) const;
187 bool SelectMUBUF(SDValue Addr
, SDValue
&SRsrc
, SDValue
&VAddr
,
188 SDValue
&SOffset
, SDValue
&Offset
, SDValue
&Offen
,
189 SDValue
&Idxen
, SDValue
&Addr64
, SDValue
&GLC
, SDValue
&SLC
,
190 SDValue
&TFE
, SDValue
&DLC
, SDValue
&SWZ
) const;
191 bool SelectMUBUFAddr64(SDValue Addr
, SDValue
&SRsrc
, SDValue
&VAddr
,
192 SDValue
&SOffset
, SDValue
&Offset
, SDValue
&GLC
,
193 SDValue
&SLC
, SDValue
&TFE
, SDValue
&DLC
,
195 bool SelectMUBUFAddr64(SDValue Addr
, SDValue
&SRsrc
,
196 SDValue
&VAddr
, SDValue
&SOffset
, SDValue
&Offset
,
198 bool SelectMUBUFScratchOffen(SDNode
*Parent
,
199 SDValue Addr
, SDValue
&RSrc
, SDValue
&VAddr
,
200 SDValue
&SOffset
, SDValue
&ImmOffset
) const;
201 bool SelectMUBUFScratchOffset(SDNode
*Parent
,
202 SDValue Addr
, SDValue
&SRsrc
, SDValue
&Soffset
,
203 SDValue
&Offset
) const;
205 bool SelectMUBUFOffset(SDValue Addr
, SDValue
&SRsrc
, SDValue
&SOffset
,
206 SDValue
&Offset
, SDValue
&GLC
, SDValue
&SLC
,
207 SDValue
&TFE
, SDValue
&DLC
, SDValue
&SWZ
) const;
208 bool SelectMUBUFOffset(SDValue Addr
, SDValue
&SRsrc
, SDValue
&Soffset
,
209 SDValue
&Offset
, SDValue
&SLC
) const;
210 bool SelectMUBUFOffset(SDValue Addr
, SDValue
&SRsrc
, SDValue
&Soffset
,
211 SDValue
&Offset
) const;
213 template <bool IsSigned
>
214 bool SelectFlatOffset(SDNode
*N
, SDValue Addr
, SDValue
&VAddr
,
215 SDValue
&Offset
, SDValue
&SLC
) const;
216 bool SelectFlatAtomic(SDNode
*N
, SDValue Addr
, SDValue
&VAddr
,
217 SDValue
&Offset
, SDValue
&SLC
) const;
218 bool SelectFlatAtomicSigned(SDNode
*N
, SDValue Addr
, SDValue
&VAddr
,
219 SDValue
&Offset
, SDValue
&SLC
) const;
221 bool SelectSMRDOffset(SDValue ByteOffsetNode
, SDValue
&Offset
,
223 SDValue
Expand32BitAddress(SDValue Addr
) const;
224 bool SelectSMRD(SDValue Addr
, SDValue
&SBase
, SDValue
&Offset
,
226 bool SelectSMRDImm(SDValue Addr
, SDValue
&SBase
, SDValue
&Offset
) const;
227 bool SelectSMRDImm32(SDValue Addr
, SDValue
&SBase
, SDValue
&Offset
) const;
228 bool SelectSMRDSgpr(SDValue Addr
, SDValue
&SBase
, SDValue
&Offset
) const;
229 bool SelectSMRDBufferImm(SDValue Addr
, SDValue
&Offset
) const;
230 bool SelectSMRDBufferImm32(SDValue Addr
, SDValue
&Offset
) const;
231 bool SelectMOVRELOffset(SDValue Index
, SDValue
&Base
, SDValue
&Offset
) const;
233 bool SelectVOP3Mods_NNaN(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
) const;
234 bool SelectVOP3Mods_f32(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
) const;
235 bool SelectVOP3ModsImpl(SDValue In
, SDValue
&Src
, unsigned &SrcMods
) const;
236 bool SelectVOP3Mods(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
) const;
237 bool SelectVOP3NoMods(SDValue In
, SDValue
&Src
) const;
238 bool SelectVOP3Mods0(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
,
239 SDValue
&Clamp
, SDValue
&Omod
) const;
240 bool SelectVOP3NoMods0(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
,
241 SDValue
&Clamp
, SDValue
&Omod
) const;
243 bool SelectVOP3Mods0Clamp0OMod(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
,
245 SDValue
&Omod
) const;
247 bool SelectVOP3OMods(SDValue In
, SDValue
&Src
,
248 SDValue
&Clamp
, SDValue
&Omod
) const;
250 bool SelectVOP3PMods(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
) const;
251 bool SelectVOP3PMods0(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
,
252 SDValue
&Clamp
) const;
254 bool SelectVOP3OpSel(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
) const;
255 bool SelectVOP3OpSel0(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
,
256 SDValue
&Clamp
) const;
258 bool SelectVOP3OpSelMods(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
) const;
259 bool SelectVOP3OpSelMods0(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
,
260 SDValue
&Clamp
) const;
261 bool SelectVOP3PMadMixModsImpl(SDValue In
, SDValue
&Src
, unsigned &Mods
) const;
262 bool SelectVOP3PMadMixMods(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
) const;
264 SDValue
getHi16Elt(SDValue In
) const;
266 SDValue
getMaterializedScalarImm32(int64_t Val
, const SDLoc
&DL
) const;
268 void SelectADD_SUB_I64(SDNode
*N
);
269 void SelectAddcSubb(SDNode
*N
);
270 void SelectUADDO_USUBO(SDNode
*N
);
271 void SelectDIV_SCALE(SDNode
*N
);
272 void SelectDIV_FMAS(SDNode
*N
);
273 void SelectMAD_64_32(SDNode
*N
);
274 void SelectFMA_W_CHAIN(SDNode
*N
);
275 void SelectFMUL_W_CHAIN(SDNode
*N
);
277 SDNode
*getS_BFE(unsigned Opcode
, const SDLoc
&DL
, SDValue Val
,
278 uint32_t Offset
, uint32_t Width
);
279 void SelectS_BFEFromShifts(SDNode
*N
);
280 void SelectS_BFE(SDNode
*N
);
281 bool isCBranchSCC(const SDNode
*N
) const;
282 void SelectBRCOND(SDNode
*N
);
283 void SelectFMAD_FMA(SDNode
*N
);
284 void SelectATOMIC_CMP_SWAP(SDNode
*N
);
285 void SelectDSAppendConsume(SDNode
*N
, unsigned IntrID
);
286 void SelectDS_GWS(SDNode
*N
, unsigned IntrID
);
287 void SelectINTRINSIC_W_CHAIN(SDNode
*N
);
288 void SelectINTRINSIC_WO_CHAIN(SDNode
*N
);
289 void SelectINTRINSIC_VOID(SDNode
*N
);
292 // Include the pieces autogenerated from the target description.
293 #include "AMDGPUGenDAGISel.inc"
296 class R600DAGToDAGISel
: public AMDGPUDAGToDAGISel
{
297 const R600Subtarget
*Subtarget
;
299 bool isConstantLoad(const MemSDNode
*N
, int cbID
) const;
300 bool SelectGlobalValueConstantOffset(SDValue Addr
, SDValue
& IntPtr
);
301 bool SelectGlobalValueVariableOffset(SDValue Addr
, SDValue
&BaseReg
,
304 explicit R600DAGToDAGISel(TargetMachine
*TM
, CodeGenOpt::Level OptLevel
) :
305 AMDGPUDAGToDAGISel(TM
, OptLevel
) {}
307 void Select(SDNode
*N
) override
;
309 bool SelectADDRIndirect(SDValue Addr
, SDValue
&Base
,
310 SDValue
&Offset
) override
;
311 bool SelectADDRVTX_READ(SDValue Addr
, SDValue
&Base
,
312 SDValue
&Offset
) override
;
314 bool runOnMachineFunction(MachineFunction
&MF
) override
;
316 void PreprocessISelDAG() override
{}
319 // Include the pieces autogenerated from the target description.
320 #include "R600GenDAGISel.inc"
323 static SDValue
stripBitcast(SDValue Val
) {
324 return Val
.getOpcode() == ISD::BITCAST
? Val
.getOperand(0) : Val
;
327 // Figure out if this is really an extract of the high 16-bits of a dword.
328 static bool isExtractHiElt(SDValue In
, SDValue
&Out
) {
329 In
= stripBitcast(In
);
330 if (In
.getOpcode() != ISD::TRUNCATE
)
333 SDValue Srl
= In
.getOperand(0);
334 if (Srl
.getOpcode() == ISD::SRL
) {
335 if (ConstantSDNode
*ShiftAmt
= dyn_cast
<ConstantSDNode
>(Srl
.getOperand(1))) {
336 if (ShiftAmt
->getZExtValue() == 16) {
337 Out
= stripBitcast(Srl
.getOperand(0));
346 // Look through operations that obscure just looking at the low 16-bits of the
348 static SDValue
stripExtractLoElt(SDValue In
) {
349 if (In
.getOpcode() == ISD::TRUNCATE
) {
350 SDValue Src
= In
.getOperand(0);
351 if (Src
.getValueType().getSizeInBits() == 32)
352 return stripBitcast(Src
);
358 } // end anonymous namespace
360 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel
, "amdgpu-isel",
361 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
362 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo
)
363 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis
)
364 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis
)
365 #ifdef EXPENSIVE_CHECKS
366 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
367 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
369 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel
, "amdgpu-isel",
370 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
372 /// This pass converts a legalized DAG into a AMDGPU-specific
373 // DAG, ready for instruction scheduling.
374 FunctionPass
*llvm::createAMDGPUISelDag(TargetMachine
*TM
,
375 CodeGenOpt::Level OptLevel
) {
376 return new AMDGPUDAGToDAGISel(TM
, OptLevel
);
379 /// This pass converts a legalized DAG into a R600-specific
380 // DAG, ready for instruction scheduling.
381 FunctionPass
*llvm::createR600ISelDag(TargetMachine
*TM
,
382 CodeGenOpt::Level OptLevel
) {
383 return new R600DAGToDAGISel(TM
, OptLevel
);
386 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction
&MF
) {
387 #ifdef EXPENSIVE_CHECKS
388 DominatorTree
& DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
389 LoopInfo
* LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
390 for (auto &L
: LI
->getLoopsInPreorder()) {
391 assert(L
->isLCSSAForm(DT
));
394 Subtarget
= &MF
.getSubtarget
<GCNSubtarget
>();
395 return SelectionDAGISel::runOnMachineFunction(MF
);
398 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode
*N
) const {
399 assert(Subtarget
->d16PreservesUnusedBits());
400 MVT VT
= N
->getValueType(0).getSimpleVT();
401 if (VT
!= MVT::v2i16
&& VT
!= MVT::v2f16
)
404 SDValue Lo
= N
->getOperand(0);
405 SDValue Hi
= N
->getOperand(1);
407 LoadSDNode
*LdHi
= dyn_cast
<LoadSDNode
>(stripBitcast(Hi
));
409 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo
410 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
411 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo
413 // Need to check for possible indirect dependencies on the other half of the
414 // vector to avoid introducing a cycle.
415 if (LdHi
&& Hi
.hasOneUse() && !LdHi
->isPredecessorOf(Lo
.getNode())) {
416 SDVTList VTList
= CurDAG
->getVTList(VT
, MVT::Other
);
418 SDValue TiedIn
= CurDAG
->getNode(ISD::SCALAR_TO_VECTOR
, SDLoc(N
), VT
, Lo
);
420 LdHi
->getChain(), LdHi
->getBasePtr(), TiedIn
423 unsigned LoadOp
= AMDGPUISD::LOAD_D16_HI
;
424 if (LdHi
->getMemoryVT() == MVT::i8
) {
425 LoadOp
= LdHi
->getExtensionType() == ISD::SEXTLOAD
?
426 AMDGPUISD::LOAD_D16_HI_I8
: AMDGPUISD::LOAD_D16_HI_U8
;
428 assert(LdHi
->getMemoryVT() == MVT::i16
);
432 CurDAG
->getMemIntrinsicNode(LoadOp
, SDLoc(LdHi
), VTList
,
433 Ops
, LdHi
->getMemoryVT(),
434 LdHi
->getMemOperand());
436 CurDAG
->ReplaceAllUsesOfValueWith(SDValue(N
, 0), NewLoadHi
);
437 CurDAG
->ReplaceAllUsesOfValueWith(SDValue(LdHi
, 1), NewLoadHi
.getValue(1));
441 // build_vector (load ptr), hi -> load_d16_lo ptr, hi
442 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
443 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
444 LoadSDNode
*LdLo
= dyn_cast
<LoadSDNode
>(stripBitcast(Lo
));
445 if (LdLo
&& Lo
.hasOneUse()) {
446 SDValue TiedIn
= getHi16Elt(Hi
);
447 if (!TiedIn
|| LdLo
->isPredecessorOf(TiedIn
.getNode()))
450 SDVTList VTList
= CurDAG
->getVTList(VT
, MVT::Other
);
451 unsigned LoadOp
= AMDGPUISD::LOAD_D16_LO
;
452 if (LdLo
->getMemoryVT() == MVT::i8
) {
453 LoadOp
= LdLo
->getExtensionType() == ISD::SEXTLOAD
?
454 AMDGPUISD::LOAD_D16_LO_I8
: AMDGPUISD::LOAD_D16_LO_U8
;
456 assert(LdLo
->getMemoryVT() == MVT::i16
);
459 TiedIn
= CurDAG
->getNode(ISD::BITCAST
, SDLoc(N
), VT
, TiedIn
);
462 LdLo
->getChain(), LdLo
->getBasePtr(), TiedIn
466 CurDAG
->getMemIntrinsicNode(LoadOp
, SDLoc(LdLo
), VTList
,
467 Ops
, LdLo
->getMemoryVT(),
468 LdLo
->getMemOperand());
470 CurDAG
->ReplaceAllUsesOfValueWith(SDValue(N
, 0), NewLoadLo
);
471 CurDAG
->ReplaceAllUsesOfValueWith(SDValue(LdLo
, 1), NewLoadLo
.getValue(1));
478 void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
479 if (!Subtarget
->d16PreservesUnusedBits())
482 SelectionDAG::allnodes_iterator Position
= CurDAG
->allnodes_end();
484 bool MadeChange
= false;
485 while (Position
!= CurDAG
->allnodes_begin()) {
486 SDNode
*N
= &*--Position
;
490 switch (N
->getOpcode()) {
491 case ISD::BUILD_VECTOR
:
492 MadeChange
|= matchLoadD16FromBuildVector(N
);
500 CurDAG
->RemoveDeadNodes();
501 LLVM_DEBUG(dbgs() << "After PreProcess:\n";
506 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N
) const {
507 if (TM
.Options
.NoNaNsFPMath
)
510 // TODO: Move into isKnownNeverNaN
511 if (N
->getFlags().isDefined())
512 return N
->getFlags().hasNoNaNs();
514 return CurDAG
->isKnownNeverNaN(N
);
517 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode
*N
,
518 bool Negated
) const {
522 const SIInstrInfo
*TII
= Subtarget
->getInstrInfo();
524 if (const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
))
525 return TII
->isInlineConstant(-C
->getAPIntValue());
527 if (const ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
))
528 return TII
->isInlineConstant(-C
->getValueAPF().bitcastToAPInt());
531 if (const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
))
532 return TII
->isInlineConstant(C
->getAPIntValue());
534 if (const ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
))
535 return TII
->isInlineConstant(C
->getValueAPF().bitcastToAPInt());
541 /// Determine the register class for \p OpNo
542 /// \returns The register class of the virtual register that will be used for
543 /// the given operand number \OpNo or NULL if the register class cannot be
545 const TargetRegisterClass
*AMDGPUDAGToDAGISel::getOperandRegClass(SDNode
*N
,
546 unsigned OpNo
) const {
547 if (!N
->isMachineOpcode()) {
548 if (N
->getOpcode() == ISD::CopyToReg
) {
549 unsigned Reg
= cast
<RegisterSDNode
>(N
->getOperand(1))->getReg();
550 if (Register::isVirtualRegister(Reg
)) {
551 MachineRegisterInfo
&MRI
= CurDAG
->getMachineFunction().getRegInfo();
552 return MRI
.getRegClass(Reg
);
555 const SIRegisterInfo
*TRI
556 = static_cast<const GCNSubtarget
*>(Subtarget
)->getRegisterInfo();
557 return TRI
->getPhysRegClass(Reg
);
563 switch (N
->getMachineOpcode()) {
565 const MCInstrDesc
&Desc
=
566 Subtarget
->getInstrInfo()->get(N
->getMachineOpcode());
567 unsigned OpIdx
= Desc
.getNumDefs() + OpNo
;
568 if (OpIdx
>= Desc
.getNumOperands())
570 int RegClass
= Desc
.OpInfo
[OpIdx
].RegClass
;
574 return Subtarget
->getRegisterInfo()->getRegClass(RegClass
);
576 case AMDGPU::REG_SEQUENCE
: {
577 unsigned RCID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
578 const TargetRegisterClass
*SuperRC
=
579 Subtarget
->getRegisterInfo()->getRegClass(RCID
);
581 SDValue SubRegOp
= N
->getOperand(OpNo
+ 1);
582 unsigned SubRegIdx
= cast
<ConstantSDNode
>(SubRegOp
)->getZExtValue();
583 return Subtarget
->getRegisterInfo()->getSubClassWithSubReg(SuperRC
,
589 SDNode
*AMDGPUDAGToDAGISel::glueCopyToOp(SDNode
*N
, SDValue NewChain
,
590 SDValue Glue
) const {
591 SmallVector
<SDValue
, 8> Ops
;
592 Ops
.push_back(NewChain
); // Replace the chain.
593 for (unsigned i
= 1, e
= N
->getNumOperands(); i
!= e
; ++i
)
594 Ops
.push_back(N
->getOperand(i
));
597 return CurDAG
->MorphNodeTo(N
, N
->getOpcode(), N
->getVTList(), Ops
);
600 SDNode
*AMDGPUDAGToDAGISel::glueCopyToM0(SDNode
*N
, SDValue Val
) const {
601 const SITargetLowering
& Lowering
=
602 *static_cast<const SITargetLowering
*>(getTargetLowering());
604 assert(N
->getOperand(0).getValueType() == MVT::Other
&& "Expected chain");
606 SDValue M0
= Lowering
.copyToM0(*CurDAG
, N
->getOperand(0), SDLoc(N
), Val
);
607 return glueCopyToOp(N
, M0
, M0
.getValue(1));
610 SDNode
*AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode
*N
) const {
611 unsigned AS
= cast
<MemSDNode
>(N
)->getAddressSpace();
612 if (AS
== AMDGPUAS::LOCAL_ADDRESS
) {
613 if (Subtarget
->ldsRequiresM0Init())
614 return glueCopyToM0(N
, CurDAG
->getTargetConstant(-1, SDLoc(N
), MVT::i32
));
615 } else if (AS
== AMDGPUAS::REGION_ADDRESS
) {
616 MachineFunction
&MF
= CurDAG
->getMachineFunction();
617 unsigned Value
= MF
.getInfo
<SIMachineFunctionInfo
>()->getGDSSize();
619 glueCopyToM0(N
, CurDAG
->getTargetConstant(Value
, SDLoc(N
), MVT::i32
));
624 MachineSDNode
*AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc
&DL
, uint64_t Imm
,
626 SDNode
*Lo
= CurDAG
->getMachineNode(
627 AMDGPU::S_MOV_B32
, DL
, MVT::i32
,
628 CurDAG
->getTargetConstant(Imm
& 0xFFFFFFFF, DL
, MVT::i32
));
630 CurDAG
->getMachineNode(AMDGPU::S_MOV_B32
, DL
, MVT::i32
,
631 CurDAG
->getTargetConstant(Imm
>> 32, DL
, MVT::i32
));
632 const SDValue Ops
[] = {
633 CurDAG
->getTargetConstant(AMDGPU::SReg_64RegClassID
, DL
, MVT::i32
),
634 SDValue(Lo
, 0), CurDAG
->getTargetConstant(AMDGPU::sub0
, DL
, MVT::i32
),
635 SDValue(Hi
, 0), CurDAG
->getTargetConstant(AMDGPU::sub1
, DL
, MVT::i32
)};
637 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, DL
, VT
, Ops
);
640 static unsigned selectSGPRVectorRegClassID(unsigned NumVectorElts
) {
641 switch (NumVectorElts
) {
643 return AMDGPU::SReg_32RegClassID
;
645 return AMDGPU::SReg_64RegClassID
;
647 return AMDGPU::SGPR_96RegClassID
;
649 return AMDGPU::SGPR_128RegClassID
;
651 return AMDGPU::SGPR_160RegClassID
;
653 return AMDGPU::SReg_256RegClassID
;
655 return AMDGPU::SReg_512RegClassID
;
657 return AMDGPU::SReg_1024RegClassID
;
660 llvm_unreachable("invalid vector size");
663 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode
*N
, unsigned RegClassID
) {
664 EVT VT
= N
->getValueType(0);
665 unsigned NumVectorElts
= VT
.getVectorNumElements();
666 EVT EltVT
= VT
.getVectorElementType();
668 SDValue RegClass
= CurDAG
->getTargetConstant(RegClassID
, DL
, MVT::i32
);
670 if (NumVectorElts
== 1) {
671 CurDAG
->SelectNodeTo(N
, AMDGPU::COPY_TO_REGCLASS
, EltVT
, N
->getOperand(0),
676 assert(NumVectorElts
<= 32 && "Vectors with more than 32 elements not "
678 // 32 = Max Num Vector Elements
679 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
680 // 1 = Vector Register Class
681 SmallVector
<SDValue
, 32 * 2 + 1> RegSeqArgs(NumVectorElts
* 2 + 1);
683 RegSeqArgs
[0] = CurDAG
->getTargetConstant(RegClassID
, DL
, MVT::i32
);
684 bool IsRegSeq
= true;
685 unsigned NOps
= N
->getNumOperands();
686 for (unsigned i
= 0; i
< NOps
; i
++) {
687 // XXX: Why is this here?
688 if (isa
<RegisterSDNode
>(N
->getOperand(i
))) {
692 unsigned Sub
= AMDGPURegisterInfo::getSubRegFromChannel(i
);
693 RegSeqArgs
[1 + (2 * i
)] = N
->getOperand(i
);
694 RegSeqArgs
[1 + (2 * i
) + 1] = CurDAG
->getTargetConstant(Sub
, DL
, MVT::i32
);
696 if (NOps
!= NumVectorElts
) {
697 // Fill in the missing undef elements if this was a scalar_to_vector.
698 assert(N
->getOpcode() == ISD::SCALAR_TO_VECTOR
&& NOps
< NumVectorElts
);
699 MachineSDNode
*ImpDef
= CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
,
701 for (unsigned i
= NOps
; i
< NumVectorElts
; ++i
) {
702 unsigned Sub
= AMDGPURegisterInfo::getSubRegFromChannel(i
);
703 RegSeqArgs
[1 + (2 * i
)] = SDValue(ImpDef
, 0);
704 RegSeqArgs
[1 + (2 * i
) + 1] =
705 CurDAG
->getTargetConstant(Sub
, DL
, MVT::i32
);
711 CurDAG
->SelectNodeTo(N
, AMDGPU::REG_SEQUENCE
, N
->getVTList(), RegSeqArgs
);
714 void AMDGPUDAGToDAGISel::Select(SDNode
*N
) {
715 unsigned int Opc
= N
->getOpcode();
716 if (N
->isMachineOpcode()) {
718 return; // Already selected.
721 // isa<MemSDNode> almost works but is slightly too permissive for some DS
723 if (Opc
== ISD::LOAD
|| Opc
== ISD::STORE
|| isa
<AtomicSDNode
>(N
) ||
724 (Opc
== AMDGPUISD::ATOMIC_INC
|| Opc
== AMDGPUISD::ATOMIC_DEC
||
725 Opc
== ISD::ATOMIC_LOAD_FADD
||
726 Opc
== AMDGPUISD::ATOMIC_LOAD_FMIN
||
727 Opc
== AMDGPUISD::ATOMIC_LOAD_FMAX
)) {
728 N
= glueCopyToM0LDSInit(N
);
736 // We are selecting i64 ADD here instead of custom lower it during
737 // DAG legalization, so we can fold some i64 ADDs used for address
738 // calculation into the LOAD and STORE instructions.
743 if (N
->getValueType(0) != MVT::i64
)
746 SelectADD_SUB_I64(N
);
751 if (N
->getValueType(0) != MVT::i32
)
758 SelectUADDO_USUBO(N
);
761 case AMDGPUISD::FMUL_W_CHAIN
: {
762 SelectFMUL_W_CHAIN(N
);
765 case AMDGPUISD::FMA_W_CHAIN
: {
766 SelectFMA_W_CHAIN(N
);
770 case ISD::SCALAR_TO_VECTOR
:
771 case ISD::BUILD_VECTOR
: {
772 EVT VT
= N
->getValueType(0);
773 unsigned NumVectorElts
= VT
.getVectorNumElements();
774 if (VT
.getScalarSizeInBits() == 16) {
775 if (Opc
== ISD::BUILD_VECTOR
&& NumVectorElts
== 2) {
776 if (SDNode
*Packed
= packConstantV2I16(N
, *CurDAG
)) {
777 ReplaceNode(N
, Packed
);
785 assert(VT
.getVectorElementType().bitsEq(MVT::i32
));
786 unsigned RegClassID
= selectSGPRVectorRegClassID(NumVectorElts
);
787 SelectBuildVector(N
, RegClassID
);
790 case ISD::BUILD_PAIR
: {
791 SDValue RC
, SubReg0
, SubReg1
;
793 if (N
->getValueType(0) == MVT::i128
) {
794 RC
= CurDAG
->getTargetConstant(AMDGPU::SGPR_128RegClassID
, DL
, MVT::i32
);
795 SubReg0
= CurDAG
->getTargetConstant(AMDGPU::sub0_sub1
, DL
, MVT::i32
);
796 SubReg1
= CurDAG
->getTargetConstant(AMDGPU::sub2_sub3
, DL
, MVT::i32
);
797 } else if (N
->getValueType(0) == MVT::i64
) {
798 RC
= CurDAG
->getTargetConstant(AMDGPU::SReg_64RegClassID
, DL
, MVT::i32
);
799 SubReg0
= CurDAG
->getTargetConstant(AMDGPU::sub0
, DL
, MVT::i32
);
800 SubReg1
= CurDAG
->getTargetConstant(AMDGPU::sub1
, DL
, MVT::i32
);
802 llvm_unreachable("Unhandled value type for BUILD_PAIR");
804 const SDValue Ops
[] = { RC
, N
->getOperand(0), SubReg0
,
805 N
->getOperand(1), SubReg1
};
806 ReplaceNode(N
, CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, DL
,
807 N
->getValueType(0), Ops
));
812 case ISD::ConstantFP
: {
813 if (N
->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N
))
817 if (ConstantFPSDNode
*FP
= dyn_cast
<ConstantFPSDNode
>(N
))
818 Imm
= FP
->getValueAPF().bitcastToAPInt().getZExtValue();
820 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
);
821 Imm
= C
->getZExtValue();
825 ReplaceNode(N
, buildSMovImm64(DL
, Imm
, N
->getValueType(0)));
828 case AMDGPUISD::BFE_I32
:
829 case AMDGPUISD::BFE_U32
: {
830 // There is a scalar version available, but unlike the vector version which
831 // has a separate operand for the offset and width, the scalar version packs
832 // the width and offset into a single operand. Try to move to the scalar
833 // version if the offsets are constant, so that we can try to keep extended
834 // loads of kernel arguments in SGPRs.
836 // TODO: Technically we could try to pattern match scalar bitshifts of
837 // dynamic values, but it's probably not useful.
838 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
842 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(N
->getOperand(2));
846 bool Signed
= Opc
== AMDGPUISD::BFE_I32
;
848 uint32_t OffsetVal
= Offset
->getZExtValue();
849 uint32_t WidthVal
= Width
->getZExtValue();
851 ReplaceNode(N
, getS_BFE(Signed
? AMDGPU::S_BFE_I32
: AMDGPU::S_BFE_U32
,
852 SDLoc(N
), N
->getOperand(0), OffsetVal
, WidthVal
));
855 case AMDGPUISD::DIV_SCALE
: {
859 case AMDGPUISD::DIV_FMAS
: {
863 case AMDGPUISD::MAD_I64_I32
:
864 case AMDGPUISD::MAD_U64_U32
: {
868 case ISD::CopyToReg
: {
869 const SITargetLowering
& Lowering
=
870 *static_cast<const SITargetLowering
*>(getTargetLowering());
871 N
= Lowering
.legalizeTargetIndependentNode(N
, *CurDAG
);
877 case ISD::SIGN_EXTEND_INREG
:
878 if (N
->getValueType(0) != MVT::i32
)
890 case AMDGPUISD::ATOMIC_CMP_SWAP
:
891 SelectATOMIC_CMP_SWAP(N
);
893 case AMDGPUISD::CVT_PKRTZ_F16_F32
:
894 case AMDGPUISD::CVT_PKNORM_I16_F32
:
895 case AMDGPUISD::CVT_PKNORM_U16_F32
:
896 case AMDGPUISD::CVT_PK_U16_U32
:
897 case AMDGPUISD::CVT_PK_I16_I32
: {
898 // Hack around using a legal type if f16 is illegal.
899 if (N
->getValueType(0) == MVT::i32
) {
900 MVT NewVT
= Opc
== AMDGPUISD::CVT_PKRTZ_F16_F32
? MVT::v2f16
: MVT::v2i16
;
901 N
= CurDAG
->MorphNodeTo(N
, N
->getOpcode(), CurDAG
->getVTList(NewVT
),
902 { N
->getOperand(0), N
->getOperand(1) });
909 case ISD::INTRINSIC_W_CHAIN
: {
910 SelectINTRINSIC_W_CHAIN(N
);
913 case ISD::INTRINSIC_WO_CHAIN
: {
914 SelectINTRINSIC_WO_CHAIN(N
);
917 case ISD::INTRINSIC_VOID
: {
918 SelectINTRINSIC_VOID(N
);
926 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode
*N
) const {
927 const BasicBlock
*BB
= FuncInfo
->MBB
->getBasicBlock();
928 const Instruction
*Term
= BB
->getTerminator();
929 return Term
->getMetadata("amdgpu.uniform") ||
930 Term
->getMetadata("structurizecfg.uniform");
933 StringRef
AMDGPUDAGToDAGISel::getPassName() const {
934 return "AMDGPU DAG->DAG Pattern Instruction Selection";
937 //===----------------------------------------------------------------------===//
939 //===----------------------------------------------------------------------===//
941 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr
, SDValue
&Base
,
946 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr
, SDValue
&Base
,
951 if ((C
= dyn_cast
<ConstantSDNode
>(Addr
))) {
952 Base
= CurDAG
->getRegister(R600::INDIRECT_BASE_ADDR
, MVT::i32
);
953 Offset
= CurDAG
->getTargetConstant(C
->getZExtValue(), DL
, MVT::i32
);
954 } else if ((Addr
.getOpcode() == AMDGPUISD::DWORDADDR
) &&
955 (C
= dyn_cast
<ConstantSDNode
>(Addr
.getOperand(0)))) {
956 Base
= CurDAG
->getRegister(R600::INDIRECT_BASE_ADDR
, MVT::i32
);
957 Offset
= CurDAG
->getTargetConstant(C
->getZExtValue(), DL
, MVT::i32
);
958 } else if ((Addr
.getOpcode() == ISD::ADD
|| Addr
.getOpcode() == ISD::OR
) &&
959 (C
= dyn_cast
<ConstantSDNode
>(Addr
.getOperand(1)))) {
960 Base
= Addr
.getOperand(0);
961 Offset
= CurDAG
->getTargetConstant(C
->getZExtValue(), DL
, MVT::i32
);
964 Offset
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
970 SDValue
AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val
,
971 const SDLoc
&DL
) const {
972 SDNode
*Mov
= CurDAG
->getMachineNode(
973 AMDGPU::S_MOV_B32
, DL
, MVT::i32
,
974 CurDAG
->getTargetConstant(Val
, DL
, MVT::i32
));
975 return SDValue(Mov
, 0);
978 // FIXME: Should only handle addcarry/subcarry
979 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode
*N
) {
981 SDValue LHS
= N
->getOperand(0);
982 SDValue RHS
= N
->getOperand(1);
984 unsigned Opcode
= N
->getOpcode();
985 bool ConsumeCarry
= (Opcode
== ISD::ADDE
|| Opcode
== ISD::SUBE
);
987 ConsumeCarry
|| Opcode
== ISD::ADDC
|| Opcode
== ISD::SUBC
;
988 bool IsAdd
= Opcode
== ISD::ADD
|| Opcode
== ISD::ADDC
|| Opcode
== ISD::ADDE
;
990 SDValue Sub0
= CurDAG
->getTargetConstant(AMDGPU::sub0
, DL
, MVT::i32
);
991 SDValue Sub1
= CurDAG
->getTargetConstant(AMDGPU::sub1
, DL
, MVT::i32
);
993 SDNode
*Lo0
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
994 DL
, MVT::i32
, LHS
, Sub0
);
995 SDNode
*Hi0
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
996 DL
, MVT::i32
, LHS
, Sub1
);
998 SDNode
*Lo1
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
999 DL
, MVT::i32
, RHS
, Sub0
);
1000 SDNode
*Hi1
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
1001 DL
, MVT::i32
, RHS
, Sub1
);
1003 SDVTList VTList
= CurDAG
->getVTList(MVT::i32
, MVT::Glue
);
1005 unsigned Opc
= IsAdd
? AMDGPU::S_ADD_U32
: AMDGPU::S_SUB_U32
;
1006 unsigned CarryOpc
= IsAdd
? AMDGPU::S_ADDC_U32
: AMDGPU::S_SUBB_U32
;
1009 if (!ConsumeCarry
) {
1010 SDValue Args
[] = { SDValue(Lo0
, 0), SDValue(Lo1
, 0) };
1011 AddLo
= CurDAG
->getMachineNode(Opc
, DL
, VTList
, Args
);
1013 SDValue Args
[] = { SDValue(Lo0
, 0), SDValue(Lo1
, 0), N
->getOperand(2) };
1014 AddLo
= CurDAG
->getMachineNode(CarryOpc
, DL
, VTList
, Args
);
1016 SDValue AddHiArgs
[] = {
1021 SDNode
*AddHi
= CurDAG
->getMachineNode(CarryOpc
, DL
, VTList
, AddHiArgs
);
1023 SDValue RegSequenceArgs
[] = {
1024 CurDAG
->getTargetConstant(AMDGPU::SReg_64RegClassID
, DL
, MVT::i32
),
1030 SDNode
*RegSequence
= CurDAG
->getMachineNode(AMDGPU::REG_SEQUENCE
, DL
,
1031 MVT::i64
, RegSequenceArgs
);
1034 // Replace the carry-use
1035 ReplaceUses(SDValue(N
, 1), SDValue(AddHi
, 1));
1038 // Replace the remaining uses.
1039 ReplaceNode(N
, RegSequence
);
1042 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode
*N
) {
1044 SDValue LHS
= N
->getOperand(0);
1045 SDValue RHS
= N
->getOperand(1);
1046 SDValue CI
= N
->getOperand(2);
1048 unsigned Opc
= N
->getOpcode() == ISD::ADDCARRY
? AMDGPU::V_ADDC_U32_e64
1049 : AMDGPU::V_SUBB_U32_e64
;
1050 CurDAG
->SelectNodeTo(
1051 N
, Opc
, N
->getVTList(),
1052 {LHS
, RHS
, CI
, CurDAG
->getTargetConstant(0, {}, MVT::i1
) /*clamp bit*/});
1055 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode
*N
) {
1056 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
1057 // carry out despite the _i32 name. These were renamed in VI to _U32.
1058 // FIXME: We should probably rename the opcodes here.
1059 unsigned Opc
= N
->getOpcode() == ISD::UADDO
?
1060 AMDGPU::V_ADD_I32_e64
: AMDGPU::V_SUB_I32_e64
;
1062 CurDAG
->SelectNodeTo(
1063 N
, Opc
, N
->getVTList(),
1064 {N
->getOperand(0), N
->getOperand(1),
1065 CurDAG
->getTargetConstant(0, {}, MVT::i1
) /*clamp bit*/});
1068 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode
*N
) {
1070 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod
1073 SelectVOP3Mods0(N
->getOperand(1), Ops
[1], Ops
[0], Ops
[6], Ops
[7]);
1074 SelectVOP3Mods(N
->getOperand(2), Ops
[3], Ops
[2]);
1075 SelectVOP3Mods(N
->getOperand(3), Ops
[5], Ops
[4]);
1076 Ops
[8] = N
->getOperand(0);
1077 Ops
[9] = N
->getOperand(4);
1079 CurDAG
->SelectNodeTo(N
, AMDGPU::V_FMA_F32
, N
->getVTList(), Ops
);
1082 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode
*N
) {
1084 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod
1087 SelectVOP3Mods0(N
->getOperand(1), Ops
[1], Ops
[0], Ops
[4], Ops
[5]);
1088 SelectVOP3Mods(N
->getOperand(2), Ops
[3], Ops
[2]);
1089 Ops
[6] = N
->getOperand(0);
1090 Ops
[7] = N
->getOperand(3);
1092 CurDAG
->SelectNodeTo(N
, AMDGPU::V_MUL_F32_e64
, N
->getVTList(), Ops
);
1095 // We need to handle this here because tablegen doesn't support matching
1096 // instructions with multiple outputs.
1097 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode
*N
) {
1099 EVT VT
= N
->getValueType(0);
1101 assert(VT
== MVT::f32
|| VT
== MVT::f64
);
1104 = (VT
== MVT::f64
) ? AMDGPU::V_DIV_SCALE_F64
: AMDGPU::V_DIV_SCALE_F32
;
1106 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), N
->getOperand(2) };
1107 CurDAG
->SelectNodeTo(N
, Opc
, N
->getVTList(), Ops
);
1110 void AMDGPUDAGToDAGISel::SelectDIV_FMAS(SDNode
*N
) {
1111 const GCNSubtarget
*ST
= static_cast<const GCNSubtarget
*>(Subtarget
);
1112 const SIRegisterInfo
*TRI
= ST
->getRegisterInfo();
1115 EVT VT
= N
->getValueType(0);
1117 assert(VT
== MVT::f32
|| VT
== MVT::f64
);
1120 = (VT
== MVT::f64
) ? AMDGPU::V_DIV_FMAS_F64
: AMDGPU::V_DIV_FMAS_F32
;
1122 SDValue CarryIn
= N
->getOperand(3);
1123 // V_DIV_FMAS implicitly reads VCC.
1124 SDValue VCC
= CurDAG
->getCopyToReg(CurDAG
->getEntryNode(), SL
,
1125 TRI
->getVCC(), CarryIn
, SDValue());
1129 SelectVOP3Mods0(N
->getOperand(0), Ops
[1], Ops
[0], Ops
[6], Ops
[7]);
1130 SelectVOP3Mods(N
->getOperand(1), Ops
[3], Ops
[2]);
1131 SelectVOP3Mods(N
->getOperand(2), Ops
[5], Ops
[4]);
1134 Ops
[9] = VCC
.getValue(1);
1136 CurDAG
->SelectNodeTo(N
, Opc
, N
->getVTList(), Ops
);
1139 // We need to handle this here because tablegen doesn't support matching
1140 // instructions with multiple outputs.
1141 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode
*N
) {
1143 bool Signed
= N
->getOpcode() == AMDGPUISD::MAD_I64_I32
;
1144 unsigned Opc
= Signed
? AMDGPU::V_MAD_I64_I32
: AMDGPU::V_MAD_U64_U32
;
1146 SDValue Clamp
= CurDAG
->getTargetConstant(0, SL
, MVT::i1
);
1147 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), N
->getOperand(2),
1149 CurDAG
->SelectNodeTo(N
, Opc
, N
->getVTList(), Ops
);
1152 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base
, unsigned Offset
,
1153 unsigned OffsetBits
) const {
1154 if ((OffsetBits
== 16 && !isUInt
<16>(Offset
)) ||
1155 (OffsetBits
== 8 && !isUInt
<8>(Offset
)))
1158 if (Subtarget
->hasUsableDSOffset() ||
1159 Subtarget
->unsafeDSOffsetFoldingEnabled())
1162 // On Southern Islands instruction with a negative base value and an offset
1163 // don't seem to work.
1164 return CurDAG
->SignBitIsZero(Base
);
1167 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr
, SDValue
&Base
,
1168 SDValue
&Offset
) const {
1170 if (CurDAG
->isBaseWithConstantOffset(Addr
)) {
1171 SDValue N0
= Addr
.getOperand(0);
1172 SDValue N1
= Addr
.getOperand(1);
1173 ConstantSDNode
*C1
= cast
<ConstantSDNode
>(N1
);
1174 if (isDSOffsetLegal(N0
, C1
->getSExtValue(), 16)) {
1177 Offset
= CurDAG
->getTargetConstant(C1
->getZExtValue(), DL
, MVT::i16
);
1180 } else if (Addr
.getOpcode() == ISD::SUB
) {
1181 // sub C, x -> add (sub 0, x), C
1182 if (const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Addr
.getOperand(0))) {
1183 int64_t ByteOffset
= C
->getSExtValue();
1184 if (isUInt
<16>(ByteOffset
)) {
1185 SDValue Zero
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
1187 // XXX - This is kind of hacky. Create a dummy sub node so we can check
1188 // the known bits in isDSOffsetLegal. We need to emit the selected node
1189 // here, so this is thrown away.
1190 SDValue Sub
= CurDAG
->getNode(ISD::SUB
, DL
, MVT::i32
,
1191 Zero
, Addr
.getOperand(1));
1193 if (isDSOffsetLegal(Sub
, ByteOffset
, 16)) {
1194 SmallVector
<SDValue
, 3> Opnds
;
1195 Opnds
.push_back(Zero
);
1196 Opnds
.push_back(Addr
.getOperand(1));
1198 // FIXME: Select to VOP3 version for with-carry.
1199 unsigned SubOp
= AMDGPU::V_SUB_I32_e32
;
1200 if (Subtarget
->hasAddNoCarry()) {
1201 SubOp
= AMDGPU::V_SUB_U32_e64
;
1203 CurDAG
->getTargetConstant(0, {}, MVT::i1
)); // clamp bit
1206 MachineSDNode
*MachineSub
=
1207 CurDAG
->getMachineNode(SubOp
, DL
, MVT::i32
, Opnds
);
1209 Base
= SDValue(MachineSub
, 0);
1210 Offset
= CurDAG
->getTargetConstant(ByteOffset
, DL
, MVT::i16
);
1215 } else if (const ConstantSDNode
*CAddr
= dyn_cast
<ConstantSDNode
>(Addr
)) {
1216 // If we have a constant address, prefer to put the constant into the
1217 // offset. This can save moves to load the constant address since multiple
1218 // operations can share the zero base address register, and enables merging
1219 // into read2 / write2 instructions.
1223 if (isUInt
<16>(CAddr
->getZExtValue())) {
1224 SDValue Zero
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
1225 MachineSDNode
*MovZero
= CurDAG
->getMachineNode(AMDGPU::V_MOV_B32_e32
,
1226 DL
, MVT::i32
, Zero
);
1227 Base
= SDValue(MovZero
, 0);
1228 Offset
= CurDAG
->getTargetConstant(CAddr
->getZExtValue(), DL
, MVT::i16
);
1235 Offset
= CurDAG
->getTargetConstant(0, SDLoc(Addr
), MVT::i16
);
1239 // TODO: If offset is too big, put low 16-bit into offset.
1240 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr
, SDValue
&Base
,
1242 SDValue
&Offset1
) const {
1245 if (CurDAG
->isBaseWithConstantOffset(Addr
)) {
1246 SDValue N0
= Addr
.getOperand(0);
1247 SDValue N1
= Addr
.getOperand(1);
1248 ConstantSDNode
*C1
= cast
<ConstantSDNode
>(N1
);
1249 unsigned DWordOffset0
= C1
->getZExtValue() / 4;
1250 unsigned DWordOffset1
= DWordOffset0
+ 1;
1252 if (isDSOffsetLegal(N0
, DWordOffset1
, 8)) {
1254 Offset0
= CurDAG
->getTargetConstant(DWordOffset0
, DL
, MVT::i8
);
1255 Offset1
= CurDAG
->getTargetConstant(DWordOffset1
, DL
, MVT::i8
);
1258 } else if (Addr
.getOpcode() == ISD::SUB
) {
1259 // sub C, x -> add (sub 0, x), C
1260 if (const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Addr
.getOperand(0))) {
1261 unsigned DWordOffset0
= C
->getZExtValue() / 4;
1262 unsigned DWordOffset1
= DWordOffset0
+ 1;
1264 if (isUInt
<8>(DWordOffset0
)) {
1266 SDValue Zero
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
1268 // XXX - This is kind of hacky. Create a dummy sub node so we can check
1269 // the known bits in isDSOffsetLegal. We need to emit the selected node
1270 // here, so this is thrown away.
1271 SDValue Sub
= CurDAG
->getNode(ISD::SUB
, DL
, MVT::i32
,
1272 Zero
, Addr
.getOperand(1));
1274 if (isDSOffsetLegal(Sub
, DWordOffset1
, 8)) {
1275 SmallVector
<SDValue
, 3> Opnds
;
1276 Opnds
.push_back(Zero
);
1277 Opnds
.push_back(Addr
.getOperand(1));
1278 unsigned SubOp
= AMDGPU::V_SUB_I32_e32
;
1279 if (Subtarget
->hasAddNoCarry()) {
1280 SubOp
= AMDGPU::V_SUB_U32_e64
;
1282 CurDAG
->getTargetConstant(0, {}, MVT::i1
)); // clamp bit
1285 MachineSDNode
*MachineSub
1286 = CurDAG
->getMachineNode(SubOp
, DL
, MVT::i32
, Opnds
);
1288 Base
= SDValue(MachineSub
, 0);
1289 Offset0
= CurDAG
->getTargetConstant(DWordOffset0
, DL
, MVT::i8
);
1290 Offset1
= CurDAG
->getTargetConstant(DWordOffset1
, DL
, MVT::i8
);
1295 } else if (const ConstantSDNode
*CAddr
= dyn_cast
<ConstantSDNode
>(Addr
)) {
1296 unsigned DWordOffset0
= CAddr
->getZExtValue() / 4;
1297 unsigned DWordOffset1
= DWordOffset0
+ 1;
1298 assert(4 * DWordOffset0
== CAddr
->getZExtValue());
1300 if (isUInt
<8>(DWordOffset0
) && isUInt
<8>(DWordOffset1
)) {
1301 SDValue Zero
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
1302 MachineSDNode
*MovZero
1303 = CurDAG
->getMachineNode(AMDGPU::V_MOV_B32_e32
,
1304 DL
, MVT::i32
, Zero
);
1305 Base
= SDValue(MovZero
, 0);
1306 Offset0
= CurDAG
->getTargetConstant(DWordOffset0
, DL
, MVT::i8
);
1307 Offset1
= CurDAG
->getTargetConstant(DWordOffset1
, DL
, MVT::i8
);
1315 Offset0
= CurDAG
->getTargetConstant(0, DL
, MVT::i8
);
1316 Offset1
= CurDAG
->getTargetConstant(1, DL
, MVT::i8
);
1320 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr
, SDValue
&Ptr
,
1321 SDValue
&VAddr
, SDValue
&SOffset
,
1322 SDValue
&Offset
, SDValue
&Offen
,
1323 SDValue
&Idxen
, SDValue
&Addr64
,
1324 SDValue
&GLC
, SDValue
&SLC
,
1325 SDValue
&TFE
, SDValue
&DLC
,
1326 SDValue
&SWZ
) const {
1327 // Subtarget prefers to use flat instruction
1328 if (Subtarget
->useFlatForGlobal())
1334 GLC
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
1336 SLC
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
1337 TFE
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
1338 DLC
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
1339 SWZ
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
1341 Idxen
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
1342 Offen
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
1343 Addr64
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
1344 SOffset
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
1346 ConstantSDNode
*C1
= nullptr;
1348 if (CurDAG
->isBaseWithConstantOffset(Addr
)) {
1349 C1
= cast
<ConstantSDNode
>(Addr
.getOperand(1));
1350 if (isUInt
<32>(C1
->getZExtValue()))
1351 N0
= Addr
.getOperand(0);
1356 if (N0
.getOpcode() == ISD::ADD
) {
1357 // (add N2, N3) -> addr64, or
1358 // (add (add N2, N3), C1) -> addr64
1359 SDValue N2
= N0
.getOperand(0);
1360 SDValue N3
= N0
.getOperand(1);
1361 Addr64
= CurDAG
->getTargetConstant(1, DL
, MVT::i1
);
1363 if (N2
->isDivergent()) {
1364 if (N3
->isDivergent()) {
1365 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the
1366 // addr64, and construct the resource from a 0 address.
1367 Ptr
= SDValue(buildSMovImm64(DL
, 0, MVT::v2i32
), 0);
1370 // N2 is divergent, N3 is not.
1375 // N2 is not divergent.
1379 Offset
= CurDAG
->getTargetConstant(0, DL
, MVT::i16
);
1380 } else if (N0
->isDivergent()) {
1381 // N0 is divergent. Use it as the addr64, and construct the resource from a
1383 Ptr
= SDValue(buildSMovImm64(DL
, 0, MVT::v2i32
), 0);
1385 Addr64
= CurDAG
->getTargetConstant(1, DL
, MVT::i1
);
1388 // (N0 + C1) -> offset
1389 VAddr
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
1395 Offset
= CurDAG
->getTargetConstant(0, DL
, MVT::i16
);
1399 if (SIInstrInfo::isLegalMUBUFImmOffset(C1
->getZExtValue())) {
1400 // Legal offset for instruction.
1401 Offset
= CurDAG
->getTargetConstant(C1
->getZExtValue(), DL
, MVT::i16
);
1405 // Illegal offset, store it in soffset.
1406 Offset
= CurDAG
->getTargetConstant(0, DL
, MVT::i16
);
1408 SDValue(CurDAG
->getMachineNode(
1409 AMDGPU::S_MOV_B32
, DL
, MVT::i32
,
1410 CurDAG
->getTargetConstant(C1
->getZExtValue(), DL
, MVT::i32
)),
1415 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr
, SDValue
&SRsrc
,
1416 SDValue
&VAddr
, SDValue
&SOffset
,
1417 SDValue
&Offset
, SDValue
&GLC
,
1418 SDValue
&SLC
, SDValue
&TFE
,
1419 SDValue
&DLC
, SDValue
&SWZ
) const {
1420 SDValue Ptr
, Offen
, Idxen
, Addr64
;
1422 // addr64 bit was removed for volcanic islands.
1423 if (!Subtarget
->hasAddr64())
1426 if (!SelectMUBUF(Addr
, Ptr
, VAddr
, SOffset
, Offset
, Offen
, Idxen
, Addr64
,
1427 GLC
, SLC
, TFE
, DLC
, SWZ
))
1430 ConstantSDNode
*C
= cast
<ConstantSDNode
>(Addr64
);
1431 if (C
->getSExtValue()) {
1434 const SITargetLowering
& Lowering
=
1435 *static_cast<const SITargetLowering
*>(getTargetLowering());
1437 SRsrc
= SDValue(Lowering
.wrapAddr64Rsrc(*CurDAG
, DL
, Ptr
), 0);
1444 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr
, SDValue
&SRsrc
,
1445 SDValue
&VAddr
, SDValue
&SOffset
,
1447 SDValue
&SLC
) const {
1448 SLC
= CurDAG
->getTargetConstant(0, SDLoc(Addr
), MVT::i1
);
1449 SDValue GLC
, TFE
, DLC
, SWZ
;
1451 return SelectMUBUFAddr64(Addr
, SRsrc
, VAddr
, SOffset
, Offset
, GLC
, SLC
, TFE
, DLC
, SWZ
);
1454 static bool isStackPtrRelative(const MachinePointerInfo
&PtrInfo
) {
1455 auto PSV
= PtrInfo
.V
.dyn_cast
<const PseudoSourceValue
*>();
1456 return PSV
&& PSV
->isStack();
1459 std::pair
<SDValue
, SDValue
> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N
) const {
1460 const MachineFunction
&MF
= CurDAG
->getMachineFunction();
1461 const SIMachineFunctionInfo
*Info
= MF
.getInfo
<SIMachineFunctionInfo
>();
1463 if (auto FI
= dyn_cast
<FrameIndexSDNode
>(N
)) {
1464 SDValue TFI
= CurDAG
->getTargetFrameIndex(FI
->getIndex(),
1465 FI
->getValueType(0));
1467 // If we can resolve this to a frame index access, this will be relative to
1468 // either the stack or frame pointer SGPR.
1469 return std::make_pair(
1470 TFI
, CurDAG
->getRegister(Info
->getStackPtrOffsetReg(), MVT::i32
));
1473 // If we don't know this private access is a local stack object, it needs to
1474 // be relative to the entry point's scratch wave offset register.
1475 return std::make_pair(N
, CurDAG
->getRegister(Info
->getScratchWaveOffsetReg(),
1479 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode
*Parent
,
1480 SDValue Addr
, SDValue
&Rsrc
,
1481 SDValue
&VAddr
, SDValue
&SOffset
,
1482 SDValue
&ImmOffset
) const {
1485 MachineFunction
&MF
= CurDAG
->getMachineFunction();
1486 const SIMachineFunctionInfo
*Info
= MF
.getInfo
<SIMachineFunctionInfo
>();
1488 Rsrc
= CurDAG
->getRegister(Info
->getScratchRSrcReg(), MVT::v4i32
);
1490 if (ConstantSDNode
*CAddr
= dyn_cast
<ConstantSDNode
>(Addr
)) {
1491 unsigned Imm
= CAddr
->getZExtValue();
1493 SDValue HighBits
= CurDAG
->getTargetConstant(Imm
& ~4095, DL
, MVT::i32
);
1494 MachineSDNode
*MovHighBits
= CurDAG
->getMachineNode(AMDGPU::V_MOV_B32_e32
,
1495 DL
, MVT::i32
, HighBits
);
1496 VAddr
= SDValue(MovHighBits
, 0);
1498 // In a call sequence, stores to the argument stack area are relative to the
1500 const MachinePointerInfo
&PtrInfo
= cast
<MemSDNode
>(Parent
)->getPointerInfo();
1501 unsigned SOffsetReg
= isStackPtrRelative(PtrInfo
) ?
1502 Info
->getStackPtrOffsetReg() : Info
->getScratchWaveOffsetReg();
1504 SOffset
= CurDAG
->getRegister(SOffsetReg
, MVT::i32
);
1505 ImmOffset
= CurDAG
->getTargetConstant(Imm
& 4095, DL
, MVT::i16
);
1509 if (CurDAG
->isBaseWithConstantOffset(Addr
)) {
1512 SDValue N0
= Addr
.getOperand(0);
1513 SDValue N1
= Addr
.getOperand(1);
1515 // Offsets in vaddr must be positive if range checking is enabled.
1517 // The total computation of vaddr + soffset + offset must not overflow. If
1518 // vaddr is negative, even if offset is 0 the sgpr offset add will end up
1521 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
1522 // always perform a range check. If a negative vaddr base index was used,
1523 // this would fail the range check. The overall address computation would
1524 // compute a valid address, but this doesn't happen due to the range
1525 // check. For out-of-bounds MUBUF loads, a 0 is returned.
1527 // Therefore it should be safe to fold any VGPR offset on gfx9 into the
1528 // MUBUF vaddr, but not on older subtargets which can only do this if the
1529 // sign bit is known 0.
1530 ConstantSDNode
*C1
= cast
<ConstantSDNode
>(N1
);
1531 if (SIInstrInfo::isLegalMUBUFImmOffset(C1
->getZExtValue()) &&
1532 (!Subtarget
->privateMemoryResourceIsRangeChecked() ||
1533 CurDAG
->SignBitIsZero(N0
))) {
1534 std::tie(VAddr
, SOffset
) = foldFrameIndex(N0
);
1535 ImmOffset
= CurDAG
->getTargetConstant(C1
->getZExtValue(), DL
, MVT::i16
);
1541 std::tie(VAddr
, SOffset
) = foldFrameIndex(Addr
);
1542 ImmOffset
= CurDAG
->getTargetConstant(0, DL
, MVT::i16
);
1546 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode
*Parent
,
1550 SDValue
&Offset
) const {
1551 ConstantSDNode
*CAddr
= dyn_cast
<ConstantSDNode
>(Addr
);
1552 if (!CAddr
|| !SIInstrInfo::isLegalMUBUFImmOffset(CAddr
->getZExtValue()))
1556 MachineFunction
&MF
= CurDAG
->getMachineFunction();
1557 const SIMachineFunctionInfo
*Info
= MF
.getInfo
<SIMachineFunctionInfo
>();
1559 SRsrc
= CurDAG
->getRegister(Info
->getScratchRSrcReg(), MVT::v4i32
);
1561 const MachinePointerInfo
&PtrInfo
= cast
<MemSDNode
>(Parent
)->getPointerInfo();
1562 unsigned SOffsetReg
= isStackPtrRelative(PtrInfo
) ?
1563 Info
->getStackPtrOffsetReg() : Info
->getScratchWaveOffsetReg();
1565 // FIXME: Get from MachinePointerInfo? We should only be using the frame
1566 // offset if we know this is in a call sequence.
1567 SOffset
= CurDAG
->getRegister(SOffsetReg
, MVT::i32
);
1569 Offset
= CurDAG
->getTargetConstant(CAddr
->getZExtValue(), DL
, MVT::i16
);
1573 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr
, SDValue
&SRsrc
,
1574 SDValue
&SOffset
, SDValue
&Offset
,
1575 SDValue
&GLC
, SDValue
&SLC
,
1576 SDValue
&TFE
, SDValue
&DLC
,
1577 SDValue
&SWZ
) const {
1578 SDValue Ptr
, VAddr
, Offen
, Idxen
, Addr64
;
1579 const SIInstrInfo
*TII
=
1580 static_cast<const SIInstrInfo
*>(Subtarget
->getInstrInfo());
1582 if (!SelectMUBUF(Addr
, Ptr
, VAddr
, SOffset
, Offset
, Offen
, Idxen
, Addr64
,
1583 GLC
, SLC
, TFE
, DLC
, SWZ
))
1586 if (!cast
<ConstantSDNode
>(Offen
)->getSExtValue() &&
1587 !cast
<ConstantSDNode
>(Idxen
)->getSExtValue() &&
1588 !cast
<ConstantSDNode
>(Addr64
)->getSExtValue()) {
1589 uint64_t Rsrc
= TII
->getDefaultRsrcDataFormat() |
1590 APInt::getAllOnesValue(32).getZExtValue(); // Size
1593 const SITargetLowering
& Lowering
=
1594 *static_cast<const SITargetLowering
*>(getTargetLowering());
1596 SRsrc
= SDValue(Lowering
.buildRSRC(*CurDAG
, DL
, Ptr
, 0, Rsrc
), 0);
1602 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr
, SDValue
&SRsrc
,
1603 SDValue
&Soffset
, SDValue
&Offset
1605 SDValue GLC
, SLC
, TFE
, DLC
, SWZ
;
1607 return SelectMUBUFOffset(Addr
, SRsrc
, Soffset
, Offset
, GLC
, SLC
, TFE
, DLC
, SWZ
);
1609 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr
, SDValue
&SRsrc
,
1610 SDValue
&Soffset
, SDValue
&Offset
,
1611 SDValue
&SLC
) const {
1612 SDValue GLC
, TFE
, DLC
, SWZ
;
1614 return SelectMUBUFOffset(Addr
, SRsrc
, Soffset
, Offset
, GLC
, SLC
, TFE
, DLC
, SWZ
);
1617 // Find a load or store from corresponding pattern root.
1618 // Roots may be build_vector, bitconvert or their combinations.
1619 static MemSDNode
* findMemSDNode(SDNode
*N
) {
1620 N
= AMDGPUTargetLowering::stripBitcast(SDValue(N
,0)).getNode();
1621 if (MemSDNode
*MN
= dyn_cast
<MemSDNode
>(N
))
1623 assert(isa
<BuildVectorSDNode
>(N
));
1624 for (SDValue V
: N
->op_values())
1626 dyn_cast
<MemSDNode
>(AMDGPUTargetLowering::stripBitcast(V
)))
1628 llvm_unreachable("cannot find MemSDNode in the pattern!");
1631 template <bool IsSigned
>
1632 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode
*N
,
1636 SDValue
&SLC
) const {
1637 int64_t OffsetVal
= 0;
1639 if (Subtarget
->hasFlatInstOffsets() &&
1640 (!Subtarget
->hasFlatSegmentOffsetBug() ||
1641 findMemSDNode(N
)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS
) &&
1642 CurDAG
->isBaseWithConstantOffset(Addr
)) {
1643 SDValue N0
= Addr
.getOperand(0);
1644 SDValue N1
= Addr
.getOperand(1);
1645 uint64_t COffsetVal
= cast
<ConstantSDNode
>(N1
)->getSExtValue();
1647 const SIInstrInfo
*TII
= Subtarget
->getInstrInfo();
1648 unsigned AS
= findMemSDNode(N
)->getAddressSpace();
1649 if (TII
->isLegalFLATOffset(COffsetVal
, AS
, IsSigned
)) {
1651 OffsetVal
= COffsetVal
;
1653 // If the offset doesn't fit, put the low bits into the offset field and
1658 const unsigned NumBits
= TII
->getNumFlatOffsetBits(AS
, IsSigned
);
1660 ImmField
= SignExtend64(COffsetVal
, NumBits
);
1662 // Don't use a negative offset field if the base offset is positive.
1663 // Since the scheduler currently relies on the offset field, doing so
1664 // could result in strange scheduling decisions.
1666 // TODO: Should we not do this in the opposite direction as well?
1667 if (static_cast<int64_t>(COffsetVal
) > 0) {
1668 if (static_cast<int64_t>(ImmField
) < 0) {
1669 const uint64_t OffsetMask
= maskTrailingOnes
<uint64_t>(NumBits
- 1);
1670 ImmField
= COffsetVal
& OffsetMask
;
1674 // TODO: Should we do this for a negative offset?
1675 const uint64_t OffsetMask
= maskTrailingOnes
<uint64_t>(NumBits
);
1676 ImmField
= COffsetVal
& OffsetMask
;
1679 uint64_t RemainderOffset
= COffsetVal
- ImmField
;
1681 assert(TII
->isLegalFLATOffset(ImmField
, AS
, IsSigned
));
1682 assert(RemainderOffset
+ ImmField
== COffsetVal
);
1684 OffsetVal
= ImmField
;
1686 // TODO: Should this try to use a scalar add pseudo if the base address is
1687 // uniform and saddr is usable?
1688 SDValue Sub0
= CurDAG
->getTargetConstant(AMDGPU::sub0
, DL
, MVT::i32
);
1689 SDValue Sub1
= CurDAG
->getTargetConstant(AMDGPU::sub1
, DL
, MVT::i32
);
1691 SDNode
*N0Lo
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
1692 DL
, MVT::i32
, N0
, Sub0
);
1693 SDNode
*N0Hi
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
1694 DL
, MVT::i32
, N0
, Sub1
);
1697 = getMaterializedScalarImm32(Lo_32(RemainderOffset
), DL
);
1699 = getMaterializedScalarImm32(Hi_32(RemainderOffset
), DL
);
1701 SDVTList VTs
= CurDAG
->getVTList(MVT::i32
, MVT::i1
);
1702 SDValue Clamp
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
1704 SDNode
*Add
= CurDAG
->getMachineNode(
1705 AMDGPU::V_ADD_I32_e64
, DL
, VTs
,
1706 {AddOffsetLo
, SDValue(N0Lo
, 0), Clamp
});
1708 SDNode
*Addc
= CurDAG
->getMachineNode(
1709 AMDGPU::V_ADDC_U32_e64
, DL
, VTs
,
1710 {AddOffsetHi
, SDValue(N0Hi
, 0), SDValue(Add
, 1), Clamp
});
1712 SDValue RegSequenceArgs
[] = {
1713 CurDAG
->getTargetConstant(AMDGPU::VReg_64RegClassID
, DL
, MVT::i32
),
1714 SDValue(Add
, 0), Sub0
, SDValue(Addc
, 0), Sub1
1717 Addr
= SDValue(CurDAG
->getMachineNode(AMDGPU::REG_SEQUENCE
, DL
,
1718 MVT::i64
, RegSequenceArgs
), 0);
1723 Offset
= CurDAG
->getTargetConstant(OffsetVal
, SDLoc(), MVT::i16
);
1724 SLC
= CurDAG
->getTargetConstant(0, SDLoc(), MVT::i1
);
1728 bool AMDGPUDAGToDAGISel::SelectFlatAtomic(SDNode
*N
,
1732 SDValue
&SLC
) const {
1733 return SelectFlatOffset
<false>(N
, Addr
, VAddr
, Offset
, SLC
);
1736 bool AMDGPUDAGToDAGISel::SelectFlatAtomicSigned(SDNode
*N
,
1740 SDValue
&SLC
) const {
1741 return SelectFlatOffset
<true>(N
, Addr
, VAddr
, Offset
, SLC
);
1744 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode
,
1745 SDValue
&Offset
, bool &Imm
) const {
1747 // FIXME: Handle non-constant offsets.
1748 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(ByteOffsetNode
);
1752 SDLoc
SL(ByteOffsetNode
);
1753 GCNSubtarget::Generation Gen
= Subtarget
->getGeneration();
1754 int64_t ByteOffset
= C
->getSExtValue();
1755 int64_t EncodedOffset
= AMDGPU::getSMRDEncodedOffset(*Subtarget
, ByteOffset
);
1757 if (AMDGPU::isLegalSMRDImmOffset(*Subtarget
, ByteOffset
)) {
1758 Offset
= CurDAG
->getTargetConstant(EncodedOffset
, SL
, MVT::i32
);
1763 if (!isUInt
<32>(EncodedOffset
) || !isUInt
<32>(ByteOffset
))
1766 if (Gen
== AMDGPUSubtarget::SEA_ISLANDS
&& isUInt
<32>(EncodedOffset
)) {
1767 // 32-bit Immediates are supported on Sea Islands.
1768 Offset
= CurDAG
->getTargetConstant(EncodedOffset
, SL
, MVT::i32
);
1770 SDValue C32Bit
= CurDAG
->getTargetConstant(ByteOffset
, SL
, MVT::i32
);
1771 Offset
= SDValue(CurDAG
->getMachineNode(AMDGPU::S_MOV_B32
, SL
, MVT::i32
,
1778 SDValue
AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr
) const {
1779 if (Addr
.getValueType() != MVT::i32
)
1782 // Zero-extend a 32-bit address.
1785 const MachineFunction
&MF
= CurDAG
->getMachineFunction();
1786 const SIMachineFunctionInfo
*Info
= MF
.getInfo
<SIMachineFunctionInfo
>();
1787 unsigned AddrHiVal
= Info
->get32BitAddressHighBits();
1788 SDValue AddrHi
= CurDAG
->getTargetConstant(AddrHiVal
, SL
, MVT::i32
);
1790 const SDValue Ops
[] = {
1791 CurDAG
->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID
, SL
, MVT::i32
),
1793 CurDAG
->getTargetConstant(AMDGPU::sub0
, SL
, MVT::i32
),
1794 SDValue(CurDAG
->getMachineNode(AMDGPU::S_MOV_B32
, SL
, MVT::i32
, AddrHi
),
1796 CurDAG
->getTargetConstant(AMDGPU::sub1
, SL
, MVT::i32
),
1799 return SDValue(CurDAG
->getMachineNode(AMDGPU::REG_SEQUENCE
, SL
, MVT::i64
,
1803 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr
, SDValue
&SBase
,
1804 SDValue
&Offset
, bool &Imm
) const {
1807 // A 32-bit (address + offset) should not cause unsigned 32-bit integer
1808 // wraparound, because s_load instructions perform the addition in 64 bits.
1809 if ((Addr
.getValueType() != MVT::i32
||
1810 Addr
->getFlags().hasNoUnsignedWrap()) &&
1811 CurDAG
->isBaseWithConstantOffset(Addr
)) {
1812 SDValue N0
= Addr
.getOperand(0);
1813 SDValue N1
= Addr
.getOperand(1);
1815 if (SelectSMRDOffset(N1
, Offset
, Imm
)) {
1816 SBase
= Expand32BitAddress(N0
);
1820 SBase
= Expand32BitAddress(Addr
);
1821 Offset
= CurDAG
->getTargetConstant(0, SL
, MVT::i32
);
1826 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr
, SDValue
&SBase
,
1827 SDValue
&Offset
) const {
1829 return SelectSMRD(Addr
, SBase
, Offset
, Imm
) && Imm
;
1832 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr
, SDValue
&SBase
,
1833 SDValue
&Offset
) const {
1835 if (Subtarget
->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS
)
1839 if (!SelectSMRD(Addr
, SBase
, Offset
, Imm
))
1842 return !Imm
&& isa
<ConstantSDNode
>(Offset
);
1845 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr
, SDValue
&SBase
,
1846 SDValue
&Offset
) const {
1848 return SelectSMRD(Addr
, SBase
, Offset
, Imm
) && !Imm
&&
1849 !isa
<ConstantSDNode
>(Offset
);
1852 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr
,
1853 SDValue
&Offset
) const {
1855 return SelectSMRDOffset(Addr
, Offset
, Imm
) && Imm
;
1858 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr
,
1859 SDValue
&Offset
) const {
1860 if (Subtarget
->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS
)
1864 if (!SelectSMRDOffset(Addr
, Offset
, Imm
))
1867 return !Imm
&& isa
<ConstantSDNode
>(Offset
);
1870 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index
,
1872 SDValue
&Offset
) const {
1875 if (CurDAG
->isBaseWithConstantOffset(Index
)) {
1876 SDValue N0
= Index
.getOperand(0);
1877 SDValue N1
= Index
.getOperand(1);
1878 ConstantSDNode
*C1
= cast
<ConstantSDNode
>(N1
);
1881 // Don't peel off the offset (c0) if doing so could possibly lead
1882 // the base (n0) to be negative.
1883 if (C1
->getSExtValue() <= 0 || CurDAG
->SignBitIsZero(N0
)) {
1885 Offset
= CurDAG
->getTargetConstant(C1
->getZExtValue(), DL
, MVT::i32
);
1890 if (isa
<ConstantSDNode
>(Index
))
1894 Offset
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
1898 SDNode
*AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode
, const SDLoc
&DL
,
1899 SDValue Val
, uint32_t Offset
,
1901 // Transformation function, pack the offset and width of a BFE into
1902 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
1903 // source, bits [5:0] contain the offset and bits [22:16] the width.
1904 uint32_t PackedVal
= Offset
| (Width
<< 16);
1905 SDValue PackedConst
= CurDAG
->getTargetConstant(PackedVal
, DL
, MVT::i32
);
1907 return CurDAG
->getMachineNode(Opcode
, DL
, MVT::i32
, Val
, PackedConst
);
1910 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode
*N
) {
1911 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
1912 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
1913 // Predicate: 0 < b <= c < 32
1915 const SDValue
&Shl
= N
->getOperand(0);
1916 ConstantSDNode
*B
= dyn_cast
<ConstantSDNode
>(Shl
->getOperand(1));
1917 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
1920 uint32_t BVal
= B
->getZExtValue();
1921 uint32_t CVal
= C
->getZExtValue();
1923 if (0 < BVal
&& BVal
<= CVal
&& CVal
< 32) {
1924 bool Signed
= N
->getOpcode() == ISD::SRA
;
1925 unsigned Opcode
= Signed
? AMDGPU::S_BFE_I32
: AMDGPU::S_BFE_U32
;
1927 ReplaceNode(N
, getS_BFE(Opcode
, SDLoc(N
), Shl
.getOperand(0), CVal
- BVal
,
1935 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode
*N
) {
1936 switch (N
->getOpcode()) {
1938 if (N
->getOperand(0).getOpcode() == ISD::SRL
) {
1939 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
1940 // Predicate: isMask(mask)
1941 const SDValue
&Srl
= N
->getOperand(0);
1942 ConstantSDNode
*Shift
= dyn_cast
<ConstantSDNode
>(Srl
.getOperand(1));
1943 ConstantSDNode
*Mask
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
1945 if (Shift
&& Mask
) {
1946 uint32_t ShiftVal
= Shift
->getZExtValue();
1947 uint32_t MaskVal
= Mask
->getZExtValue();
1949 if (isMask_32(MaskVal
)) {
1950 uint32_t WidthVal
= countPopulation(MaskVal
);
1952 ReplaceNode(N
, getS_BFE(AMDGPU::S_BFE_U32
, SDLoc(N
),
1953 Srl
.getOperand(0), ShiftVal
, WidthVal
));
1960 if (N
->getOperand(0).getOpcode() == ISD::AND
) {
1961 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
1962 // Predicate: isMask(mask >> b)
1963 const SDValue
&And
= N
->getOperand(0);
1964 ConstantSDNode
*Shift
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
1965 ConstantSDNode
*Mask
= dyn_cast
<ConstantSDNode
>(And
->getOperand(1));
1967 if (Shift
&& Mask
) {
1968 uint32_t ShiftVal
= Shift
->getZExtValue();
1969 uint32_t MaskVal
= Mask
->getZExtValue() >> ShiftVal
;
1971 if (isMask_32(MaskVal
)) {
1972 uint32_t WidthVal
= countPopulation(MaskVal
);
1974 ReplaceNode(N
, getS_BFE(AMDGPU::S_BFE_U32
, SDLoc(N
),
1975 And
.getOperand(0), ShiftVal
, WidthVal
));
1979 } else if (N
->getOperand(0).getOpcode() == ISD::SHL
) {
1980 SelectS_BFEFromShifts(N
);
1985 if (N
->getOperand(0).getOpcode() == ISD::SHL
) {
1986 SelectS_BFEFromShifts(N
);
1991 case ISD::SIGN_EXTEND_INREG
: {
1992 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
1993 SDValue Src
= N
->getOperand(0);
1994 if (Src
.getOpcode() != ISD::SRL
)
1997 const ConstantSDNode
*Amt
= dyn_cast
<ConstantSDNode
>(Src
.getOperand(1));
2001 unsigned Width
= cast
<VTSDNode
>(N
->getOperand(1))->getVT().getSizeInBits();
2002 ReplaceNode(N
, getS_BFE(AMDGPU::S_BFE_I32
, SDLoc(N
), Src
.getOperand(0),
2003 Amt
->getZExtValue(), Width
));
2011 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode
*N
) const {
2012 assert(N
->getOpcode() == ISD::BRCOND
);
2013 if (!N
->hasOneUse())
2016 SDValue Cond
= N
->getOperand(1);
2017 if (Cond
.getOpcode() == ISD::CopyToReg
)
2018 Cond
= Cond
.getOperand(2);
2020 if (Cond
.getOpcode() != ISD::SETCC
|| !Cond
.hasOneUse())
2023 MVT VT
= Cond
.getOperand(0).getSimpleValueType();
2027 if (VT
== MVT::i64
) {
2028 auto ST
= static_cast<const GCNSubtarget
*>(Subtarget
);
2030 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
2031 return (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) && ST
->hasScalarCompareEq64();
2037 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode
*N
) {
2038 SDValue Cond
= N
->getOperand(1);
2040 if (Cond
.isUndef()) {
2041 CurDAG
->SelectNodeTo(N
, AMDGPU::SI_BR_UNDEF
, MVT::Other
,
2042 N
->getOperand(2), N
->getOperand(0));
2046 const GCNSubtarget
*ST
= static_cast<const GCNSubtarget
*>(Subtarget
);
2047 const SIRegisterInfo
*TRI
= ST
->getRegisterInfo();
2049 bool UseSCCBr
= isCBranchSCC(N
) && isUniformBr(N
);
2050 unsigned BrOp
= UseSCCBr
? AMDGPU::S_CBRANCH_SCC1
: AMDGPU::S_CBRANCH_VCCNZ
;
2051 unsigned CondReg
= UseSCCBr
? (unsigned)AMDGPU::SCC
: TRI
->getVCC();
2055 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not
2056 // analyzed what generates the vcc value, so we do not know whether vcc
2057 // bits for disabled lanes are 0. Thus we need to mask out bits for
2060 // For the case that we select S_CBRANCH_SCC1 and it gets
2061 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
2062 // SIInstrInfo::moveToVALU which inserts the S_AND).
2064 // We could add an analysis of what generates the vcc value here and omit
2065 // the S_AND when is unnecessary. But it would be better to add a separate
2066 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
2067 // catches both cases.
2068 Cond
= SDValue(CurDAG
->getMachineNode(ST
->isWave32() ? AMDGPU::S_AND_B32
2069 : AMDGPU::S_AND_B64
,
2071 CurDAG
->getRegister(ST
->isWave32() ? AMDGPU::EXEC_LO
2078 SDValue VCC
= CurDAG
->getCopyToReg(N
->getOperand(0), SL
, CondReg
, Cond
);
2079 CurDAG
->SelectNodeTo(N
, BrOp
, MVT::Other
,
2080 N
->getOperand(2), // Basic Block
2084 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode
*N
) {
2085 MVT VT
= N
->getSimpleValueType(0);
2086 bool IsFMA
= N
->getOpcode() == ISD::FMA
;
2087 if (VT
!= MVT::f32
|| (!Subtarget
->hasMadMixInsts() &&
2088 !Subtarget
->hasFmaMixInsts()) ||
2089 ((IsFMA
&& Subtarget
->hasMadMixInsts()) ||
2090 (!IsFMA
&& Subtarget
->hasFmaMixInsts()))) {
2095 SDValue Src0
= N
->getOperand(0);
2096 SDValue Src1
= N
->getOperand(1);
2097 SDValue Src2
= N
->getOperand(2);
2098 unsigned Src0Mods
, Src1Mods
, Src2Mods
;
2100 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand
2101 // using the conversion from f16.
2102 bool Sel0
= SelectVOP3PMadMixModsImpl(Src0
, Src0
, Src0Mods
);
2103 bool Sel1
= SelectVOP3PMadMixModsImpl(Src1
, Src1
, Src1Mods
);
2104 bool Sel2
= SelectVOP3PMadMixModsImpl(Src2
, Src2
, Src2Mods
);
2106 assert((IsFMA
|| !Subtarget
->hasFP32Denormals()) &&
2107 "fmad selected with denormals enabled");
2108 // TODO: We can select this with f32 denormals enabled if all the sources are
2109 // converted from f16 (in which case fmad isn't legal).
2111 if (Sel0
|| Sel1
|| Sel2
) {
2112 // For dummy operands.
2113 SDValue Zero
= CurDAG
->getTargetConstant(0, SDLoc(), MVT::i32
);
2115 CurDAG
->getTargetConstant(Src0Mods
, SDLoc(), MVT::i32
), Src0
,
2116 CurDAG
->getTargetConstant(Src1Mods
, SDLoc(), MVT::i32
), Src1
,
2117 CurDAG
->getTargetConstant(Src2Mods
, SDLoc(), MVT::i32
), Src2
,
2118 CurDAG
->getTargetConstant(0, SDLoc(), MVT::i1
),
2122 CurDAG
->SelectNodeTo(N
,
2123 IsFMA
? AMDGPU::V_FMA_MIX_F32
: AMDGPU::V_MAD_MIX_F32
,
2130 // This is here because there isn't a way to use the generated sub0_sub1 as the
2131 // subreg index to EXTRACT_SUBREG in tablegen.
2132 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode
*N
) {
2133 MemSDNode
*Mem
= cast
<MemSDNode
>(N
);
2134 unsigned AS
= Mem
->getAddressSpace();
2135 if (AS
== AMDGPUAS::FLAT_ADDRESS
) {
2140 MVT VT
= N
->getSimpleValueType(0);
2141 bool Is32
= (VT
== MVT::i32
);
2144 MachineSDNode
*CmpSwap
= nullptr;
2145 if (Subtarget
->hasAddr64()) {
2146 SDValue SRsrc
, VAddr
, SOffset
, Offset
, SLC
;
2148 if (SelectMUBUFAddr64(Mem
->getBasePtr(), SRsrc
, VAddr
, SOffset
, Offset
, SLC
)) {
2149 unsigned Opcode
= Is32
? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN
:
2150 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN
;
2151 SDValue CmpVal
= Mem
->getOperand(2);
2153 // XXX - Do we care about glue operands?
2156 CmpVal
, VAddr
, SRsrc
, SOffset
, Offset
, SLC
, Mem
->getChain()
2159 CmpSwap
= CurDAG
->getMachineNode(Opcode
, SL
, Mem
->getVTList(), Ops
);
2164 SDValue SRsrc
, SOffset
, Offset
, SLC
;
2165 if (SelectMUBUFOffset(Mem
->getBasePtr(), SRsrc
, SOffset
, Offset
, SLC
)) {
2166 unsigned Opcode
= Is32
? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN
:
2167 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN
;
2169 SDValue CmpVal
= Mem
->getOperand(2);
2171 CmpVal
, SRsrc
, SOffset
, Offset
, SLC
, Mem
->getChain()
2174 CmpSwap
= CurDAG
->getMachineNode(Opcode
, SL
, Mem
->getVTList(), Ops
);
2183 MachineMemOperand
*MMO
= Mem
->getMemOperand();
2184 CurDAG
->setNodeMemRefs(CmpSwap
, {MMO
});
2186 unsigned SubReg
= Is32
? AMDGPU::sub0
: AMDGPU::sub0_sub1
;
2188 = CurDAG
->getTargetExtractSubreg(SubReg
, SL
, VT
, SDValue(CmpSwap
, 0));
2190 ReplaceUses(SDValue(N
, 0), Extract
);
2191 ReplaceUses(SDValue(N
, 1), SDValue(CmpSwap
, 1));
2192 CurDAG
->RemoveDeadNode(N
);
2195 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode
*N
, unsigned IntrID
) {
2196 // The address is assumed to be uniform, so if it ends up in a VGPR, it will
2197 // be copied to an SGPR with readfirstlane.
2198 unsigned Opc
= IntrID
== Intrinsic::amdgcn_ds_append
?
2199 AMDGPU::DS_APPEND
: AMDGPU::DS_CONSUME
;
2201 SDValue Chain
= N
->getOperand(0);
2202 SDValue Ptr
= N
->getOperand(2);
2203 MemIntrinsicSDNode
*M
= cast
<MemIntrinsicSDNode
>(N
);
2204 MachineMemOperand
*MMO
= M
->getMemOperand();
2205 bool IsGDS
= M
->getAddressSpace() == AMDGPUAS::REGION_ADDRESS
;
2208 if (CurDAG
->isBaseWithConstantOffset(Ptr
)) {
2209 SDValue PtrBase
= Ptr
.getOperand(0);
2210 SDValue PtrOffset
= Ptr
.getOperand(1);
2212 const APInt
&OffsetVal
= cast
<ConstantSDNode
>(PtrOffset
)->getAPIntValue();
2213 if (isDSOffsetLegal(PtrBase
, OffsetVal
.getZExtValue(), 16)) {
2214 N
= glueCopyToM0(N
, PtrBase
);
2215 Offset
= CurDAG
->getTargetConstant(OffsetVal
, SDLoc(), MVT::i32
);
2220 N
= glueCopyToM0(N
, Ptr
);
2221 Offset
= CurDAG
->getTargetConstant(0, SDLoc(), MVT::i32
);
2226 CurDAG
->getTargetConstant(IsGDS
, SDLoc(), MVT::i32
),
2228 N
->getOperand(N
->getNumOperands() - 1) // New glue
2231 SDNode
*Selected
= CurDAG
->SelectNodeTo(N
, Opc
, N
->getVTList(), Ops
);
2232 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(Selected
), {MMO
});
2235 static unsigned gwsIntrinToOpcode(unsigned IntrID
) {
2237 case Intrinsic::amdgcn_ds_gws_init
:
2238 return AMDGPU::DS_GWS_INIT
;
2239 case Intrinsic::amdgcn_ds_gws_barrier
:
2240 return AMDGPU::DS_GWS_BARRIER
;
2241 case Intrinsic::amdgcn_ds_gws_sema_v
:
2242 return AMDGPU::DS_GWS_SEMA_V
;
2243 case Intrinsic::amdgcn_ds_gws_sema_br
:
2244 return AMDGPU::DS_GWS_SEMA_BR
;
2245 case Intrinsic::amdgcn_ds_gws_sema_p
:
2246 return AMDGPU::DS_GWS_SEMA_P
;
2247 case Intrinsic::amdgcn_ds_gws_sema_release_all
:
2248 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL
;
2250 llvm_unreachable("not a gws intrinsic");
2254 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode
*N
, unsigned IntrID
) {
2255 if (IntrID
== Intrinsic::amdgcn_ds_gws_sema_release_all
&&
2256 !Subtarget
->hasGWSSemaReleaseAll()) {
2262 // Chain, intrinsic ID, vsrc, offset
2263 const bool HasVSrc
= N
->getNumOperands() == 4;
2264 assert(HasVSrc
|| N
->getNumOperands() == 3);
2267 SDValue BaseOffset
= N
->getOperand(HasVSrc
? 3 : 2);
2269 MemIntrinsicSDNode
*M
= cast
<MemIntrinsicSDNode
>(N
);
2270 MachineMemOperand
*MMO
= M
->getMemOperand();
2272 // Don't worry if the offset ends up in a VGPR. Only one lane will have
2273 // effect, so SIFixSGPRCopies will validly insert readfirstlane.
2275 // The resource id offset is computed as (<isa opaque base> + M0[21:16] +
2276 // offset field) % 64. Some versions of the programming guide omit the m0
2277 // part, or claim it's from offset 0.
2278 if (ConstantSDNode
*ConstOffset
= dyn_cast
<ConstantSDNode
>(BaseOffset
)) {
2279 // If we have a constant offset, try to use the 0 in m0 as the base.
2280 // TODO: Look into changing the default m0 initialization value. If the
2281 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to
2282 // the immediate offset.
2283 glueCopyToM0(N
, CurDAG
->getTargetConstant(0, SL
, MVT::i32
));
2284 ImmOffset
= ConstOffset
->getZExtValue();
2286 if (CurDAG
->isBaseWithConstantOffset(BaseOffset
)) {
2287 ImmOffset
= BaseOffset
.getConstantOperandVal(1);
2288 BaseOffset
= BaseOffset
.getOperand(0);
2291 // Prefer to do the shift in an SGPR since it should be possible to use m0
2292 // as the result directly. If it's already an SGPR, it will be eliminated
2295 = CurDAG
->getMachineNode(AMDGPU::V_READFIRSTLANE_B32
, SL
, MVT::i32
,
2297 // Shift to offset in m0
2299 = CurDAG
->getMachineNode(AMDGPU::S_LSHL_B32
, SL
, MVT::i32
,
2300 SDValue(SGPROffset
, 0),
2301 CurDAG
->getTargetConstant(16, SL
, MVT::i32
));
2302 glueCopyToM0(N
, SDValue(M0Base
, 0));
2305 SDValue Chain
= N
->getOperand(0);
2306 SDValue OffsetField
= CurDAG
->getTargetConstant(ImmOffset
, SL
, MVT::i32
);
2308 // TODO: Can this just be removed from the instruction?
2309 SDValue GDS
= CurDAG
->getTargetConstant(1, SL
, MVT::i1
);
2311 const unsigned Opc
= gwsIntrinToOpcode(IntrID
);
2312 SmallVector
<SDValue
, 5> Ops
;
2314 Ops
.push_back(N
->getOperand(2));
2315 Ops
.push_back(OffsetField
);
2317 Ops
.push_back(Chain
);
2319 SDNode
*Selected
= CurDAG
->SelectNodeTo(N
, Opc
, N
->getVTList(), Ops
);
2320 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(Selected
), {MMO
});
2323 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode
*N
) {
2324 unsigned IntrID
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
2326 case Intrinsic::amdgcn_ds_append
:
2327 case Intrinsic::amdgcn_ds_consume
: {
2328 if (N
->getValueType(0) != MVT::i32
)
2330 SelectDSAppendConsume(N
, IntrID
);
2338 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode
*N
) {
2339 unsigned IntrID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
2342 case Intrinsic::amdgcn_wqm
:
2343 Opcode
= AMDGPU::WQM
;
2345 case Intrinsic::amdgcn_softwqm
:
2346 Opcode
= AMDGPU::SOFT_WQM
;
2348 case Intrinsic::amdgcn_wwm
:
2349 Opcode
= AMDGPU::WWM
;
2356 SDValue Src
= N
->getOperand(1);
2357 CurDAG
->SelectNodeTo(N
, Opcode
, N
->getVTList(), {Src
});
2360 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode
*N
) {
2361 unsigned IntrID
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
2363 case Intrinsic::amdgcn_ds_gws_init
:
2364 case Intrinsic::amdgcn_ds_gws_barrier
:
2365 case Intrinsic::amdgcn_ds_gws_sema_v
:
2366 case Intrinsic::amdgcn_ds_gws_sema_br
:
2367 case Intrinsic::amdgcn_ds_gws_sema_p
:
2368 case Intrinsic::amdgcn_ds_gws_sema_release_all
:
2369 SelectDS_GWS(N
, IntrID
);
2378 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In
, SDValue
&Src
,
2379 unsigned &Mods
) const {
2383 if (Src
.getOpcode() == ISD::FNEG
) {
2384 Mods
|= SISrcMods::NEG
;
2385 Src
= Src
.getOperand(0);
2388 if (Src
.getOpcode() == ISD::FABS
) {
2389 Mods
|= SISrcMods::ABS
;
2390 Src
= Src
.getOperand(0);
2396 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In
, SDValue
&Src
,
2397 SDValue
&SrcMods
) const {
2399 if (SelectVOP3ModsImpl(In
, Src
, Mods
)) {
2400 SrcMods
= CurDAG
->getTargetConstant(Mods
, SDLoc(In
), MVT::i32
);
2407 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In
, SDValue
&Src
,
2408 SDValue
&SrcMods
) const {
2409 SelectVOP3Mods(In
, Src
, SrcMods
);
2410 return isNoNanSrc(Src
);
2413 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_f32(SDValue In
, SDValue
&Src
,
2414 SDValue
&SrcMods
) const {
2415 if (In
.getValueType() == MVT::f32
)
2416 return SelectVOP3Mods(In
, Src
, SrcMods
);
2418 SrcMods
= CurDAG
->getTargetConstant(0, SDLoc(In
), MVT::i32
);;
2422 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In
, SDValue
&Src
) const {
2423 if (In
.getOpcode() == ISD::FABS
|| In
.getOpcode() == ISD::FNEG
)
2430 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In
, SDValue
&Src
,
2431 SDValue
&SrcMods
, SDValue
&Clamp
,
2432 SDValue
&Omod
) const {
2434 Clamp
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
2435 Omod
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
2437 return SelectVOP3Mods(In
, Src
, SrcMods
);
2440 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0Clamp0OMod(SDValue In
, SDValue
&Src
,
2443 SDValue
&Omod
) const {
2444 Clamp
= Omod
= CurDAG
->getTargetConstant(0, SDLoc(In
), MVT::i32
);
2445 return SelectVOP3Mods(In
, Src
, SrcMods
);
2448 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In
, SDValue
&Src
,
2449 SDValue
&Clamp
, SDValue
&Omod
) const {
2453 Clamp
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
2454 Omod
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
2459 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In
, SDValue
&Src
,
2460 SDValue
&SrcMods
) const {
2464 if (Src
.getOpcode() == ISD::FNEG
) {
2465 Mods
^= (SISrcMods::NEG
| SISrcMods::NEG_HI
);
2466 Src
= Src
.getOperand(0);
2469 if (Src
.getOpcode() == ISD::BUILD_VECTOR
) {
2470 unsigned VecMods
= Mods
;
2472 SDValue Lo
= stripBitcast(Src
.getOperand(0));
2473 SDValue Hi
= stripBitcast(Src
.getOperand(1));
2475 if (Lo
.getOpcode() == ISD::FNEG
) {
2476 Lo
= stripBitcast(Lo
.getOperand(0));
2477 Mods
^= SISrcMods::NEG
;
2480 if (Hi
.getOpcode() == ISD::FNEG
) {
2481 Hi
= stripBitcast(Hi
.getOperand(0));
2482 Mods
^= SISrcMods::NEG_HI
;
2485 if (isExtractHiElt(Lo
, Lo
))
2486 Mods
|= SISrcMods::OP_SEL_0
;
2488 if (isExtractHiElt(Hi
, Hi
))
2489 Mods
|= SISrcMods::OP_SEL_1
;
2491 Lo
= stripExtractLoElt(Lo
);
2492 Hi
= stripExtractLoElt(Hi
);
2494 if (Lo
== Hi
&& !isInlineImmediate(Lo
.getNode())) {
2495 // Really a scalar input. Just select from the low half of the register to
2499 SrcMods
= CurDAG
->getTargetConstant(Mods
, SDLoc(In
), MVT::i32
);
2506 // Packed instructions do not have abs modifiers.
2507 Mods
|= SISrcMods::OP_SEL_1
;
2509 SrcMods
= CurDAG
->getTargetConstant(Mods
, SDLoc(In
), MVT::i32
);
2513 bool AMDGPUDAGToDAGISel::SelectVOP3PMods0(SDValue In
, SDValue
&Src
,
2515 SDValue
&Clamp
) const {
2518 // FIXME: Handle clamp and op_sel
2519 Clamp
= CurDAG
->getTargetConstant(0, SL
, MVT::i32
);
2521 return SelectVOP3PMods(In
, Src
, SrcMods
);
2524 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In
, SDValue
&Src
,
2525 SDValue
&SrcMods
) const {
2527 // FIXME: Handle op_sel
2528 SrcMods
= CurDAG
->getTargetConstant(0, SDLoc(In
), MVT::i32
);
2532 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel0(SDValue In
, SDValue
&Src
,
2534 SDValue
&Clamp
) const {
2537 // FIXME: Handle clamp
2538 Clamp
= CurDAG
->getTargetConstant(0, SL
, MVT::i32
);
2540 return SelectVOP3OpSel(In
, Src
, SrcMods
);
2543 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In
, SDValue
&Src
,
2544 SDValue
&SrcMods
) const {
2545 // FIXME: Handle op_sel
2546 return SelectVOP3Mods(In
, Src
, SrcMods
);
2549 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods0(SDValue In
, SDValue
&Src
,
2551 SDValue
&Clamp
) const {
2554 // FIXME: Handle clamp
2555 Clamp
= CurDAG
->getTargetConstant(0, SL
, MVT::i32
);
2557 return SelectVOP3OpSelMods(In
, Src
, SrcMods
);
2560 // The return value is not whether the match is possible (which it always is),
2561 // but whether or not it a conversion is really used.
2562 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In
, SDValue
&Src
,
2563 unsigned &Mods
) const {
2565 SelectVOP3ModsImpl(In
, Src
, Mods
);
2567 if (Src
.getOpcode() == ISD::FP_EXTEND
) {
2568 Src
= Src
.getOperand(0);
2569 assert(Src
.getValueType() == MVT::f16
);
2570 Src
= stripBitcast(Src
);
2572 // Be careful about folding modifiers if we already have an abs. fneg is
2573 // applied last, so we don't want to apply an earlier fneg.
2574 if ((Mods
& SISrcMods::ABS
) == 0) {
2576 SelectVOP3ModsImpl(Src
, Src
, ModsTmp
);
2578 if ((ModsTmp
& SISrcMods::NEG
) != 0)
2579 Mods
^= SISrcMods::NEG
;
2581 if ((ModsTmp
& SISrcMods::ABS
) != 0)
2582 Mods
|= SISrcMods::ABS
;
2585 // op_sel/op_sel_hi decide the source type and source.
2586 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
2587 // If the sources's op_sel is set, it picks the high half of the source
2590 Mods
|= SISrcMods::OP_SEL_1
;
2591 if (isExtractHiElt(Src
, Src
)) {
2592 Mods
|= SISrcMods::OP_SEL_0
;
2594 // TODO: Should we try to look for neg/abs here?
2603 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In
, SDValue
&Src
,
2604 SDValue
&SrcMods
) const {
2606 SelectVOP3PMadMixModsImpl(In
, Src
, Mods
);
2607 SrcMods
= CurDAG
->getTargetConstant(Mods
, SDLoc(In
), MVT::i32
);
2611 SDValue
AMDGPUDAGToDAGISel::getHi16Elt(SDValue In
) const {
2613 return CurDAG
->getUNDEF(MVT::i32
);
2615 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(In
)) {
2617 return CurDAG
->getConstant(C
->getZExtValue() << 16, SL
, MVT::i32
);
2620 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(In
)) {
2622 return CurDAG
->getConstant(
2623 C
->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL
, MVT::i32
);
2627 if (isExtractHiElt(In
, Src
))
2633 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode
* N
) const {
2634 assert(CurDAG
->getTarget().getTargetTriple().getArch() == Triple::amdgcn
);
2636 const SIRegisterInfo
*SIRI
=
2637 static_cast<const SIRegisterInfo
*>(Subtarget
->getRegisterInfo());
2638 const SIInstrInfo
* SII
=
2639 static_cast<const SIInstrInfo
*>(Subtarget
->getInstrInfo());
2642 bool AllUsesAcceptSReg
= true;
2643 for (SDNode::use_iterator U
= N
->use_begin(), E
= SDNode::use_end();
2644 Limit
< 10 && U
!= E
; ++U
, ++Limit
) {
2645 const TargetRegisterClass
*RC
= getOperandRegClass(*U
, U
.getOperandNo());
2647 // If the register class is unknown, it could be an unknown
2648 // register class that needs to be an SGPR, e.g. an inline asm
2650 if (!RC
|| SIRI
->isSGPRClass(RC
))
2653 if (RC
!= &AMDGPU::VS_32RegClass
) {
2654 AllUsesAcceptSReg
= false;
2656 if (User
->isMachineOpcode()) {
2657 unsigned Opc
= User
->getMachineOpcode();
2658 MCInstrDesc Desc
= SII
->get(Opc
);
2659 if (Desc
.isCommutable()) {
2660 unsigned OpIdx
= Desc
.getNumDefs() + U
.getOperandNo();
2661 unsigned CommuteIdx1
= TargetInstrInfo::CommuteAnyOperandIndex
;
2662 if (SII
->findCommutedOpIndices(Desc
, OpIdx
, CommuteIdx1
)) {
2663 unsigned CommutedOpNo
= CommuteIdx1
- Desc
.getNumDefs();
2664 const TargetRegisterClass
*CommutedRC
= getOperandRegClass(*U
, CommutedOpNo
);
2665 if (CommutedRC
== &AMDGPU::VS_32RegClass
)
2666 AllUsesAcceptSReg
= true;
2670 // If "AllUsesAcceptSReg == false" so far we haven't suceeded
2671 // commuting current user. This means have at least one use
2672 // that strictly require VGPR. Thus, we will not attempt to commute
2673 // other user instructions.
2674 if (!AllUsesAcceptSReg
)
2678 return !AllUsesAcceptSReg
&& (Limit
< 10);
2681 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode
* N
) const {
2682 auto Ld
= cast
<LoadSDNode
>(N
);
2684 return Ld
->getAlignment() >= 4 &&
2688 Ld
->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS
||
2689 Ld
->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
2696 Subtarget
->getScalarizeGlobalBehavior() &&
2697 Ld
->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS
&&
2698 !Ld
->isVolatile() &&
2699 !N
->isDivergent() &&
2700 static_cast<const SITargetLowering
*>(
2701 getTargetLowering())->isMemOpHasNoClobberedMemOperand(N
)
2706 void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
2707 const AMDGPUTargetLowering
& Lowering
=
2708 *static_cast<const AMDGPUTargetLowering
*>(getTargetLowering());
2709 bool IsModified
= false;
2713 // Go over all selected nodes and try to fold them a bit more
2714 SelectionDAG::allnodes_iterator Position
= CurDAG
->allnodes_begin();
2715 while (Position
!= CurDAG
->allnodes_end()) {
2716 SDNode
*Node
= &*Position
++;
2717 MachineSDNode
*MachineNode
= dyn_cast
<MachineSDNode
>(Node
);
2721 SDNode
*ResNode
= Lowering
.PostISelFolding(MachineNode
, *CurDAG
);
2722 if (ResNode
!= Node
) {
2724 ReplaceUses(Node
, ResNode
);
2728 CurDAG
->RemoveDeadNodes();
2729 } while (IsModified
);
2732 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction
&MF
) {
2733 Subtarget
= &MF
.getSubtarget
<R600Subtarget
>();
2734 return SelectionDAGISel::runOnMachineFunction(MF
);
2737 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode
*N
, int CbId
) const {
2741 return N
->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS
||
2742 N
->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
;
2744 return N
->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0
+ CbId
;
2747 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr
,
2749 if (ConstantSDNode
*Cst
= dyn_cast
<ConstantSDNode
>(Addr
)) {
2750 IntPtr
= CurDAG
->getIntPtrConstant(Cst
->getZExtValue() / 4, SDLoc(Addr
),
2757 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr
,
2758 SDValue
& BaseReg
, SDValue
&Offset
) {
2759 if (!isa
<ConstantSDNode
>(Addr
)) {
2761 Offset
= CurDAG
->getIntPtrConstant(0, SDLoc(Addr
), true);
2767 void R600DAGToDAGISel::Select(SDNode
*N
) {
2768 unsigned int Opc
= N
->getOpcode();
2769 if (N
->isMachineOpcode()) {
2771 return; // Already selected.
2776 case AMDGPUISD::BUILD_VERTICAL_VECTOR
:
2777 case ISD::SCALAR_TO_VECTOR
:
2778 case ISD::BUILD_VECTOR
: {
2779 EVT VT
= N
->getValueType(0);
2780 unsigned NumVectorElts
= VT
.getVectorNumElements();
2781 unsigned RegClassID
;
2782 // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
2783 // that adds a 128 bits reg copy when going through TwoAddressInstructions
2784 // pass. We want to avoid 128 bits copies as much as possible because they
2785 // can't be bundled by our scheduler.
2786 switch(NumVectorElts
) {
2787 case 2: RegClassID
= R600::R600_Reg64RegClassID
; break;
2789 if (Opc
== AMDGPUISD::BUILD_VERTICAL_VECTOR
)
2790 RegClassID
= R600::R600_Reg128VerticalRegClassID
;
2792 RegClassID
= R600::R600_Reg128RegClassID
;
2794 default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
2796 SelectBuildVector(N
, RegClassID
);
2804 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr
, SDValue
&Base
,
2809 if ((C
= dyn_cast
<ConstantSDNode
>(Addr
))) {
2810 Base
= CurDAG
->getRegister(R600::INDIRECT_BASE_ADDR
, MVT::i32
);
2811 Offset
= CurDAG
->getTargetConstant(C
->getZExtValue(), DL
, MVT::i32
);
2812 } else if ((Addr
.getOpcode() == AMDGPUISD::DWORDADDR
) &&
2813 (C
= dyn_cast
<ConstantSDNode
>(Addr
.getOperand(0)))) {
2814 Base
= CurDAG
->getRegister(R600::INDIRECT_BASE_ADDR
, MVT::i32
);
2815 Offset
= CurDAG
->getTargetConstant(C
->getZExtValue(), DL
, MVT::i32
);
2816 } else if ((Addr
.getOpcode() == ISD::ADD
|| Addr
.getOpcode() == ISD::OR
) &&
2817 (C
= dyn_cast
<ConstantSDNode
>(Addr
.getOperand(1)))) {
2818 Base
= Addr
.getOperand(0);
2819 Offset
= CurDAG
->getTargetConstant(C
->getZExtValue(), DL
, MVT::i32
);
2822 Offset
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
2828 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr
, SDValue
&Base
,
2830 ConstantSDNode
*IMMOffset
;
2832 if (Addr
.getOpcode() == ISD::ADD
2833 && (IMMOffset
= dyn_cast
<ConstantSDNode
>(Addr
.getOperand(1)))
2834 && isInt
<16>(IMMOffset
->getZExtValue())) {
2836 Base
= Addr
.getOperand(0);
2837 Offset
= CurDAG
->getTargetConstant(IMMOffset
->getZExtValue(), SDLoc(Addr
),
2840 // If the pointer address is constant, we can move it to the offset field.
2841 } else if ((IMMOffset
= dyn_cast
<ConstantSDNode
>(Addr
))
2842 && isInt
<16>(IMMOffset
->getZExtValue())) {
2843 Base
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(),
2844 SDLoc(CurDAG
->getEntryNode()),
2845 R600::ZERO
, MVT::i32
);
2846 Offset
= CurDAG
->getTargetConstant(IMMOffset
->getZExtValue(), SDLoc(Addr
),
2851 // Default case, no offset
2853 Offset
= CurDAG
->getTargetConstant(0, SDLoc(Addr
), MVT::i32
);