[X86][BMI] Pull out schedule classes from bmi_andn<> and bmi_bls<>
[llvm-core.git] / lib / Target / AMDGPU / AMDGPUPrintfRuntimeBinding.cpp
blob5250bf455d719268b58e0b7c151082bdbfaeb2dd
1 //=== AMDGPUPrintfRuntimeBinding.cpp - OpenCL printf implementation -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // \file
9 //
10 // The pass bind printfs to a kernel arg pointer that will be bound to a buffer
11 // later by the runtime.
13 // This pass traverses the functions in the module and converts
14 // each call to printf to a sequence of operations that
15 // store the following into the printf buffer:
16 // - format string (passed as a module's metadata unique ID)
17 // - bitwise copies of printf arguments
18 // The backend passes will need to store metadata in the kernel
19 //===----------------------------------------------------------------------===//
21 #include "AMDGPU.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 using namespace llvm;
42 #define DEBUG_TYPE "printfToRuntime"
43 #define DWORD_ALIGN 4
45 namespace {
46 class LLVM_LIBRARY_VISIBILITY AMDGPUPrintfRuntimeBinding final
47 : public ModulePass {
49 public:
50 static char ID;
52 explicit AMDGPUPrintfRuntimeBinding();
54 private:
55 bool runOnModule(Module &M) override;
56 void getConversionSpecifiers(SmallVectorImpl<char> &OpConvSpecifiers,
57 StringRef fmt, size_t num_ops) const;
59 bool shouldPrintAsStr(char Specifier, Type *OpType) const;
60 bool
61 lowerPrintfForGpu(Module &M,
62 function_ref<const TargetLibraryInfo &(Function &)> GetTLI);
64 void getAnalysisUsage(AnalysisUsage &AU) const override {
65 AU.addRequired<TargetLibraryInfoWrapperPass>();
66 AU.addRequired<DominatorTreeWrapperPass>();
69 Value *simplify(Instruction *I, const TargetLibraryInfo *TLI) {
70 return SimplifyInstruction(I, {*TD, TLI, DT});
73 const DataLayout *TD;
74 const DominatorTree *DT;
75 SmallVector<CallInst *, 32> Printfs;
77 } // namespace
79 char AMDGPUPrintfRuntimeBinding::ID = 0;
81 INITIALIZE_PASS_BEGIN(AMDGPUPrintfRuntimeBinding,
82 "amdgpu-printf-runtime-binding", "AMDGPU Printf lowering",
83 false, false)
84 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
85 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
86 INITIALIZE_PASS_END(AMDGPUPrintfRuntimeBinding, "amdgpu-printf-runtime-binding",
87 "AMDGPU Printf lowering", false, false)
89 char &llvm::AMDGPUPrintfRuntimeBindingID = AMDGPUPrintfRuntimeBinding::ID;
91 namespace llvm {
92 ModulePass *createAMDGPUPrintfRuntimeBinding() {
93 return new AMDGPUPrintfRuntimeBinding();
95 } // namespace llvm
97 AMDGPUPrintfRuntimeBinding::AMDGPUPrintfRuntimeBinding()
98 : ModulePass(ID), TD(nullptr), DT(nullptr) {
99 initializeAMDGPUPrintfRuntimeBindingPass(*PassRegistry::getPassRegistry());
102 void AMDGPUPrintfRuntimeBinding::getConversionSpecifiers(
103 SmallVectorImpl<char> &OpConvSpecifiers, StringRef Fmt,
104 size_t NumOps) const {
105 // not all format characters are collected.
106 // At this time the format characters of interest
107 // are %p and %s, which use to know if we
108 // are either storing a literal string or a
109 // pointer to the printf buffer.
110 static const char ConvSpecifiers[] = "cdieEfgGaosuxXp";
111 size_t CurFmtSpecifierIdx = 0;
112 size_t PrevFmtSpecifierIdx = 0;
114 while ((CurFmtSpecifierIdx = Fmt.find_first_of(
115 ConvSpecifiers, CurFmtSpecifierIdx)) != StringRef::npos) {
116 bool ArgDump = false;
117 StringRef CurFmt = Fmt.substr(PrevFmtSpecifierIdx,
118 CurFmtSpecifierIdx - PrevFmtSpecifierIdx);
119 size_t pTag = CurFmt.find_last_of("%");
120 if (pTag != StringRef::npos) {
121 ArgDump = true;
122 while (pTag && CurFmt[--pTag] == '%') {
123 ArgDump = !ArgDump;
127 if (ArgDump)
128 OpConvSpecifiers.push_back(Fmt[CurFmtSpecifierIdx]);
130 PrevFmtSpecifierIdx = ++CurFmtSpecifierIdx;
134 bool AMDGPUPrintfRuntimeBinding::shouldPrintAsStr(char Specifier,
135 Type *OpType) const {
136 if (Specifier != 's')
137 return false;
138 const PointerType *PT = dyn_cast<PointerType>(OpType);
139 if (!PT || PT->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
140 return false;
141 Type *ElemType = PT->getContainedType(0);
142 if (ElemType->getTypeID() != Type::IntegerTyID)
143 return false;
144 IntegerType *ElemIType = cast<IntegerType>(ElemType);
145 return ElemIType->getBitWidth() == 8;
148 bool AMDGPUPrintfRuntimeBinding::lowerPrintfForGpu(
149 Module &M, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
150 LLVMContext &Ctx = M.getContext();
151 IRBuilder<> Builder(Ctx);
152 Type *I32Ty = Type::getInt32Ty(Ctx);
153 unsigned UniqID = 0;
154 // NB: This is important for this string size to be divizable by 4
155 const char NonLiteralStr[4] = "???";
157 for (auto CI : Printfs) {
158 unsigned NumOps = CI->getNumArgOperands();
160 SmallString<16> OpConvSpecifiers;
161 Value *Op = CI->getArgOperand(0);
163 if (auto LI = dyn_cast<LoadInst>(Op)) {
164 Op = LI->getPointerOperand();
165 for (auto Use : Op->users()) {
166 if (auto SI = dyn_cast<StoreInst>(Use)) {
167 Op = SI->getValueOperand();
168 break;
173 if (auto I = dyn_cast<Instruction>(Op)) {
174 Value *Op_simplified = simplify(I, &GetTLI(*I->getFunction()));
175 if (Op_simplified)
176 Op = Op_simplified;
179 ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Op);
181 if (ConstExpr) {
182 GlobalVariable *GVar = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
184 StringRef Str("unknown");
185 if (GVar && GVar->hasInitializer()) {
186 auto Init = GVar->getInitializer();
187 if (auto CA = dyn_cast<ConstantDataArray>(Init)) {
188 if (CA->isString())
189 Str = CA->getAsCString();
190 } else if (isa<ConstantAggregateZero>(Init)) {
191 Str = "";
194 // we need this call to ascertain
195 // that we are printing a string
196 // or a pointer. It takes out the
197 // specifiers and fills up the first
198 // arg
199 getConversionSpecifiers(OpConvSpecifiers, Str, NumOps - 1);
201 // Add metadata for the string
202 std::string AStreamHolder;
203 raw_string_ostream Sizes(AStreamHolder);
204 int Sum = DWORD_ALIGN;
205 Sizes << CI->getNumArgOperands() - 1;
206 Sizes << ':';
207 for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() &&
208 ArgCount <= OpConvSpecifiers.size();
209 ArgCount++) {
210 Value *Arg = CI->getArgOperand(ArgCount);
211 Type *ArgType = Arg->getType();
212 unsigned ArgSize = TD->getTypeAllocSizeInBits(ArgType);
213 ArgSize = ArgSize / 8;
215 // ArgSize by design should be a multiple of DWORD_ALIGN,
216 // expand the arguments that do not follow this rule.
218 if (ArgSize % DWORD_ALIGN != 0) {
219 llvm::Type *ResType = llvm::Type::getInt32Ty(Ctx);
220 VectorType *LLVMVecType = llvm::dyn_cast<llvm::VectorType>(ArgType);
221 int NumElem = LLVMVecType ? LLVMVecType->getNumElements() : 1;
222 if (LLVMVecType && NumElem > 1)
223 ResType = llvm::VectorType::get(ResType, NumElem);
224 Builder.SetInsertPoint(CI);
225 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
226 if (OpConvSpecifiers[ArgCount - 1] == 'x' ||
227 OpConvSpecifiers[ArgCount - 1] == 'X' ||
228 OpConvSpecifiers[ArgCount - 1] == 'u' ||
229 OpConvSpecifiers[ArgCount - 1] == 'o')
230 Arg = Builder.CreateZExt(Arg, ResType);
231 else
232 Arg = Builder.CreateSExt(Arg, ResType);
233 ArgType = Arg->getType();
234 ArgSize = TD->getTypeAllocSizeInBits(ArgType);
235 ArgSize = ArgSize / 8;
236 CI->setOperand(ArgCount, Arg);
238 if (OpConvSpecifiers[ArgCount - 1] == 'f') {
239 ConstantFP *FpCons = dyn_cast<ConstantFP>(Arg);
240 if (FpCons)
241 ArgSize = 4;
242 else {
243 FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
244 if (FpExt && FpExt->getType()->isDoubleTy() &&
245 FpExt->getOperand(0)->getType()->isFloatTy())
246 ArgSize = 4;
249 if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
250 if (ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Arg)) {
251 GlobalVariable *GV =
252 dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
253 if (GV && GV->hasInitializer()) {
254 Constant *Init = GV->getInitializer();
255 ConstantDataArray *CA = dyn_cast<ConstantDataArray>(Init);
256 if (Init->isZeroValue() || CA->isString()) {
257 size_t SizeStr = Init->isZeroValue()
259 : (strlen(CA->getAsCString().data()) + 1);
260 size_t Rem = SizeStr % DWORD_ALIGN;
261 size_t NSizeStr = 0;
262 LLVM_DEBUG(dbgs() << "Printf string original size = " << SizeStr
263 << '\n');
264 if (Rem) {
265 NSizeStr = SizeStr + (DWORD_ALIGN - Rem);
266 } else {
267 NSizeStr = SizeStr;
269 ArgSize = NSizeStr;
271 } else {
272 ArgSize = sizeof(NonLiteralStr);
274 } else {
275 ArgSize = sizeof(NonLiteralStr);
278 LLVM_DEBUG(dbgs() << "Printf ArgSize (in buffer) = " << ArgSize
279 << " for type: " << *ArgType << '\n');
280 Sizes << ArgSize << ':';
281 Sum += ArgSize;
283 LLVM_DEBUG(dbgs() << "Printf format string in source = " << Str.str()
284 << '\n');
285 for (size_t I = 0; I < Str.size(); ++I) {
286 // Rest of the C escape sequences (e.g. \') are handled correctly
287 // by the MDParser
288 switch (Str[I]) {
289 case '\a':
290 Sizes << "\\a";
291 break;
292 case '\b':
293 Sizes << "\\b";
294 break;
295 case '\f':
296 Sizes << "\\f";
297 break;
298 case '\n':
299 Sizes << "\\n";
300 break;
301 case '\r':
302 Sizes << "\\r";
303 break;
304 case '\v':
305 Sizes << "\\v";
306 break;
307 case ':':
308 // ':' cannot be scanned by Flex, as it is defined as a delimiter
309 // Replace it with it's octal representation \72
310 Sizes << "\\72";
311 break;
312 default:
313 Sizes << Str[I];
314 break;
318 // Insert the printf_alloc call
319 Builder.SetInsertPoint(CI);
320 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
322 AttributeList Attr = AttributeList::get(Ctx, AttributeList::FunctionIndex,
323 Attribute::NoUnwind);
325 Type *SizetTy = Type::getInt32Ty(Ctx);
327 Type *Tys_alloc[1] = {SizetTy};
328 Type *I8Ptr = PointerType::get(Type::getInt8Ty(Ctx), 1);
329 FunctionType *FTy_alloc = FunctionType::get(I8Ptr, Tys_alloc, false);
330 FunctionCallee PrintfAllocFn =
331 M.getOrInsertFunction(StringRef("__printf_alloc"), FTy_alloc, Attr);
333 LLVM_DEBUG(dbgs() << "Printf metadata = " << Sizes.str() << '\n');
334 std::string fmtstr = itostr(++UniqID) + ":" + Sizes.str().c_str();
335 MDString *fmtStrArray = MDString::get(Ctx, fmtstr);
337 // Instead of creating global variables, the
338 // printf format strings are extracted
339 // and passed as metadata. This avoids
340 // polluting llvm's symbol tables in this module.
341 // Metadata is going to be extracted
342 // by the backend passes and inserted
343 // into the OpenCL binary as appropriate.
344 StringRef amd("llvm.printf.fmts");
345 NamedMDNode *metaD = M.getOrInsertNamedMetadata(amd);
346 MDNode *myMD = MDNode::get(Ctx, fmtStrArray);
347 metaD->addOperand(myMD);
348 Value *sumC = ConstantInt::get(SizetTy, Sum, false);
349 SmallVector<Value *, 1> alloc_args;
350 alloc_args.push_back(sumC);
351 CallInst *pcall =
352 CallInst::Create(PrintfAllocFn, alloc_args, "printf_alloc_fn", CI);
355 // Insert code to split basicblock with a
356 // piece of hammock code.
357 // basicblock splits after buffer overflow check
359 ConstantPointerNull *zeroIntPtr =
360 ConstantPointerNull::get(PointerType::get(Type::getInt8Ty(Ctx), 1));
361 ICmpInst *cmp =
362 dyn_cast<ICmpInst>(Builder.CreateICmpNE(pcall, zeroIntPtr, ""));
363 if (!CI->use_empty()) {
364 Value *result =
365 Builder.CreateSExt(Builder.CreateNot(cmp), I32Ty, "printf_res");
366 CI->replaceAllUsesWith(result);
368 SplitBlock(CI->getParent(), cmp);
369 Instruction *Brnch =
370 SplitBlockAndInsertIfThen(cmp, cmp->getNextNode(), false);
372 Builder.SetInsertPoint(Brnch);
374 // store unique printf id in the buffer
376 SmallVector<Value *, 1> ZeroIdxList;
377 ConstantInt *zeroInt =
378 ConstantInt::get(Ctx, APInt(32, StringRef("0"), 10));
379 ZeroIdxList.push_back(zeroInt);
381 GetElementPtrInst *BufferIdx =
382 dyn_cast<GetElementPtrInst>(GetElementPtrInst::Create(
383 nullptr, pcall, ZeroIdxList, "PrintBuffID", Brnch));
385 Type *idPointer = PointerType::get(I32Ty, AMDGPUAS::GLOBAL_ADDRESS);
386 Value *id_gep_cast =
387 new BitCastInst(BufferIdx, idPointer, "PrintBuffIdCast", Brnch);
389 StoreInst *stbuff =
390 new StoreInst(ConstantInt::get(I32Ty, UniqID), id_gep_cast);
391 stbuff->insertBefore(Brnch); // to Remove unused variable warning
393 SmallVector<Value *, 2> FourthIdxList;
394 ConstantInt *fourInt =
395 ConstantInt::get(Ctx, APInt(32, StringRef("4"), 10));
397 FourthIdxList.push_back(fourInt); // 1st 4 bytes hold the printf_id
398 // the following GEP is the buffer pointer
399 BufferIdx = cast<GetElementPtrInst>(GetElementPtrInst::Create(
400 nullptr, pcall, FourthIdxList, "PrintBuffGep", Brnch));
402 Type *Int32Ty = Type::getInt32Ty(Ctx);
403 Type *Int64Ty = Type::getInt64Ty(Ctx);
404 for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() &&
405 ArgCount <= OpConvSpecifiers.size();
406 ArgCount++) {
407 Value *Arg = CI->getArgOperand(ArgCount);
408 Type *ArgType = Arg->getType();
409 SmallVector<Value *, 32> WhatToStore;
410 if (ArgType->isFPOrFPVectorTy() &&
411 (ArgType->getTypeID() != Type::VectorTyID)) {
412 Type *IType = (ArgType->isFloatTy()) ? Int32Ty : Int64Ty;
413 if (OpConvSpecifiers[ArgCount - 1] == 'f') {
414 ConstantFP *fpCons = dyn_cast<ConstantFP>(Arg);
415 if (fpCons) {
416 APFloat Val(fpCons->getValueAPF());
417 bool Lost = false;
418 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
419 &Lost);
420 Arg = ConstantFP::get(Ctx, Val);
421 IType = Int32Ty;
422 } else {
423 FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
424 if (FpExt && FpExt->getType()->isDoubleTy() &&
425 FpExt->getOperand(0)->getType()->isFloatTy()) {
426 Arg = FpExt->getOperand(0);
427 IType = Int32Ty;
431 Arg = new BitCastInst(Arg, IType, "PrintArgFP", Brnch);
432 WhatToStore.push_back(Arg);
433 } else if (ArgType->getTypeID() == Type::PointerTyID) {
434 if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
435 const char *S = NonLiteralStr;
436 if (ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Arg)) {
437 GlobalVariable *GV =
438 dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
439 if (GV && GV->hasInitializer()) {
440 Constant *Init = GV->getInitializer();
441 ConstantDataArray *CA = dyn_cast<ConstantDataArray>(Init);
442 if (Init->isZeroValue() || CA->isString()) {
443 S = Init->isZeroValue() ? "" : CA->getAsCString().data();
447 size_t SizeStr = strlen(S) + 1;
448 size_t Rem = SizeStr % DWORD_ALIGN;
449 size_t NSizeStr = 0;
450 if (Rem) {
451 NSizeStr = SizeStr + (DWORD_ALIGN - Rem);
452 } else {
453 NSizeStr = SizeStr;
455 if (S[0]) {
456 char *MyNewStr = new char[NSizeStr]();
457 strcpy(MyNewStr, S);
458 int NumInts = NSizeStr / 4;
459 int CharC = 0;
460 while (NumInts) {
461 int ANum = *(int *)(MyNewStr + CharC);
462 CharC += 4;
463 NumInts--;
464 Value *ANumV = ConstantInt::get(Int32Ty, ANum, false);
465 WhatToStore.push_back(ANumV);
467 delete[] MyNewStr;
468 } else {
469 // Empty string, give a hint to RT it is no NULL
470 Value *ANumV = ConstantInt::get(Int32Ty, 0xFFFFFF00, false);
471 WhatToStore.push_back(ANumV);
473 } else {
474 uint64_t Size = TD->getTypeAllocSizeInBits(ArgType);
475 assert((Size == 32 || Size == 64) && "unsupported size");
476 Type *DstType = (Size == 32) ? Int32Ty : Int64Ty;
477 Arg = new PtrToIntInst(Arg, DstType, "PrintArgPtr", Brnch);
478 WhatToStore.push_back(Arg);
480 } else if (ArgType->getTypeID() == Type::VectorTyID) {
481 Type *IType = NULL;
482 uint32_t EleCount = cast<VectorType>(ArgType)->getNumElements();
483 uint32_t EleSize = ArgType->getScalarSizeInBits();
484 uint32_t TotalSize = EleCount * EleSize;
485 if (EleCount == 3) {
486 IntegerType *Int32Ty = Type::getInt32Ty(ArgType->getContext());
487 Constant *Indices[4] = {
488 ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 1),
489 ConstantInt::get(Int32Ty, 2), ConstantInt::get(Int32Ty, 2)};
490 Constant *Mask = ConstantVector::get(Indices);
491 ShuffleVectorInst *Shuffle = new ShuffleVectorInst(Arg, Arg, Mask);
492 Shuffle->insertBefore(Brnch);
493 Arg = Shuffle;
494 ArgType = Arg->getType();
495 TotalSize += EleSize;
497 switch (EleSize) {
498 default:
499 EleCount = TotalSize / 64;
500 IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
501 break;
502 case 8:
503 if (EleCount >= 8) {
504 EleCount = TotalSize / 64;
505 IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
506 } else if (EleCount >= 3) {
507 EleCount = 1;
508 IType = dyn_cast<Type>(Type::getInt32Ty(ArgType->getContext()));
509 } else {
510 EleCount = 1;
511 IType = dyn_cast<Type>(Type::getInt16Ty(ArgType->getContext()));
513 break;
514 case 16:
515 if (EleCount >= 3) {
516 EleCount = TotalSize / 64;
517 IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
518 } else {
519 EleCount = 1;
520 IType = dyn_cast<Type>(Type::getInt32Ty(ArgType->getContext()));
522 break;
524 if (EleCount > 1) {
525 IType = dyn_cast<Type>(VectorType::get(IType, EleCount));
527 Arg = new BitCastInst(Arg, IType, "PrintArgVect", Brnch);
528 WhatToStore.push_back(Arg);
529 } else {
530 WhatToStore.push_back(Arg);
532 for (unsigned I = 0, E = WhatToStore.size(); I != E; ++I) {
533 Value *TheBtCast = WhatToStore[I];
534 unsigned ArgSize =
535 TD->getTypeAllocSizeInBits(TheBtCast->getType()) / 8;
536 SmallVector<Value *, 1> BuffOffset;
537 BuffOffset.push_back(ConstantInt::get(I32Ty, ArgSize));
539 Type *ArgPointer = PointerType::get(TheBtCast->getType(), 1);
540 Value *CastedGEP =
541 new BitCastInst(BufferIdx, ArgPointer, "PrintBuffPtrCast", Brnch);
542 StoreInst *StBuff = new StoreInst(TheBtCast, CastedGEP, Brnch);
543 LLVM_DEBUG(dbgs() << "inserting store to printf buffer:\n"
544 << *StBuff << '\n');
545 (void)StBuff;
546 if (I + 1 == E && ArgCount + 1 == CI->getNumArgOperands())
547 break;
548 BufferIdx = dyn_cast<GetElementPtrInst>(GetElementPtrInst::Create(
549 nullptr, BufferIdx, BuffOffset, "PrintBuffNextPtr", Brnch));
550 LLVM_DEBUG(dbgs() << "inserting gep to the printf buffer:\n"
551 << *BufferIdx << '\n');
557 // erase the printf calls
558 for (auto CI : Printfs)
559 CI->eraseFromParent();
561 Printfs.clear();
562 return true;
565 bool AMDGPUPrintfRuntimeBinding::runOnModule(Module &M) {
566 Triple TT(M.getTargetTriple());
567 if (TT.getArch() == Triple::r600)
568 return false;
570 auto PrintfFunction = M.getFunction("printf");
571 if (!PrintfFunction)
572 return false;
574 for (auto &U : PrintfFunction->uses()) {
575 if (auto *CI = dyn_cast<CallInst>(U.getUser())) {
576 if (CI->isCallee(&U))
577 Printfs.push_back(CI);
581 if (Printfs.empty())
582 return false;
584 TD = &M.getDataLayout();
585 auto DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
586 DT = DTWP ? &DTWP->getDomTree() : nullptr;
587 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
588 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
591 return lowerPrintfForGpu(M, GetTLI);