[X86][BMI] Pull out schedule classes from bmi_andn<> and bmi_bls<>
[llvm-core.git] / lib / Target / AMDGPU / Utils / AMDGPUBaseInfo.cpp
blobafb2fd987afdca4422c76c1565e8eb6cfed1744a
1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPUTargetTransformInfo.h"
11 #include "AMDGPU.h"
12 #include "SIDefines.h"
13 #include "AMDGPUAsmUtils.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/BinaryFormat/ELF.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/SubtargetFeature.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include <algorithm>
36 #include <cassert>
37 #include <cstdint>
38 #include <cstring>
39 #include <utility>
41 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
43 #define GET_INSTRINFO_NAMED_OPS
44 #define GET_INSTRMAP_INFO
45 #include "AMDGPUGenInstrInfo.inc"
46 #undef GET_INSTRMAP_INFO
47 #undef GET_INSTRINFO_NAMED_OPS
49 namespace {
51 /// \returns Bit mask for given bit \p Shift and bit \p Width.
52 unsigned getBitMask(unsigned Shift, unsigned Width) {
53 return ((1 << Width) - 1) << Shift;
56 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
57 ///
58 /// \returns Packed \p Dst.
59 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
60 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
61 Dst |= (Src << Shift) & getBitMask(Shift, Width);
62 return Dst;
65 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
66 ///
67 /// \returns Unpacked bits.
68 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
69 return (Src & getBitMask(Shift, Width)) >> Shift;
72 /// \returns Vmcnt bit shift (lower bits).
73 unsigned getVmcntBitShiftLo() { return 0; }
75 /// \returns Vmcnt bit width (lower bits).
76 unsigned getVmcntBitWidthLo() { return 4; }
78 /// \returns Expcnt bit shift.
79 unsigned getExpcntBitShift() { return 4; }
81 /// \returns Expcnt bit width.
82 unsigned getExpcntBitWidth() { return 3; }
84 /// \returns Lgkmcnt bit shift.
85 unsigned getLgkmcntBitShift() { return 8; }
87 /// \returns Lgkmcnt bit width.
88 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
89 return (VersionMajor >= 10) ? 6 : 4;
92 /// \returns Vmcnt bit shift (higher bits).
93 unsigned getVmcntBitShiftHi() { return 14; }
95 /// \returns Vmcnt bit width (higher bits).
96 unsigned getVmcntBitWidthHi() { return 2; }
98 } // end namespace anonymous
100 namespace llvm {
102 namespace AMDGPU {
104 #define GET_MIMGBaseOpcodesTable_IMPL
105 #define GET_MIMGDimInfoTable_IMPL
106 #define GET_MIMGInfoTable_IMPL
107 #define GET_MIMGLZMappingTable_IMPL
108 #define GET_MIMGMIPMappingTable_IMPL
109 #include "AMDGPUGenSearchableTables.inc"
111 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
112 unsigned VDataDwords, unsigned VAddrDwords) {
113 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
114 VDataDwords, VAddrDwords);
115 return Info ? Info->Opcode : -1;
118 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
119 const MIMGInfo *Info = getMIMGInfo(Opc);
120 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
123 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
124 const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
125 const MIMGInfo *NewInfo =
126 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
127 NewChannels, OrigInfo->VAddrDwords);
128 return NewInfo ? NewInfo->Opcode : -1;
131 struct MUBUFInfo {
132 uint16_t Opcode;
133 uint16_t BaseOpcode;
134 uint8_t elements;
135 bool has_vaddr;
136 bool has_srsrc;
137 bool has_soffset;
140 struct MTBUFInfo {
141 uint16_t Opcode;
142 uint16_t BaseOpcode;
143 uint8_t elements;
144 bool has_vaddr;
145 bool has_srsrc;
146 bool has_soffset;
149 #define GET_MTBUFInfoTable_DECL
150 #define GET_MTBUFInfoTable_IMPL
151 #define GET_MUBUFInfoTable_DECL
152 #define GET_MUBUFInfoTable_IMPL
153 #include "AMDGPUGenSearchableTables.inc"
155 int getMTBUFBaseOpcode(unsigned Opc) {
156 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
157 return Info ? Info->BaseOpcode : -1;
160 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
161 const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
162 return Info ? Info->Opcode : -1;
165 int getMTBUFElements(unsigned Opc) {
166 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
167 return Info ? Info->elements : 0;
170 bool getMTBUFHasVAddr(unsigned Opc) {
171 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
172 return Info ? Info->has_vaddr : false;
175 bool getMTBUFHasSrsrc(unsigned Opc) {
176 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
177 return Info ? Info->has_srsrc : false;
180 bool getMTBUFHasSoffset(unsigned Opc) {
181 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
182 return Info ? Info->has_soffset : false;
185 int getMUBUFBaseOpcode(unsigned Opc) {
186 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
187 return Info ? Info->BaseOpcode : -1;
190 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
191 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
192 return Info ? Info->Opcode : -1;
195 int getMUBUFElements(unsigned Opc) {
196 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
197 return Info ? Info->elements : 0;
200 bool getMUBUFHasVAddr(unsigned Opc) {
201 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
202 return Info ? Info->has_vaddr : false;
205 bool getMUBUFHasSrsrc(unsigned Opc) {
206 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
207 return Info ? Info->has_srsrc : false;
210 bool getMUBUFHasSoffset(unsigned Opc) {
211 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
212 return Info ? Info->has_soffset : false;
215 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any
216 // header files, so we need to wrap it in a function that takes unsigned
217 // instead.
218 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
219 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
222 namespace IsaInfo {
224 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
225 auto TargetTriple = STI->getTargetTriple();
226 auto Version = getIsaVersion(STI->getCPU());
228 Stream << TargetTriple.getArchName() << '-'
229 << TargetTriple.getVendorName() << '-'
230 << TargetTriple.getOSName() << '-'
231 << TargetTriple.getEnvironmentName() << '-'
232 << "gfx"
233 << Version.Major
234 << Version.Minor
235 << Version.Stepping;
237 if (hasXNACK(*STI))
238 Stream << "+xnack";
239 if (hasSRAMECC(*STI))
240 Stream << "+sram-ecc";
242 Stream.flush();
245 bool hasCodeObjectV3(const MCSubtargetInfo *STI) {
246 return STI->getTargetTriple().getOS() == Triple::AMDHSA &&
247 STI->getFeatureBits().test(FeatureCodeObjectV3);
250 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
251 if (STI->getFeatureBits().test(FeatureWavefrontSize16))
252 return 16;
253 if (STI->getFeatureBits().test(FeatureWavefrontSize32))
254 return 32;
256 return 64;
259 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
260 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
261 return 32768;
262 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
263 return 65536;
265 return 0;
268 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
269 return 4;
272 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
273 unsigned FlatWorkGroupSize) {
274 assert(FlatWorkGroupSize != 0);
275 if (STI->getTargetTriple().getArch() != Triple::amdgcn)
276 return 8;
277 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
278 if (N == 1)
279 return 40;
280 N = 40 / N;
281 return std::min(N, 16u);
284 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) {
285 return getMaxWavesPerEU(STI) * getEUsPerCU(STI);
288 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI,
289 unsigned FlatWorkGroupSize) {
290 return getWavesPerWorkGroup(STI, FlatWorkGroupSize);
293 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
294 return 1;
297 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
298 // FIXME: Need to take scratch memory into account.
299 if (!isGFX10(*STI))
300 return 10;
301 return 20;
304 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI,
305 unsigned FlatWorkGroupSize) {
306 return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize),
307 getEUsPerCU(STI)) / getEUsPerCU(STI);
310 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
311 return 1;
314 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
315 return 2048;
318 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
319 unsigned FlatWorkGroupSize) {
320 return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) /
321 getWavefrontSize(STI);
324 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
325 IsaVersion Version = getIsaVersion(STI->getCPU());
326 if (Version.Major >= 10)
327 return getAddressableNumSGPRs(STI);
328 if (Version.Major >= 8)
329 return 16;
330 return 8;
333 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
334 return 8;
337 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
338 IsaVersion Version = getIsaVersion(STI->getCPU());
339 if (Version.Major >= 8)
340 return 800;
341 return 512;
344 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
345 if (STI->getFeatureBits().test(FeatureSGPRInitBug))
346 return FIXED_NUM_SGPRS_FOR_INIT_BUG;
348 IsaVersion Version = getIsaVersion(STI->getCPU());
349 if (Version.Major >= 10)
350 return 106;
351 if (Version.Major >= 8)
352 return 102;
353 return 104;
356 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
357 assert(WavesPerEU != 0);
359 IsaVersion Version = getIsaVersion(STI->getCPU());
360 if (Version.Major >= 10)
361 return 0;
363 if (WavesPerEU >= getMaxWavesPerEU(STI))
364 return 0;
366 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
367 if (STI->getFeatureBits().test(FeatureTrapHandler))
368 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
369 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
370 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
373 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
374 bool Addressable) {
375 assert(WavesPerEU != 0);
377 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
378 IsaVersion Version = getIsaVersion(STI->getCPU());
379 if (Version.Major >= 10)
380 return Addressable ? AddressableNumSGPRs : 108;
381 if (Version.Major >= 8 && !Addressable)
382 AddressableNumSGPRs = 112;
383 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
384 if (STI->getFeatureBits().test(FeatureTrapHandler))
385 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
386 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
387 return std::min(MaxNumSGPRs, AddressableNumSGPRs);
390 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
391 bool FlatScrUsed, bool XNACKUsed) {
392 unsigned ExtraSGPRs = 0;
393 if (VCCUsed)
394 ExtraSGPRs = 2;
396 IsaVersion Version = getIsaVersion(STI->getCPU());
397 if (Version.Major >= 10)
398 return ExtraSGPRs;
400 if (Version.Major < 8) {
401 if (FlatScrUsed)
402 ExtraSGPRs = 4;
403 } else {
404 if (XNACKUsed)
405 ExtraSGPRs = 4;
407 if (FlatScrUsed)
408 ExtraSGPRs = 6;
411 return ExtraSGPRs;
414 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
415 bool FlatScrUsed) {
416 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
417 STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
420 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
421 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
422 // SGPRBlocks is actual number of SGPR blocks minus 1.
423 return NumSGPRs / getSGPREncodingGranule(STI) - 1;
426 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
427 Optional<bool> EnableWavefrontSize32) {
428 bool IsWave32 = EnableWavefrontSize32 ?
429 *EnableWavefrontSize32 :
430 STI->getFeatureBits().test(FeatureWavefrontSize32);
431 return IsWave32 ? 8 : 4;
434 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
435 Optional<bool> EnableWavefrontSize32) {
436 return getVGPRAllocGranule(STI, EnableWavefrontSize32);
439 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
440 if (!isGFX10(*STI))
441 return 256;
442 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
445 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
446 return 256;
449 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
450 assert(WavesPerEU != 0);
452 if (WavesPerEU >= getMaxWavesPerEU(STI))
453 return 0;
454 unsigned MinNumVGPRs =
455 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
456 getVGPRAllocGranule(STI)) + 1;
457 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
460 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
461 assert(WavesPerEU != 0);
463 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
464 getVGPRAllocGranule(STI));
465 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
466 return std::min(MaxNumVGPRs, AddressableNumVGPRs);
469 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
470 Optional<bool> EnableWavefrontSize32) {
471 NumVGPRs = alignTo(std::max(1u, NumVGPRs),
472 getVGPREncodingGranule(STI, EnableWavefrontSize32));
473 // VGPRBlocks is actual number of VGPR blocks minus 1.
474 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
477 } // end namespace IsaInfo
479 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
480 const MCSubtargetInfo *STI) {
481 IsaVersion Version = getIsaVersion(STI->getCPU());
483 memset(&Header, 0, sizeof(Header));
485 Header.amd_kernel_code_version_major = 1;
486 Header.amd_kernel_code_version_minor = 2;
487 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
488 Header.amd_machine_version_major = Version.Major;
489 Header.amd_machine_version_minor = Version.Minor;
490 Header.amd_machine_version_stepping = Version.Stepping;
491 Header.kernel_code_entry_byte_offset = sizeof(Header);
492 Header.wavefront_size = 6;
494 // If the code object does not support indirect functions, then the value must
495 // be 0xffffffff.
496 Header.call_convention = -1;
498 // These alignment values are specified in powers of two, so alignment =
499 // 2^n. The minimum alignment is 2^4 = 16.
500 Header.kernarg_segment_alignment = 4;
501 Header.group_segment_alignment = 4;
502 Header.private_segment_alignment = 4;
504 if (Version.Major >= 10) {
505 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
506 Header.wavefront_size = 5;
507 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
509 Header.compute_pgm_resource_registers |=
510 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
511 S_00B848_MEM_ORDERED(1);
515 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
516 const MCSubtargetInfo *STI) {
517 IsaVersion Version = getIsaVersion(STI->getCPU());
519 amdhsa::kernel_descriptor_t KD;
520 memset(&KD, 0, sizeof(KD));
522 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
523 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
524 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
525 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
526 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
527 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
528 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
529 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
530 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
531 if (Version.Major >= 10) {
532 AMDHSA_BITS_SET(KD.kernel_code_properties,
533 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
534 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
535 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
536 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
537 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
538 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
539 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
541 return KD;
544 bool isGroupSegment(const GlobalValue *GV) {
545 return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
548 bool isGlobalSegment(const GlobalValue *GV) {
549 return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
552 bool isReadOnlySegment(const GlobalValue *GV) {
553 return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
554 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
557 bool shouldEmitConstantsToTextSection(const Triple &TT) {
558 return TT.getOS() == Triple::AMDPAL;
561 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
562 Attribute A = F.getFnAttribute(Name);
563 int Result = Default;
565 if (A.isStringAttribute()) {
566 StringRef Str = A.getValueAsString();
567 if (Str.getAsInteger(0, Result)) {
568 LLVMContext &Ctx = F.getContext();
569 Ctx.emitError("can't parse integer attribute " + Name);
573 return Result;
576 std::pair<int, int> getIntegerPairAttribute(const Function &F,
577 StringRef Name,
578 std::pair<int, int> Default,
579 bool OnlyFirstRequired) {
580 Attribute A = F.getFnAttribute(Name);
581 if (!A.isStringAttribute())
582 return Default;
584 LLVMContext &Ctx = F.getContext();
585 std::pair<int, int> Ints = Default;
586 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
587 if (Strs.first.trim().getAsInteger(0, Ints.first)) {
588 Ctx.emitError("can't parse first integer attribute " + Name);
589 return Default;
591 if (Strs.second.trim().getAsInteger(0, Ints.second)) {
592 if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
593 Ctx.emitError("can't parse second integer attribute " + Name);
594 return Default;
598 return Ints;
601 unsigned getVmcntBitMask(const IsaVersion &Version) {
602 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
603 if (Version.Major < 9)
604 return VmcntLo;
606 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
607 return VmcntLo | VmcntHi;
610 unsigned getExpcntBitMask(const IsaVersion &Version) {
611 return (1 << getExpcntBitWidth()) - 1;
614 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
615 return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
618 unsigned getWaitcntBitMask(const IsaVersion &Version) {
619 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
620 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
621 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
622 getLgkmcntBitWidth(Version.Major));
623 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
624 if (Version.Major < 9)
625 return Waitcnt;
627 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
628 return Waitcnt | VmcntHi;
631 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
632 unsigned VmcntLo =
633 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
634 if (Version.Major < 9)
635 return VmcntLo;
637 unsigned VmcntHi =
638 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
639 VmcntHi <<= getVmcntBitWidthLo();
640 return VmcntLo | VmcntHi;
643 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
644 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
647 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
648 return unpackBits(Waitcnt, getLgkmcntBitShift(),
649 getLgkmcntBitWidth(Version.Major));
652 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
653 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
654 Vmcnt = decodeVmcnt(Version, Waitcnt);
655 Expcnt = decodeExpcnt(Version, Waitcnt);
656 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
659 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
660 Waitcnt Decoded;
661 Decoded.VmCnt = decodeVmcnt(Version, Encoded);
662 Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
663 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
664 return Decoded;
667 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
668 unsigned Vmcnt) {
669 Waitcnt =
670 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
671 if (Version.Major < 9)
672 return Waitcnt;
674 Vmcnt >>= getVmcntBitWidthLo();
675 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
678 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
679 unsigned Expcnt) {
680 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
683 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
684 unsigned Lgkmcnt) {
685 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
686 getLgkmcntBitWidth(Version.Major));
689 unsigned encodeWaitcnt(const IsaVersion &Version,
690 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
691 unsigned Waitcnt = getWaitcntBitMask(Version);
692 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
693 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
694 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
695 return Waitcnt;
698 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
699 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
702 //===----------------------------------------------------------------------===//
703 // hwreg
704 //===----------------------------------------------------------------------===//
706 namespace Hwreg {
708 int64_t getHwregId(const StringRef Name) {
709 for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
710 if (IdSymbolic[Id] && Name == IdSymbolic[Id])
711 return Id;
713 return ID_UNKNOWN_;
716 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
717 if (isSI(STI) || isCI(STI) || isVI(STI))
718 return ID_SYMBOLIC_FIRST_GFX9_;
719 else if (isGFX9(STI))
720 return ID_SYMBOLIC_FIRST_GFX10_;
721 else
722 return ID_SYMBOLIC_LAST_;
725 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
726 return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
727 IdSymbolic[Id];
730 bool isValidHwreg(int64_t Id) {
731 return 0 <= Id && isUInt<ID_WIDTH_>(Id);
734 bool isValidHwregOffset(int64_t Offset) {
735 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
738 bool isValidHwregWidth(int64_t Width) {
739 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
742 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
743 return (Id << ID_SHIFT_) |
744 (Offset << OFFSET_SHIFT_) |
745 ((Width - 1) << WIDTH_M1_SHIFT_);
748 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
749 return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
752 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
753 Id = (Val & ID_MASK_) >> ID_SHIFT_;
754 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
755 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
758 } // namespace Hwreg
760 //===----------------------------------------------------------------------===//
761 // SendMsg
762 //===----------------------------------------------------------------------===//
764 namespace SendMsg {
766 int64_t getMsgId(const StringRef Name) {
767 for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
768 if (IdSymbolic[i] && Name == IdSymbolic[i])
769 return i;
771 return ID_UNKNOWN_;
774 static bool isValidMsgId(int64_t MsgId) {
775 return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId];
778 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
779 if (Strict) {
780 if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL)
781 return isGFX9(STI) || isGFX10(STI);
782 else
783 return isValidMsgId(MsgId);
784 } else {
785 return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
789 StringRef getMsgName(int64_t MsgId) {
790 return isValidMsgId(MsgId)? IdSymbolic[MsgId] : "";
793 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
794 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
795 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
796 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
797 for (int i = F; i < L; ++i) {
798 if (Name == S[i]) {
799 return i;
802 return OP_UNKNOWN_;
805 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) {
807 if (!Strict)
808 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
810 switch(MsgId)
812 case ID_GS:
813 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
814 case ID_GS_DONE:
815 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
816 case ID_SYSMSG:
817 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
818 default:
819 return OpId == OP_NONE_;
823 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
824 assert(msgRequiresOp(MsgId));
825 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
828 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) {
830 if (!Strict)
831 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
833 switch(MsgId)
835 case ID_GS:
836 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
837 case ID_GS_DONE:
838 return (OpId == OP_GS_NOP)?
839 (StreamId == STREAM_ID_NONE_) :
840 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
841 default:
842 return StreamId == STREAM_ID_NONE_;
846 bool msgRequiresOp(int64_t MsgId) {
847 return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
850 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
851 return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
854 void decodeMsg(unsigned Val,
855 uint16_t &MsgId,
856 uint16_t &OpId,
857 uint16_t &StreamId) {
858 MsgId = Val & ID_MASK_;
859 OpId = (Val & OP_MASK_) >> OP_SHIFT_;
860 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
863 uint64_t encodeMsg(uint64_t MsgId,
864 uint64_t OpId,
865 uint64_t StreamId) {
866 return (MsgId << ID_SHIFT_) |
867 (OpId << OP_SHIFT_) |
868 (StreamId << STREAM_ID_SHIFT_);
871 } // namespace SendMsg
873 //===----------------------------------------------------------------------===//
875 //===----------------------------------------------------------------------===//
877 unsigned getInitialPSInputAddr(const Function &F) {
878 return getIntegerAttribute(F, "InitialPSInputAddr", 0);
881 bool isShader(CallingConv::ID cc) {
882 switch(cc) {
883 case CallingConv::AMDGPU_VS:
884 case CallingConv::AMDGPU_LS:
885 case CallingConv::AMDGPU_HS:
886 case CallingConv::AMDGPU_ES:
887 case CallingConv::AMDGPU_GS:
888 case CallingConv::AMDGPU_PS:
889 case CallingConv::AMDGPU_CS:
890 return true;
891 default:
892 return false;
896 bool isCompute(CallingConv::ID cc) {
897 return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
900 bool isEntryFunctionCC(CallingConv::ID CC) {
901 switch (CC) {
902 case CallingConv::AMDGPU_KERNEL:
903 case CallingConv::SPIR_KERNEL:
904 case CallingConv::AMDGPU_VS:
905 case CallingConv::AMDGPU_GS:
906 case CallingConv::AMDGPU_PS:
907 case CallingConv::AMDGPU_CS:
908 case CallingConv::AMDGPU_ES:
909 case CallingConv::AMDGPU_HS:
910 case CallingConv::AMDGPU_LS:
911 return true;
912 default:
913 return false;
917 bool hasXNACK(const MCSubtargetInfo &STI) {
918 return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
921 bool hasSRAMECC(const MCSubtargetInfo &STI) {
922 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
925 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
926 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128];
929 bool hasPackedD16(const MCSubtargetInfo &STI) {
930 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
933 bool isSI(const MCSubtargetInfo &STI) {
934 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
937 bool isCI(const MCSubtargetInfo &STI) {
938 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
941 bool isVI(const MCSubtargetInfo &STI) {
942 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
945 bool isGFX9(const MCSubtargetInfo &STI) {
946 return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
949 bool isGFX10(const MCSubtargetInfo &STI) {
950 return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
953 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
954 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
957 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
958 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
959 const unsigned FirstSubReg = TRI->getSubReg(Reg, 1);
960 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
961 Reg == AMDGPU::SCC;
964 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
965 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
966 if (*R == Reg1) return true;
968 return false;
971 #define MAP_REG2REG \
972 using namespace AMDGPU; \
973 switch(Reg) { \
974 default: return Reg; \
975 CASE_CI_VI(FLAT_SCR) \
976 CASE_CI_VI(FLAT_SCR_LO) \
977 CASE_CI_VI(FLAT_SCR_HI) \
978 CASE_VI_GFX9_GFX10(TTMP0) \
979 CASE_VI_GFX9_GFX10(TTMP1) \
980 CASE_VI_GFX9_GFX10(TTMP2) \
981 CASE_VI_GFX9_GFX10(TTMP3) \
982 CASE_VI_GFX9_GFX10(TTMP4) \
983 CASE_VI_GFX9_GFX10(TTMP5) \
984 CASE_VI_GFX9_GFX10(TTMP6) \
985 CASE_VI_GFX9_GFX10(TTMP7) \
986 CASE_VI_GFX9_GFX10(TTMP8) \
987 CASE_VI_GFX9_GFX10(TTMP9) \
988 CASE_VI_GFX9_GFX10(TTMP10) \
989 CASE_VI_GFX9_GFX10(TTMP11) \
990 CASE_VI_GFX9_GFX10(TTMP12) \
991 CASE_VI_GFX9_GFX10(TTMP13) \
992 CASE_VI_GFX9_GFX10(TTMP14) \
993 CASE_VI_GFX9_GFX10(TTMP15) \
994 CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \
995 CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \
996 CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \
997 CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \
998 CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \
999 CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \
1000 CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \
1001 CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \
1002 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \
1003 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \
1004 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \
1005 CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \
1006 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1007 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1008 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1009 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1012 #define CASE_CI_VI(node) \
1013 assert(!isSI(STI)); \
1014 case node: return isCI(STI) ? node##_ci : node##_vi;
1016 #define CASE_VI_GFX9_GFX10(node) \
1017 case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi;
1019 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1020 if (STI.getTargetTriple().getArch() == Triple::r600)
1021 return Reg;
1022 MAP_REG2REG
1025 #undef CASE_CI_VI
1026 #undef CASE_VI_GFX9_GFX10
1028 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node;
1029 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node;
1031 unsigned mc2PseudoReg(unsigned Reg) {
1032 MAP_REG2REG
1035 #undef CASE_CI_VI
1036 #undef CASE_VI_GFX9_GFX10
1037 #undef MAP_REG2REG
1039 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1040 assert(OpNo < Desc.NumOperands);
1041 unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1042 return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1043 OpType <= AMDGPU::OPERAND_SRC_LAST;
1046 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1047 assert(OpNo < Desc.NumOperands);
1048 unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1049 switch (OpType) {
1050 case AMDGPU::OPERAND_REG_IMM_FP32:
1051 case AMDGPU::OPERAND_REG_IMM_FP64:
1052 case AMDGPU::OPERAND_REG_IMM_FP16:
1053 case AMDGPU::OPERAND_REG_IMM_V2FP16:
1054 case AMDGPU::OPERAND_REG_IMM_V2INT16:
1055 case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1056 case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1057 case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1058 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1059 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1060 case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1061 case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1062 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1063 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1064 return true;
1065 default:
1066 return false;
1070 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1071 assert(OpNo < Desc.NumOperands);
1072 unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1073 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1074 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1077 // Avoid using MCRegisterClass::getSize, since that function will go away
1078 // (move from MC* level to Target* level). Return size in bits.
1079 unsigned getRegBitWidth(unsigned RCID) {
1080 switch (RCID) {
1081 case AMDGPU::SGPR_32RegClassID:
1082 case AMDGPU::VGPR_32RegClassID:
1083 case AMDGPU::VRegOrLds_32RegClassID:
1084 case AMDGPU::AGPR_32RegClassID:
1085 case AMDGPU::VS_32RegClassID:
1086 case AMDGPU::AV_32RegClassID:
1087 case AMDGPU::SReg_32RegClassID:
1088 case AMDGPU::SReg_32_XM0RegClassID:
1089 case AMDGPU::SRegOrLds_32RegClassID:
1090 return 32;
1091 case AMDGPU::SGPR_64RegClassID:
1092 case AMDGPU::VS_64RegClassID:
1093 case AMDGPU::AV_64RegClassID:
1094 case AMDGPU::SReg_64RegClassID:
1095 case AMDGPU::VReg_64RegClassID:
1096 case AMDGPU::AReg_64RegClassID:
1097 case AMDGPU::SReg_64_XEXECRegClassID:
1098 return 64;
1099 case AMDGPU::SGPR_96RegClassID:
1100 case AMDGPU::SReg_96RegClassID:
1101 case AMDGPU::VReg_96RegClassID:
1102 return 96;
1103 case AMDGPU::SGPR_128RegClassID:
1104 case AMDGPU::SReg_128RegClassID:
1105 case AMDGPU::VReg_128RegClassID:
1106 case AMDGPU::AReg_128RegClassID:
1107 return 128;
1108 case AMDGPU::SGPR_160RegClassID:
1109 case AMDGPU::SReg_160RegClassID:
1110 case AMDGPU::VReg_160RegClassID:
1111 return 160;
1112 case AMDGPU::SReg_256RegClassID:
1113 case AMDGPU::VReg_256RegClassID:
1114 return 256;
1115 case AMDGPU::SReg_512RegClassID:
1116 case AMDGPU::VReg_512RegClassID:
1117 case AMDGPU::AReg_512RegClassID:
1118 return 512;
1119 case AMDGPU::SReg_1024RegClassID:
1120 case AMDGPU::VReg_1024RegClassID:
1121 case AMDGPU::AReg_1024RegClassID:
1122 return 1024;
1123 default:
1124 llvm_unreachable("Unexpected register class");
1128 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1129 return getRegBitWidth(RC.getID());
1132 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1133 unsigned OpNo) {
1134 assert(OpNo < Desc.NumOperands);
1135 unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1136 return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1139 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1140 if (Literal >= -16 && Literal <= 64)
1141 return true;
1143 uint64_t Val = static_cast<uint64_t>(Literal);
1144 return (Val == DoubleToBits(0.0)) ||
1145 (Val == DoubleToBits(1.0)) ||
1146 (Val == DoubleToBits(-1.0)) ||
1147 (Val == DoubleToBits(0.5)) ||
1148 (Val == DoubleToBits(-0.5)) ||
1149 (Val == DoubleToBits(2.0)) ||
1150 (Val == DoubleToBits(-2.0)) ||
1151 (Val == DoubleToBits(4.0)) ||
1152 (Val == DoubleToBits(-4.0)) ||
1153 (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1156 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1157 if (Literal >= -16 && Literal <= 64)
1158 return true;
1160 // The actual type of the operand does not seem to matter as long
1161 // as the bits match one of the inline immediate values. For example:
1163 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1164 // so it is a legal inline immediate.
1166 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1167 // floating-point, so it is a legal inline immediate.
1169 uint32_t Val = static_cast<uint32_t>(Literal);
1170 return (Val == FloatToBits(0.0f)) ||
1171 (Val == FloatToBits(1.0f)) ||
1172 (Val == FloatToBits(-1.0f)) ||
1173 (Val == FloatToBits(0.5f)) ||
1174 (Val == FloatToBits(-0.5f)) ||
1175 (Val == FloatToBits(2.0f)) ||
1176 (Val == FloatToBits(-2.0f)) ||
1177 (Val == FloatToBits(4.0f)) ||
1178 (Val == FloatToBits(-4.0f)) ||
1179 (Val == 0x3e22f983 && HasInv2Pi);
1182 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1183 if (!HasInv2Pi)
1184 return false;
1186 if (Literal >= -16 && Literal <= 64)
1187 return true;
1189 uint16_t Val = static_cast<uint16_t>(Literal);
1190 return Val == 0x3C00 || // 1.0
1191 Val == 0xBC00 || // -1.0
1192 Val == 0x3800 || // 0.5
1193 Val == 0xB800 || // -0.5
1194 Val == 0x4000 || // 2.0
1195 Val == 0xC000 || // -2.0
1196 Val == 0x4400 || // 4.0
1197 Val == 0xC400 || // -4.0
1198 Val == 0x3118; // 1/2pi
1201 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1202 assert(HasInv2Pi);
1204 if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1205 int16_t Trunc = static_cast<int16_t>(Literal);
1206 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1208 if (!(Literal & 0xffff))
1209 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1211 int16_t Lo16 = static_cast<int16_t>(Literal);
1212 int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1213 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1216 bool isArgPassedInSGPR(const Argument *A) {
1217 const Function *F = A->getParent();
1219 // Arguments to compute shaders are never a source of divergence.
1220 CallingConv::ID CC = F->getCallingConv();
1221 switch (CC) {
1222 case CallingConv::AMDGPU_KERNEL:
1223 case CallingConv::SPIR_KERNEL:
1224 return true;
1225 case CallingConv::AMDGPU_VS:
1226 case CallingConv::AMDGPU_LS:
1227 case CallingConv::AMDGPU_HS:
1228 case CallingConv::AMDGPU_ES:
1229 case CallingConv::AMDGPU_GS:
1230 case CallingConv::AMDGPU_PS:
1231 case CallingConv::AMDGPU_CS:
1232 // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1233 // Everything else is in VGPRs.
1234 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
1235 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
1236 default:
1237 // TODO: Should calls support inreg for SGPR inputs?
1238 return false;
1242 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1243 return isGCN3Encoding(ST) || isGFX10(ST);
1246 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
1247 if (hasSMEMByteOffset(ST))
1248 return ByteOffset;
1249 return ByteOffset >> 2;
1252 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
1253 int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset);
1254 return (hasSMEMByteOffset(ST)) ?
1255 isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset);
1258 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1259 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1260 // hardware bug needing a workaround).
1262 // The required alignment ensures that individual address components remain
1263 // aligned if they are aligned to begin with. It also ensures that additional
1264 // offsets within the given alignment can be added to the resulting ImmOffset.
1265 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1266 const GCNSubtarget *Subtarget, uint32_t Align) {
1267 const uint32_t MaxImm = alignDown(4095, Align);
1268 uint32_t Overflow = 0;
1270 if (Imm > MaxImm) {
1271 if (Imm <= MaxImm + 64) {
1272 // Use an SOffset inline constant for 4..64
1273 Overflow = Imm - MaxImm;
1274 Imm = MaxImm;
1275 } else {
1276 // Try to keep the same value in SOffset for adjacent loads, so that
1277 // the corresponding register contents can be re-used.
1279 // Load values with all low-bits (except for alignment bits) set into
1280 // SOffset, so that a larger range of values can be covered using
1281 // s_movk_i32.
1283 // Atomic operations fail to work correctly when individual address
1284 // components are unaligned, even if their sum is aligned.
1285 uint32_t High = (Imm + Align) & ~4095;
1286 uint32_t Low = (Imm + Align) & 4095;
1287 Imm = Low;
1288 Overflow = High - Align;
1292 // There is a hardware bug in SI and CI which prevents address clamping in
1293 // MUBUF instructions from working correctly with SOffsets. The immediate
1294 // offset is unaffected.
1295 if (Overflow > 0 &&
1296 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1297 return false;
1299 ImmOffset = Imm;
1300 SOffset = Overflow;
1301 return true;
1304 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
1305 *this = getDefaultForCallingConv(F.getCallingConv());
1307 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1308 if (!IEEEAttr.empty())
1309 IEEE = IEEEAttr == "true";
1311 StringRef DX10ClampAttr
1312 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1313 if (!DX10ClampAttr.empty())
1314 DX10Clamp = DX10ClampAttr == "true";
1317 namespace {
1319 struct SourceOfDivergence {
1320 unsigned Intr;
1322 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
1324 #define GET_SourcesOfDivergence_IMPL
1325 #include "AMDGPUGenSearchableTables.inc"
1327 } // end anonymous namespace
1329 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
1330 return lookupSourceOfDivergence(IntrID);
1333 } // namespace AMDGPU
1334 } // namespace llvm