1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/CodeGen/LiveVariables.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineConstantPool.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSchedule.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/MC/MCAsmInfo.h"
48 #include "llvm/MC/MCInstrDesc.h"
49 #include "llvm/MC/MCInstrItineraries.h"
50 #include "llvm/Support/BranchProbability.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
68 #define DEBUG_TYPE "arm-instrinfo"
70 #define GET_INSTRINFO_CTOR_DTOR
71 #include "ARMGenInstrInfo.inc"
74 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden
,
75 cl::desc("Enable ARM 2-addr to 3-addr conv"));
77 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
79 uint16_t MLxOpc
; // MLA / MLS opcode
80 uint16_t MulOpc
; // Expanded multiplication opcode
81 uint16_t AddSubOpc
; // Expanded add / sub opcode
82 bool NegAcc
; // True if the acc is negated before the add / sub.
83 bool HasLane
; // True if instruction has an extra "lane" operand.
86 static const ARM_MLxEntry ARM_MLxTable
[] = {
87 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
89 { ARM::VMLAS
, ARM::VMULS
, ARM::VADDS
, false, false },
90 { ARM::VMLSS
, ARM::VMULS
, ARM::VSUBS
, false, false },
91 { ARM::VMLAD
, ARM::VMULD
, ARM::VADDD
, false, false },
92 { ARM::VMLSD
, ARM::VMULD
, ARM::VSUBD
, false, false },
93 { ARM::VNMLAS
, ARM::VNMULS
, ARM::VSUBS
, true, false },
94 { ARM::VNMLSS
, ARM::VMULS
, ARM::VSUBS
, true, false },
95 { ARM::VNMLAD
, ARM::VNMULD
, ARM::VSUBD
, true, false },
96 { ARM::VNMLSD
, ARM::VMULD
, ARM::VSUBD
, true, false },
99 { ARM::VMLAfd
, ARM::VMULfd
, ARM::VADDfd
, false, false },
100 { ARM::VMLSfd
, ARM::VMULfd
, ARM::VSUBfd
, false, false },
101 { ARM::VMLAfq
, ARM::VMULfq
, ARM::VADDfq
, false, false },
102 { ARM::VMLSfq
, ARM::VMULfq
, ARM::VSUBfq
, false, false },
103 { ARM::VMLAslfd
, ARM::VMULslfd
, ARM::VADDfd
, false, true },
104 { ARM::VMLSslfd
, ARM::VMULslfd
, ARM::VSUBfd
, false, true },
105 { ARM::VMLAslfq
, ARM::VMULslfq
, ARM::VADDfq
, false, true },
106 { ARM::VMLSslfq
, ARM::VMULslfq
, ARM::VSUBfq
, false, true },
109 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget
& STI
)
110 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN
, ARM::ADJCALLSTACKUP
),
112 for (unsigned i
= 0, e
= array_lengthof(ARM_MLxTable
); i
!= e
; ++i
) {
113 if (!MLxEntryMap
.insert(std::make_pair(ARM_MLxTable
[i
].MLxOpc
, i
)).second
)
114 llvm_unreachable("Duplicated entries?");
115 MLxHazardOpcodes
.insert(ARM_MLxTable
[i
].AddSubOpc
);
116 MLxHazardOpcodes
.insert(ARM_MLxTable
[i
].MulOpc
);
120 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
121 // currently defaults to no prepass hazard recognizer.
122 ScheduleHazardRecognizer
*
123 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo
*STI
,
124 const ScheduleDAG
*DAG
) const {
125 if (usePreRAHazardRecognizer()) {
126 const InstrItineraryData
*II
=
127 static_cast<const ARMSubtarget
*>(STI
)->getInstrItineraryData();
128 return new ScoreboardHazardRecognizer(II
, DAG
, "pre-RA-sched");
130 return TargetInstrInfo::CreateTargetHazardRecognizer(STI
, DAG
);
133 ScheduleHazardRecognizer
*ARMBaseInstrInfo::
134 CreateTargetPostRAHazardRecognizer(const InstrItineraryData
*II
,
135 const ScheduleDAG
*DAG
) const {
136 if (Subtarget
.isThumb2() || Subtarget
.hasVFP2Base())
137 return (ScheduleHazardRecognizer
*)new ARMHazardRecognizer(II
, DAG
);
138 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II
, DAG
);
141 MachineInstr
*ARMBaseInstrInfo::convertToThreeAddress(
142 MachineFunction::iterator
&MFI
, MachineInstr
&MI
, LiveVariables
*LV
) const {
143 // FIXME: Thumb2 support.
148 MachineFunction
&MF
= *MI
.getParent()->getParent();
149 uint64_t TSFlags
= MI
.getDesc().TSFlags
;
151 switch ((TSFlags
& ARMII::IndexModeMask
) >> ARMII::IndexModeShift
) {
152 default: return nullptr;
153 case ARMII::IndexModePre
:
156 case ARMII::IndexModePost
:
160 // Try splitting an indexed load/store to an un-indexed one plus an add/sub
162 unsigned MemOpc
= getUnindexedOpcode(MI
.getOpcode());
166 MachineInstr
*UpdateMI
= nullptr;
167 MachineInstr
*MemMI
= nullptr;
168 unsigned AddrMode
= (TSFlags
& ARMII::AddrModeMask
);
169 const MCInstrDesc
&MCID
= MI
.getDesc();
170 unsigned NumOps
= MCID
.getNumOperands();
171 bool isLoad
= !MI
.mayStore();
172 const MachineOperand
&WB
= isLoad
? MI
.getOperand(1) : MI
.getOperand(0);
173 const MachineOperand
&Base
= MI
.getOperand(2);
174 const MachineOperand
&Offset
= MI
.getOperand(NumOps
- 3);
175 Register WBReg
= WB
.getReg();
176 Register BaseReg
= Base
.getReg();
177 Register OffReg
= Offset
.getReg();
178 unsigned OffImm
= MI
.getOperand(NumOps
- 2).getImm();
179 ARMCC::CondCodes Pred
= (ARMCC::CondCodes
)MI
.getOperand(NumOps
- 1).getImm();
181 default: llvm_unreachable("Unknown indexed op!");
182 case ARMII::AddrMode2
: {
183 bool isSub
= ARM_AM::getAM2Op(OffImm
) == ARM_AM::sub
;
184 unsigned Amt
= ARM_AM::getAM2Offset(OffImm
);
186 if (ARM_AM::getSOImmVal(Amt
) == -1)
187 // Can't encode it in a so_imm operand. This transformation will
188 // add more than 1 instruction. Abandon!
190 UpdateMI
= BuildMI(MF
, MI
.getDebugLoc(),
191 get(isSub
? ARM::SUBri
: ARM::ADDri
), WBReg
)
196 } else if (Amt
!= 0) {
197 ARM_AM::ShiftOpc ShOpc
= ARM_AM::getAM2ShiftOpc(OffImm
);
198 unsigned SOOpc
= ARM_AM::getSORegOpc(ShOpc
, Amt
);
199 UpdateMI
= BuildMI(MF
, MI
.getDebugLoc(),
200 get(isSub
? ARM::SUBrsi
: ARM::ADDrsi
), WBReg
)
208 UpdateMI
= BuildMI(MF
, MI
.getDebugLoc(),
209 get(isSub
? ARM::SUBrr
: ARM::ADDrr
), WBReg
)
216 case ARMII::AddrMode3
: {
217 bool isSub
= ARM_AM::getAM3Op(OffImm
) == ARM_AM::sub
;
218 unsigned Amt
= ARM_AM::getAM3Offset(OffImm
);
220 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
221 UpdateMI
= BuildMI(MF
, MI
.getDebugLoc(),
222 get(isSub
? ARM::SUBri
: ARM::ADDri
), WBReg
)
228 UpdateMI
= BuildMI(MF
, MI
.getDebugLoc(),
229 get(isSub
? ARM::SUBrr
: ARM::ADDrr
), WBReg
)
238 std::vector
<MachineInstr
*> NewMIs
;
242 BuildMI(MF
, MI
.getDebugLoc(), get(MemOpc
), MI
.getOperand(0).getReg())
247 MemMI
= BuildMI(MF
, MI
.getDebugLoc(), get(MemOpc
))
248 .addReg(MI
.getOperand(1).getReg())
253 NewMIs
.push_back(MemMI
);
254 NewMIs
.push_back(UpdateMI
);
258 BuildMI(MF
, MI
.getDebugLoc(), get(MemOpc
), MI
.getOperand(0).getReg())
263 MemMI
= BuildMI(MF
, MI
.getDebugLoc(), get(MemOpc
))
264 .addReg(MI
.getOperand(1).getReg())
270 UpdateMI
->getOperand(0).setIsDead();
271 NewMIs
.push_back(UpdateMI
);
272 NewMIs
.push_back(MemMI
);
275 // Transfer LiveVariables states, kill / dead info.
277 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
278 MachineOperand
&MO
= MI
.getOperand(i
);
279 if (MO
.isReg() && Register::isVirtualRegister(MO
.getReg())) {
280 Register Reg
= MO
.getReg();
282 LiveVariables::VarInfo
&VI
= LV
->getVarInfo(Reg
);
284 MachineInstr
*NewMI
= (Reg
== WBReg
) ? UpdateMI
: MemMI
;
286 LV
->addVirtualRegisterDead(Reg
, *NewMI
);
288 if (MO
.isUse() && MO
.isKill()) {
289 for (unsigned j
= 0; j
< 2; ++j
) {
290 // Look at the two new MI's in reverse order.
291 MachineInstr
*NewMI
= NewMIs
[j
];
292 if (!NewMI
->readsRegister(Reg
))
294 LV
->addVirtualRegisterKilled(Reg
, *NewMI
);
295 if (VI
.removeKill(MI
))
296 VI
.Kills
.push_back(NewMI
);
304 MachineBasicBlock::iterator MBBI
= MI
.getIterator();
305 MFI
->insert(MBBI
, NewMIs
[1]);
306 MFI
->insert(MBBI
, NewMIs
[0]);
311 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock
&MBB
,
312 MachineBasicBlock
*&TBB
,
313 MachineBasicBlock
*&FBB
,
314 SmallVectorImpl
<MachineOperand
> &Cond
,
315 bool AllowModify
) const {
319 MachineBasicBlock::iterator I
= MBB
.end();
320 if (I
== MBB
.begin())
321 return false; // Empty blocks are easy.
324 // Walk backwards from the end of the basic block until the branch is
325 // analyzed or we give up.
326 while (isPredicated(*I
) || I
->isTerminator() || I
->isDebugValue()) {
327 // Flag to be raised on unanalyzeable instructions. This is useful in cases
328 // where we want to clean up on the end of the basic block before we bail
330 bool CantAnalyze
= false;
332 // Skip over DEBUG values and predicated nonterminators.
333 while (I
->isDebugInstr() || !I
->isTerminator()) {
334 if (I
== MBB
.begin())
339 if (isIndirectBranchOpcode(I
->getOpcode()) ||
340 isJumpTableBranchOpcode(I
->getOpcode())) {
341 // Indirect branches and jump tables can't be analyzed, but we still want
342 // to clean up any instructions at the tail of the basic block.
344 } else if (isUncondBranchOpcode(I
->getOpcode())) {
345 TBB
= I
->getOperand(0).getMBB();
346 } else if (isCondBranchOpcode(I
->getOpcode())) {
347 // Bail out if we encounter multiple conditional branches.
351 assert(!FBB
&& "FBB should have been null.");
353 TBB
= I
->getOperand(0).getMBB();
354 Cond
.push_back(I
->getOperand(1));
355 Cond
.push_back(I
->getOperand(2));
356 } else if (I
->isReturn()) {
357 // Returns can't be analyzed, but we should run cleanup.
358 CantAnalyze
= !isPredicated(*I
);
360 // We encountered other unrecognized terminator. Bail out immediately.
364 // Cleanup code - to be run for unpredicated unconditional branches and
366 if (!isPredicated(*I
) &&
367 (isUncondBranchOpcode(I
->getOpcode()) ||
368 isIndirectBranchOpcode(I
->getOpcode()) ||
369 isJumpTableBranchOpcode(I
->getOpcode()) ||
371 // Forget any previous condition branch information - it no longer applies.
375 // If we can modify the function, delete everything below this
376 // unconditional branch.
378 MachineBasicBlock::iterator DI
= std::next(I
);
379 while (DI
!= MBB
.end()) {
380 MachineInstr
&InstToDelete
= *DI
;
382 InstToDelete
.eraseFromParent();
390 if (I
== MBB
.begin())
396 // We made it past the terminators without bailing out - we must have
397 // analyzed this branch successfully.
401 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock
&MBB
,
402 int *BytesRemoved
) const {
403 assert(!BytesRemoved
&& "code size not handled");
405 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
409 if (!isUncondBranchOpcode(I
->getOpcode()) &&
410 !isCondBranchOpcode(I
->getOpcode()))
413 // Remove the branch.
414 I
->eraseFromParent();
418 if (I
== MBB
.begin()) return 1;
420 if (!isCondBranchOpcode(I
->getOpcode()))
423 // Remove the branch.
424 I
->eraseFromParent();
428 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock
&MBB
,
429 MachineBasicBlock
*TBB
,
430 MachineBasicBlock
*FBB
,
431 ArrayRef
<MachineOperand
> Cond
,
433 int *BytesAdded
) const {
434 assert(!BytesAdded
&& "code size not handled");
435 ARMFunctionInfo
*AFI
= MBB
.getParent()->getInfo
<ARMFunctionInfo
>();
436 int BOpc
= !AFI
->isThumbFunction()
437 ? ARM::B
: (AFI
->isThumb2Function() ? ARM::t2B
: ARM::tB
);
438 int BccOpc
= !AFI
->isThumbFunction()
439 ? ARM::Bcc
: (AFI
->isThumb2Function() ? ARM::t2Bcc
: ARM::tBcc
);
440 bool isThumb
= AFI
->isThumbFunction() || AFI
->isThumb2Function();
442 // Shouldn't be a fall through.
443 assert(TBB
&& "insertBranch must not be told to insert a fallthrough");
444 assert((Cond
.size() == 2 || Cond
.size() == 0) &&
445 "ARM branch conditions have two components!");
447 // For conditional branches, we use addOperand to preserve CPSR flags.
450 if (Cond
.empty()) { // Unconditional branch?
452 BuildMI(&MBB
, DL
, get(BOpc
)).addMBB(TBB
).add(predOps(ARMCC::AL
));
454 BuildMI(&MBB
, DL
, get(BOpc
)).addMBB(TBB
);
456 BuildMI(&MBB
, DL
, get(BccOpc
))
458 .addImm(Cond
[0].getImm())
463 // Two-way conditional branch.
464 BuildMI(&MBB
, DL
, get(BccOpc
))
466 .addImm(Cond
[0].getImm())
469 BuildMI(&MBB
, DL
, get(BOpc
)).addMBB(FBB
).add(predOps(ARMCC::AL
));
471 BuildMI(&MBB
, DL
, get(BOpc
)).addMBB(FBB
);
475 bool ARMBaseInstrInfo::
476 reverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const {
477 ARMCC::CondCodes CC
= (ARMCC::CondCodes
)(int)Cond
[0].getImm();
478 Cond
[0].setImm(ARMCC::getOppositeCondition(CC
));
482 bool ARMBaseInstrInfo::isPredicated(const MachineInstr
&MI
) const {
484 MachineBasicBlock::const_instr_iterator I
= MI
.getIterator();
485 MachineBasicBlock::const_instr_iterator E
= MI
.getParent()->instr_end();
486 while (++I
!= E
&& I
->isInsideBundle()) {
487 int PIdx
= I
->findFirstPredOperandIdx();
488 if (PIdx
!= -1 && I
->getOperand(PIdx
).getImm() != ARMCC::AL
)
494 int PIdx
= MI
.findFirstPredOperandIdx();
495 return PIdx
!= -1 && MI
.getOperand(PIdx
).getImm() != ARMCC::AL
;
498 bool ARMBaseInstrInfo::PredicateInstruction(
499 MachineInstr
&MI
, ArrayRef
<MachineOperand
> Pred
) const {
500 unsigned Opc
= MI
.getOpcode();
501 if (isUncondBranchOpcode(Opc
)) {
502 MI
.setDesc(get(getMatchingCondBranchOpcode(Opc
)));
503 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
504 .addImm(Pred
[0].getImm())
505 .addReg(Pred
[1].getReg());
509 int PIdx
= MI
.findFirstPredOperandIdx();
511 MachineOperand
&PMO
= MI
.getOperand(PIdx
);
512 PMO
.setImm(Pred
[0].getImm());
513 MI
.getOperand(PIdx
+1).setReg(Pred
[1].getReg());
519 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef
<MachineOperand
> Pred1
,
520 ArrayRef
<MachineOperand
> Pred2
) const {
521 if (Pred1
.size() > 2 || Pred2
.size() > 2)
524 ARMCC::CondCodes CC1
= (ARMCC::CondCodes
)Pred1
[0].getImm();
525 ARMCC::CondCodes CC2
= (ARMCC::CondCodes
)Pred2
[0].getImm();
535 return CC2
== ARMCC::HI
;
537 return CC2
== ARMCC::LO
|| CC2
== ARMCC::EQ
;
539 return CC2
== ARMCC::GT
;
541 return CC2
== ARMCC::LT
;
545 bool ARMBaseInstrInfo::DefinesPredicate(
546 MachineInstr
&MI
, std::vector
<MachineOperand
> &Pred
) const {
548 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
549 const MachineOperand
&MO
= MI
.getOperand(i
);
550 if ((MO
.isRegMask() && MO
.clobbersPhysReg(ARM::CPSR
)) ||
551 (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
)) {
560 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr
&MI
) {
561 for (const auto &MO
: MI
.operands())
562 if (MO
.isReg() && MO
.getReg() == ARM::CPSR
&& MO
.isDef() && !MO
.isDead())
567 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr
&MI
,
569 const MachineOperand
&Offset
= MI
.getOperand(Op
+ 1);
570 return Offset
.getReg() != 0;
573 // Load with negative register offset requires additional 1cyc and +I unit
575 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr
&MI
,
577 const MachineOperand
&Offset
= MI
.getOperand(Op
+ 1);
578 const MachineOperand
&Opc
= MI
.getOperand(Op
+ 2);
580 assert(Offset
.isReg());
581 int64_t OpcImm
= Opc
.getImm();
583 bool isSub
= ARM_AM::getAM3Op(OpcImm
) == ARM_AM::sub
;
584 return (isSub
&& Offset
.getReg() != 0);
587 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr
&MI
,
589 const MachineOperand
&Opc
= MI
.getOperand(Op
+ 2);
590 unsigned OffImm
= Opc
.getImm();
591 return ARM_AM::getAM2ShiftOpc(OffImm
) != ARM_AM::no_shift
;
594 // Load, scaled register offset, not plus LSL2
595 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr
&MI
,
597 const MachineOperand
&Opc
= MI
.getOperand(Op
+ 2);
598 unsigned OffImm
= Opc
.getImm();
600 bool isAdd
= ARM_AM::getAM2Op(OffImm
) == ARM_AM::add
;
601 unsigned Amt
= ARM_AM::getAM2Offset(OffImm
);
602 ARM_AM::ShiftOpc ShiftOpc
= ARM_AM::getAM2ShiftOpc(OffImm
);
603 if (ShiftOpc
== ARM_AM::no_shift
) return false; // not scaled
604 bool SimpleScaled
= (isAdd
&& ShiftOpc
== ARM_AM::lsl
&& Amt
== 2);
605 return !SimpleScaled
;
608 // Minus reg for ldstso addr mode
609 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr
&MI
,
611 unsigned OffImm
= MI
.getOperand(Op
+ 2).getImm();
612 return ARM_AM::getAM2Op(OffImm
) == ARM_AM::sub
;
615 // Load, scaled register offset
616 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr
&MI
,
618 unsigned OffImm
= MI
.getOperand(Op
+ 2).getImm();
619 return ARM_AM::getAM2ShiftOpc(OffImm
) != ARM_AM::no_shift
;
622 static bool isEligibleForITBlock(const MachineInstr
*MI
) {
623 switch (MI
->getOpcode()) {
624 default: return true;
625 case ARM::tADC
: // ADC (register) T1
626 case ARM::tADDi3
: // ADD (immediate) T1
627 case ARM::tADDi8
: // ADD (immediate) T2
628 case ARM::tADDrr
: // ADD (register) T1
629 case ARM::tAND
: // AND (register) T1
630 case ARM::tASRri
: // ASR (immediate) T1
631 case ARM::tASRrr
: // ASR (register) T1
632 case ARM::tBIC
: // BIC (register) T1
633 case ARM::tEOR
: // EOR (register) T1
634 case ARM::tLSLri
: // LSL (immediate) T1
635 case ARM::tLSLrr
: // LSL (register) T1
636 case ARM::tLSRri
: // LSR (immediate) T1
637 case ARM::tLSRrr
: // LSR (register) T1
638 case ARM::tMUL
: // MUL T1
639 case ARM::tMVN
: // MVN (register) T1
640 case ARM::tORR
: // ORR (register) T1
641 case ARM::tROR
: // ROR (register) T1
642 case ARM::tRSB
: // RSB (immediate) T1
643 case ARM::tSBC
: // SBC (register) T1
644 case ARM::tSUBi3
: // SUB (immediate) T1
645 case ARM::tSUBi8
: // SUB (immediate) T2
646 case ARM::tSUBrr
: // SUB (register) T1
647 return !ARMBaseInstrInfo::isCPSRDefined(*MI
);
651 /// isPredicable - Return true if the specified instruction can be predicated.
652 /// By default, this returns true for every instruction with a
653 /// PredicateOperand.
654 bool ARMBaseInstrInfo::isPredicable(const MachineInstr
&MI
) const {
655 if (!MI
.isPredicable())
661 if (!isEligibleForITBlock(&MI
))
664 const ARMFunctionInfo
*AFI
=
665 MI
.getParent()->getParent()->getInfo
<ARMFunctionInfo
>();
667 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
668 // In their ARM encoding, they can't be encoded in a conditional form.
669 if ((MI
.getDesc().TSFlags
& ARMII::DomainMask
) == ARMII::DomainNEON
)
672 if (AFI
->isThumb2Function()) {
673 if (getSubtarget().restrictIT())
674 return isV8EligibleForIT(&MI
);
682 template <> bool IsCPSRDead
<MachineInstr
>(const MachineInstr
*MI
) {
683 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
684 const MachineOperand
&MO
= MI
->getOperand(i
);
685 if (!MO
.isReg() || MO
.isUndef() || MO
.isUse())
687 if (MO
.getReg() != ARM::CPSR
)
692 // all definitions of CPSR are dead
696 } // end namespace llvm
698 /// GetInstSize - Return the size of the specified MachineInstr.
700 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr
&MI
) const {
701 const MachineBasicBlock
&MBB
= *MI
.getParent();
702 const MachineFunction
*MF
= MBB
.getParent();
703 const MCAsmInfo
*MAI
= MF
->getTarget().getMCAsmInfo();
705 const MCInstrDesc
&MCID
= MI
.getDesc();
707 return MCID
.getSize();
709 switch (MI
.getOpcode()) {
711 // pseudo-instruction sizes are zero.
713 case TargetOpcode::BUNDLE
:
714 return getInstBundleLength(MI
);
715 case ARM::MOVi16_ga_pcrel
:
716 case ARM::MOVTi16_ga_pcrel
:
717 case ARM::t2MOVi16_ga_pcrel
:
718 case ARM::t2MOVTi16_ga_pcrel
:
721 case ARM::t2MOVi32imm
:
723 case ARM::CONSTPOOL_ENTRY
:
724 case ARM::JUMPTABLE_INSTS
:
725 case ARM::JUMPTABLE_ADDRS
:
726 case ARM::JUMPTABLE_TBB
:
727 case ARM::JUMPTABLE_TBH
:
728 // If this machine instr is a constant pool entry, its size is recorded as
730 return MI
.getOperand(2).getImm();
731 case ARM::Int_eh_sjlj_longjmp
:
733 case ARM::tInt_eh_sjlj_longjmp
:
735 case ARM::tInt_WIN_eh_sjlj_longjmp
:
737 case ARM::Int_eh_sjlj_setjmp
:
738 case ARM::Int_eh_sjlj_setjmp_nofp
:
740 case ARM::tInt_eh_sjlj_setjmp
:
741 case ARM::t2Int_eh_sjlj_setjmp
:
742 case ARM::t2Int_eh_sjlj_setjmp_nofp
:
745 return MI
.getOperand(1).getImm();
747 case ARM::INLINEASM_BR
: {
748 // If this machine instr is an inline asm, measure it.
749 unsigned Size
= getInlineAsmLength(MI
.getOperand(0).getSymbolName(), *MAI
);
750 if (!MF
->getInfo
<ARMFunctionInfo
>()->isThumbFunction())
751 Size
= alignTo(Size
, 4);
757 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr
&MI
) const {
759 MachineBasicBlock::const_instr_iterator I
= MI
.getIterator();
760 MachineBasicBlock::const_instr_iterator E
= MI
.getParent()->instr_end();
761 while (++I
!= E
&& I
->isInsideBundle()) {
762 assert(!I
->isBundle() && "No nested bundle!");
763 Size
+= getInstSizeInBytes(*I
);
768 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock
&MBB
,
769 MachineBasicBlock::iterator I
,
770 unsigned DestReg
, bool KillSrc
,
771 const ARMSubtarget
&Subtarget
) const {
772 unsigned Opc
= Subtarget
.isThumb()
773 ? (Subtarget
.isMClass() ? ARM::t2MRS_M
: ARM::t2MRS_AR
)
776 MachineInstrBuilder MIB
=
777 BuildMI(MBB
, I
, I
->getDebugLoc(), get(Opc
), DestReg
);
779 // There is only 1 A/R class MRS instruction, and it always refers to
780 // APSR. However, there are lots of other possibilities on M-class cores.
781 if (Subtarget
.isMClass())
784 MIB
.add(predOps(ARMCC::AL
))
785 .addReg(ARM::CPSR
, RegState::Implicit
| getKillRegState(KillSrc
));
788 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock
&MBB
,
789 MachineBasicBlock::iterator I
,
790 unsigned SrcReg
, bool KillSrc
,
791 const ARMSubtarget
&Subtarget
) const {
792 unsigned Opc
= Subtarget
.isThumb()
793 ? (Subtarget
.isMClass() ? ARM::t2MSR_M
: ARM::t2MSR_AR
)
796 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, I
->getDebugLoc(), get(Opc
));
798 if (Subtarget
.isMClass())
803 MIB
.addReg(SrcReg
, getKillRegState(KillSrc
))
804 .add(predOps(ARMCC::AL
))
805 .addReg(ARM::CPSR
, RegState::Implicit
| RegState::Define
);
808 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder
&MIB
) {
809 MIB
.addImm(ARMVCC::None
);
813 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder
&MIB
,
815 addUnpredicatedMveVpredNOp(MIB
);
816 MIB
.addReg(DestReg
, RegState::Undef
);
819 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder
&MIB
, unsigned Cond
) {
821 MIB
.addReg(ARM::VPR
, RegState::Implicit
);
824 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder
&MIB
,
825 unsigned Cond
, unsigned Inactive
) {
826 addPredicatedMveVpredNOp(MIB
, Cond
);
827 MIB
.addReg(Inactive
);
830 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
831 MachineBasicBlock::iterator I
,
832 const DebugLoc
&DL
, unsigned DestReg
,
833 unsigned SrcReg
, bool KillSrc
) const {
834 bool GPRDest
= ARM::GPRRegClass
.contains(DestReg
);
835 bool GPRSrc
= ARM::GPRRegClass
.contains(SrcReg
);
837 if (GPRDest
&& GPRSrc
) {
838 BuildMI(MBB
, I
, DL
, get(ARM::MOVr
), DestReg
)
839 .addReg(SrcReg
, getKillRegState(KillSrc
))
840 .add(predOps(ARMCC::AL
))
845 bool SPRDest
= ARM::SPRRegClass
.contains(DestReg
);
846 bool SPRSrc
= ARM::SPRRegClass
.contains(SrcReg
);
849 if (SPRDest
&& SPRSrc
)
851 else if (GPRDest
&& SPRSrc
)
853 else if (SPRDest
&& GPRSrc
)
855 else if (ARM::DPRRegClass
.contains(DestReg
, SrcReg
) && Subtarget
.hasFP64())
857 else if (ARM::QPRRegClass
.contains(DestReg
, SrcReg
))
858 Opc
= Subtarget
.hasNEON() ? ARM::VORRq
: ARM::MVE_VORR
;
861 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DL
, get(Opc
), DestReg
);
862 MIB
.addReg(SrcReg
, getKillRegState(KillSrc
));
863 if (Opc
== ARM::VORRq
|| Opc
== ARM::MVE_VORR
)
864 MIB
.addReg(SrcReg
, getKillRegState(KillSrc
));
865 if (Opc
== ARM::MVE_VORR
)
866 addUnpredicatedMveVpredROp(MIB
, DestReg
);
868 MIB
.add(predOps(ARMCC::AL
));
872 // Handle register classes that require multiple instructions.
873 unsigned BeginIdx
= 0;
874 unsigned SubRegs
= 0;
877 // Use VORRq when possible.
878 if (ARM::QQPRRegClass
.contains(DestReg
, SrcReg
)) {
879 Opc
= Subtarget
.hasNEON() ? ARM::VORRq
: ARM::MVE_VORR
;
880 BeginIdx
= ARM::qsub_0
;
882 } else if (ARM::QQQQPRRegClass
.contains(DestReg
, SrcReg
)) {
883 Opc
= Subtarget
.hasNEON() ? ARM::VORRq
: ARM::MVE_VORR
;
884 BeginIdx
= ARM::qsub_0
;
886 // Fall back to VMOVD.
887 } else if (ARM::DPairRegClass
.contains(DestReg
, SrcReg
)) {
889 BeginIdx
= ARM::dsub_0
;
891 } else if (ARM::DTripleRegClass
.contains(DestReg
, SrcReg
)) {
893 BeginIdx
= ARM::dsub_0
;
895 } else if (ARM::DQuadRegClass
.contains(DestReg
, SrcReg
)) {
897 BeginIdx
= ARM::dsub_0
;
899 } else if (ARM::GPRPairRegClass
.contains(DestReg
, SrcReg
)) {
900 Opc
= Subtarget
.isThumb2() ? ARM::tMOVr
: ARM::MOVr
;
901 BeginIdx
= ARM::gsub_0
;
903 } else if (ARM::DPairSpcRegClass
.contains(DestReg
, SrcReg
)) {
905 BeginIdx
= ARM::dsub_0
;
908 } else if (ARM::DTripleSpcRegClass
.contains(DestReg
, SrcReg
)) {
910 BeginIdx
= ARM::dsub_0
;
913 } else if (ARM::DQuadSpcRegClass
.contains(DestReg
, SrcReg
)) {
915 BeginIdx
= ARM::dsub_0
;
918 } else if (ARM::DPRRegClass
.contains(DestReg
, SrcReg
) &&
919 !Subtarget
.hasFP64()) {
921 BeginIdx
= ARM::ssub_0
;
923 } else if (SrcReg
== ARM::CPSR
) {
924 copyFromCPSR(MBB
, I
, DestReg
, KillSrc
, Subtarget
);
926 } else if (DestReg
== ARM::CPSR
) {
927 copyToCPSR(MBB
, I
, SrcReg
, KillSrc
, Subtarget
);
929 } else if (DestReg
== ARM::VPR
) {
930 assert(ARM::GPRRegClass
.contains(SrcReg
));
931 BuildMI(MBB
, I
, I
->getDebugLoc(), get(ARM::VMSR_P0
), DestReg
)
932 .addReg(SrcReg
, getKillRegState(KillSrc
))
933 .add(predOps(ARMCC::AL
));
935 } else if (SrcReg
== ARM::VPR
) {
936 assert(ARM::GPRRegClass
.contains(DestReg
));
937 BuildMI(MBB
, I
, I
->getDebugLoc(), get(ARM::VMRS_P0
), DestReg
)
938 .addReg(SrcReg
, getKillRegState(KillSrc
))
939 .add(predOps(ARMCC::AL
));
941 } else if (DestReg
== ARM::FPSCR_NZCV
) {
942 assert(ARM::GPRRegClass
.contains(SrcReg
));
943 BuildMI(MBB
, I
, I
->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC
), DestReg
)
944 .addReg(SrcReg
, getKillRegState(KillSrc
))
945 .add(predOps(ARMCC::AL
));
947 } else if (SrcReg
== ARM::FPSCR_NZCV
) {
948 assert(ARM::GPRRegClass
.contains(DestReg
));
949 BuildMI(MBB
, I
, I
->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC
), DestReg
)
950 .addReg(SrcReg
, getKillRegState(KillSrc
))
951 .add(predOps(ARMCC::AL
));
955 assert(Opc
&& "Impossible reg-to-reg copy");
957 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
958 MachineInstrBuilder Mov
;
960 // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
961 if (TRI
->regsOverlap(SrcReg
, TRI
->getSubReg(DestReg
, BeginIdx
))) {
962 BeginIdx
= BeginIdx
+ ((SubRegs
- 1) * Spacing
);
966 SmallSet
<unsigned, 4> DstRegs
;
968 for (unsigned i
= 0; i
!= SubRegs
; ++i
) {
969 Register Dst
= TRI
->getSubReg(DestReg
, BeginIdx
+ i
* Spacing
);
970 Register Src
= TRI
->getSubReg(SrcReg
, BeginIdx
+ i
* Spacing
);
971 assert(Dst
&& Src
&& "Bad sub-register");
973 assert(!DstRegs
.count(Src
) && "destructive vector copy");
976 Mov
= BuildMI(MBB
, I
, I
->getDebugLoc(), get(Opc
), Dst
).addReg(Src
);
977 // VORR (NEON or MVE) takes two source operands.
978 if (Opc
== ARM::VORRq
|| Opc
== ARM::MVE_VORR
) {
981 // MVE VORR takes predicate operands in place of an ordinary condition.
982 if (Opc
== ARM::MVE_VORR
)
983 addUnpredicatedMveVpredROp(Mov
, Dst
);
985 Mov
= Mov
.add(predOps(ARMCC::AL
));
987 if (Opc
== ARM::MOVr
)
988 Mov
= Mov
.add(condCodeOp());
990 // Add implicit super-register defs and kills to the last instruction.
991 Mov
->addRegisterDefined(DestReg
, TRI
);
993 Mov
->addRegisterKilled(SrcReg
, TRI
);
996 bool ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr
&MI
,
997 const MachineOperand
*&Src
,
998 const MachineOperand
*&Dest
) const {
999 // VMOVRRD is also a copy instruction but it requires
1000 // special way of handling. It is more complex copy version
1001 // and since that we are not considering it. For recognition
1002 // of such instruction isExtractSubregLike MI interface fuction
1004 // VORRq is considered as a move only if two inputs are
1005 // the same register.
1006 if (!MI
.isMoveReg() ||
1007 (MI
.getOpcode() == ARM::VORRq
&&
1008 MI
.getOperand(1).getReg() != MI
.getOperand(2).getReg()))
1010 Dest
= &MI
.getOperand(0);
1011 Src
= &MI
.getOperand(1);
1015 const MachineInstrBuilder
&
1016 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder
&MIB
, unsigned Reg
,
1017 unsigned SubIdx
, unsigned State
,
1018 const TargetRegisterInfo
*TRI
) const {
1020 return MIB
.addReg(Reg
, State
);
1022 if (Register::isPhysicalRegister(Reg
))
1023 return MIB
.addReg(TRI
->getSubReg(Reg
, SubIdx
), State
);
1024 return MIB
.addReg(Reg
, State
, SubIdx
);
1027 void ARMBaseInstrInfo::
1028 storeRegToStackSlot(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator I
,
1029 unsigned SrcReg
, bool isKill
, int FI
,
1030 const TargetRegisterClass
*RC
,
1031 const TargetRegisterInfo
*TRI
) const {
1032 MachineFunction
&MF
= *MBB
.getParent();
1033 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1034 unsigned Align
= MFI
.getObjectAlignment(FI
);
1036 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
1037 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOStore
,
1038 MFI
.getObjectSize(FI
), Align
);
1040 switch (TRI
->getSpillSize(*RC
)) {
1042 if (ARM::HPRRegClass
.hasSubClassEq(RC
)) {
1043 BuildMI(MBB
, I
, DebugLoc(), get(ARM::VSTRH
))
1044 .addReg(SrcReg
, getKillRegState(isKill
))
1048 .add(predOps(ARMCC::AL
));
1050 llvm_unreachable("Unknown reg class!");
1053 if (ARM::GPRRegClass
.hasSubClassEq(RC
)) {
1054 BuildMI(MBB
, I
, DebugLoc(), get(ARM::STRi12
))
1055 .addReg(SrcReg
, getKillRegState(isKill
))
1059 .add(predOps(ARMCC::AL
));
1060 } else if (ARM::SPRRegClass
.hasSubClassEq(RC
)) {
1061 BuildMI(MBB
, I
, DebugLoc(), get(ARM::VSTRS
))
1062 .addReg(SrcReg
, getKillRegState(isKill
))
1066 .add(predOps(ARMCC::AL
));
1067 } else if (ARM::VCCRRegClass
.hasSubClassEq(RC
)) {
1068 BuildMI(MBB
, I
, DebugLoc(), get(ARM::VSTR_P0_off
))
1069 .addReg(SrcReg
, getKillRegState(isKill
))
1073 .add(predOps(ARMCC::AL
));
1075 llvm_unreachable("Unknown reg class!");
1078 if (ARM::DPRRegClass
.hasSubClassEq(RC
)) {
1079 BuildMI(MBB
, I
, DebugLoc(), get(ARM::VSTRD
))
1080 .addReg(SrcReg
, getKillRegState(isKill
))
1084 .add(predOps(ARMCC::AL
));
1085 } else if (ARM::GPRPairRegClass
.hasSubClassEq(RC
)) {
1086 if (Subtarget
.hasV5TEOps()) {
1087 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DebugLoc(), get(ARM::STRD
));
1088 AddDReg(MIB
, SrcReg
, ARM::gsub_0
, getKillRegState(isKill
), TRI
);
1089 AddDReg(MIB
, SrcReg
, ARM::gsub_1
, 0, TRI
);
1090 MIB
.addFrameIndex(FI
).addReg(0).addImm(0).addMemOperand(MMO
)
1091 .add(predOps(ARMCC::AL
));
1093 // Fallback to STM instruction, which has existed since the dawn of
1095 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DebugLoc(), get(ARM::STMIA
))
1098 .add(predOps(ARMCC::AL
));
1099 AddDReg(MIB
, SrcReg
, ARM::gsub_0
, getKillRegState(isKill
), TRI
);
1100 AddDReg(MIB
, SrcReg
, ARM::gsub_1
, 0, TRI
);
1103 llvm_unreachable("Unknown reg class!");
1106 if (ARM::DPairRegClass
.hasSubClassEq(RC
) && Subtarget
.hasNEON()) {
1107 // Use aligned spills if the stack can be realigned.
1108 if (Align
>= 16 && getRegisterInfo().canRealignStack(MF
)) {
1109 BuildMI(MBB
, I
, DebugLoc(), get(ARM::VST1q64
))
1112 .addReg(SrcReg
, getKillRegState(isKill
))
1114 .add(predOps(ARMCC::AL
));
1116 BuildMI(MBB
, I
, DebugLoc(), get(ARM::VSTMQIA
))
1117 .addReg(SrcReg
, getKillRegState(isKill
))
1120 .add(predOps(ARMCC::AL
));
1122 } else if (ARM::QPRRegClass
.hasSubClassEq(RC
) &&
1123 Subtarget
.hasMVEIntegerOps()) {
1124 auto MIB
= BuildMI(MBB
, I
, DebugLoc(), get(ARM::MVE_VSTRWU32
));
1125 MIB
.addReg(SrcReg
, getKillRegState(isKill
))
1128 .addMemOperand(MMO
);
1129 addUnpredicatedMveVpredNOp(MIB
);
1131 llvm_unreachable("Unknown reg class!");
1134 if (ARM::DTripleRegClass
.hasSubClassEq(RC
)) {
1135 // Use aligned spills if the stack can be realigned.
1136 if (Align
>= 16 && getRegisterInfo().canRealignStack(MF
) &&
1137 Subtarget
.hasNEON()) {
1138 BuildMI(MBB
, I
, DebugLoc(), get(ARM::VST1d64TPseudo
))
1141 .addReg(SrcReg
, getKillRegState(isKill
))
1143 .add(predOps(ARMCC::AL
));
1145 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DebugLoc(),
1148 .add(predOps(ARMCC::AL
))
1149 .addMemOperand(MMO
);
1150 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_0
, getKillRegState(isKill
), TRI
);
1151 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_1
, 0, TRI
);
1152 AddDReg(MIB
, SrcReg
, ARM::dsub_2
, 0, TRI
);
1155 llvm_unreachable("Unknown reg class!");
1158 if (ARM::QQPRRegClass
.hasSubClassEq(RC
) || ARM::DQuadRegClass
.hasSubClassEq(RC
)) {
1159 if (Align
>= 16 && getRegisterInfo().canRealignStack(MF
) &&
1160 Subtarget
.hasNEON()) {
1161 // FIXME: It's possible to only store part of the QQ register if the
1162 // spilled def has a sub-register index.
1163 BuildMI(MBB
, I
, DebugLoc(), get(ARM::VST1d64QPseudo
))
1166 .addReg(SrcReg
, getKillRegState(isKill
))
1168 .add(predOps(ARMCC::AL
));
1170 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DebugLoc(),
1173 .add(predOps(ARMCC::AL
))
1174 .addMemOperand(MMO
);
1175 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_0
, getKillRegState(isKill
), TRI
);
1176 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_1
, 0, TRI
);
1177 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_2
, 0, TRI
);
1178 AddDReg(MIB
, SrcReg
, ARM::dsub_3
, 0, TRI
);
1181 llvm_unreachable("Unknown reg class!");
1184 if (ARM::QQQQPRRegClass
.hasSubClassEq(RC
)) {
1185 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DebugLoc(), get(ARM::VSTMDIA
))
1187 .add(predOps(ARMCC::AL
))
1188 .addMemOperand(MMO
);
1189 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_0
, getKillRegState(isKill
), TRI
);
1190 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_1
, 0, TRI
);
1191 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_2
, 0, TRI
);
1192 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_3
, 0, TRI
);
1193 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_4
, 0, TRI
);
1194 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_5
, 0, TRI
);
1195 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_6
, 0, TRI
);
1196 AddDReg(MIB
, SrcReg
, ARM::dsub_7
, 0, TRI
);
1198 llvm_unreachable("Unknown reg class!");
1201 llvm_unreachable("Unknown reg class!");
1205 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
1206 int &FrameIndex
) const {
1207 switch (MI
.getOpcode()) {
1210 case ARM::t2STRs
: // FIXME: don't use t2STRs to access frame.
1211 if (MI
.getOperand(1).isFI() && MI
.getOperand(2).isReg() &&
1212 MI
.getOperand(3).isImm() && MI
.getOperand(2).getReg() == 0 &&
1213 MI
.getOperand(3).getImm() == 0) {
1214 FrameIndex
= MI
.getOperand(1).getIndex();
1215 return MI
.getOperand(0).getReg();
1223 if (MI
.getOperand(1).isFI() && MI
.getOperand(2).isImm() &&
1224 MI
.getOperand(2).getImm() == 0) {
1225 FrameIndex
= MI
.getOperand(1).getIndex();
1226 return MI
.getOperand(0).getReg();
1229 case ARM::VSTR_P0_off
:
1230 if (MI
.getOperand(0).isFI() && MI
.getOperand(1).isImm() &&
1231 MI
.getOperand(1).getImm() == 0) {
1232 FrameIndex
= MI
.getOperand(0).getIndex();
1237 case ARM::VST1d64TPseudo
:
1238 case ARM::VST1d64QPseudo
:
1239 if (MI
.getOperand(0).isFI() && MI
.getOperand(2).getSubReg() == 0) {
1240 FrameIndex
= MI
.getOperand(0).getIndex();
1241 return MI
.getOperand(2).getReg();
1245 if (MI
.getOperand(1).isFI() && MI
.getOperand(0).getSubReg() == 0) {
1246 FrameIndex
= MI
.getOperand(1).getIndex();
1247 return MI
.getOperand(0).getReg();
1255 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr
&MI
,
1256 int &FrameIndex
) const {
1257 SmallVector
<const MachineMemOperand
*, 1> Accesses
;
1258 if (MI
.mayStore() && hasStoreToStackSlot(MI
, Accesses
) &&
1259 Accesses
.size() == 1) {
1261 cast
<FixedStackPseudoSourceValue
>(Accesses
.front()->getPseudoValue())
1268 void ARMBaseInstrInfo::
1269 loadRegFromStackSlot(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator I
,
1270 unsigned DestReg
, int FI
,
1271 const TargetRegisterClass
*RC
,
1272 const TargetRegisterInfo
*TRI
) const {
1274 if (I
!= MBB
.end()) DL
= I
->getDebugLoc();
1275 MachineFunction
&MF
= *MBB
.getParent();
1276 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1277 unsigned Align
= MFI
.getObjectAlignment(FI
);
1278 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
1279 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOLoad
,
1280 MFI
.getObjectSize(FI
), Align
);
1282 switch (TRI
->getSpillSize(*RC
)) {
1284 if (ARM::HPRRegClass
.hasSubClassEq(RC
)) {
1285 BuildMI(MBB
, I
, DL
, get(ARM::VLDRH
), DestReg
)
1289 .add(predOps(ARMCC::AL
));
1291 llvm_unreachable("Unknown reg class!");
1294 if (ARM::GPRRegClass
.hasSubClassEq(RC
)) {
1295 BuildMI(MBB
, I
, DL
, get(ARM::LDRi12
), DestReg
)
1299 .add(predOps(ARMCC::AL
));
1300 } else if (ARM::SPRRegClass
.hasSubClassEq(RC
)) {
1301 BuildMI(MBB
, I
, DL
, get(ARM::VLDRS
), DestReg
)
1305 .add(predOps(ARMCC::AL
));
1306 } else if (ARM::VCCRRegClass
.hasSubClassEq(RC
)) {
1307 BuildMI(MBB
, I
, DL
, get(ARM::VLDR_P0_off
), DestReg
)
1311 .add(predOps(ARMCC::AL
));
1313 llvm_unreachable("Unknown reg class!");
1316 if (ARM::DPRRegClass
.hasSubClassEq(RC
)) {
1317 BuildMI(MBB
, I
, DL
, get(ARM::VLDRD
), DestReg
)
1321 .add(predOps(ARMCC::AL
));
1322 } else if (ARM::GPRPairRegClass
.hasSubClassEq(RC
)) {
1323 MachineInstrBuilder MIB
;
1325 if (Subtarget
.hasV5TEOps()) {
1326 MIB
= BuildMI(MBB
, I
, DL
, get(ARM::LDRD
));
1327 AddDReg(MIB
, DestReg
, ARM::gsub_0
, RegState::DefineNoRead
, TRI
);
1328 AddDReg(MIB
, DestReg
, ARM::gsub_1
, RegState::DefineNoRead
, TRI
);
1329 MIB
.addFrameIndex(FI
).addReg(0).addImm(0).addMemOperand(MMO
)
1330 .add(predOps(ARMCC::AL
));
1332 // Fallback to LDM instruction, which has existed since the dawn of
1334 MIB
= BuildMI(MBB
, I
, DL
, get(ARM::LDMIA
))
1337 .add(predOps(ARMCC::AL
));
1338 MIB
= AddDReg(MIB
, DestReg
, ARM::gsub_0
, RegState::DefineNoRead
, TRI
);
1339 MIB
= AddDReg(MIB
, DestReg
, ARM::gsub_1
, RegState::DefineNoRead
, TRI
);
1342 if (Register::isPhysicalRegister(DestReg
))
1343 MIB
.addReg(DestReg
, RegState::ImplicitDefine
);
1345 llvm_unreachable("Unknown reg class!");
1348 if (ARM::DPairRegClass
.hasSubClassEq(RC
) && Subtarget
.hasNEON()) {
1349 if (Align
>= 16 && getRegisterInfo().canRealignStack(MF
)) {
1350 BuildMI(MBB
, I
, DL
, get(ARM::VLD1q64
), DestReg
)
1354 .add(predOps(ARMCC::AL
));
1356 BuildMI(MBB
, I
, DL
, get(ARM::VLDMQIA
), DestReg
)
1359 .add(predOps(ARMCC::AL
));
1361 } else if (ARM::QPRRegClass
.hasSubClassEq(RC
) &&
1362 Subtarget
.hasMVEIntegerOps()) {
1363 auto MIB
= BuildMI(MBB
, I
, DL
, get(ARM::MVE_VLDRWU32
), DestReg
);
1364 MIB
.addFrameIndex(FI
)
1366 .addMemOperand(MMO
);
1367 addUnpredicatedMveVpredNOp(MIB
);
1369 llvm_unreachable("Unknown reg class!");
1372 if (ARM::DTripleRegClass
.hasSubClassEq(RC
)) {
1373 if (Align
>= 16 && getRegisterInfo().canRealignStack(MF
) &&
1374 Subtarget
.hasNEON()) {
1375 BuildMI(MBB
, I
, DL
, get(ARM::VLD1d64TPseudo
), DestReg
)
1379 .add(predOps(ARMCC::AL
));
1381 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DL
, get(ARM::VLDMDIA
))
1384 .add(predOps(ARMCC::AL
));
1385 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_0
, RegState::DefineNoRead
, TRI
);
1386 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_1
, RegState::DefineNoRead
, TRI
);
1387 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_2
, RegState::DefineNoRead
, TRI
);
1388 if (Register::isPhysicalRegister(DestReg
))
1389 MIB
.addReg(DestReg
, RegState::ImplicitDefine
);
1392 llvm_unreachable("Unknown reg class!");
1395 if (ARM::QQPRRegClass
.hasSubClassEq(RC
) || ARM::DQuadRegClass
.hasSubClassEq(RC
)) {
1396 if (Align
>= 16 && getRegisterInfo().canRealignStack(MF
) &&
1397 Subtarget
.hasNEON()) {
1398 BuildMI(MBB
, I
, DL
, get(ARM::VLD1d64QPseudo
), DestReg
)
1402 .add(predOps(ARMCC::AL
));
1404 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DL
, get(ARM::VLDMDIA
))
1406 .add(predOps(ARMCC::AL
))
1407 .addMemOperand(MMO
);
1408 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_0
, RegState::DefineNoRead
, TRI
);
1409 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_1
, RegState::DefineNoRead
, TRI
);
1410 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_2
, RegState::DefineNoRead
, TRI
);
1411 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_3
, RegState::DefineNoRead
, TRI
);
1412 if (Register::isPhysicalRegister(DestReg
))
1413 MIB
.addReg(DestReg
, RegState::ImplicitDefine
);
1416 llvm_unreachable("Unknown reg class!");
1419 if (ARM::QQQQPRRegClass
.hasSubClassEq(RC
)) {
1420 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DL
, get(ARM::VLDMDIA
))
1422 .add(predOps(ARMCC::AL
))
1423 .addMemOperand(MMO
);
1424 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_0
, RegState::DefineNoRead
, TRI
);
1425 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_1
, RegState::DefineNoRead
, TRI
);
1426 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_2
, RegState::DefineNoRead
, TRI
);
1427 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_3
, RegState::DefineNoRead
, TRI
);
1428 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_4
, RegState::DefineNoRead
, TRI
);
1429 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_5
, RegState::DefineNoRead
, TRI
);
1430 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_6
, RegState::DefineNoRead
, TRI
);
1431 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_7
, RegState::DefineNoRead
, TRI
);
1432 if (Register::isPhysicalRegister(DestReg
))
1433 MIB
.addReg(DestReg
, RegState::ImplicitDefine
);
1435 llvm_unreachable("Unknown reg class!");
1438 llvm_unreachable("Unknown regclass!");
1442 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
1443 int &FrameIndex
) const {
1444 switch (MI
.getOpcode()) {
1447 case ARM::t2LDRs
: // FIXME: don't use t2LDRs to access frame.
1448 if (MI
.getOperand(1).isFI() && MI
.getOperand(2).isReg() &&
1449 MI
.getOperand(3).isImm() && MI
.getOperand(2).getReg() == 0 &&
1450 MI
.getOperand(3).getImm() == 0) {
1451 FrameIndex
= MI
.getOperand(1).getIndex();
1452 return MI
.getOperand(0).getReg();
1460 if (MI
.getOperand(1).isFI() && MI
.getOperand(2).isImm() &&
1461 MI
.getOperand(2).getImm() == 0) {
1462 FrameIndex
= MI
.getOperand(1).getIndex();
1463 return MI
.getOperand(0).getReg();
1466 case ARM::VLDR_P0_off
:
1467 if (MI
.getOperand(0).isFI() && MI
.getOperand(1).isImm() &&
1468 MI
.getOperand(1).getImm() == 0) {
1469 FrameIndex
= MI
.getOperand(0).getIndex();
1474 case ARM::VLD1d8TPseudo
:
1475 case ARM::VLD1d16TPseudo
:
1476 case ARM::VLD1d32TPseudo
:
1477 case ARM::VLD1d64TPseudo
:
1478 case ARM::VLD1d8QPseudo
:
1479 case ARM::VLD1d16QPseudo
:
1480 case ARM::VLD1d32QPseudo
:
1481 case ARM::VLD1d64QPseudo
:
1482 if (MI
.getOperand(1).isFI() && MI
.getOperand(0).getSubReg() == 0) {
1483 FrameIndex
= MI
.getOperand(1).getIndex();
1484 return MI
.getOperand(0).getReg();
1488 if (MI
.getOperand(1).isFI() && MI
.getOperand(0).getSubReg() == 0) {
1489 FrameIndex
= MI
.getOperand(1).getIndex();
1490 return MI
.getOperand(0).getReg();
1498 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr
&MI
,
1499 int &FrameIndex
) const {
1500 SmallVector
<const MachineMemOperand
*, 1> Accesses
;
1501 if (MI
.mayLoad() && hasLoadFromStackSlot(MI
, Accesses
) &&
1502 Accesses
.size() == 1) {
1504 cast
<FixedStackPseudoSourceValue
>(Accesses
.front()->getPseudoValue())
1511 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1512 /// depending on whether the result is used.
1513 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI
) const {
1514 bool isThumb1
= Subtarget
.isThumb1Only();
1515 bool isThumb2
= Subtarget
.isThumb2();
1516 const ARMBaseInstrInfo
*TII
= Subtarget
.getInstrInfo();
1518 DebugLoc dl
= MI
->getDebugLoc();
1519 MachineBasicBlock
*BB
= MI
->getParent();
1521 MachineInstrBuilder LDM
, STM
;
1522 if (isThumb1
|| !MI
->getOperand(1).isDead()) {
1523 MachineOperand
LDWb(MI
->getOperand(1));
1524 LDM
= BuildMI(*BB
, MI
, dl
, TII
->get(isThumb2
? ARM::t2LDMIA_UPD
1525 : isThumb1
? ARM::tLDMIA_UPD
1529 LDM
= BuildMI(*BB
, MI
, dl
, TII
->get(isThumb2
? ARM::t2LDMIA
: ARM::LDMIA
));
1532 if (isThumb1
|| !MI
->getOperand(0).isDead()) {
1533 MachineOperand
STWb(MI
->getOperand(0));
1534 STM
= BuildMI(*BB
, MI
, dl
, TII
->get(isThumb2
? ARM::t2STMIA_UPD
1535 : isThumb1
? ARM::tSTMIA_UPD
1539 STM
= BuildMI(*BB
, MI
, dl
, TII
->get(isThumb2
? ARM::t2STMIA
: ARM::STMIA
));
1542 MachineOperand
LDBase(MI
->getOperand(3));
1543 LDM
.add(LDBase
).add(predOps(ARMCC::AL
));
1545 MachineOperand
STBase(MI
->getOperand(2));
1546 STM
.add(STBase
).add(predOps(ARMCC::AL
));
1548 // Sort the scratch registers into ascending order.
1549 const TargetRegisterInfo
&TRI
= getRegisterInfo();
1550 SmallVector
<unsigned, 6> ScratchRegs
;
1551 for(unsigned I
= 5; I
< MI
->getNumOperands(); ++I
)
1552 ScratchRegs
.push_back(MI
->getOperand(I
).getReg());
1553 llvm::sort(ScratchRegs
,
1554 [&TRI
](const unsigned &Reg1
, const unsigned &Reg2
) -> bool {
1555 return TRI
.getEncodingValue(Reg1
) <
1556 TRI
.getEncodingValue(Reg2
);
1559 for (const auto &Reg
: ScratchRegs
) {
1560 LDM
.addReg(Reg
, RegState::Define
);
1561 STM
.addReg(Reg
, RegState::Kill
);
1567 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr
&MI
) const {
1568 if (MI
.getOpcode() == TargetOpcode::LOAD_STACK_GUARD
) {
1569 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1570 "LOAD_STACK_GUARD currently supported only for MachO.");
1571 expandLoadStackGuard(MI
);
1572 MI
.getParent()->erase(MI
);
1576 if (MI
.getOpcode() == ARM::MEMCPY
) {
1581 // This hook gets to expand COPY instructions before they become
1582 // copyPhysReg() calls. Look for VMOVS instructions that can legally be
1583 // widened to VMOVD. We prefer the VMOVD when possible because it may be
1584 // changed into a VORR that can go down the NEON pipeline.
1585 if (!MI
.isCopy() || Subtarget
.dontWidenVMOVS() || !Subtarget
.hasFP64())
1588 // Look for a copy between even S-registers. That is where we keep floats
1589 // when using NEON v2f32 instructions for f32 arithmetic.
1590 Register DstRegS
= MI
.getOperand(0).getReg();
1591 Register SrcRegS
= MI
.getOperand(1).getReg();
1592 if (!ARM::SPRRegClass
.contains(DstRegS
, SrcRegS
))
1595 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
1596 unsigned DstRegD
= TRI
->getMatchingSuperReg(DstRegS
, ARM::ssub_0
,
1598 unsigned SrcRegD
= TRI
->getMatchingSuperReg(SrcRegS
, ARM::ssub_0
,
1600 if (!DstRegD
|| !SrcRegD
)
1603 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only
1604 // legal if the COPY already defines the full DstRegD, and it isn't a
1605 // sub-register insertion.
1606 if (!MI
.definesRegister(DstRegD
, TRI
) || MI
.readsRegister(DstRegD
, TRI
))
1609 // A dead copy shouldn't show up here, but reject it just in case.
1610 if (MI
.getOperand(0).isDead())
1613 // All clear, widen the COPY.
1614 LLVM_DEBUG(dbgs() << "widening: " << MI
);
1615 MachineInstrBuilder
MIB(*MI
.getParent()->getParent(), MI
);
1617 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg
1618 // or some other super-register.
1619 int ImpDefIdx
= MI
.findRegisterDefOperandIdx(DstRegD
);
1620 if (ImpDefIdx
!= -1)
1621 MI
.RemoveOperand(ImpDefIdx
);
1623 // Change the opcode and operands.
1624 MI
.setDesc(get(ARM::VMOVD
));
1625 MI
.getOperand(0).setReg(DstRegD
);
1626 MI
.getOperand(1).setReg(SrcRegD
);
1627 MIB
.add(predOps(ARMCC::AL
));
1629 // We are now reading SrcRegD instead of SrcRegS. This may upset the
1630 // register scavenger and machine verifier, so we need to indicate that we
1631 // are reading an undefined value from SrcRegD, but a proper value from
1633 MI
.getOperand(1).setIsUndef();
1634 MIB
.addReg(SrcRegS
, RegState::Implicit
);
1636 // SrcRegD may actually contain an unrelated value in the ssub_1
1637 // sub-register. Don't kill it. Only kill the ssub_0 sub-register.
1638 if (MI
.getOperand(1).isKill()) {
1639 MI
.getOperand(1).setIsKill(false);
1640 MI
.addRegisterKilled(SrcRegS
, TRI
, true);
1643 LLVM_DEBUG(dbgs() << "replaced by: " << MI
);
1647 /// Create a copy of a const pool value. Update CPI to the new index and return
1649 static unsigned duplicateCPV(MachineFunction
&MF
, unsigned &CPI
) {
1650 MachineConstantPool
*MCP
= MF
.getConstantPool();
1651 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
1653 const MachineConstantPoolEntry
&MCPE
= MCP
->getConstants()[CPI
];
1654 assert(MCPE
.isMachineConstantPoolEntry() &&
1655 "Expecting a machine constantpool entry!");
1656 ARMConstantPoolValue
*ACPV
=
1657 static_cast<ARMConstantPoolValue
*>(MCPE
.Val
.MachineCPVal
);
1659 unsigned PCLabelId
= AFI
->createPICLabelUId();
1660 ARMConstantPoolValue
*NewCPV
= nullptr;
1662 // FIXME: The below assumes PIC relocation model and that the function
1663 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1664 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1665 // instructions, so that's probably OK, but is PIC always correct when
1667 if (ACPV
->isGlobalValue())
1668 NewCPV
= ARMConstantPoolConstant::Create(
1669 cast
<ARMConstantPoolConstant
>(ACPV
)->getGV(), PCLabelId
, ARMCP::CPValue
,
1670 4, ACPV
->getModifier(), ACPV
->mustAddCurrentAddress());
1671 else if (ACPV
->isExtSymbol())
1672 NewCPV
= ARMConstantPoolSymbol::
1673 Create(MF
.getFunction().getContext(),
1674 cast
<ARMConstantPoolSymbol
>(ACPV
)->getSymbol(), PCLabelId
, 4);
1675 else if (ACPV
->isBlockAddress())
1676 NewCPV
= ARMConstantPoolConstant::
1677 Create(cast
<ARMConstantPoolConstant
>(ACPV
)->getBlockAddress(), PCLabelId
,
1678 ARMCP::CPBlockAddress
, 4);
1679 else if (ACPV
->isLSDA())
1680 NewCPV
= ARMConstantPoolConstant::Create(&MF
.getFunction(), PCLabelId
,
1682 else if (ACPV
->isMachineBasicBlock())
1683 NewCPV
= ARMConstantPoolMBB::
1684 Create(MF
.getFunction().getContext(),
1685 cast
<ARMConstantPoolMBB
>(ACPV
)->getMBB(), PCLabelId
, 4);
1687 llvm_unreachable("Unexpected ARM constantpool value type!!");
1688 CPI
= MCP
->getConstantPoolIndex(NewCPV
, MCPE
.getAlignment());
1692 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock
&MBB
,
1693 MachineBasicBlock::iterator I
,
1694 unsigned DestReg
, unsigned SubIdx
,
1695 const MachineInstr
&Orig
,
1696 const TargetRegisterInfo
&TRI
) const {
1697 unsigned Opcode
= Orig
.getOpcode();
1700 MachineInstr
*MI
= MBB
.getParent()->CloneMachineInstr(&Orig
);
1701 MI
->substituteRegister(Orig
.getOperand(0).getReg(), DestReg
, SubIdx
, TRI
);
1705 case ARM::tLDRpci_pic
:
1706 case ARM::t2LDRpci_pic
: {
1707 MachineFunction
&MF
= *MBB
.getParent();
1708 unsigned CPI
= Orig
.getOperand(1).getIndex();
1709 unsigned PCLabelId
= duplicateCPV(MF
, CPI
);
1710 BuildMI(MBB
, I
, Orig
.getDebugLoc(), get(Opcode
), DestReg
)
1711 .addConstantPoolIndex(CPI
)
1713 .cloneMemRefs(Orig
);
1720 ARMBaseInstrInfo::duplicate(MachineBasicBlock
&MBB
,
1721 MachineBasicBlock::iterator InsertBefore
,
1722 const MachineInstr
&Orig
) const {
1723 MachineInstr
&Cloned
= TargetInstrInfo::duplicate(MBB
, InsertBefore
, Orig
);
1724 MachineBasicBlock::instr_iterator I
= Cloned
.getIterator();
1726 switch (I
->getOpcode()) {
1727 case ARM::tLDRpci_pic
:
1728 case ARM::t2LDRpci_pic
: {
1729 MachineFunction
&MF
= *MBB
.getParent();
1730 unsigned CPI
= I
->getOperand(1).getIndex();
1731 unsigned PCLabelId
= duplicateCPV(MF
, CPI
);
1732 I
->getOperand(1).setIndex(CPI
);
1733 I
->getOperand(2).setImm(PCLabelId
);
1737 if (!I
->isBundledWithSucc())
1744 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr
&MI0
,
1745 const MachineInstr
&MI1
,
1746 const MachineRegisterInfo
*MRI
) const {
1747 unsigned Opcode
= MI0
.getOpcode();
1748 if (Opcode
== ARM::t2LDRpci
||
1749 Opcode
== ARM::t2LDRpci_pic
||
1750 Opcode
== ARM::tLDRpci
||
1751 Opcode
== ARM::tLDRpci_pic
||
1752 Opcode
== ARM::LDRLIT_ga_pcrel
||
1753 Opcode
== ARM::LDRLIT_ga_pcrel_ldr
||
1754 Opcode
== ARM::tLDRLIT_ga_pcrel
||
1755 Opcode
== ARM::MOV_ga_pcrel
||
1756 Opcode
== ARM::MOV_ga_pcrel_ldr
||
1757 Opcode
== ARM::t2MOV_ga_pcrel
) {
1758 if (MI1
.getOpcode() != Opcode
)
1760 if (MI0
.getNumOperands() != MI1
.getNumOperands())
1763 const MachineOperand
&MO0
= MI0
.getOperand(1);
1764 const MachineOperand
&MO1
= MI1
.getOperand(1);
1765 if (MO0
.getOffset() != MO1
.getOffset())
1768 if (Opcode
== ARM::LDRLIT_ga_pcrel
||
1769 Opcode
== ARM::LDRLIT_ga_pcrel_ldr
||
1770 Opcode
== ARM::tLDRLIT_ga_pcrel
||
1771 Opcode
== ARM::MOV_ga_pcrel
||
1772 Opcode
== ARM::MOV_ga_pcrel_ldr
||
1773 Opcode
== ARM::t2MOV_ga_pcrel
)
1774 // Ignore the PC labels.
1775 return MO0
.getGlobal() == MO1
.getGlobal();
1777 const MachineFunction
*MF
= MI0
.getParent()->getParent();
1778 const MachineConstantPool
*MCP
= MF
->getConstantPool();
1779 int CPI0
= MO0
.getIndex();
1780 int CPI1
= MO1
.getIndex();
1781 const MachineConstantPoolEntry
&MCPE0
= MCP
->getConstants()[CPI0
];
1782 const MachineConstantPoolEntry
&MCPE1
= MCP
->getConstants()[CPI1
];
1783 bool isARMCP0
= MCPE0
.isMachineConstantPoolEntry();
1784 bool isARMCP1
= MCPE1
.isMachineConstantPoolEntry();
1785 if (isARMCP0
&& isARMCP1
) {
1786 ARMConstantPoolValue
*ACPV0
=
1787 static_cast<ARMConstantPoolValue
*>(MCPE0
.Val
.MachineCPVal
);
1788 ARMConstantPoolValue
*ACPV1
=
1789 static_cast<ARMConstantPoolValue
*>(MCPE1
.Val
.MachineCPVal
);
1790 return ACPV0
->hasSameValue(ACPV1
);
1791 } else if (!isARMCP0
&& !isARMCP1
) {
1792 return MCPE0
.Val
.ConstVal
== MCPE1
.Val
.ConstVal
;
1795 } else if (Opcode
== ARM::PICLDR
) {
1796 if (MI1
.getOpcode() != Opcode
)
1798 if (MI0
.getNumOperands() != MI1
.getNumOperands())
1801 Register Addr0
= MI0
.getOperand(1).getReg();
1802 Register Addr1
= MI1
.getOperand(1).getReg();
1803 if (Addr0
!= Addr1
) {
1804 if (!MRI
|| !Register::isVirtualRegister(Addr0
) ||
1805 !Register::isVirtualRegister(Addr1
))
1808 // This assumes SSA form.
1809 MachineInstr
*Def0
= MRI
->getVRegDef(Addr0
);
1810 MachineInstr
*Def1
= MRI
->getVRegDef(Addr1
);
1811 // Check if the loaded value, e.g. a constantpool of a global address, are
1813 if (!produceSameValue(*Def0
, *Def1
, MRI
))
1817 for (unsigned i
= 3, e
= MI0
.getNumOperands(); i
!= e
; ++i
) {
1818 // %12 = PICLDR %11, 0, 14, %noreg
1819 const MachineOperand
&MO0
= MI0
.getOperand(i
);
1820 const MachineOperand
&MO1
= MI1
.getOperand(i
);
1821 if (!MO0
.isIdenticalTo(MO1
))
1827 return MI0
.isIdenticalTo(MI1
, MachineInstr::IgnoreVRegDefs
);
1830 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1831 /// determine if two loads are loading from the same base address. It should
1832 /// only return true if the base pointers are the same and the only differences
1833 /// between the two addresses is the offset. It also returns the offsets by
1836 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1837 /// is permanently disabled.
1838 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode
*Load1
, SDNode
*Load2
,
1840 int64_t &Offset2
) const {
1841 // Don't worry about Thumb: just ARM and Thumb2.
1842 if (Subtarget
.isThumb1Only()) return false;
1844 if (!Load1
->isMachineOpcode() || !Load2
->isMachineOpcode())
1847 switch (Load1
->getMachineOpcode()) {
1861 case ARM::t2LDRSHi8
:
1863 case ARM::t2LDRBi12
:
1864 case ARM::t2LDRSHi12
:
1868 switch (Load2
->getMachineOpcode()) {
1881 case ARM::t2LDRSHi8
:
1883 case ARM::t2LDRBi12
:
1884 case ARM::t2LDRSHi12
:
1888 // Check if base addresses and chain operands match.
1889 if (Load1
->getOperand(0) != Load2
->getOperand(0) ||
1890 Load1
->getOperand(4) != Load2
->getOperand(4))
1893 // Index should be Reg0.
1894 if (Load1
->getOperand(3) != Load2
->getOperand(3))
1897 // Determine the offsets.
1898 if (isa
<ConstantSDNode
>(Load1
->getOperand(1)) &&
1899 isa
<ConstantSDNode
>(Load2
->getOperand(1))) {
1900 Offset1
= cast
<ConstantSDNode
>(Load1
->getOperand(1))->getSExtValue();
1901 Offset2
= cast
<ConstantSDNode
>(Load2
->getOperand(1))->getSExtValue();
1908 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1909 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1910 /// be scheduled togther. On some targets if two loads are loading from
1911 /// addresses in the same cache line, it's better if they are scheduled
1912 /// together. This function takes two integers that represent the load offsets
1913 /// from the common base address. It returns true if it decides it's desirable
1914 /// to schedule the two loads together. "NumLoads" is the number of loads that
1915 /// have already been scheduled after Load1.
1917 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1918 /// is permanently disabled.
1919 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode
*Load1
, SDNode
*Load2
,
1920 int64_t Offset1
, int64_t Offset2
,
1921 unsigned NumLoads
) const {
1922 // Don't worry about Thumb: just ARM and Thumb2.
1923 if (Subtarget
.isThumb1Only()) return false;
1925 assert(Offset2
> Offset1
);
1927 if ((Offset2
- Offset1
) / 8 > 64)
1930 // Check if the machine opcodes are different. If they are different
1931 // then we consider them to not be of the same base address,
1932 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1933 // In this case, they are considered to be the same because they are different
1934 // encoding forms of the same basic instruction.
1935 if ((Load1
->getMachineOpcode() != Load2
->getMachineOpcode()) &&
1936 !((Load1
->getMachineOpcode() == ARM::t2LDRBi8
&&
1937 Load2
->getMachineOpcode() == ARM::t2LDRBi12
) ||
1938 (Load1
->getMachineOpcode() == ARM::t2LDRBi12
&&
1939 Load2
->getMachineOpcode() == ARM::t2LDRBi8
)))
1940 return false; // FIXME: overly conservative?
1942 // Four loads in a row should be sufficient.
1949 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr
&MI
,
1950 const MachineBasicBlock
*MBB
,
1951 const MachineFunction
&MF
) const {
1952 // Debug info is never a scheduling boundary. It's necessary to be explicit
1953 // due to the special treatment of IT instructions below, otherwise a
1954 // dbg_value followed by an IT will result in the IT instruction being
1955 // considered a scheduling hazard, which is wrong. It should be the actual
1956 // instruction preceding the dbg_value instruction(s), just like it is
1957 // when debug info is not present.
1958 if (MI
.isDebugInstr())
1961 // Terminators and labels can't be scheduled around.
1962 if (MI
.isTerminator() || MI
.isPosition())
1965 // Treat the start of the IT block as a scheduling boundary, but schedule
1966 // t2IT along with all instructions following it.
1967 // FIXME: This is a big hammer. But the alternative is to add all potential
1968 // true and anti dependencies to IT block instructions as implicit operands
1969 // to the t2IT instruction. The added compile time and complexity does not
1971 MachineBasicBlock::const_iterator I
= MI
;
1972 // Make sure to skip any debug instructions
1973 while (++I
!= MBB
->end() && I
->isDebugInstr())
1975 if (I
!= MBB
->end() && I
->getOpcode() == ARM::t2IT
)
1978 // Don't attempt to schedule around any instruction that defines
1979 // a stack-oriented pointer, as it's unlikely to be profitable. This
1980 // saves compile time, because it doesn't require every single
1981 // stack slot reference to depend on the instruction that does the
1983 // Calls don't actually change the stack pointer, even if they have imp-defs.
1984 // No ARM calling conventions change the stack pointer. (X86 calling
1985 // conventions sometimes do).
1986 if (!MI
.isCall() && MI
.definesRegister(ARM::SP
))
1992 bool ARMBaseInstrInfo::
1993 isProfitableToIfCvt(MachineBasicBlock
&MBB
,
1994 unsigned NumCycles
, unsigned ExtraPredCycles
,
1995 BranchProbability Probability
) const {
1999 // If we are optimizing for size, see if the branch in the predecessor can be
2000 // lowered to cbn?z by the constant island lowering pass, and return false if
2001 // so. This results in a shorter instruction sequence.
2002 if (MBB
.getParent()->getFunction().hasOptSize()) {
2003 MachineBasicBlock
*Pred
= *MBB
.pred_begin();
2004 if (!Pred
->empty()) {
2005 MachineInstr
*LastMI
= &*Pred
->rbegin();
2006 if (LastMI
->getOpcode() == ARM::t2Bcc
) {
2007 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2008 MachineInstr
*CmpMI
= findCMPToFoldIntoCBZ(LastMI
, TRI
);
2014 return isProfitableToIfCvt(MBB
, NumCycles
, ExtraPredCycles
,
2015 MBB
, 0, 0, Probability
);
2018 bool ARMBaseInstrInfo::
2019 isProfitableToIfCvt(MachineBasicBlock
&TBB
,
2020 unsigned TCycles
, unsigned TExtra
,
2021 MachineBasicBlock
&FBB
,
2022 unsigned FCycles
, unsigned FExtra
,
2023 BranchProbability Probability
) const {
2027 // In thumb code we often end up trading one branch for a IT block, and
2028 // if we are cloning the instruction can increase code size. Prevent
2029 // blocks with multiple predecesors from being ifcvted to prevent this
2031 if (Subtarget
.isThumb2() && TBB
.getParent()->getFunction().hasMinSize()) {
2032 if (TBB
.pred_size() != 1 || FBB
.pred_size() != 1)
2036 // Attempt to estimate the relative costs of predication versus branching.
2037 // Here we scale up each component of UnpredCost to avoid precision issue when
2038 // scaling TCycles/FCycles by Probability.
2039 const unsigned ScalingUpFactor
= 1024;
2041 unsigned PredCost
= (TCycles
+ FCycles
+ TExtra
+ FExtra
) * ScalingUpFactor
;
2042 unsigned UnpredCost
;
2043 if (!Subtarget
.hasBranchPredictor()) {
2044 // When we don't have a branch predictor it's always cheaper to not take a
2045 // branch than take it, so we have to take that into account.
2046 unsigned NotTakenBranchCost
= 1;
2047 unsigned TakenBranchCost
= Subtarget
.getMispredictionPenalty();
2048 unsigned TUnpredCycles
, FUnpredCycles
;
2050 // Triangle: TBB is the fallthrough
2051 TUnpredCycles
= TCycles
+ NotTakenBranchCost
;
2052 FUnpredCycles
= TakenBranchCost
;
2054 // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2055 TUnpredCycles
= TCycles
+ TakenBranchCost
;
2056 FUnpredCycles
= FCycles
+ NotTakenBranchCost
;
2057 // The branch at the end of FBB will disappear when it's predicated, so
2058 // discount it from PredCost.
2059 PredCost
-= 1 * ScalingUpFactor
;
2061 // The total cost is the cost of each path scaled by their probabilites
2062 unsigned TUnpredCost
= Probability
.scale(TUnpredCycles
* ScalingUpFactor
);
2063 unsigned FUnpredCost
= Probability
.getCompl().scale(FUnpredCycles
* ScalingUpFactor
);
2064 UnpredCost
= TUnpredCost
+ FUnpredCost
;
2065 // When predicating assume that the first IT can be folded away but later
2066 // ones cost one cycle each
2067 if (Subtarget
.isThumb2() && TCycles
+ FCycles
> 4) {
2068 PredCost
+= ((TCycles
+ FCycles
- 4) / 4) * ScalingUpFactor
;
2071 unsigned TUnpredCost
= Probability
.scale(TCycles
* ScalingUpFactor
);
2072 unsigned FUnpredCost
=
2073 Probability
.getCompl().scale(FCycles
* ScalingUpFactor
);
2074 UnpredCost
= TUnpredCost
+ FUnpredCost
;
2075 UnpredCost
+= 1 * ScalingUpFactor
; // The branch itself
2076 UnpredCost
+= Subtarget
.getMispredictionPenalty() * ScalingUpFactor
/ 10;
2079 return PredCost
<= UnpredCost
;
2083 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction
&MF
,
2084 unsigned NumInsts
) const {
2085 // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
2086 // ARM has a condition code field in every predicable instruction, using it
2087 // doesn't change code size.
2088 return Subtarget
.isThumb2() ? divideCeil(NumInsts
, 4) * 2 : 0;
2092 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr
&MI
) const {
2093 // If this branch is likely to be folded into the comparison to form a
2094 // CB(N)Z, then removing it won't reduce code size at all, because that will
2095 // just replace the CB(N)Z with a CMP.
2096 if (MI
.getOpcode() == ARM::t2Bcc
&&
2097 findCMPToFoldIntoCBZ(&MI
, &getRegisterInfo()))
2100 unsigned Size
= getInstSizeInBytes(MI
);
2102 // For Thumb2, all branches are 32-bit instructions during the if conversion
2103 // pass, but may be replaced with 16-bit instructions during size reduction.
2104 // Since the branches considered by if conversion tend to be forward branches
2105 // over small basic blocks, they are very likely to be in range for the
2106 // narrow instructions, so we assume the final code size will be half what it
2108 if (Subtarget
.isThumb2())
2115 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock
&TMBB
,
2116 MachineBasicBlock
&FMBB
) const {
2117 // Reduce false anti-dependencies to let the target's out-of-order execution
2118 // engine do its thing.
2119 return Subtarget
.isProfitableToUnpredicate();
2122 /// getInstrPredicate - If instruction is predicated, returns its predicate
2123 /// condition, otherwise returns AL. It also returns the condition code
2124 /// register by reference.
2125 ARMCC::CondCodes
llvm::getInstrPredicate(const MachineInstr
&MI
,
2126 unsigned &PredReg
) {
2127 int PIdx
= MI
.findFirstPredOperandIdx();
2133 PredReg
= MI
.getOperand(PIdx
+1).getReg();
2134 return (ARMCC::CondCodes
)MI
.getOperand(PIdx
).getImm();
2137 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc
) {
2142 if (Opc
== ARM::t2B
)
2145 llvm_unreachable("Unknown unconditional branch opcode!");
2148 MachineInstr
*ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr
&MI
,
2151 unsigned OpIdx2
) const {
2152 switch (MI
.getOpcode()) {
2154 case ARM::t2MOVCCr
: {
2155 // MOVCC can be commuted by inverting the condition.
2156 unsigned PredReg
= 0;
2157 ARMCC::CondCodes CC
= getInstrPredicate(MI
, PredReg
);
2158 // MOVCC AL can't be inverted. Shouldn't happen.
2159 if (CC
== ARMCC::AL
|| PredReg
!= ARM::CPSR
)
2161 MachineInstr
*CommutedMI
=
2162 TargetInstrInfo::commuteInstructionImpl(MI
, NewMI
, OpIdx1
, OpIdx2
);
2165 // After swapping the MOVCC operands, also invert the condition.
2166 CommutedMI
->getOperand(CommutedMI
->findFirstPredOperandIdx())
2167 .setImm(ARMCC::getOppositeCondition(CC
));
2171 return TargetInstrInfo::commuteInstructionImpl(MI
, NewMI
, OpIdx1
, OpIdx2
);
2174 /// Identify instructions that can be folded into a MOVCC instruction, and
2175 /// return the defining instruction.
2177 ARMBaseInstrInfo::canFoldIntoMOVCC(unsigned Reg
, const MachineRegisterInfo
&MRI
,
2178 const TargetInstrInfo
*TII
) const {
2179 if (!Register::isVirtualRegister(Reg
))
2181 if (!MRI
.hasOneNonDBGUse(Reg
))
2183 MachineInstr
*MI
= MRI
.getVRegDef(Reg
);
2186 // Check if MI can be predicated and folded into the MOVCC.
2187 if (!isPredicable(*MI
))
2189 // Check if MI has any non-dead defs or physreg uses. This also detects
2190 // predicated instructions which will be reading CPSR.
2191 for (unsigned i
= 1, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2192 const MachineOperand
&MO
= MI
->getOperand(i
);
2193 // Reject frame index operands, PEI can't handle the predicated pseudos.
2194 if (MO
.isFI() || MO
.isCPI() || MO
.isJTI())
2198 // MI can't have any tied operands, that would conflict with predication.
2201 if (Register::isPhysicalRegister(MO
.getReg()))
2203 if (MO
.isDef() && !MO
.isDead())
2206 bool DontMoveAcrossStores
= true;
2207 if (!MI
->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores
))
2212 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr
&MI
,
2213 SmallVectorImpl
<MachineOperand
> &Cond
,
2214 unsigned &TrueOp
, unsigned &FalseOp
,
2215 bool &Optimizable
) const {
2216 assert((MI
.getOpcode() == ARM::MOVCCr
|| MI
.getOpcode() == ARM::t2MOVCCr
) &&
2217 "Unknown select instruction");
2222 // 3: Condition code.
2226 Cond
.push_back(MI
.getOperand(3));
2227 Cond
.push_back(MI
.getOperand(4));
2228 // We can always fold a def.
2234 ARMBaseInstrInfo::optimizeSelect(MachineInstr
&MI
,
2235 SmallPtrSetImpl
<MachineInstr
*> &SeenMIs
,
2236 bool PreferFalse
) const {
2237 assert((MI
.getOpcode() == ARM::MOVCCr
|| MI
.getOpcode() == ARM::t2MOVCCr
) &&
2238 "Unknown select instruction");
2239 MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
2240 MachineInstr
*DefMI
= canFoldIntoMOVCC(MI
.getOperand(2).getReg(), MRI
, this);
2241 bool Invert
= !DefMI
;
2243 DefMI
= canFoldIntoMOVCC(MI
.getOperand(1).getReg(), MRI
, this);
2247 // Find new register class to use.
2248 MachineOperand FalseReg
= MI
.getOperand(Invert
? 2 : 1);
2249 Register DestReg
= MI
.getOperand(0).getReg();
2250 const TargetRegisterClass
*PreviousClass
= MRI
.getRegClass(FalseReg
.getReg());
2251 if (!MRI
.constrainRegClass(DestReg
, PreviousClass
))
2254 // Create a new predicated version of DefMI.
2255 // Rfalse is the first use.
2256 MachineInstrBuilder NewMI
=
2257 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), DefMI
->getDesc(), DestReg
);
2259 // Copy all the DefMI operands, excluding its (null) predicate.
2260 const MCInstrDesc
&DefDesc
= DefMI
->getDesc();
2261 for (unsigned i
= 1, e
= DefDesc
.getNumOperands();
2262 i
!= e
&& !DefDesc
.OpInfo
[i
].isPredicate(); ++i
)
2263 NewMI
.add(DefMI
->getOperand(i
));
2265 unsigned CondCode
= MI
.getOperand(3).getImm();
2267 NewMI
.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode
)));
2269 NewMI
.addImm(CondCode
);
2270 NewMI
.add(MI
.getOperand(4));
2272 // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2273 if (NewMI
->hasOptionalDef())
2274 NewMI
.add(condCodeOp());
2276 // The output register value when the predicate is false is an implicit
2277 // register operand tied to the first def.
2278 // The tie makes the register allocator ensure the FalseReg is allocated the
2279 // same register as operand 0.
2280 FalseReg
.setImplicit();
2281 NewMI
.add(FalseReg
);
2282 NewMI
->tieOperands(0, NewMI
->getNumOperands() - 1);
2284 // Update SeenMIs set: register newly created MI and erase removed DefMI.
2285 SeenMIs
.insert(NewMI
);
2286 SeenMIs
.erase(DefMI
);
2288 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2289 // DefMI would be invalid when tranferred inside the loop. Checking for a
2290 // loop is expensive, but at least remove kill flags if they are in different
2292 if (DefMI
->getParent() != MI
.getParent())
2293 NewMI
->clearKillInfo();
2295 // The caller will erase MI, but not DefMI.
2296 DefMI
->eraseFromParent();
2300 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2301 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2304 /// This will go away once we can teach tblgen how to set the optional CPSR def
2306 struct AddSubFlagsOpcodePair
{
2308 uint16_t MachineOpc
;
2311 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap
[] = {
2312 {ARM::ADDSri
, ARM::ADDri
},
2313 {ARM::ADDSrr
, ARM::ADDrr
},
2314 {ARM::ADDSrsi
, ARM::ADDrsi
},
2315 {ARM::ADDSrsr
, ARM::ADDrsr
},
2317 {ARM::SUBSri
, ARM::SUBri
},
2318 {ARM::SUBSrr
, ARM::SUBrr
},
2319 {ARM::SUBSrsi
, ARM::SUBrsi
},
2320 {ARM::SUBSrsr
, ARM::SUBrsr
},
2322 {ARM::RSBSri
, ARM::RSBri
},
2323 {ARM::RSBSrsi
, ARM::RSBrsi
},
2324 {ARM::RSBSrsr
, ARM::RSBrsr
},
2326 {ARM::tADDSi3
, ARM::tADDi3
},
2327 {ARM::tADDSi8
, ARM::tADDi8
},
2328 {ARM::tADDSrr
, ARM::tADDrr
},
2329 {ARM::tADCS
, ARM::tADC
},
2331 {ARM::tSUBSi3
, ARM::tSUBi3
},
2332 {ARM::tSUBSi8
, ARM::tSUBi8
},
2333 {ARM::tSUBSrr
, ARM::tSUBrr
},
2334 {ARM::tSBCS
, ARM::tSBC
},
2335 {ARM::tRSBS
, ARM::tRSB
},
2336 {ARM::tLSLSri
, ARM::tLSLri
},
2338 {ARM::t2ADDSri
, ARM::t2ADDri
},
2339 {ARM::t2ADDSrr
, ARM::t2ADDrr
},
2340 {ARM::t2ADDSrs
, ARM::t2ADDrs
},
2342 {ARM::t2SUBSri
, ARM::t2SUBri
},
2343 {ARM::t2SUBSrr
, ARM::t2SUBrr
},
2344 {ARM::t2SUBSrs
, ARM::t2SUBrs
},
2346 {ARM::t2RSBSri
, ARM::t2RSBri
},
2347 {ARM::t2RSBSrs
, ARM::t2RSBrs
},
2350 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc
) {
2351 for (unsigned i
= 0, e
= array_lengthof(AddSubFlagsOpcodeMap
); i
!= e
; ++i
)
2352 if (OldOpc
== AddSubFlagsOpcodeMap
[i
].PseudoOpc
)
2353 return AddSubFlagsOpcodeMap
[i
].MachineOpc
;
2357 void llvm::emitARMRegPlusImmediate(MachineBasicBlock
&MBB
,
2358 MachineBasicBlock::iterator
&MBBI
,
2359 const DebugLoc
&dl
, unsigned DestReg
,
2360 unsigned BaseReg
, int NumBytes
,
2361 ARMCC::CondCodes Pred
, unsigned PredReg
,
2362 const ARMBaseInstrInfo
&TII
,
2364 if (NumBytes
== 0 && DestReg
!= BaseReg
) {
2365 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::MOVr
), DestReg
)
2366 .addReg(BaseReg
, RegState::Kill
)
2367 .add(predOps(Pred
, PredReg
))
2369 .setMIFlags(MIFlags
);
2373 bool isSub
= NumBytes
< 0;
2374 if (isSub
) NumBytes
= -NumBytes
;
2377 unsigned RotAmt
= ARM_AM::getSOImmValRotate(NumBytes
);
2378 unsigned ThisVal
= NumBytes
& ARM_AM::rotr32(0xFF, RotAmt
);
2379 assert(ThisVal
&& "Didn't extract field correctly");
2381 // We will handle these bits from offset, clear them.
2382 NumBytes
&= ~ThisVal
;
2384 assert(ARM_AM::getSOImmVal(ThisVal
) != -1 && "Bit extraction didn't work?");
2386 // Build the new ADD / SUB.
2387 unsigned Opc
= isSub
? ARM::SUBri
: ARM::ADDri
;
2388 BuildMI(MBB
, MBBI
, dl
, TII
.get(Opc
), DestReg
)
2389 .addReg(BaseReg
, RegState::Kill
)
2391 .add(predOps(Pred
, PredReg
))
2393 .setMIFlags(MIFlags
);
2398 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget
&Subtarget
,
2399 MachineFunction
&MF
, MachineInstr
*MI
,
2400 unsigned NumBytes
) {
2401 // This optimisation potentially adds lots of load and store
2402 // micro-operations, it's only really a great benefit to code-size.
2403 if (!Subtarget
.hasMinSize())
2406 // If only one register is pushed/popped, LLVM can use an LDR/STR
2407 // instead. We can't modify those so make sure we're dealing with an
2408 // instruction we understand.
2409 bool IsPop
= isPopOpcode(MI
->getOpcode());
2410 bool IsPush
= isPushOpcode(MI
->getOpcode());
2411 if (!IsPush
&& !IsPop
)
2414 bool IsVFPPushPop
= MI
->getOpcode() == ARM::VSTMDDB_UPD
||
2415 MI
->getOpcode() == ARM::VLDMDIA_UPD
;
2416 bool IsT1PushPop
= MI
->getOpcode() == ARM::tPUSH
||
2417 MI
->getOpcode() == ARM::tPOP
||
2418 MI
->getOpcode() == ARM::tPOP_RET
;
2420 assert((IsT1PushPop
|| (MI
->getOperand(0).getReg() == ARM::SP
&&
2421 MI
->getOperand(1).getReg() == ARM::SP
)) &&
2422 "trying to fold sp update into non-sp-updating push/pop");
2424 // The VFP push & pop act on D-registers, so we can only fold an adjustment
2425 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2426 // if this is violated.
2427 if (NumBytes
% (IsVFPPushPop
? 8 : 4) != 0)
2430 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2431 // pred) so the list starts at 4. Thumb1 starts after the predicate.
2432 int RegListIdx
= IsT1PushPop
? 2 : 4;
2434 // Calculate the space we'll need in terms of registers.
2435 unsigned RegsNeeded
;
2436 const TargetRegisterClass
*RegClass
;
2438 RegsNeeded
= NumBytes
/ 8;
2439 RegClass
= &ARM::DPRRegClass
;
2441 RegsNeeded
= NumBytes
/ 4;
2442 RegClass
= &ARM::GPRRegClass
;
2445 // We're going to have to strip all list operands off before
2446 // re-adding them since the order matters, so save the existing ones
2448 SmallVector
<MachineOperand
, 4> RegList
;
2450 // We're also going to need the first register transferred by this
2451 // instruction, which won't necessarily be the first register in the list.
2452 unsigned FirstRegEnc
= -1;
2454 const TargetRegisterInfo
*TRI
= MF
.getRegInfo().getTargetRegisterInfo();
2455 for (int i
= MI
->getNumOperands() - 1; i
>= RegListIdx
; --i
) {
2456 MachineOperand
&MO
= MI
->getOperand(i
);
2457 RegList
.push_back(MO
);
2459 if (MO
.isReg() && !MO
.isImplicit() &&
2460 TRI
->getEncodingValue(MO
.getReg()) < FirstRegEnc
)
2461 FirstRegEnc
= TRI
->getEncodingValue(MO
.getReg());
2464 const MCPhysReg
*CSRegs
= TRI
->getCalleeSavedRegs(&MF
);
2466 // Now try to find enough space in the reglist to allocate NumBytes.
2467 for (int CurRegEnc
= FirstRegEnc
- 1; CurRegEnc
>= 0 && RegsNeeded
;
2469 unsigned CurReg
= RegClass
->getRegister(CurRegEnc
);
2470 if (IsT1PushPop
&& CurRegEnc
> TRI
->getEncodingValue(ARM::R7
))
2473 // Pushing any register is completely harmless, mark the register involved
2474 // as undef since we don't care about its value and must not restore it
2475 // during stack unwinding.
2476 RegList
.push_back(MachineOperand::CreateReg(CurReg
, false, false,
2477 false, false, true));
2482 // However, we can only pop an extra register if it's not live. For
2483 // registers live within the function we might clobber a return value
2484 // register; the other way a register can be live here is if it's
2486 if (isCalleeSavedRegister(CurReg
, CSRegs
) ||
2487 MI
->getParent()->computeRegisterLiveness(TRI
, CurReg
, MI
) !=
2488 MachineBasicBlock::LQR_Dead
) {
2489 // VFP pops don't allow holes in the register list, so any skip is fatal
2490 // for our transformation. GPR pops do, so we should just keep looking.
2497 // Mark the unimportant registers as <def,dead> in the POP.
2498 RegList
.push_back(MachineOperand::CreateReg(CurReg
, true, false, false,
2506 // Finally we know we can profitably perform the optimisation so go
2507 // ahead: strip all existing registers off and add them back again
2508 // in the right order.
2509 for (int i
= MI
->getNumOperands() - 1; i
>= RegListIdx
; --i
)
2510 MI
->RemoveOperand(i
);
2512 // Add the complete list back in.
2513 MachineInstrBuilder
MIB(MF
, &*MI
);
2514 for (int i
= RegList
.size() - 1; i
>= 0; --i
)
2515 MIB
.add(RegList
[i
]);
2520 bool llvm::rewriteARMFrameIndex(MachineInstr
&MI
, unsigned FrameRegIdx
,
2521 unsigned FrameReg
, int &Offset
,
2522 const ARMBaseInstrInfo
&TII
) {
2523 unsigned Opcode
= MI
.getOpcode();
2524 const MCInstrDesc
&Desc
= MI
.getDesc();
2525 unsigned AddrMode
= (Desc
.TSFlags
& ARMII::AddrModeMask
);
2528 // Memory operands in inline assembly always use AddrMode2.
2529 if (Opcode
== ARM::INLINEASM
|| Opcode
== ARM::INLINEASM_BR
)
2530 AddrMode
= ARMII::AddrMode2
;
2532 if (Opcode
== ARM::ADDri
) {
2533 Offset
+= MI
.getOperand(FrameRegIdx
+1).getImm();
2535 // Turn it into a move.
2536 MI
.setDesc(TII
.get(ARM::MOVr
));
2537 MI
.getOperand(FrameRegIdx
).ChangeToRegister(FrameReg
, false);
2538 MI
.RemoveOperand(FrameRegIdx
+1);
2541 } else if (Offset
< 0) {
2544 MI
.setDesc(TII
.get(ARM::SUBri
));
2547 // Common case: small offset, fits into instruction.
2548 if (ARM_AM::getSOImmVal(Offset
) != -1) {
2549 // Replace the FrameIndex with sp / fp
2550 MI
.getOperand(FrameRegIdx
).ChangeToRegister(FrameReg
, false);
2551 MI
.getOperand(FrameRegIdx
+1).ChangeToImmediate(Offset
);
2556 // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2558 unsigned RotAmt
= ARM_AM::getSOImmValRotate(Offset
);
2559 unsigned ThisImmVal
= Offset
& ARM_AM::rotr32(0xFF, RotAmt
);
2561 // We will handle these bits from offset, clear them.
2562 Offset
&= ~ThisImmVal
;
2564 // Get the properly encoded SOImmVal field.
2565 assert(ARM_AM::getSOImmVal(ThisImmVal
) != -1 &&
2566 "Bit extraction didn't work?");
2567 MI
.getOperand(FrameRegIdx
+1).ChangeToImmediate(ThisImmVal
);
2569 unsigned ImmIdx
= 0;
2571 unsigned NumBits
= 0;
2574 case ARMII::AddrMode_i12
:
2575 ImmIdx
= FrameRegIdx
+ 1;
2576 InstrOffs
= MI
.getOperand(ImmIdx
).getImm();
2579 case ARMII::AddrMode2
:
2580 ImmIdx
= FrameRegIdx
+2;
2581 InstrOffs
= ARM_AM::getAM2Offset(MI
.getOperand(ImmIdx
).getImm());
2582 if (ARM_AM::getAM2Op(MI
.getOperand(ImmIdx
).getImm()) == ARM_AM::sub
)
2586 case ARMII::AddrMode3
:
2587 ImmIdx
= FrameRegIdx
+2;
2588 InstrOffs
= ARM_AM::getAM3Offset(MI
.getOperand(ImmIdx
).getImm());
2589 if (ARM_AM::getAM3Op(MI
.getOperand(ImmIdx
).getImm()) == ARM_AM::sub
)
2593 case ARMII::AddrMode4
:
2594 case ARMII::AddrMode6
:
2595 // Can't fold any offset even if it's zero.
2597 case ARMII::AddrMode5
:
2598 ImmIdx
= FrameRegIdx
+1;
2599 InstrOffs
= ARM_AM::getAM5Offset(MI
.getOperand(ImmIdx
).getImm());
2600 if (ARM_AM::getAM5Op(MI
.getOperand(ImmIdx
).getImm()) == ARM_AM::sub
)
2605 case ARMII::AddrMode5FP16
:
2606 ImmIdx
= FrameRegIdx
+1;
2607 InstrOffs
= ARM_AM::getAM5Offset(MI
.getOperand(ImmIdx
).getImm());
2608 if (ARM_AM::getAM5Op(MI
.getOperand(ImmIdx
).getImm()) == ARM_AM::sub
)
2613 case ARMII::AddrModeT2_i7
:
2614 case ARMII::AddrModeT2_i7s2
:
2615 case ARMII::AddrModeT2_i7s4
:
2616 ImmIdx
= FrameRegIdx
+1;
2617 InstrOffs
= MI
.getOperand(ImmIdx
).getImm();
2619 Scale
= (AddrMode
== ARMII::AddrModeT2_i7s2
? 2 :
2620 AddrMode
== ARMII::AddrModeT2_i7s4
? 4 : 1);
2623 llvm_unreachable("Unsupported addressing mode!");
2626 Offset
+= InstrOffs
* Scale
;
2627 assert((Offset
& (Scale
-1)) == 0 && "Can't encode this offset!");
2633 // Attempt to fold address comp. if opcode has offset bits
2635 // Common case: small offset, fits into instruction.
2636 MachineOperand
&ImmOp
= MI
.getOperand(ImmIdx
);
2637 int ImmedOffset
= Offset
/ Scale
;
2638 unsigned Mask
= (1 << NumBits
) - 1;
2639 if ((unsigned)Offset
<= Mask
* Scale
) {
2640 // Replace the FrameIndex with sp
2641 MI
.getOperand(FrameRegIdx
).ChangeToRegister(FrameReg
, false);
2642 // FIXME: When addrmode2 goes away, this will simplify (like the
2643 // T2 version), as the LDR.i12 versions don't need the encoding
2644 // tricks for the offset value.
2646 if (AddrMode
== ARMII::AddrMode_i12
)
2647 ImmedOffset
= -ImmedOffset
;
2649 ImmedOffset
|= 1 << NumBits
;
2651 ImmOp
.ChangeToImmediate(ImmedOffset
);
2656 // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2657 ImmedOffset
= ImmedOffset
& Mask
;
2659 if (AddrMode
== ARMII::AddrMode_i12
)
2660 ImmedOffset
= -ImmedOffset
;
2662 ImmedOffset
|= 1 << NumBits
;
2664 ImmOp
.ChangeToImmediate(ImmedOffset
);
2665 Offset
&= ~(Mask
*Scale
);
2669 Offset
= (isSub
) ? -Offset
: Offset
;
2673 /// analyzeCompare - For a comparison instruction, return the source registers
2674 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2675 /// compares against in CmpValue. Return true if the comparison instruction
2676 /// can be analyzed.
2677 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr
&MI
, unsigned &SrcReg
,
2678 unsigned &SrcReg2
, int &CmpMask
,
2679 int &CmpValue
) const {
2680 switch (MI
.getOpcode()) {
2685 SrcReg
= MI
.getOperand(0).getReg();
2688 CmpValue
= MI
.getOperand(1).getImm();
2693 SrcReg
= MI
.getOperand(0).getReg();
2694 SrcReg2
= MI
.getOperand(1).getReg();
2700 SrcReg
= MI
.getOperand(0).getReg();
2702 CmpMask
= MI
.getOperand(1).getImm();
2710 /// isSuitableForMask - Identify a suitable 'and' instruction that
2711 /// operates on the given source register and applies the same mask
2712 /// as a 'tst' instruction. Provide a limited look-through for copies.
2713 /// When successful, MI will hold the found instruction.
2714 static bool isSuitableForMask(MachineInstr
*&MI
, unsigned SrcReg
,
2715 int CmpMask
, bool CommonUse
) {
2716 switch (MI
->getOpcode()) {
2719 if (CmpMask
!= MI
->getOperand(2).getImm())
2721 if (SrcReg
== MI
->getOperand(CommonUse
? 1 : 0).getReg())
2729 /// getSwappedCondition - assume the flags are set by MI(a,b), return
2730 /// the condition code if we modify the instructions such that flags are
2732 inline static ARMCC::CondCodes
getSwappedCondition(ARMCC::CondCodes CC
) {
2734 default: return ARMCC::AL
;
2735 case ARMCC::EQ
: return ARMCC::EQ
;
2736 case ARMCC::NE
: return ARMCC::NE
;
2737 case ARMCC::HS
: return ARMCC::LS
;
2738 case ARMCC::LO
: return ARMCC::HI
;
2739 case ARMCC::HI
: return ARMCC::LO
;
2740 case ARMCC::LS
: return ARMCC::HS
;
2741 case ARMCC::GE
: return ARMCC::LE
;
2742 case ARMCC::LT
: return ARMCC::GT
;
2743 case ARMCC::GT
: return ARMCC::LT
;
2744 case ARMCC::LE
: return ARMCC::GE
;
2748 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2749 /// the condition code if we modify the instructions such that flags are
2750 /// set by ADD(a,b,X).
2751 inline static ARMCC::CondCodes
getCmpToAddCondition(ARMCC::CondCodes CC
) {
2753 default: return ARMCC::AL
;
2754 case ARMCC::HS
: return ARMCC::LO
;
2755 case ARMCC::LO
: return ARMCC::HS
;
2756 case ARMCC::VS
: return ARMCC::VS
;
2757 case ARMCC::VC
: return ARMCC::VC
;
2761 /// isRedundantFlagInstr - check whether the first instruction, whose only
2762 /// purpose is to update flags, can be made redundant.
2763 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2764 /// CMPri can be made redundant by SUBri if the operands are the same.
2765 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2766 /// This function can be extended later on.
2767 inline static bool isRedundantFlagInstr(const MachineInstr
*CmpI
,
2768 unsigned SrcReg
, unsigned SrcReg2
,
2769 int ImmValue
, const MachineInstr
*OI
,
2771 if ((CmpI
->getOpcode() == ARM::CMPrr
|| CmpI
->getOpcode() == ARM::t2CMPrr
) &&
2772 (OI
->getOpcode() == ARM::SUBrr
|| OI
->getOpcode() == ARM::t2SUBrr
) &&
2773 ((OI
->getOperand(1).getReg() == SrcReg
&&
2774 OI
->getOperand(2).getReg() == SrcReg2
) ||
2775 (OI
->getOperand(1).getReg() == SrcReg2
&&
2776 OI
->getOperand(2).getReg() == SrcReg
))) {
2781 if (CmpI
->getOpcode() == ARM::tCMPr
&& OI
->getOpcode() == ARM::tSUBrr
&&
2782 ((OI
->getOperand(2).getReg() == SrcReg
&&
2783 OI
->getOperand(3).getReg() == SrcReg2
) ||
2784 (OI
->getOperand(2).getReg() == SrcReg2
&&
2785 OI
->getOperand(3).getReg() == SrcReg
))) {
2790 if ((CmpI
->getOpcode() == ARM::CMPri
|| CmpI
->getOpcode() == ARM::t2CMPri
) &&
2791 (OI
->getOpcode() == ARM::SUBri
|| OI
->getOpcode() == ARM::t2SUBri
) &&
2792 OI
->getOperand(1).getReg() == SrcReg
&&
2793 OI
->getOperand(2).getImm() == ImmValue
) {
2798 if (CmpI
->getOpcode() == ARM::tCMPi8
&&
2799 (OI
->getOpcode() == ARM::tSUBi8
|| OI
->getOpcode() == ARM::tSUBi3
) &&
2800 OI
->getOperand(2).getReg() == SrcReg
&&
2801 OI
->getOperand(3).getImm() == ImmValue
) {
2806 if ((CmpI
->getOpcode() == ARM::CMPrr
|| CmpI
->getOpcode() == ARM::t2CMPrr
) &&
2807 (OI
->getOpcode() == ARM::ADDrr
|| OI
->getOpcode() == ARM::t2ADDrr
||
2808 OI
->getOpcode() == ARM::ADDri
|| OI
->getOpcode() == ARM::t2ADDri
) &&
2809 OI
->getOperand(0).isReg() && OI
->getOperand(1).isReg() &&
2810 OI
->getOperand(0).getReg() == SrcReg
&&
2811 OI
->getOperand(1).getReg() == SrcReg2
) {
2816 if (CmpI
->getOpcode() == ARM::tCMPr
&&
2817 (OI
->getOpcode() == ARM::tADDi3
|| OI
->getOpcode() == ARM::tADDi8
||
2818 OI
->getOpcode() == ARM::tADDrr
) &&
2819 OI
->getOperand(0).getReg() == SrcReg
&&
2820 OI
->getOperand(2).getReg() == SrcReg2
) {
2828 static bool isOptimizeCompareCandidate(MachineInstr
*MI
, bool &IsThumb1
) {
2829 switch (MI
->getOpcode()) {
2830 default: return false;
2896 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2897 /// comparison into one that sets the zero bit in the flags register;
2898 /// Remove a redundant Compare instruction if an earlier instruction can set the
2899 /// flags in the same way as Compare.
2900 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2901 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2902 /// condition code of instructions which use the flags.
2903 bool ARMBaseInstrInfo::optimizeCompareInstr(
2904 MachineInstr
&CmpInstr
, unsigned SrcReg
, unsigned SrcReg2
, int CmpMask
,
2905 int CmpValue
, const MachineRegisterInfo
*MRI
) const {
2906 // Get the unique definition of SrcReg.
2907 MachineInstr
*MI
= MRI
->getUniqueVRegDef(SrcReg
);
2908 if (!MI
) return false;
2910 // Masked compares sometimes use the same register as the corresponding 'and'.
2911 if (CmpMask
!= ~0) {
2912 if (!isSuitableForMask(MI
, SrcReg
, CmpMask
, false) || isPredicated(*MI
)) {
2914 for (MachineRegisterInfo::use_instr_iterator
2915 UI
= MRI
->use_instr_begin(SrcReg
), UE
= MRI
->use_instr_end();
2917 if (UI
->getParent() != CmpInstr
.getParent())
2919 MachineInstr
*PotentialAND
= &*UI
;
2920 if (!isSuitableForMask(PotentialAND
, SrcReg
, CmpMask
, true) ||
2921 isPredicated(*PotentialAND
))
2926 if (!MI
) return false;
2930 // Get ready to iterate backward from CmpInstr.
2931 MachineBasicBlock::iterator I
= CmpInstr
, E
= MI
,
2932 B
= CmpInstr
.getParent()->begin();
2934 // Early exit if CmpInstr is at the beginning of the BB.
2935 if (I
== B
) return false;
2937 // There are two possible candidates which can be changed to set CPSR:
2938 // One is MI, the other is a SUB or ADD instruction.
2939 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
2940 // ADDr[ri](r1, r2, X).
2941 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2942 MachineInstr
*SubAdd
= nullptr;
2944 // MI is not a candidate for CMPrr.
2946 else if (MI
->getParent() != CmpInstr
.getParent() || CmpValue
!= 0) {
2947 // Conservatively refuse to convert an instruction which isn't in the same
2948 // BB as the comparison.
2949 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
2950 // Thus we cannot return here.
2951 if (CmpInstr
.getOpcode() == ARM::CMPri
||
2952 CmpInstr
.getOpcode() == ARM::t2CMPri
||
2953 CmpInstr
.getOpcode() == ARM::tCMPi8
)
2959 bool IsThumb1
= false;
2960 if (MI
&& !isOptimizeCompareCandidate(MI
, IsThumb1
))
2963 // We also want to do this peephole for cases like this: if (a*b == 0),
2964 // and optimise away the CMP instruction from the generated code sequence:
2965 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
2966 // resulting from the select instruction, but these MOVS instructions for
2967 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
2968 // However, if we only have MOVS instructions in between the CMP and the
2969 // other instruction (the MULS in this example), then the CPSR is dead so we
2970 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
2971 // reordering and then continue the analysis hoping we can eliminate the
2972 // CMP. This peephole works on the vregs, so is still in SSA form. As a
2973 // consequence, the movs won't redefine/kill the MUL operands which would
2974 // make this reordering illegal.
2975 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2976 if (MI
&& IsThumb1
) {
2978 if (I
!= E
&& !MI
->readsRegister(ARM::CPSR
, TRI
)) {
2979 bool CanReorder
= true;
2980 for (; I
!= E
; --I
) {
2981 if (I
->getOpcode() != ARM::tMOVi8
) {
2987 MI
= MI
->removeFromParent();
2989 CmpInstr
.getParent()->insert(E
, MI
);
2996 // Check that CPSR isn't set between the comparison instruction and the one we
2997 // want to change. At the same time, search for SubAdd.
2998 bool SubAddIsThumb1
= false;
3000 const MachineInstr
&Instr
= *--I
;
3002 // Check whether CmpInstr can be made redundant by the current instruction.
3003 if (isRedundantFlagInstr(&CmpInstr
, SrcReg
, SrcReg2
, CmpValue
, &Instr
,
3009 // Allow E (which was initially MI) to be SubAdd but do not search before E.
3013 if (Instr
.modifiesRegister(ARM::CPSR
, TRI
) ||
3014 Instr
.readsRegister(ARM::CPSR
, TRI
))
3015 // This instruction modifies or uses CPSR after the one we want to
3016 // change. We can't do this transformation.
3020 // In some cases, we scan the use-list of an instruction for an AND;
3021 // that AND is in the same BB, but may not be scheduled before the
3022 // corresponding TST. In that case, bail out.
3024 // FIXME: We could try to reschedule the AND.
3029 // Return false if no candidates exist.
3033 // If we found a SubAdd, use it as it will be closer to the CMP
3036 IsThumb1
= SubAddIsThumb1
;
3039 // We can't use a predicated instruction - it doesn't always write the flags.
3040 if (isPredicated(*MI
))
3043 // Scan forward for the use of CPSR
3044 // When checking against MI: if it's a conditional code that requires
3045 // checking of the V bit or C bit, then this is not safe to do.
3046 // It is safe to remove CmpInstr if CPSR is redefined or killed.
3047 // If we are done with the basic block, we need to check whether CPSR is
3049 SmallVector
<std::pair
<MachineOperand
*, ARMCC::CondCodes
>, 4>
3051 bool isSafe
= false;
3053 E
= CmpInstr
.getParent()->end();
3054 while (!isSafe
&& ++I
!= E
) {
3055 const MachineInstr
&Instr
= *I
;
3056 for (unsigned IO
= 0, EO
= Instr
.getNumOperands();
3057 !isSafe
&& IO
!= EO
; ++IO
) {
3058 const MachineOperand
&MO
= Instr
.getOperand(IO
);
3059 if (MO
.isRegMask() && MO
.clobbersPhysReg(ARM::CPSR
)) {
3063 if (!MO
.isReg() || MO
.getReg() != ARM::CPSR
)
3069 // Condition code is after the operand before CPSR except for VSELs.
3070 ARMCC::CondCodes CC
;
3071 bool IsInstrVSel
= true;
3072 switch (Instr
.getOpcode()) {
3074 IsInstrVSel
= false;
3075 CC
= (ARMCC::CondCodes
)Instr
.getOperand(IO
- 1).getImm();
3100 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3101 // on CMP needs to be updated to be based on SUB.
3102 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3103 // needs to be modified.
3104 // Push the condition code operands to OperandsToUpdate.
3105 // If it is safe to remove CmpInstr, the condition code of these
3106 // operands will be modified.
3107 unsigned Opc
= SubAdd
->getOpcode();
3108 bool IsSub
= Opc
== ARM::SUBrr
|| Opc
== ARM::t2SUBrr
||
3109 Opc
== ARM::SUBri
|| Opc
== ARM::t2SUBri
||
3110 Opc
== ARM::tSUBrr
|| Opc
== ARM::tSUBi3
||
3112 unsigned OpI
= Opc
!= ARM::tSUBrr
? 1 : 2;
3114 (SrcReg2
!= 0 && SubAdd
->getOperand(OpI
).getReg() == SrcReg2
&&
3115 SubAdd
->getOperand(OpI
+ 1).getReg() == SrcReg
)) {
3116 // VSel doesn't support condition code update.
3119 // Ensure we can swap the condition.
3120 ARMCC::CondCodes NewCC
= (IsSub
? getSwappedCondition(CC
) : getCmpToAddCondition(CC
));
3121 if (NewCC
== ARMCC::AL
)
3123 OperandsToUpdate
.push_back(
3124 std::make_pair(&((*I
).getOperand(IO
- 1)), NewCC
));
3127 // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3129 case ARMCC::EQ
: // Z
3130 case ARMCC::NE
: // Z
3131 case ARMCC::MI
: // N
3132 case ARMCC::PL
: // N
3133 case ARMCC::AL
: // none
3134 // CPSR can be used multiple times, we should continue.
3136 case ARMCC::HS
: // C
3137 case ARMCC::LO
: // C
3138 case ARMCC::VS
: // V
3139 case ARMCC::VC
: // V
3140 case ARMCC::HI
: // C Z
3141 case ARMCC::LS
: // C Z
3142 case ARMCC::GE
: // N V
3143 case ARMCC::LT
: // N V
3144 case ARMCC::GT
: // Z N V
3145 case ARMCC::LE
: // Z N V
3146 // The instruction uses the V bit or C bit which is not safe.
3153 // If CPSR is not killed nor re-defined, we should check whether it is
3154 // live-out. If it is live-out, do not optimize.
3156 MachineBasicBlock
*MBB
= CmpInstr
.getParent();
3157 for (MachineBasicBlock::succ_iterator SI
= MBB
->succ_begin(),
3158 SE
= MBB
->succ_end(); SI
!= SE
; ++SI
)
3159 if ((*SI
)->isLiveIn(ARM::CPSR
))
3163 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3164 // set CPSR so this is represented as an explicit output)
3166 MI
->getOperand(5).setReg(ARM::CPSR
);
3167 MI
->getOperand(5).setIsDef(true);
3169 assert(!isPredicated(*MI
) && "Can't use flags from predicated instruction");
3170 CmpInstr
.eraseFromParent();
3172 // Modify the condition code of operands in OperandsToUpdate.
3173 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3174 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3175 for (unsigned i
= 0, e
= OperandsToUpdate
.size(); i
< e
; i
++)
3176 OperandsToUpdate
[i
].first
->setImm(OperandsToUpdate
[i
].second
);
3178 MI
->clearRegisterDeads(ARM::CPSR
);
3183 bool ARMBaseInstrInfo::shouldSink(const MachineInstr
&MI
) const {
3184 // Do not sink MI if it might be used to optimize a redundant compare.
3185 // We heuristically only look at the instruction immediately following MI to
3186 // avoid potentially searching the entire basic block.
3187 if (isPredicated(MI
))
3189 MachineBasicBlock::const_iterator Next
= &MI
;
3191 unsigned SrcReg
, SrcReg2
;
3192 int CmpMask
, CmpValue
;
3194 if (Next
!= MI
.getParent()->end() &&
3195 analyzeCompare(*Next
, SrcReg
, SrcReg2
, CmpMask
, CmpValue
) &&
3196 isRedundantFlagInstr(&*Next
, SrcReg
, SrcReg2
, CmpValue
, &MI
, IsThumb1
))
3201 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr
&UseMI
, MachineInstr
&DefMI
,
3203 MachineRegisterInfo
*MRI
) const {
3204 // Fold large immediates into add, sub, or, xor.
3205 unsigned DefOpc
= DefMI
.getOpcode();
3206 if (DefOpc
!= ARM::t2MOVi32imm
&& DefOpc
!= ARM::MOVi32imm
)
3208 if (!DefMI
.getOperand(1).isImm())
3209 // Could be t2MOVi32imm @xx
3212 if (!MRI
->hasOneNonDBGUse(Reg
))
3215 const MCInstrDesc
&DefMCID
= DefMI
.getDesc();
3216 if (DefMCID
.hasOptionalDef()) {
3217 unsigned NumOps
= DefMCID
.getNumOperands();
3218 const MachineOperand
&MO
= DefMI
.getOperand(NumOps
- 1);
3219 if (MO
.getReg() == ARM::CPSR
&& !MO
.isDead())
3220 // If DefMI defines CPSR and it is not dead, it's obviously not safe
3225 const MCInstrDesc
&UseMCID
= UseMI
.getDesc();
3226 if (UseMCID
.hasOptionalDef()) {
3227 unsigned NumOps
= UseMCID
.getNumOperands();
3228 if (UseMI
.getOperand(NumOps
- 1).getReg() == ARM::CPSR
)
3229 // If the instruction sets the flag, do not attempt this optimization
3230 // since it may change the semantics of the code.
3234 unsigned UseOpc
= UseMI
.getOpcode();
3235 unsigned NewUseOpc
= 0;
3236 uint32_t ImmVal
= (uint32_t)DefMI
.getOperand(1).getImm();
3237 uint32_t SOImmValV1
= 0, SOImmValV2
= 0;
3238 bool Commute
= false;
3240 default: return false;
3248 case ARM::t2EORrr
: {
3249 Commute
= UseMI
.getOperand(2).getReg() != Reg
;
3254 if (UseOpc
== ARM::SUBrr
&& Commute
)
3257 // ADD/SUB are special because they're essentially the same operation, so
3258 // we can handle a larger range of immediates.
3259 if (ARM_AM::isSOImmTwoPartVal(ImmVal
))
3260 NewUseOpc
= UseOpc
== ARM::ADDrr
? ARM::ADDri
: ARM::SUBri
;
3261 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal
)) {
3263 NewUseOpc
= UseOpc
== ARM::ADDrr
? ARM::SUBri
: ARM::ADDri
;
3266 SOImmValV1
= (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal
);
3267 SOImmValV2
= (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal
);
3271 if (!ARM_AM::isSOImmTwoPartVal(ImmVal
))
3273 SOImmValV1
= (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal
);
3274 SOImmValV2
= (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal
);
3277 case ARM::ORRrr
: NewUseOpc
= ARM::ORRri
; break;
3278 case ARM::EORrr
: NewUseOpc
= ARM::EORri
; break;
3283 if (UseOpc
== ARM::t2SUBrr
&& Commute
)
3286 // ADD/SUB are special because they're essentially the same operation, so
3287 // we can handle a larger range of immediates.
3288 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal
))
3289 NewUseOpc
= UseOpc
== ARM::t2ADDrr
? ARM::t2ADDri
: ARM::t2SUBri
;
3290 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal
)) {
3292 NewUseOpc
= UseOpc
== ARM::t2ADDrr
? ARM::t2SUBri
: ARM::t2ADDri
;
3295 SOImmValV1
= (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal
);
3296 SOImmValV2
= (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal
);
3300 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal
))
3302 SOImmValV1
= (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal
);
3303 SOImmValV2
= (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal
);
3306 case ARM::t2ORRrr
: NewUseOpc
= ARM::t2ORRri
; break;
3307 case ARM::t2EORrr
: NewUseOpc
= ARM::t2EORri
; break;
3314 unsigned OpIdx
= Commute
? 2 : 1;
3315 Register Reg1
= UseMI
.getOperand(OpIdx
).getReg();
3316 bool isKill
= UseMI
.getOperand(OpIdx
).isKill();
3317 Register NewReg
= MRI
->createVirtualRegister(MRI
->getRegClass(Reg
));
3318 BuildMI(*UseMI
.getParent(), UseMI
, UseMI
.getDebugLoc(), get(NewUseOpc
),
3320 .addReg(Reg1
, getKillRegState(isKill
))
3322 .add(predOps(ARMCC::AL
))
3324 UseMI
.setDesc(get(NewUseOpc
));
3325 UseMI
.getOperand(1).setReg(NewReg
);
3326 UseMI
.getOperand(1).setIsKill();
3327 UseMI
.getOperand(2).ChangeToImmediate(SOImmValV2
);
3328 DefMI
.eraseFromParent();
3332 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData
*ItinData
,
3333 const MachineInstr
&MI
) {
3334 switch (MI
.getOpcode()) {
3336 const MCInstrDesc
&Desc
= MI
.getDesc();
3337 int UOps
= ItinData
->getNumMicroOps(Desc
.getSchedClass());
3338 assert(UOps
>= 0 && "bad # UOps");
3346 unsigned ShOpVal
= MI
.getOperand(3).getImm();
3347 bool isSub
= ARM_AM::getAM2Op(ShOpVal
) == ARM_AM::sub
;
3348 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
3351 ((ShImm
== 1 || ShImm
== 2 || ShImm
== 3) &&
3352 ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
)))
3359 if (!MI
.getOperand(2).getReg())
3362 unsigned ShOpVal
= MI
.getOperand(3).getImm();
3363 bool isSub
= ARM_AM::getAM2Op(ShOpVal
) == ARM_AM::sub
;
3364 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
3367 ((ShImm
== 1 || ShImm
== 2 || ShImm
== 3) &&
3368 ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
)))
3375 return (ARM_AM::getAM3Op(MI
.getOperand(3).getImm()) == ARM_AM::sub
) ? 3 : 2;
3377 case ARM::LDRSB_POST
:
3378 case ARM::LDRSH_POST
: {
3379 Register Rt
= MI
.getOperand(0).getReg();
3380 Register Rm
= MI
.getOperand(3).getReg();
3381 return (Rt
== Rm
) ? 4 : 3;
3384 case ARM::LDR_PRE_REG
:
3385 case ARM::LDRB_PRE_REG
: {
3386 Register Rt
= MI
.getOperand(0).getReg();
3387 Register Rm
= MI
.getOperand(3).getReg();
3390 unsigned ShOpVal
= MI
.getOperand(4).getImm();
3391 bool isSub
= ARM_AM::getAM2Op(ShOpVal
) == ARM_AM::sub
;
3392 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
3395 ((ShImm
== 1 || ShImm
== 2 || ShImm
== 3) &&
3396 ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
)))
3401 case ARM::STR_PRE_REG
:
3402 case ARM::STRB_PRE_REG
: {
3403 unsigned ShOpVal
= MI
.getOperand(4).getImm();
3404 bool isSub
= ARM_AM::getAM2Op(ShOpVal
) == ARM_AM::sub
;
3405 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
3408 ((ShImm
== 1 || ShImm
== 2 || ShImm
== 3) &&
3409 ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
)))
3415 case ARM::STRH_PRE
: {
3416 Register Rt
= MI
.getOperand(0).getReg();
3417 Register Rm
= MI
.getOperand(3).getReg();
3422 return (ARM_AM::getAM3Op(MI
.getOperand(4).getImm()) == ARM_AM::sub
) ? 3 : 2;
3425 case ARM::LDR_POST_REG
:
3426 case ARM::LDRB_POST_REG
:
3427 case ARM::LDRH_POST
: {
3428 Register Rt
= MI
.getOperand(0).getReg();
3429 Register Rm
= MI
.getOperand(3).getReg();
3430 return (Rt
== Rm
) ? 3 : 2;
3433 case ARM::LDR_PRE_IMM
:
3434 case ARM::LDRB_PRE_IMM
:
3435 case ARM::LDR_POST_IMM
:
3436 case ARM::LDRB_POST_IMM
:
3437 case ARM::STRB_POST_IMM
:
3438 case ARM::STRB_POST_REG
:
3439 case ARM::STRB_PRE_IMM
:
3440 case ARM::STRH_POST
:
3441 case ARM::STR_POST_IMM
:
3442 case ARM::STR_POST_REG
:
3443 case ARM::STR_PRE_IMM
:
3446 case ARM::LDRSB_PRE
:
3447 case ARM::LDRSH_PRE
: {
3448 Register Rm
= MI
.getOperand(3).getReg();
3451 Register Rt
= MI
.getOperand(0).getReg();
3454 unsigned ShOpVal
= MI
.getOperand(4).getImm();
3455 bool isSub
= ARM_AM::getAM2Op(ShOpVal
) == ARM_AM::sub
;
3456 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
3459 ((ShImm
== 1 || ShImm
== 2 || ShImm
== 3) &&
3460 ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
)))
3466 Register Rt
= MI
.getOperand(0).getReg();
3467 Register Rn
= MI
.getOperand(2).getReg();
3468 Register Rm
= MI
.getOperand(3).getReg();
3470 return (ARM_AM::getAM3Op(MI
.getOperand(4).getImm()) == ARM_AM::sub
) ? 4
3472 return (Rt
== Rn
) ? 3 : 2;
3476 Register Rm
= MI
.getOperand(3).getReg();
3478 return (ARM_AM::getAM3Op(MI
.getOperand(4).getImm()) == ARM_AM::sub
) ? 4
3483 case ARM::LDRD_POST
:
3484 case ARM::t2LDRD_POST
:
3487 case ARM::STRD_POST
:
3488 case ARM::t2STRD_POST
:
3491 case ARM::LDRD_PRE
: {
3492 Register Rt
= MI
.getOperand(0).getReg();
3493 Register Rn
= MI
.getOperand(3).getReg();
3494 Register Rm
= MI
.getOperand(4).getReg();
3496 return (ARM_AM::getAM3Op(MI
.getOperand(5).getImm()) == ARM_AM::sub
) ? 5
3498 return (Rt
== Rn
) ? 4 : 3;
3501 case ARM::t2LDRD_PRE
: {
3502 Register Rt
= MI
.getOperand(0).getReg();
3503 Register Rn
= MI
.getOperand(3).getReg();
3504 return (Rt
== Rn
) ? 4 : 3;
3507 case ARM::STRD_PRE
: {
3508 Register Rm
= MI
.getOperand(4).getReg();
3510 return (ARM_AM::getAM3Op(MI
.getOperand(5).getImm()) == ARM_AM::sub
) ? 5
3515 case ARM::t2STRD_PRE
:
3518 case ARM::t2LDR_POST
:
3519 case ARM::t2LDRB_POST
:
3520 case ARM::t2LDRB_PRE
:
3521 case ARM::t2LDRSBi12
:
3522 case ARM::t2LDRSBi8
:
3523 case ARM::t2LDRSBpci
:
3525 case ARM::t2LDRH_POST
:
3526 case ARM::t2LDRH_PRE
:
3528 case ARM::t2LDRSB_POST
:
3529 case ARM::t2LDRSB_PRE
:
3530 case ARM::t2LDRSH_POST
:
3531 case ARM::t2LDRSH_PRE
:
3532 case ARM::t2LDRSHi12
:
3533 case ARM::t2LDRSHi8
:
3534 case ARM::t2LDRSHpci
:
3538 case ARM::t2LDRDi8
: {
3539 Register Rt
= MI
.getOperand(0).getReg();
3540 Register Rn
= MI
.getOperand(2).getReg();
3541 return (Rt
== Rn
) ? 3 : 2;
3544 case ARM::t2STRB_POST
:
3545 case ARM::t2STRB_PRE
:
3548 case ARM::t2STRH_POST
:
3549 case ARM::t2STRH_PRE
:
3551 case ARM::t2STR_POST
:
3552 case ARM::t2STR_PRE
:
3558 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3559 // can't be easily determined return 0 (missing MachineMemOperand).
3561 // FIXME: The current MachineInstr design does not support relying on machine
3562 // mem operands to determine the width of a memory access. Instead, we expect
3563 // the target to provide this information based on the instruction opcode and
3564 // operands. However, using MachineMemOperand is the best solution now for
3567 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3568 // operands. This is much more dangerous than using the MachineMemOperand
3569 // sizes because CodeGen passes can insert/remove optional machine operands. In
3570 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3571 // postRA passes as well.
3573 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3574 // machine model that calls this should handle the unknown (zero size) case.
3576 // Long term, we should require a target hook that verifies MachineMemOperand
3577 // sizes during MC lowering. That target hook should be local to MC lowering
3578 // because we can't ensure that it is aware of other MI forms. Doing this will
3579 // ensure that MachineMemOperands are correctly propagated through all passes.
3580 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr
&MI
) const {
3582 for (MachineInstr::mmo_iterator I
= MI
.memoperands_begin(),
3583 E
= MI
.memoperands_end();
3585 Size
+= (*I
)->getSize();
3587 // FIXME: The scheduler currently can't handle values larger than 16. But
3588 // the values can actually go up to 32 for floating-point load/store
3589 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3590 // operations isn't right; we could end up with "extra" memory operands for
3591 // various reasons, like tail merge merging two memory operations.
3592 return std::min(Size
/ 4, 16U);
3595 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc
,
3597 unsigned UOps
= 1 + NumRegs
; // 1 for address computation.
3601 case ARM::VLDMDIA_UPD
:
3602 case ARM::VLDMDDB_UPD
:
3603 case ARM::VLDMSIA_UPD
:
3604 case ARM::VLDMSDB_UPD
:
3605 case ARM::VSTMDIA_UPD
:
3606 case ARM::VSTMDDB_UPD
:
3607 case ARM::VSTMSIA_UPD
:
3608 case ARM::VSTMSDB_UPD
:
3609 case ARM::LDMIA_UPD
:
3610 case ARM::LDMDA_UPD
:
3611 case ARM::LDMDB_UPD
:
3612 case ARM::LDMIB_UPD
:
3613 case ARM::STMIA_UPD
:
3614 case ARM::STMDA_UPD
:
3615 case ARM::STMDB_UPD
:
3616 case ARM::STMIB_UPD
:
3617 case ARM::tLDMIA_UPD
:
3618 case ARM::tSTMIA_UPD
:
3619 case ARM::t2LDMIA_UPD
:
3620 case ARM::t2LDMDB_UPD
:
3621 case ARM::t2STMIA_UPD
:
3622 case ARM::t2STMDB_UPD
:
3623 ++UOps
; // One for base register writeback.
3625 case ARM::LDMIA_RET
:
3627 case ARM::t2LDMIA_RET
:
3628 UOps
+= 2; // One for base reg wb, one for write to pc.
3634 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData
*ItinData
,
3635 const MachineInstr
&MI
) const {
3636 if (!ItinData
|| ItinData
->isEmpty())
3639 const MCInstrDesc
&Desc
= MI
.getDesc();
3640 unsigned Class
= Desc
.getSchedClass();
3641 int ItinUOps
= ItinData
->getNumMicroOps(Class
);
3642 if (ItinUOps
>= 0) {
3643 if (Subtarget
.isSwift() && (Desc
.mayLoad() || Desc
.mayStore()))
3644 return getNumMicroOpsSwiftLdSt(ItinData
, MI
);
3649 unsigned Opc
= MI
.getOpcode();
3652 llvm_unreachable("Unexpected multi-uops instruction!");
3657 // The number of uOps for load / store multiple are determined by the number
3660 // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3661 // same cycle. The scheduling for the first load / store must be done
3662 // separately by assuming the address is not 64-bit aligned.
3664 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3665 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
3666 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3668 case ARM::VLDMDIA_UPD
:
3669 case ARM::VLDMDDB_UPD
:
3671 case ARM::VLDMSIA_UPD
:
3672 case ARM::VLDMSDB_UPD
:
3674 case ARM::VSTMDIA_UPD
:
3675 case ARM::VSTMDDB_UPD
:
3677 case ARM::VSTMSIA_UPD
:
3678 case ARM::VSTMSDB_UPD
: {
3679 unsigned NumRegs
= MI
.getNumOperands() - Desc
.getNumOperands();
3680 return (NumRegs
/ 2) + (NumRegs
% 2) + 1;
3683 case ARM::LDMIA_RET
:
3688 case ARM::LDMIA_UPD
:
3689 case ARM::LDMDA_UPD
:
3690 case ARM::LDMDB_UPD
:
3691 case ARM::LDMIB_UPD
:
3696 case ARM::STMIA_UPD
:
3697 case ARM::STMDA_UPD
:
3698 case ARM::STMDB_UPD
:
3699 case ARM::STMIB_UPD
:
3701 case ARM::tLDMIA_UPD
:
3702 case ARM::tSTMIA_UPD
:
3706 case ARM::t2LDMIA_RET
:
3709 case ARM::t2LDMIA_UPD
:
3710 case ARM::t2LDMDB_UPD
:
3713 case ARM::t2STMIA_UPD
:
3714 case ARM::t2STMDB_UPD
: {
3715 unsigned NumRegs
= MI
.getNumOperands() - Desc
.getNumOperands() + 1;
3716 switch (Subtarget
.getLdStMultipleTiming()) {
3717 case ARMSubtarget::SingleIssuePlusExtras
:
3718 return getNumMicroOpsSingleIssuePlusExtras(Opc
, NumRegs
);
3719 case ARMSubtarget::SingleIssue
:
3720 // Assume the worst.
3722 case ARMSubtarget::DoubleIssue
: {
3725 // 4 registers would be issued: 2, 2.
3726 // 5 registers would be issued: 2, 2, 1.
3727 unsigned UOps
= (NumRegs
/ 2);
3732 case ARMSubtarget::DoubleIssueCheckUnalignedAccess
: {
3733 unsigned UOps
= (NumRegs
/ 2);
3734 // If there are odd number of registers or if it's not 64-bit aligned,
3735 // then it takes an extra AGU (Address Generation Unit) cycle.
3736 if ((NumRegs
% 2) || !MI
.hasOneMemOperand() ||
3737 (*MI
.memoperands_begin())->getAlignment() < 8)
3744 llvm_unreachable("Didn't find the number of microops");
3748 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData
*ItinData
,
3749 const MCInstrDesc
&DefMCID
,
3751 unsigned DefIdx
, unsigned DefAlign
) const {
3752 int RegNo
= (int)(DefIdx
+1) - DefMCID
.getNumOperands() + 1;
3754 // Def is the address writeback.
3755 return ItinData
->getOperandCycle(DefClass
, DefIdx
);
3758 if (Subtarget
.isCortexA8() || Subtarget
.isCortexA7()) {
3759 // (regno / 2) + (regno % 2) + 1
3760 DefCycle
= RegNo
/ 2 + 1;
3763 } else if (Subtarget
.isLikeA9() || Subtarget
.isSwift()) {
3765 bool isSLoad
= false;
3767 switch (DefMCID
.getOpcode()) {
3770 case ARM::VLDMSIA_UPD
:
3771 case ARM::VLDMSDB_UPD
:
3776 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3777 // then it takes an extra cycle.
3778 if ((isSLoad
&& (RegNo
% 2)) || DefAlign
< 8)
3781 // Assume the worst.
3782 DefCycle
= RegNo
+ 2;
3788 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr
&MI
) const {
3789 Register BaseReg
= MI
.getOperand(0).getReg();
3790 for (unsigned i
= 1, sz
= MI
.getNumOperands(); i
< sz
; ++i
) {
3791 const auto &Op
= MI
.getOperand(i
);
3792 if (Op
.isReg() && Op
.getReg() == BaseReg
)
3798 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr
&MI
) const {
3799 // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops
3800 // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops)
3801 return MI
.getNumOperands() + 1 - MI
.getDesc().getNumOperands();
3805 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData
*ItinData
,
3806 const MCInstrDesc
&DefMCID
,
3808 unsigned DefIdx
, unsigned DefAlign
) const {
3809 int RegNo
= (int)(DefIdx
+1) - DefMCID
.getNumOperands() + 1;
3811 // Def is the address writeback.
3812 return ItinData
->getOperandCycle(DefClass
, DefIdx
);
3815 if (Subtarget
.isCortexA8() || Subtarget
.isCortexA7()) {
3816 // 4 registers would be issued: 1, 2, 1.
3817 // 5 registers would be issued: 1, 2, 2.
3818 DefCycle
= RegNo
/ 2;
3821 // Result latency is issue cycle + 2: E2.
3823 } else if (Subtarget
.isLikeA9() || Subtarget
.isSwift()) {
3824 DefCycle
= (RegNo
/ 2);
3825 // If there are odd number of registers or if it's not 64-bit aligned,
3826 // then it takes an extra AGU (Address Generation Unit) cycle.
3827 if ((RegNo
% 2) || DefAlign
< 8)
3829 // Result latency is AGU cycles + 2.
3832 // Assume the worst.
3833 DefCycle
= RegNo
+ 2;
3840 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData
*ItinData
,
3841 const MCInstrDesc
&UseMCID
,
3843 unsigned UseIdx
, unsigned UseAlign
) const {
3844 int RegNo
= (int)(UseIdx
+1) - UseMCID
.getNumOperands() + 1;
3846 return ItinData
->getOperandCycle(UseClass
, UseIdx
);
3849 if (Subtarget
.isCortexA8() || Subtarget
.isCortexA7()) {
3850 // (regno / 2) + (regno % 2) + 1
3851 UseCycle
= RegNo
/ 2 + 1;
3854 } else if (Subtarget
.isLikeA9() || Subtarget
.isSwift()) {
3856 bool isSStore
= false;
3858 switch (UseMCID
.getOpcode()) {
3861 case ARM::VSTMSIA_UPD
:
3862 case ARM::VSTMSDB_UPD
:
3867 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3868 // then it takes an extra cycle.
3869 if ((isSStore
&& (RegNo
% 2)) || UseAlign
< 8)
3872 // Assume the worst.
3873 UseCycle
= RegNo
+ 2;
3880 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData
*ItinData
,
3881 const MCInstrDesc
&UseMCID
,
3883 unsigned UseIdx
, unsigned UseAlign
) const {
3884 int RegNo
= (int)(UseIdx
+1) - UseMCID
.getNumOperands() + 1;
3886 return ItinData
->getOperandCycle(UseClass
, UseIdx
);
3889 if (Subtarget
.isCortexA8() || Subtarget
.isCortexA7()) {
3890 UseCycle
= RegNo
/ 2;
3895 } else if (Subtarget
.isLikeA9() || Subtarget
.isSwift()) {
3896 UseCycle
= (RegNo
/ 2);
3897 // If there are odd number of registers or if it's not 64-bit aligned,
3898 // then it takes an extra AGU (Address Generation Unit) cycle.
3899 if ((RegNo
% 2) || UseAlign
< 8)
3902 // Assume the worst.
3909 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
3910 const MCInstrDesc
&DefMCID
,
3911 unsigned DefIdx
, unsigned DefAlign
,
3912 const MCInstrDesc
&UseMCID
,
3913 unsigned UseIdx
, unsigned UseAlign
) const {
3914 unsigned DefClass
= DefMCID
.getSchedClass();
3915 unsigned UseClass
= UseMCID
.getSchedClass();
3917 if (DefIdx
< DefMCID
.getNumDefs() && UseIdx
< UseMCID
.getNumOperands())
3918 return ItinData
->getOperandLatency(DefClass
, DefIdx
, UseClass
, UseIdx
);
3920 // This may be a def / use of a variable_ops instruction, the operand
3921 // latency might be determinable dynamically. Let the target try to
3924 bool LdmBypass
= false;
3925 switch (DefMCID
.getOpcode()) {
3927 DefCycle
= ItinData
->getOperandCycle(DefClass
, DefIdx
);
3931 case ARM::VLDMDIA_UPD
:
3932 case ARM::VLDMDDB_UPD
:
3934 case ARM::VLDMSIA_UPD
:
3935 case ARM::VLDMSDB_UPD
:
3936 DefCycle
= getVLDMDefCycle(ItinData
, DefMCID
, DefClass
, DefIdx
, DefAlign
);
3939 case ARM::LDMIA_RET
:
3944 case ARM::LDMIA_UPD
:
3945 case ARM::LDMDA_UPD
:
3946 case ARM::LDMDB_UPD
:
3947 case ARM::LDMIB_UPD
:
3949 case ARM::tLDMIA_UPD
:
3951 case ARM::t2LDMIA_RET
:
3954 case ARM::t2LDMIA_UPD
:
3955 case ARM::t2LDMDB_UPD
:
3957 DefCycle
= getLDMDefCycle(ItinData
, DefMCID
, DefClass
, DefIdx
, DefAlign
);
3962 // We can't seem to determine the result latency of the def, assume it's 2.
3966 switch (UseMCID
.getOpcode()) {
3968 UseCycle
= ItinData
->getOperandCycle(UseClass
, UseIdx
);
3972 case ARM::VSTMDIA_UPD
:
3973 case ARM::VSTMDDB_UPD
:
3975 case ARM::VSTMSIA_UPD
:
3976 case ARM::VSTMSDB_UPD
:
3977 UseCycle
= getVSTMUseCycle(ItinData
, UseMCID
, UseClass
, UseIdx
, UseAlign
);
3984 case ARM::STMIA_UPD
:
3985 case ARM::STMDA_UPD
:
3986 case ARM::STMDB_UPD
:
3987 case ARM::STMIB_UPD
:
3988 case ARM::tSTMIA_UPD
:
3993 case ARM::t2STMIA_UPD
:
3994 case ARM::t2STMDB_UPD
:
3995 UseCycle
= getSTMUseCycle(ItinData
, UseMCID
, UseClass
, UseIdx
, UseAlign
);
4000 // Assume it's read in the first stage.
4003 UseCycle
= DefCycle
- UseCycle
+ 1;
4006 // It's a variable_ops instruction so we can't use DefIdx here. Just use
4007 // first def operand.
4008 if (ItinData
->hasPipelineForwarding(DefClass
, DefMCID
.getNumOperands()-1,
4011 } else if (ItinData
->hasPipelineForwarding(DefClass
, DefIdx
,
4012 UseClass
, UseIdx
)) {
4020 static const MachineInstr
*getBundledDefMI(const TargetRegisterInfo
*TRI
,
4021 const MachineInstr
*MI
, unsigned Reg
,
4022 unsigned &DefIdx
, unsigned &Dist
) {
4025 MachineBasicBlock::const_iterator I
= MI
; ++I
;
4026 MachineBasicBlock::const_instr_iterator II
= std::prev(I
.getInstrIterator());
4027 assert(II
->isInsideBundle() && "Empty bundle?");
4030 while (II
->isInsideBundle()) {
4031 Idx
= II
->findRegisterDefOperandIdx(Reg
, false, true, TRI
);
4038 assert(Idx
!= -1 && "Cannot find bundled definition!");
4043 static const MachineInstr
*getBundledUseMI(const TargetRegisterInfo
*TRI
,
4044 const MachineInstr
&MI
, unsigned Reg
,
4045 unsigned &UseIdx
, unsigned &Dist
) {
4048 MachineBasicBlock::const_instr_iterator II
= ++MI
.getIterator();
4049 assert(II
->isInsideBundle() && "Empty bundle?");
4050 MachineBasicBlock::const_instr_iterator E
= MI
.getParent()->instr_end();
4052 // FIXME: This doesn't properly handle multiple uses.
4054 while (II
!= E
&& II
->isInsideBundle()) {
4055 Idx
= II
->findRegisterUseOperandIdx(Reg
, false, TRI
);
4058 if (II
->getOpcode() != ARM::t2IT
)
4072 /// Return the number of cycles to add to (or subtract from) the static
4073 /// itinerary based on the def opcode and alignment. The caller will ensure that
4074 /// adjusted latency is at least one cycle.
4075 static int adjustDefLatency(const ARMSubtarget
&Subtarget
,
4076 const MachineInstr
&DefMI
,
4077 const MCInstrDesc
&DefMCID
, unsigned DefAlign
) {
4079 if (Subtarget
.isCortexA8() || Subtarget
.isLikeA9() || Subtarget
.isCortexA7()) {
4080 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4081 // variants are one cycle cheaper.
4082 switch (DefMCID
.getOpcode()) {
4086 unsigned ShOpVal
= DefMI
.getOperand(3).getImm();
4087 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
4089 (ShImm
== 2 && ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
))
4096 case ARM::t2LDRSHs
: {
4097 // Thumb2 mode: lsl only.
4098 unsigned ShAmt
= DefMI
.getOperand(3).getImm();
4099 if (ShAmt
== 0 || ShAmt
== 2)
4104 } else if (Subtarget
.isSwift()) {
4105 // FIXME: Properly handle all of the latency adjustments for address
4107 switch (DefMCID
.getOpcode()) {
4111 unsigned ShOpVal
= DefMI
.getOperand(3).getImm();
4112 bool isSub
= ARM_AM::getAM2Op(ShOpVal
) == ARM_AM::sub
;
4113 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
4116 ((ShImm
== 1 || ShImm
== 2 || ShImm
== 3) &&
4117 ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
)))
4120 ShImm
== 1 && ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsr
)
4127 case ARM::t2LDRSHs
: {
4128 // Thumb2 mode: lsl only.
4129 unsigned ShAmt
= DefMI
.getOperand(3).getImm();
4130 if (ShAmt
== 0 || ShAmt
== 1 || ShAmt
== 2 || ShAmt
== 3)
4137 if (DefAlign
< 8 && Subtarget
.checkVLDnAccessAlignment()) {
4138 switch (DefMCID
.getOpcode()) {
4144 case ARM::VLD1q8wb_fixed
:
4145 case ARM::VLD1q16wb_fixed
:
4146 case ARM::VLD1q32wb_fixed
:
4147 case ARM::VLD1q64wb_fixed
:
4148 case ARM::VLD1q8wb_register
:
4149 case ARM::VLD1q16wb_register
:
4150 case ARM::VLD1q32wb_register
:
4151 case ARM::VLD1q64wb_register
:
4158 case ARM::VLD2d8wb_fixed
:
4159 case ARM::VLD2d16wb_fixed
:
4160 case ARM::VLD2d32wb_fixed
:
4161 case ARM::VLD2q8wb_fixed
:
4162 case ARM::VLD2q16wb_fixed
:
4163 case ARM::VLD2q32wb_fixed
:
4164 case ARM::VLD2d8wb_register
:
4165 case ARM::VLD2d16wb_register
:
4166 case ARM::VLD2d32wb_register
:
4167 case ARM::VLD2q8wb_register
:
4168 case ARM::VLD2q16wb_register
:
4169 case ARM::VLD2q32wb_register
:
4174 case ARM::VLD3d8_UPD
:
4175 case ARM::VLD3d16_UPD
:
4176 case ARM::VLD3d32_UPD
:
4177 case ARM::VLD1d64Twb_fixed
:
4178 case ARM::VLD1d64Twb_register
:
4179 case ARM::VLD3q8_UPD
:
4180 case ARM::VLD3q16_UPD
:
4181 case ARM::VLD3q32_UPD
:
4186 case ARM::VLD4d8_UPD
:
4187 case ARM::VLD4d16_UPD
:
4188 case ARM::VLD4d32_UPD
:
4189 case ARM::VLD1d64Qwb_fixed
:
4190 case ARM::VLD1d64Qwb_register
:
4191 case ARM::VLD4q8_UPD
:
4192 case ARM::VLD4q16_UPD
:
4193 case ARM::VLD4q32_UPD
:
4194 case ARM::VLD1DUPq8
:
4195 case ARM::VLD1DUPq16
:
4196 case ARM::VLD1DUPq32
:
4197 case ARM::VLD1DUPq8wb_fixed
:
4198 case ARM::VLD1DUPq16wb_fixed
:
4199 case ARM::VLD1DUPq32wb_fixed
:
4200 case ARM::VLD1DUPq8wb_register
:
4201 case ARM::VLD1DUPq16wb_register
:
4202 case ARM::VLD1DUPq32wb_register
:
4203 case ARM::VLD2DUPd8
:
4204 case ARM::VLD2DUPd16
:
4205 case ARM::VLD2DUPd32
:
4206 case ARM::VLD2DUPd8wb_fixed
:
4207 case ARM::VLD2DUPd16wb_fixed
:
4208 case ARM::VLD2DUPd32wb_fixed
:
4209 case ARM::VLD2DUPd8wb_register
:
4210 case ARM::VLD2DUPd16wb_register
:
4211 case ARM::VLD2DUPd32wb_register
:
4212 case ARM::VLD4DUPd8
:
4213 case ARM::VLD4DUPd16
:
4214 case ARM::VLD4DUPd32
:
4215 case ARM::VLD4DUPd8_UPD
:
4216 case ARM::VLD4DUPd16_UPD
:
4217 case ARM::VLD4DUPd32_UPD
:
4219 case ARM::VLD1LNd16
:
4220 case ARM::VLD1LNd32
:
4221 case ARM::VLD1LNd8_UPD
:
4222 case ARM::VLD1LNd16_UPD
:
4223 case ARM::VLD1LNd32_UPD
:
4225 case ARM::VLD2LNd16
:
4226 case ARM::VLD2LNd32
:
4227 case ARM::VLD2LNq16
:
4228 case ARM::VLD2LNq32
:
4229 case ARM::VLD2LNd8_UPD
:
4230 case ARM::VLD2LNd16_UPD
:
4231 case ARM::VLD2LNd32_UPD
:
4232 case ARM::VLD2LNq16_UPD
:
4233 case ARM::VLD2LNq32_UPD
:
4235 case ARM::VLD4LNd16
:
4236 case ARM::VLD4LNd32
:
4237 case ARM::VLD4LNq16
:
4238 case ARM::VLD4LNq32
:
4239 case ARM::VLD4LNd8_UPD
:
4240 case ARM::VLD4LNd16_UPD
:
4241 case ARM::VLD4LNd32_UPD
:
4242 case ARM::VLD4LNq16_UPD
:
4243 case ARM::VLD4LNq32_UPD
:
4244 // If the address is not 64-bit aligned, the latencies of these
4245 // instructions increases by one.
4253 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
4254 const MachineInstr
&DefMI
,
4256 const MachineInstr
&UseMI
,
4257 unsigned UseIdx
) const {
4258 // No operand latency. The caller may fall back to getInstrLatency.
4259 if (!ItinData
|| ItinData
->isEmpty())
4262 const MachineOperand
&DefMO
= DefMI
.getOperand(DefIdx
);
4263 Register Reg
= DefMO
.getReg();
4265 const MachineInstr
*ResolvedDefMI
= &DefMI
;
4266 unsigned DefAdj
= 0;
4267 if (DefMI
.isBundle())
4269 getBundledDefMI(&getRegisterInfo(), &DefMI
, Reg
, DefIdx
, DefAdj
);
4270 if (ResolvedDefMI
->isCopyLike() || ResolvedDefMI
->isInsertSubreg() ||
4271 ResolvedDefMI
->isRegSequence() || ResolvedDefMI
->isImplicitDef()) {
4275 const MachineInstr
*ResolvedUseMI
= &UseMI
;
4276 unsigned UseAdj
= 0;
4277 if (UseMI
.isBundle()) {
4279 getBundledUseMI(&getRegisterInfo(), UseMI
, Reg
, UseIdx
, UseAdj
);
4284 return getOperandLatencyImpl(
4285 ItinData
, *ResolvedDefMI
, DefIdx
, ResolvedDefMI
->getDesc(), DefAdj
, DefMO
,
4286 Reg
, *ResolvedUseMI
, UseIdx
, ResolvedUseMI
->getDesc(), UseAdj
);
4289 int ARMBaseInstrInfo::getOperandLatencyImpl(
4290 const InstrItineraryData
*ItinData
, const MachineInstr
&DefMI
,
4291 unsigned DefIdx
, const MCInstrDesc
&DefMCID
, unsigned DefAdj
,
4292 const MachineOperand
&DefMO
, unsigned Reg
, const MachineInstr
&UseMI
,
4293 unsigned UseIdx
, const MCInstrDesc
&UseMCID
, unsigned UseAdj
) const {
4294 if (Reg
== ARM::CPSR
) {
4295 if (DefMI
.getOpcode() == ARM::FMSTAT
) {
4296 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4297 return Subtarget
.isLikeA9() ? 1 : 20;
4300 // CPSR set and branch can be paired in the same cycle.
4301 if (UseMI
.isBranch())
4304 // Otherwise it takes the instruction latency (generally one).
4305 unsigned Latency
= getInstrLatency(ItinData
, DefMI
);
4307 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4308 // its uses. Instructions which are otherwise scheduled between them may
4309 // incur a code size penalty (not able to use the CPSR setting 16-bit
4311 if (Latency
> 0 && Subtarget
.isThumb2()) {
4312 const MachineFunction
*MF
= DefMI
.getParent()->getParent();
4313 // FIXME: Use Function::hasOptSize().
4314 if (MF
->getFunction().hasFnAttribute(Attribute::OptimizeForSize
))
4320 if (DefMO
.isImplicit() || UseMI
.getOperand(UseIdx
).isImplicit())
4323 unsigned DefAlign
= DefMI
.hasOneMemOperand()
4324 ? (*DefMI
.memoperands_begin())->getAlignment()
4326 unsigned UseAlign
= UseMI
.hasOneMemOperand()
4327 ? (*UseMI
.memoperands_begin())->getAlignment()
4330 // Get the itinerary's latency if possible, and handle variable_ops.
4331 int Latency
= getOperandLatency(ItinData
, DefMCID
, DefIdx
, DefAlign
, UseMCID
,
4333 // Unable to find operand latency. The caller may resort to getInstrLatency.
4337 // Adjust for IT block position.
4338 int Adj
= DefAdj
+ UseAdj
;
4340 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4341 Adj
+= adjustDefLatency(Subtarget
, DefMI
, DefMCID
, DefAlign
);
4342 if (Adj
>= 0 || (int)Latency
> -Adj
) {
4343 return Latency
+ Adj
;
4345 // Return the itinerary latency, which may be zero but not less than zero.
4350 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
4351 SDNode
*DefNode
, unsigned DefIdx
,
4352 SDNode
*UseNode
, unsigned UseIdx
) const {
4353 if (!DefNode
->isMachineOpcode())
4356 const MCInstrDesc
&DefMCID
= get(DefNode
->getMachineOpcode());
4358 if (isZeroCost(DefMCID
.Opcode
))
4361 if (!ItinData
|| ItinData
->isEmpty())
4362 return DefMCID
.mayLoad() ? 3 : 1;
4364 if (!UseNode
->isMachineOpcode()) {
4365 int Latency
= ItinData
->getOperandCycle(DefMCID
.getSchedClass(), DefIdx
);
4366 int Adj
= Subtarget
.getPreISelOperandLatencyAdjustment();
4367 int Threshold
= 1 + Adj
;
4368 return Latency
<= Threshold
? 1 : Latency
- Adj
;
4371 const MCInstrDesc
&UseMCID
= get(UseNode
->getMachineOpcode());
4372 auto *DefMN
= cast
<MachineSDNode
>(DefNode
);
4373 unsigned DefAlign
= !DefMN
->memoperands_empty()
4374 ? (*DefMN
->memoperands_begin())->getAlignment() : 0;
4375 auto *UseMN
= cast
<MachineSDNode
>(UseNode
);
4376 unsigned UseAlign
= !UseMN
->memoperands_empty()
4377 ? (*UseMN
->memoperands_begin())->getAlignment() : 0;
4378 int Latency
= getOperandLatency(ItinData
, DefMCID
, DefIdx
, DefAlign
,
4379 UseMCID
, UseIdx
, UseAlign
);
4382 (Subtarget
.isCortexA8() || Subtarget
.isLikeA9() ||
4383 Subtarget
.isCortexA7())) {
4384 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4385 // variants are one cycle cheaper.
4386 switch (DefMCID
.getOpcode()) {
4391 cast
<ConstantSDNode
>(DefNode
->getOperand(2))->getZExtValue();
4392 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
4394 (ShImm
== 2 && ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
))
4401 case ARM::t2LDRSHs
: {
4402 // Thumb2 mode: lsl only.
4404 cast
<ConstantSDNode
>(DefNode
->getOperand(2))->getZExtValue();
4405 if (ShAmt
== 0 || ShAmt
== 2)
4410 } else if (DefIdx
== 0 && Latency
> 2 && Subtarget
.isSwift()) {
4411 // FIXME: Properly handle all of the latency adjustments for address
4413 switch (DefMCID
.getOpcode()) {
4418 cast
<ConstantSDNode
>(DefNode
->getOperand(2))->getZExtValue();
4419 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
4421 ((ShImm
== 1 || ShImm
== 2 || ShImm
== 3) &&
4422 ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
))
4424 else if (ShImm
== 1 && ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsr
)
4432 // Thumb2 mode: lsl 0-3 only.
4438 if (DefAlign
< 8 && Subtarget
.checkVLDnAccessAlignment())
4439 switch (DefMCID
.getOpcode()) {
4445 case ARM::VLD1q8wb_register
:
4446 case ARM::VLD1q16wb_register
:
4447 case ARM::VLD1q32wb_register
:
4448 case ARM::VLD1q64wb_register
:
4449 case ARM::VLD1q8wb_fixed
:
4450 case ARM::VLD1q16wb_fixed
:
4451 case ARM::VLD1q32wb_fixed
:
4452 case ARM::VLD1q64wb_fixed
:
4456 case ARM::VLD2q8Pseudo
:
4457 case ARM::VLD2q16Pseudo
:
4458 case ARM::VLD2q32Pseudo
:
4459 case ARM::VLD2d8wb_fixed
:
4460 case ARM::VLD2d16wb_fixed
:
4461 case ARM::VLD2d32wb_fixed
:
4462 case ARM::VLD2q8PseudoWB_fixed
:
4463 case ARM::VLD2q16PseudoWB_fixed
:
4464 case ARM::VLD2q32PseudoWB_fixed
:
4465 case ARM::VLD2d8wb_register
:
4466 case ARM::VLD2d16wb_register
:
4467 case ARM::VLD2d32wb_register
:
4468 case ARM::VLD2q8PseudoWB_register
:
4469 case ARM::VLD2q16PseudoWB_register
:
4470 case ARM::VLD2q32PseudoWB_register
:
4471 case ARM::VLD3d8Pseudo
:
4472 case ARM::VLD3d16Pseudo
:
4473 case ARM::VLD3d32Pseudo
:
4474 case ARM::VLD1d8TPseudo
:
4475 case ARM::VLD1d16TPseudo
:
4476 case ARM::VLD1d32TPseudo
:
4477 case ARM::VLD1d64TPseudo
:
4478 case ARM::VLD1d64TPseudoWB_fixed
:
4479 case ARM::VLD1d64TPseudoWB_register
:
4480 case ARM::VLD3d8Pseudo_UPD
:
4481 case ARM::VLD3d16Pseudo_UPD
:
4482 case ARM::VLD3d32Pseudo_UPD
:
4483 case ARM::VLD3q8Pseudo_UPD
:
4484 case ARM::VLD3q16Pseudo_UPD
:
4485 case ARM::VLD3q32Pseudo_UPD
:
4486 case ARM::VLD3q8oddPseudo
:
4487 case ARM::VLD3q16oddPseudo
:
4488 case ARM::VLD3q32oddPseudo
:
4489 case ARM::VLD3q8oddPseudo_UPD
:
4490 case ARM::VLD3q16oddPseudo_UPD
:
4491 case ARM::VLD3q32oddPseudo_UPD
:
4492 case ARM::VLD4d8Pseudo
:
4493 case ARM::VLD4d16Pseudo
:
4494 case ARM::VLD4d32Pseudo
:
4495 case ARM::VLD1d8QPseudo
:
4496 case ARM::VLD1d16QPseudo
:
4497 case ARM::VLD1d32QPseudo
:
4498 case ARM::VLD1d64QPseudo
:
4499 case ARM::VLD1d64QPseudoWB_fixed
:
4500 case ARM::VLD1d64QPseudoWB_register
:
4501 case ARM::VLD1q8HighQPseudo
:
4502 case ARM::VLD1q8LowQPseudo_UPD
:
4503 case ARM::VLD1q8HighTPseudo
:
4504 case ARM::VLD1q8LowTPseudo_UPD
:
4505 case ARM::VLD1q16HighQPseudo
:
4506 case ARM::VLD1q16LowQPseudo_UPD
:
4507 case ARM::VLD1q16HighTPseudo
:
4508 case ARM::VLD1q16LowTPseudo_UPD
:
4509 case ARM::VLD1q32HighQPseudo
:
4510 case ARM::VLD1q32LowQPseudo_UPD
:
4511 case ARM::VLD1q32HighTPseudo
:
4512 case ARM::VLD1q32LowTPseudo_UPD
:
4513 case ARM::VLD1q64HighQPseudo
:
4514 case ARM::VLD1q64LowQPseudo_UPD
:
4515 case ARM::VLD1q64HighTPseudo
:
4516 case ARM::VLD1q64LowTPseudo_UPD
:
4517 case ARM::VLD4d8Pseudo_UPD
:
4518 case ARM::VLD4d16Pseudo_UPD
:
4519 case ARM::VLD4d32Pseudo_UPD
:
4520 case ARM::VLD4q8Pseudo_UPD
:
4521 case ARM::VLD4q16Pseudo_UPD
:
4522 case ARM::VLD4q32Pseudo_UPD
:
4523 case ARM::VLD4q8oddPseudo
:
4524 case ARM::VLD4q16oddPseudo
:
4525 case ARM::VLD4q32oddPseudo
:
4526 case ARM::VLD4q8oddPseudo_UPD
:
4527 case ARM::VLD4q16oddPseudo_UPD
:
4528 case ARM::VLD4q32oddPseudo_UPD
:
4529 case ARM::VLD1DUPq8
:
4530 case ARM::VLD1DUPq16
:
4531 case ARM::VLD1DUPq32
:
4532 case ARM::VLD1DUPq8wb_fixed
:
4533 case ARM::VLD1DUPq16wb_fixed
:
4534 case ARM::VLD1DUPq32wb_fixed
:
4535 case ARM::VLD1DUPq8wb_register
:
4536 case ARM::VLD1DUPq16wb_register
:
4537 case ARM::VLD1DUPq32wb_register
:
4538 case ARM::VLD2DUPd8
:
4539 case ARM::VLD2DUPd16
:
4540 case ARM::VLD2DUPd32
:
4541 case ARM::VLD2DUPd8wb_fixed
:
4542 case ARM::VLD2DUPd16wb_fixed
:
4543 case ARM::VLD2DUPd32wb_fixed
:
4544 case ARM::VLD2DUPd8wb_register
:
4545 case ARM::VLD2DUPd16wb_register
:
4546 case ARM::VLD2DUPd32wb_register
:
4547 case ARM::VLD2DUPq8EvenPseudo
:
4548 case ARM::VLD2DUPq8OddPseudo
:
4549 case ARM::VLD2DUPq16EvenPseudo
:
4550 case ARM::VLD2DUPq16OddPseudo
:
4551 case ARM::VLD2DUPq32EvenPseudo
:
4552 case ARM::VLD2DUPq32OddPseudo
:
4553 case ARM::VLD3DUPq8EvenPseudo
:
4554 case ARM::VLD3DUPq8OddPseudo
:
4555 case ARM::VLD3DUPq16EvenPseudo
:
4556 case ARM::VLD3DUPq16OddPseudo
:
4557 case ARM::VLD3DUPq32EvenPseudo
:
4558 case ARM::VLD3DUPq32OddPseudo
:
4559 case ARM::VLD4DUPd8Pseudo
:
4560 case ARM::VLD4DUPd16Pseudo
:
4561 case ARM::VLD4DUPd32Pseudo
:
4562 case ARM::VLD4DUPd8Pseudo_UPD
:
4563 case ARM::VLD4DUPd16Pseudo_UPD
:
4564 case ARM::VLD4DUPd32Pseudo_UPD
:
4565 case ARM::VLD4DUPq8EvenPseudo
:
4566 case ARM::VLD4DUPq8OddPseudo
:
4567 case ARM::VLD4DUPq16EvenPseudo
:
4568 case ARM::VLD4DUPq16OddPseudo
:
4569 case ARM::VLD4DUPq32EvenPseudo
:
4570 case ARM::VLD4DUPq32OddPseudo
:
4571 case ARM::VLD1LNq8Pseudo
:
4572 case ARM::VLD1LNq16Pseudo
:
4573 case ARM::VLD1LNq32Pseudo
:
4574 case ARM::VLD1LNq8Pseudo_UPD
:
4575 case ARM::VLD1LNq16Pseudo_UPD
:
4576 case ARM::VLD1LNq32Pseudo_UPD
:
4577 case ARM::VLD2LNd8Pseudo
:
4578 case ARM::VLD2LNd16Pseudo
:
4579 case ARM::VLD2LNd32Pseudo
:
4580 case ARM::VLD2LNq16Pseudo
:
4581 case ARM::VLD2LNq32Pseudo
:
4582 case ARM::VLD2LNd8Pseudo_UPD
:
4583 case ARM::VLD2LNd16Pseudo_UPD
:
4584 case ARM::VLD2LNd32Pseudo_UPD
:
4585 case ARM::VLD2LNq16Pseudo_UPD
:
4586 case ARM::VLD2LNq32Pseudo_UPD
:
4587 case ARM::VLD4LNd8Pseudo
:
4588 case ARM::VLD4LNd16Pseudo
:
4589 case ARM::VLD4LNd32Pseudo
:
4590 case ARM::VLD4LNq16Pseudo
:
4591 case ARM::VLD4LNq32Pseudo
:
4592 case ARM::VLD4LNd8Pseudo_UPD
:
4593 case ARM::VLD4LNd16Pseudo_UPD
:
4594 case ARM::VLD4LNd32Pseudo_UPD
:
4595 case ARM::VLD4LNq16Pseudo_UPD
:
4596 case ARM::VLD4LNq32Pseudo_UPD
:
4597 // If the address is not 64-bit aligned, the latencies of these
4598 // instructions increases by one.
4606 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr
&MI
) const {
4607 if (MI
.isCopyLike() || MI
.isInsertSubreg() || MI
.isRegSequence() ||
4614 const MCInstrDesc
&MCID
= MI
.getDesc();
4616 if (MCID
.isCall() || (MCID
.hasImplicitDefOfPhysReg(ARM::CPSR
) &&
4617 !Subtarget
.cheapPredicableCPSRDef())) {
4618 // When predicated, CPSR is an additional source operand for CPSR updating
4619 // instructions, this apparently increases their latencies.
4625 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
4626 const MachineInstr
&MI
,
4627 unsigned *PredCost
) const {
4628 if (MI
.isCopyLike() || MI
.isInsertSubreg() || MI
.isRegSequence() ||
4632 // An instruction scheduler typically runs on unbundled instructions, however
4633 // other passes may query the latency of a bundled instruction.
4634 if (MI
.isBundle()) {
4635 unsigned Latency
= 0;
4636 MachineBasicBlock::const_instr_iterator I
= MI
.getIterator();
4637 MachineBasicBlock::const_instr_iterator E
= MI
.getParent()->instr_end();
4638 while (++I
!= E
&& I
->isInsideBundle()) {
4639 if (I
->getOpcode() != ARM::t2IT
)
4640 Latency
+= getInstrLatency(ItinData
, *I
, PredCost
);
4645 const MCInstrDesc
&MCID
= MI
.getDesc();
4646 if (PredCost
&& (MCID
.isCall() || (MCID
.hasImplicitDefOfPhysReg(ARM::CPSR
) &&
4647 !Subtarget
.cheapPredicableCPSRDef()))) {
4648 // When predicated, CPSR is an additional source operand for CPSR updating
4649 // instructions, this apparently increases their latencies.
4652 // Be sure to call getStageLatency for an empty itinerary in case it has a
4653 // valid MinLatency property.
4655 return MI
.mayLoad() ? 3 : 1;
4657 unsigned Class
= MCID
.getSchedClass();
4659 // For instructions with variable uops, use uops as latency.
4660 if (!ItinData
->isEmpty() && ItinData
->getNumMicroOps(Class
) < 0)
4661 return getNumMicroOps(ItinData
, MI
);
4663 // For the common case, fall back on the itinerary's latency.
4664 unsigned Latency
= ItinData
->getStageLatency(Class
);
4666 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4668 MI
.hasOneMemOperand() ? (*MI
.memoperands_begin())->getAlignment() : 0;
4669 int Adj
= adjustDefLatency(Subtarget
, MI
, MCID
, DefAlign
);
4670 if (Adj
>= 0 || (int)Latency
> -Adj
) {
4671 return Latency
+ Adj
;
4676 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
4677 SDNode
*Node
) const {
4678 if (!Node
->isMachineOpcode())
4681 if (!ItinData
|| ItinData
->isEmpty())
4684 unsigned Opcode
= Node
->getMachineOpcode();
4687 return ItinData
->getStageLatency(get(Opcode
).getSchedClass());
4694 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel
&SchedModel
,
4695 const MachineRegisterInfo
*MRI
,
4696 const MachineInstr
&DefMI
,
4698 const MachineInstr
&UseMI
,
4699 unsigned UseIdx
) const {
4700 unsigned DDomain
= DefMI
.getDesc().TSFlags
& ARMII::DomainMask
;
4701 unsigned UDomain
= UseMI
.getDesc().TSFlags
& ARMII::DomainMask
;
4702 if (Subtarget
.nonpipelinedVFP() &&
4703 (DDomain
== ARMII::DomainVFP
|| UDomain
== ARMII::DomainVFP
))
4706 // Hoist VFP / NEON instructions with 4 or higher latency.
4708 SchedModel
.computeOperandLatency(&DefMI
, DefIdx
, &UseMI
, UseIdx
);
4711 return DDomain
== ARMII::DomainVFP
|| DDomain
== ARMII::DomainNEON
||
4712 UDomain
== ARMII::DomainVFP
|| UDomain
== ARMII::DomainNEON
;
4715 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel
&SchedModel
,
4716 const MachineInstr
&DefMI
,
4717 unsigned DefIdx
) const {
4718 const InstrItineraryData
*ItinData
= SchedModel
.getInstrItineraries();
4719 if (!ItinData
|| ItinData
->isEmpty())
4722 unsigned DDomain
= DefMI
.getDesc().TSFlags
& ARMII::DomainMask
;
4723 if (DDomain
== ARMII::DomainGeneral
) {
4724 unsigned DefClass
= DefMI
.getDesc().getSchedClass();
4725 int DefCycle
= ItinData
->getOperandCycle(DefClass
, DefIdx
);
4726 return (DefCycle
!= -1 && DefCycle
<= 2);
4731 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr
&MI
,
4732 StringRef
&ErrInfo
) const {
4733 if (convertAddSubFlagsOpcode(MI
.getOpcode())) {
4734 ErrInfo
= "Pseudo flag setting opcodes only exist in Selection DAG";
4737 if (MI
.getOpcode() == ARM::tMOVr
&& !Subtarget
.hasV6Ops()) {
4738 // Make sure we don't generate a lo-lo mov that isn't supported.
4739 if (!ARM::hGPRRegClass
.contains(MI
.getOperand(0).getReg()) &&
4740 !ARM::hGPRRegClass
.contains(MI
.getOperand(1).getReg())) {
4741 ErrInfo
= "Non-flag-setting Thumb1 mov is v6-only";
4745 if (MI
.getOpcode() == ARM::tPUSH
||
4746 MI
.getOpcode() == ARM::tPOP
||
4747 MI
.getOpcode() == ARM::tPOP_RET
) {
4748 for (int i
= 2, e
= MI
.getNumOperands(); i
< e
; ++i
) {
4749 if (MI
.getOperand(i
).isImplicit() ||
4750 !MI
.getOperand(i
).isReg())
4752 Register Reg
= MI
.getOperand(i
).getReg();
4753 if (Reg
< ARM::R0
|| Reg
> ARM::R7
) {
4754 if (!(MI
.getOpcode() == ARM::tPUSH
&& Reg
== ARM::LR
) &&
4755 !(MI
.getOpcode() == ARM::tPOP_RET
&& Reg
== ARM::PC
)) {
4756 ErrInfo
= "Unsupported register in Thumb1 push/pop";
4765 // LoadStackGuard has so far only been implemented for MachO. Different code
4766 // sequence is needed for other targets.
4767 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI
,
4768 unsigned LoadImmOpc
,
4769 unsigned LoadOpc
) const {
4770 assert(!Subtarget
.isROPI() && !Subtarget
.isRWPI() &&
4771 "ROPI/RWPI not currently supported with stack guard");
4773 MachineBasicBlock
&MBB
= *MI
->getParent();
4774 DebugLoc DL
= MI
->getDebugLoc();
4775 Register Reg
= MI
->getOperand(0).getReg();
4776 const GlobalValue
*GV
=
4777 cast
<GlobalValue
>((*MI
->memoperands_begin())->getValue());
4778 MachineInstrBuilder MIB
;
4780 BuildMI(MBB
, MI
, DL
, get(LoadImmOpc
), Reg
)
4781 .addGlobalAddress(GV
, 0, ARMII::MO_NONLAZY
);
4783 if (Subtarget
.isGVIndirectSymbol(GV
)) {
4784 MIB
= BuildMI(MBB
, MI
, DL
, get(LoadOpc
), Reg
);
4785 MIB
.addReg(Reg
, RegState::Kill
).addImm(0);
4786 auto Flags
= MachineMemOperand::MOLoad
|
4787 MachineMemOperand::MODereferenceable
|
4788 MachineMemOperand::MOInvariant
;
4789 MachineMemOperand
*MMO
= MBB
.getParent()->getMachineMemOperand(
4790 MachinePointerInfo::getGOT(*MBB
.getParent()), Flags
, 4, 4);
4791 MIB
.addMemOperand(MMO
).add(predOps(ARMCC::AL
));
4794 MIB
= BuildMI(MBB
, MI
, DL
, get(LoadOpc
), Reg
);
4795 MIB
.addReg(Reg
, RegState::Kill
)
4798 .add(predOps(ARMCC::AL
));
4802 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode
, unsigned &MulOpc
,
4803 unsigned &AddSubOpc
,
4804 bool &NegAcc
, bool &HasLane
) const {
4805 DenseMap
<unsigned, unsigned>::const_iterator I
= MLxEntryMap
.find(Opcode
);
4806 if (I
== MLxEntryMap
.end())
4809 const ARM_MLxEntry
&Entry
= ARM_MLxTable
[I
->second
];
4810 MulOpc
= Entry
.MulOpc
;
4811 AddSubOpc
= Entry
.AddSubOpc
;
4812 NegAcc
= Entry
.NegAcc
;
4813 HasLane
= Entry
.HasLane
;
4817 //===----------------------------------------------------------------------===//
4818 // Execution domains.
4819 //===----------------------------------------------------------------------===//
4821 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4822 // and some can go down both. The vmov instructions go down the VFP pipeline,
4823 // but they can be changed to vorr equivalents that are executed by the NEON
4826 // We use the following execution domain numbering:
4835 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4837 std::pair
<uint16_t, uint16_t>
4838 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr
&MI
) const {
4839 // If we don't have access to NEON instructions then we won't be able
4840 // to swizzle anything to the NEON domain. Check to make sure.
4841 if (Subtarget
.hasNEON()) {
4842 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4843 // if they are not predicated.
4844 if (MI
.getOpcode() == ARM::VMOVD
&& !isPredicated(MI
))
4845 return std::make_pair(ExeVFP
, (1 << ExeVFP
) | (1 << ExeNEON
));
4847 // CortexA9 is particularly picky about mixing the two and wants these
4849 if (Subtarget
.useNEONForFPMovs() && !isPredicated(MI
) &&
4850 (MI
.getOpcode() == ARM::VMOVRS
|| MI
.getOpcode() == ARM::VMOVSR
||
4851 MI
.getOpcode() == ARM::VMOVS
))
4852 return std::make_pair(ExeVFP
, (1 << ExeVFP
) | (1 << ExeNEON
));
4854 // No other instructions can be swizzled, so just determine their domain.
4855 unsigned Domain
= MI
.getDesc().TSFlags
& ARMII::DomainMask
;
4857 if (Domain
& ARMII::DomainNEON
)
4858 return std::make_pair(ExeNEON
, 0);
4860 // Certain instructions can go either way on Cortex-A8.
4861 // Treat them as NEON instructions.
4862 if ((Domain
& ARMII::DomainNEONA8
) && Subtarget
.isCortexA8())
4863 return std::make_pair(ExeNEON
, 0);
4865 if (Domain
& ARMII::DomainVFP
)
4866 return std::make_pair(ExeVFP
, 0);
4868 return std::make_pair(ExeGeneric
, 0);
4871 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo
*TRI
,
4872 unsigned SReg
, unsigned &Lane
) {
4873 unsigned DReg
= TRI
->getMatchingSuperReg(SReg
, ARM::ssub_0
, &ARM::DPRRegClass
);
4876 if (DReg
!= ARM::NoRegister
)
4880 DReg
= TRI
->getMatchingSuperReg(SReg
, ARM::ssub_1
, &ARM::DPRRegClass
);
4882 assert(DReg
&& "S-register with no D super-register?");
4886 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4887 /// set ImplicitSReg to a register number that must be marked as implicit-use or
4888 /// zero if no register needs to be defined as implicit-use.
4890 /// If the function cannot determine if an SPR should be marked implicit use or
4891 /// not, it returns false.
4893 /// This function handles cases where an instruction is being modified from taking
4894 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4895 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4896 /// lane of the DPR).
4898 /// If the other SPR is defined, an implicit-use of it should be added. Else,
4899 /// (including the case where the DPR itself is defined), it should not.
4901 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo
*TRI
,
4902 MachineInstr
&MI
, unsigned DReg
,
4903 unsigned Lane
, unsigned &ImplicitSReg
) {
4904 // If the DPR is defined or used already, the other SPR lane will be chained
4905 // correctly, so there is nothing to be done.
4906 if (MI
.definesRegister(DReg
, TRI
) || MI
.readsRegister(DReg
, TRI
)) {
4911 // Otherwise we need to go searching to see if the SPR is set explicitly.
4912 ImplicitSReg
= TRI
->getSubReg(DReg
,
4913 (Lane
& 1) ? ARM::ssub_0
: ARM::ssub_1
);
4914 MachineBasicBlock::LivenessQueryResult LQR
=
4915 MI
.getParent()->computeRegisterLiveness(TRI
, ImplicitSReg
, MI
);
4917 if (LQR
== MachineBasicBlock::LQR_Live
)
4919 else if (LQR
== MachineBasicBlock::LQR_Unknown
)
4922 // If the register is known not to be live, there is no need to add an
4928 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr
&MI
,
4929 unsigned Domain
) const {
4930 unsigned DstReg
, SrcReg
, DReg
;
4932 MachineInstrBuilder
MIB(*MI
.getParent()->getParent(), MI
);
4933 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
4934 switch (MI
.getOpcode()) {
4936 llvm_unreachable("cannot handle opcode!");
4939 if (Domain
!= ExeNEON
)
4942 // Zap the predicate operands.
4943 assert(!isPredicated(MI
) && "Cannot predicate a VORRd");
4945 // Make sure we've got NEON instructions.
4946 assert(Subtarget
.hasNEON() && "VORRd requires NEON");
4948 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4949 DstReg
= MI
.getOperand(0).getReg();
4950 SrcReg
= MI
.getOperand(1).getReg();
4952 for (unsigned i
= MI
.getDesc().getNumOperands(); i
; --i
)
4953 MI
.RemoveOperand(i
- 1);
4955 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4956 MI
.setDesc(get(ARM::VORRd
));
4957 MIB
.addReg(DstReg
, RegState::Define
)
4960 .add(predOps(ARMCC::AL
));
4963 if (Domain
!= ExeNEON
)
4965 assert(!isPredicated(MI
) && "Cannot predicate a VGETLN");
4967 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4968 DstReg
= MI
.getOperand(0).getReg();
4969 SrcReg
= MI
.getOperand(1).getReg();
4971 for (unsigned i
= MI
.getDesc().getNumOperands(); i
; --i
)
4972 MI
.RemoveOperand(i
- 1);
4974 DReg
= getCorrespondingDRegAndLane(TRI
, SrcReg
, Lane
);
4976 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
4977 // Note that DSrc has been widened and the other lane may be undef, which
4978 // contaminates the entire register.
4979 MI
.setDesc(get(ARM::VGETLNi32
));
4980 MIB
.addReg(DstReg
, RegState::Define
)
4981 .addReg(DReg
, RegState::Undef
)
4983 .add(predOps(ARMCC::AL
));
4985 // The old source should be an implicit use, otherwise we might think it
4986 // was dead before here.
4987 MIB
.addReg(SrcReg
, RegState::Implicit
);
4990 if (Domain
!= ExeNEON
)
4992 assert(!isPredicated(MI
) && "Cannot predicate a VSETLN");
4994 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
4995 DstReg
= MI
.getOperand(0).getReg();
4996 SrcReg
= MI
.getOperand(1).getReg();
4998 DReg
= getCorrespondingDRegAndLane(TRI
, DstReg
, Lane
);
5000 unsigned ImplicitSReg
;
5001 if (!getImplicitSPRUseForDPRUse(TRI
, MI
, DReg
, Lane
, ImplicitSReg
))
5004 for (unsigned i
= MI
.getDesc().getNumOperands(); i
; --i
)
5005 MI
.RemoveOperand(i
- 1);
5007 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
5008 // Again DDst may be undefined at the beginning of this instruction.
5009 MI
.setDesc(get(ARM::VSETLNi32
));
5010 MIB
.addReg(DReg
, RegState::Define
)
5011 .addReg(DReg
, getUndefRegState(!MI
.readsRegister(DReg
, TRI
)))
5014 .add(predOps(ARMCC::AL
));
5016 // The narrower destination must be marked as set to keep previous chains
5018 MIB
.addReg(DstReg
, RegState::Define
| RegState::Implicit
);
5019 if (ImplicitSReg
!= 0)
5020 MIB
.addReg(ImplicitSReg
, RegState::Implicit
);
5024 if (Domain
!= ExeNEON
)
5027 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
5028 DstReg
= MI
.getOperand(0).getReg();
5029 SrcReg
= MI
.getOperand(1).getReg();
5031 unsigned DstLane
= 0, SrcLane
= 0, DDst
, DSrc
;
5032 DDst
= getCorrespondingDRegAndLane(TRI
, DstReg
, DstLane
);
5033 DSrc
= getCorrespondingDRegAndLane(TRI
, SrcReg
, SrcLane
);
5035 unsigned ImplicitSReg
;
5036 if (!getImplicitSPRUseForDPRUse(TRI
, MI
, DSrc
, SrcLane
, ImplicitSReg
))
5039 for (unsigned i
= MI
.getDesc().getNumOperands(); i
; --i
)
5040 MI
.RemoveOperand(i
- 1);
5043 // Destination can be:
5044 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5045 MI
.setDesc(get(ARM::VDUPLN32d
));
5046 MIB
.addReg(DDst
, RegState::Define
)
5047 .addReg(DDst
, getUndefRegState(!MI
.readsRegister(DDst
, TRI
)))
5049 .add(predOps(ARMCC::AL
));
5051 // Neither the source or the destination are naturally represented any
5052 // more, so add them in manually.
5053 MIB
.addReg(DstReg
, RegState::Implicit
| RegState::Define
);
5054 MIB
.addReg(SrcReg
, RegState::Implicit
);
5055 if (ImplicitSReg
!= 0)
5056 MIB
.addReg(ImplicitSReg
, RegState::Implicit
);
5060 // In general there's no single instruction that can perform an S <-> S
5061 // move in NEON space, but a pair of VEXT instructions *can* do the
5062 // job. It turns out that the VEXTs needed will only use DSrc once, with
5063 // the position based purely on the combination of lane-0 and lane-1
5064 // involved. For example
5065 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1
5066 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1
5067 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1
5068 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1
5070 // Pattern of the MachineInstrs is:
5071 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5072 MachineInstrBuilder NewMIB
;
5073 NewMIB
= BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(ARM::VEXTd32
),
5076 // On the first instruction, both DSrc and DDst may be undef if present.
5077 // Specifically when the original instruction didn't have them as an
5079 unsigned CurReg
= SrcLane
== 1 && DstLane
== 1 ? DSrc
: DDst
;
5080 bool CurUndef
= !MI
.readsRegister(CurReg
, TRI
);
5081 NewMIB
.addReg(CurReg
, getUndefRegState(CurUndef
));
5083 CurReg
= SrcLane
== 0 && DstLane
== 0 ? DSrc
: DDst
;
5084 CurUndef
= !MI
.readsRegister(CurReg
, TRI
);
5085 NewMIB
.addReg(CurReg
, getUndefRegState(CurUndef
))
5087 .add(predOps(ARMCC::AL
));
5089 if (SrcLane
== DstLane
)
5090 NewMIB
.addReg(SrcReg
, RegState::Implicit
);
5092 MI
.setDesc(get(ARM::VEXTd32
));
5093 MIB
.addReg(DDst
, RegState::Define
);
5095 // On the second instruction, DDst has definitely been defined above, so
5096 // it is not undef. DSrc, if present, can be undef as above.
5097 CurReg
= SrcLane
== 1 && DstLane
== 0 ? DSrc
: DDst
;
5098 CurUndef
= CurReg
== DSrc
&& !MI
.readsRegister(CurReg
, TRI
);
5099 MIB
.addReg(CurReg
, getUndefRegState(CurUndef
));
5101 CurReg
= SrcLane
== 0 && DstLane
== 1 ? DSrc
: DDst
;
5102 CurUndef
= CurReg
== DSrc
&& !MI
.readsRegister(CurReg
, TRI
);
5103 MIB
.addReg(CurReg
, getUndefRegState(CurUndef
))
5105 .add(predOps(ARMCC::AL
));
5107 if (SrcLane
!= DstLane
)
5108 MIB
.addReg(SrcReg
, RegState::Implicit
);
5110 // As before, the original destination is no longer represented, add it
5112 MIB
.addReg(DstReg
, RegState::Define
| RegState::Implicit
);
5113 if (ImplicitSReg
!= 0)
5114 MIB
.addReg(ImplicitSReg
, RegState::Implicit
);
5120 //===----------------------------------------------------------------------===//
5121 // Partial register updates
5122 //===----------------------------------------------------------------------===//
5124 // Swift renames NEON registers with 64-bit granularity. That means any
5125 // instruction writing an S-reg implicitly reads the containing D-reg. The
5126 // problem is mostly avoided by translating f32 operations to v2f32 operations
5127 // on D-registers, but f32 loads are still a problem.
5129 // These instructions can load an f32 into a NEON register:
5131 // VLDRS - Only writes S, partial D update.
5132 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5133 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5135 // FCONSTD can be used as a dependency-breaking instruction.
5136 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5137 const MachineInstr
&MI
, unsigned OpNum
,
5138 const TargetRegisterInfo
*TRI
) const {
5139 auto PartialUpdateClearance
= Subtarget
.getPartialUpdateClearance();
5140 if (!PartialUpdateClearance
)
5143 assert(TRI
&& "Need TRI instance");
5145 const MachineOperand
&MO
= MI
.getOperand(OpNum
);
5148 Register Reg
= MO
.getReg();
5151 switch (MI
.getOpcode()) {
5152 // Normal instructions writing only an S-register.
5157 case ARM::VMOVv4i16
:
5158 case ARM::VMOVv2i32
:
5159 case ARM::VMOVv2f32
:
5160 case ARM::VMOVv1i64
:
5161 UseOp
= MI
.findRegisterUseOperandIdx(Reg
, false, TRI
);
5164 // Explicitly reads the dependency.
5165 case ARM::VLD1LNd32
:
5172 // If this instruction actually reads a value from Reg, there is no unwanted
5174 if (UseOp
!= -1 && MI
.getOperand(UseOp
).readsReg())
5177 // We must be able to clobber the whole D-reg.
5178 if (Register::isVirtualRegister(Reg
)) {
5179 // Virtual register must be a def undef foo:ssub_0 operand.
5180 if (!MO
.getSubReg() || MI
.readsVirtualRegister(Reg
))
5182 } else if (ARM::SPRRegClass
.contains(Reg
)) {
5183 // Physical register: MI must define the full D-reg.
5184 unsigned DReg
= TRI
->getMatchingSuperReg(Reg
, ARM::ssub_0
,
5186 if (!DReg
|| !MI
.definesRegister(DReg
, TRI
))
5190 // MI has an unwanted D-register dependency.
5191 // Avoid defs in the previous N instructrions.
5192 return PartialUpdateClearance
;
5195 // Break a partial register dependency after getPartialRegUpdateClearance
5196 // returned non-zero.
5197 void ARMBaseInstrInfo::breakPartialRegDependency(
5198 MachineInstr
&MI
, unsigned OpNum
, const TargetRegisterInfo
*TRI
) const {
5199 assert(OpNum
< MI
.getDesc().getNumDefs() && "OpNum is not a def");
5200 assert(TRI
&& "Need TRI instance");
5202 const MachineOperand
&MO
= MI
.getOperand(OpNum
);
5203 Register Reg
= MO
.getReg();
5204 assert(Register::isPhysicalRegister(Reg
) &&
5205 "Can't break virtual register dependencies.");
5206 unsigned DReg
= Reg
;
5208 // If MI defines an S-reg, find the corresponding D super-register.
5209 if (ARM::SPRRegClass
.contains(Reg
)) {
5210 DReg
= ARM::D0
+ (Reg
- ARM::S0
) / 2;
5211 assert(TRI
->isSuperRegister(Reg
, DReg
) && "Register enums broken");
5214 assert(ARM::DPRRegClass
.contains(DReg
) && "Can only break D-reg deps");
5215 assert(MI
.definesRegister(DReg
, TRI
) && "MI doesn't clobber full D-reg");
5217 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5218 // the full D-register by loading the same value to both lanes. The
5219 // instruction is micro-coded with 2 uops, so don't do this until we can
5220 // properly schedule micro-coded instructions. The dispatcher stalls cause
5221 // too big regressions.
5223 // Insert the dependency-breaking FCONSTD before MI.
5224 // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5225 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(ARM::FCONSTD
), DReg
)
5227 .add(predOps(ARMCC::AL
));
5228 MI
.addRegisterKilled(DReg
, TRI
, true);
5231 bool ARMBaseInstrInfo::hasNOP() const {
5232 return Subtarget
.getFeatureBits()[ARM::HasV6KOps
];
5235 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr
*MI
) const {
5236 if (MI
->getNumOperands() < 4)
5238 unsigned ShOpVal
= MI
->getOperand(3).getImm();
5239 unsigned ShImm
= ARM_AM::getSORegOffset(ShOpVal
);
5240 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5241 if ((ShImm
== 1 && ARM_AM::getSORegShOp(ShOpVal
) == ARM_AM::lsr
) ||
5242 ((ShImm
== 1 || ShImm
== 2) &&
5243 ARM_AM::getSORegShOp(ShOpVal
) == ARM_AM::lsl
))
5249 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5250 const MachineInstr
&MI
, unsigned DefIdx
,
5251 SmallVectorImpl
<RegSubRegPairAndIdx
> &InputRegs
) const {
5252 assert(DefIdx
< MI
.getDesc().getNumDefs() && "Invalid definition index");
5253 assert(MI
.isRegSequenceLike() && "Invalid kind of instruction");
5255 switch (MI
.getOpcode()) {
5257 // dX = VMOVDRR rY, rZ
5259 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5260 // Populate the InputRegs accordingly.
5262 const MachineOperand
*MOReg
= &MI
.getOperand(1);
5263 if (!MOReg
->isUndef())
5264 InputRegs
.push_back(RegSubRegPairAndIdx(MOReg
->getReg(),
5265 MOReg
->getSubReg(), ARM::ssub_0
));
5267 MOReg
= &MI
.getOperand(2);
5268 if (!MOReg
->isUndef())
5269 InputRegs
.push_back(RegSubRegPairAndIdx(MOReg
->getReg(),
5270 MOReg
->getSubReg(), ARM::ssub_1
));
5273 llvm_unreachable("Target dependent opcode missing");
5276 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5277 const MachineInstr
&MI
, unsigned DefIdx
,
5278 RegSubRegPairAndIdx
&InputReg
) const {
5279 assert(DefIdx
< MI
.getDesc().getNumDefs() && "Invalid definition index");
5280 assert(MI
.isExtractSubregLike() && "Invalid kind of instruction");
5282 switch (MI
.getOpcode()) {
5284 // rX, rY = VMOVRRD dZ
5286 // rX = EXTRACT_SUBREG dZ, ssub_0
5287 // rY = EXTRACT_SUBREG dZ, ssub_1
5288 const MachineOperand
&MOReg
= MI
.getOperand(2);
5289 if (MOReg
.isUndef())
5291 InputReg
.Reg
= MOReg
.getReg();
5292 InputReg
.SubReg
= MOReg
.getSubReg();
5293 InputReg
.SubIdx
= DefIdx
== 0 ? ARM::ssub_0
: ARM::ssub_1
;
5296 llvm_unreachable("Target dependent opcode missing");
5299 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5300 const MachineInstr
&MI
, unsigned DefIdx
, RegSubRegPair
&BaseReg
,
5301 RegSubRegPairAndIdx
&InsertedReg
) const {
5302 assert(DefIdx
< MI
.getDesc().getNumDefs() && "Invalid definition index");
5303 assert(MI
.isInsertSubregLike() && "Invalid kind of instruction");
5305 switch (MI
.getOpcode()) {
5306 case ARM::VSETLNi32
:
5307 // dX = VSETLNi32 dY, rZ, imm
5308 const MachineOperand
&MOBaseReg
= MI
.getOperand(1);
5309 const MachineOperand
&MOInsertedReg
= MI
.getOperand(2);
5310 if (MOInsertedReg
.isUndef())
5312 const MachineOperand
&MOIndex
= MI
.getOperand(3);
5313 BaseReg
.Reg
= MOBaseReg
.getReg();
5314 BaseReg
.SubReg
= MOBaseReg
.getSubReg();
5316 InsertedReg
.Reg
= MOInsertedReg
.getReg();
5317 InsertedReg
.SubReg
= MOInsertedReg
.getSubReg();
5318 InsertedReg
.SubIdx
= MOIndex
.getImm() == 0 ? ARM::ssub_0
: ARM::ssub_1
;
5321 llvm_unreachable("Target dependent opcode missing");
5324 std::pair
<unsigned, unsigned>
5325 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF
) const {
5326 const unsigned Mask
= ARMII::MO_OPTION_MASK
;
5327 return std::make_pair(TF
& Mask
, TF
& ~Mask
);
5330 ArrayRef
<std::pair
<unsigned, const char *>>
5331 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5332 using namespace ARMII
;
5334 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
5335 {MO_LO16
, "arm-lo16"}, {MO_HI16
, "arm-hi16"}};
5336 return makeArrayRef(TargetFlags
);
5339 ArrayRef
<std::pair
<unsigned, const char *>>
5340 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5341 using namespace ARMII
;
5343 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
5344 {MO_COFFSTUB
, "arm-coffstub"},
5345 {MO_GOT
, "arm-got"},
5346 {MO_SBREL
, "arm-sbrel"},
5347 {MO_DLLIMPORT
, "arm-dllimport"},
5348 {MO_SECREL
, "arm-secrel"},
5349 {MO_NONLAZY
, "arm-nonlazy"}};
5350 return makeArrayRef(TargetFlags
);
5353 bool llvm::registerDefinedBetween(unsigned Reg
,
5354 MachineBasicBlock::iterator From
,
5355 MachineBasicBlock::iterator To
,
5356 const TargetRegisterInfo
*TRI
) {
5357 for (auto I
= From
; I
!= To
; ++I
)
5358 if (I
->modifiesRegister(Reg
, TRI
))
5363 MachineInstr
*llvm::findCMPToFoldIntoCBZ(MachineInstr
*Br
,
5364 const TargetRegisterInfo
*TRI
) {
5365 // Search backwards to the instruction that defines CSPR. This may or not
5366 // be a CMP, we check that after this loop. If we find another instruction
5367 // that reads cpsr, we return nullptr.
5368 MachineBasicBlock::iterator CmpMI
= Br
;
5369 while (CmpMI
!= Br
->getParent()->begin()) {
5371 if (CmpMI
->modifiesRegister(ARM::CPSR
, TRI
))
5373 if (CmpMI
->readsRegister(ARM::CPSR
, TRI
))
5377 // Check that this inst is a CMP r[0-7], #0 and that the register
5378 // is not redefined between the cmp and the br.
5379 if (CmpMI
->getOpcode() != ARM::tCMPi8
&& CmpMI
->getOpcode() != ARM::t2CMPri
)
5381 Register Reg
= CmpMI
->getOperand(0).getReg();
5382 unsigned PredReg
= 0;
5383 ARMCC::CondCodes Pred
= getInstrPredicate(*CmpMI
, PredReg
);
5384 if (Pred
!= ARMCC::AL
|| CmpMI
->getOperand(1).getImm() != 0)
5386 if (!isARMLowRegister(Reg
))
5388 if (registerDefinedBetween(Reg
, CmpMI
->getNextNode(), Br
, TRI
))
5394 unsigned llvm::ConstantMaterializationCost(unsigned Val
,
5395 const ARMSubtarget
*Subtarget
,
5397 if (Subtarget
->isThumb()) {
5398 if (Val
<= 255) // MOV
5399 return ForCodesize
? 2 : 1;
5400 if (Subtarget
->hasV6T2Ops() && (Val
<= 0xffff || // MOV
5401 ARM_AM::getT2SOImmVal(Val
) != -1 || // MOVW
5402 ARM_AM::getT2SOImmVal(~Val
) != -1)) // MVN
5403 return ForCodesize
? 4 : 1;
5404 if (Val
<= 510) // MOV + ADDi8
5405 return ForCodesize
? 4 : 2;
5406 if (~Val
<= 255) // MOV + MVN
5407 return ForCodesize
? 4 : 2;
5408 if (ARM_AM::isThumbImmShiftedVal(Val
)) // MOV + LSL
5409 return ForCodesize
? 4 : 2;
5411 if (ARM_AM::getSOImmVal(Val
) != -1) // MOV
5412 return ForCodesize
? 4 : 1;
5413 if (ARM_AM::getSOImmVal(~Val
) != -1) // MVN
5414 return ForCodesize
? 4 : 1;
5415 if (Subtarget
->hasV6T2Ops() && Val
<= 0xffff) // MOVW
5416 return ForCodesize
? 4 : 1;
5417 if (ARM_AM::isSOImmTwoPartVal(Val
)) // two instrs
5418 return ForCodesize
? 8 : 2;
5420 if (Subtarget
->useMovt()) // MOVW + MOVT
5421 return ForCodesize
? 8 : 2;
5422 return ForCodesize
? 8 : 3; // Literal pool load
5425 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1
, unsigned Val2
,
5426 const ARMSubtarget
*Subtarget
,
5428 // Check with ForCodesize
5429 unsigned Cost1
= ConstantMaterializationCost(Val1
, Subtarget
, ForCodesize
);
5430 unsigned Cost2
= ConstantMaterializationCost(Val2
, Subtarget
, ForCodesize
);
5436 // If they are equal, try with !ForCodesize
5437 return ConstantMaterializationCost(Val1
, Subtarget
, !ForCodesize
) <
5438 ConstantMaterializationCost(Val2
, Subtarget
, !ForCodesize
);