1 //===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines an instruction selector for the ARM target.
11 //===----------------------------------------------------------------------===//
14 #include "ARMBaseInstrInfo.h"
15 #include "ARMTargetMachine.h"
16 #include "MCTargetDesc/ARMAddressingModes.h"
17 #include "Utils/ARMBaseInfo.h"
18 #include "llvm/ADT/StringSwitch.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/CodeGen/SelectionDAGISel.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Target/TargetOptions.h"
39 #define DEBUG_TYPE "arm-isel"
42 DisableShifterOp("disable-shifter-op", cl::Hidden
,
43 cl::desc("Disable isel of shifter-op"),
46 //===--------------------------------------------------------------------===//
47 /// ARMDAGToDAGISel - ARM specific code to select ARM machine
48 /// instructions for SelectionDAG operations.
52 class ARMDAGToDAGISel
: public SelectionDAGISel
{
53 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
54 /// make the right decision when generating code for different targets.
55 const ARMSubtarget
*Subtarget
;
58 explicit ARMDAGToDAGISel(ARMBaseTargetMachine
&tm
, CodeGenOpt::Level OptLevel
)
59 : SelectionDAGISel(tm
, OptLevel
) {}
61 bool runOnMachineFunction(MachineFunction
&MF
) override
{
62 // Reset the subtarget each time through.
63 Subtarget
= &MF
.getSubtarget
<ARMSubtarget
>();
64 SelectionDAGISel::runOnMachineFunction(MF
);
68 StringRef
getPassName() const override
{ return "ARM Instruction Selection"; }
70 void PreprocessISelDAG() override
;
72 /// getI32Imm - Return a target constant of type i32 with the specified
74 inline SDValue
getI32Imm(unsigned Imm
, const SDLoc
&dl
) {
75 return CurDAG
->getTargetConstant(Imm
, dl
, MVT::i32
);
78 void Select(SDNode
*N
) override
;
80 bool hasNoVMLxHazardUse(SDNode
*N
) const;
81 bool isShifterOpProfitable(const SDValue
&Shift
,
82 ARM_AM::ShiftOpc ShOpcVal
, unsigned ShAmt
);
83 bool SelectRegShifterOperand(SDValue N
, SDValue
&A
,
84 SDValue
&B
, SDValue
&C
,
85 bool CheckProfitability
= true);
86 bool SelectImmShifterOperand(SDValue N
, SDValue
&A
,
87 SDValue
&B
, bool CheckProfitability
= true);
88 bool SelectShiftRegShifterOperand(SDValue N
, SDValue
&A
,
89 SDValue
&B
, SDValue
&C
) {
90 // Don't apply the profitability check
91 return SelectRegShifterOperand(N
, A
, B
, C
, false);
93 bool SelectShiftImmShifterOperand(SDValue N
, SDValue
&A
,
95 // Don't apply the profitability check
96 return SelectImmShifterOperand(N
, A
, B
, false);
99 bool SelectAddLikeOr(SDNode
*Parent
, SDValue N
, SDValue
&Out
);
101 bool SelectAddrModeImm12(SDValue N
, SDValue
&Base
, SDValue
&OffImm
);
102 bool SelectLdStSOReg(SDValue N
, SDValue
&Base
, SDValue
&Offset
, SDValue
&Opc
);
104 bool SelectCMOVPred(SDValue N
, SDValue
&Pred
, SDValue
&Reg
) {
105 const ConstantSDNode
*CN
= cast
<ConstantSDNode
>(N
);
106 Pred
= CurDAG
->getTargetConstant(CN
->getZExtValue(), SDLoc(N
), MVT::i32
);
107 Reg
= CurDAG
->getRegister(ARM::CPSR
, MVT::i32
);
111 bool SelectAddrMode2OffsetReg(SDNode
*Op
, SDValue N
,
112 SDValue
&Offset
, SDValue
&Opc
);
113 bool SelectAddrMode2OffsetImm(SDNode
*Op
, SDValue N
,
114 SDValue
&Offset
, SDValue
&Opc
);
115 bool SelectAddrMode2OffsetImmPre(SDNode
*Op
, SDValue N
,
116 SDValue
&Offset
, SDValue
&Opc
);
117 bool SelectAddrOffsetNone(SDValue N
, SDValue
&Base
);
118 bool SelectAddrMode3(SDValue N
, SDValue
&Base
,
119 SDValue
&Offset
, SDValue
&Opc
);
120 bool SelectAddrMode3Offset(SDNode
*Op
, SDValue N
,
121 SDValue
&Offset
, SDValue
&Opc
);
122 bool IsAddressingMode5(SDValue N
, SDValue
&Base
, SDValue
&Offset
, bool FP16
);
123 bool SelectAddrMode5(SDValue N
, SDValue
&Base
, SDValue
&Offset
);
124 bool SelectAddrMode5FP16(SDValue N
, SDValue
&Base
, SDValue
&Offset
);
125 bool SelectAddrMode6(SDNode
*Parent
, SDValue N
, SDValue
&Addr
,SDValue
&Align
);
126 bool SelectAddrMode6Offset(SDNode
*Op
, SDValue N
, SDValue
&Offset
);
128 bool SelectAddrModePC(SDValue N
, SDValue
&Offset
, SDValue
&Label
);
130 // Thumb Addressing Modes:
131 bool SelectThumbAddrModeRR(SDValue N
, SDValue
&Base
, SDValue
&Offset
);
132 bool SelectThumbAddrModeRRSext(SDValue N
, SDValue
&Base
, SDValue
&Offset
);
133 bool SelectThumbAddrModeImm5S(SDValue N
, unsigned Scale
, SDValue
&Base
,
135 bool SelectThumbAddrModeImm5S1(SDValue N
, SDValue
&Base
,
137 bool SelectThumbAddrModeImm5S2(SDValue N
, SDValue
&Base
,
139 bool SelectThumbAddrModeImm5S4(SDValue N
, SDValue
&Base
,
141 bool SelectThumbAddrModeSP(SDValue N
, SDValue
&Base
, SDValue
&OffImm
);
142 template <unsigned Shift
>
143 bool SelectTAddrModeImm7(SDValue N
, SDValue
&Base
, SDValue
&OffImm
);
145 // Thumb 2 Addressing Modes:
146 bool SelectT2AddrModeImm12(SDValue N
, SDValue
&Base
, SDValue
&OffImm
);
147 bool SelectT2AddrModeImm8(SDValue N
, SDValue
&Base
,
149 bool SelectT2AddrModeImm8Offset(SDNode
*Op
, SDValue N
,
151 template <unsigned Shift
>
152 bool SelectT2AddrModeImm7Offset(SDNode
*Op
, SDValue N
, SDValue
&OffImm
);
153 bool SelectT2AddrModeImm7Offset(SDNode
*Op
, SDValue N
, SDValue
&OffImm
,
155 template <unsigned Shift
>
156 bool SelectT2AddrModeImm7(SDValue N
, SDValue
&Base
, SDValue
&OffImm
);
157 bool SelectT2AddrModeSoReg(SDValue N
, SDValue
&Base
,
158 SDValue
&OffReg
, SDValue
&ShImm
);
159 bool SelectT2AddrModeExclusive(SDValue N
, SDValue
&Base
, SDValue
&OffImm
);
161 inline bool is_so_imm(unsigned Imm
) const {
162 return ARM_AM::getSOImmVal(Imm
) != -1;
165 inline bool is_so_imm_not(unsigned Imm
) const {
166 return ARM_AM::getSOImmVal(~Imm
) != -1;
169 inline bool is_t2_so_imm(unsigned Imm
) const {
170 return ARM_AM::getT2SOImmVal(Imm
) != -1;
173 inline bool is_t2_so_imm_not(unsigned Imm
) const {
174 return ARM_AM::getT2SOImmVal(~Imm
) != -1;
177 // Include the pieces autogenerated from the target description.
178 #include "ARMGenDAGISel.inc"
181 void transferMemOperands(SDNode
*Src
, SDNode
*Dst
);
183 /// Indexed (pre/post inc/dec) load matching code for ARM.
184 bool tryARMIndexedLoad(SDNode
*N
);
185 bool tryT1IndexedLoad(SDNode
*N
);
186 bool tryT2IndexedLoad(SDNode
*N
);
187 bool tryMVEIndexedLoad(SDNode
*N
);
189 /// SelectVLD - Select NEON load intrinsics. NumVecs should be
190 /// 1, 2, 3 or 4. The opcode arrays specify the instructions used for
191 /// loads of D registers and even subregs and odd subregs of Q registers.
192 /// For NumVecs <= 2, QOpcodes1 is not used.
193 void SelectVLD(SDNode
*N
, bool isUpdating
, unsigned NumVecs
,
194 const uint16_t *DOpcodes
, const uint16_t *QOpcodes0
,
195 const uint16_t *QOpcodes1
);
197 /// SelectVST - Select NEON store intrinsics. NumVecs should
198 /// be 1, 2, 3 or 4. The opcode arrays specify the instructions used for
199 /// stores of D registers and even subregs and odd subregs of Q registers.
200 /// For NumVecs <= 2, QOpcodes1 is not used.
201 void SelectVST(SDNode
*N
, bool isUpdating
, unsigned NumVecs
,
202 const uint16_t *DOpcodes
, const uint16_t *QOpcodes0
,
203 const uint16_t *QOpcodes1
);
205 /// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should
206 /// be 2, 3 or 4. The opcode arrays specify the instructions used for
207 /// load/store of D registers and Q registers.
208 void SelectVLDSTLane(SDNode
*N
, bool IsLoad
, bool isUpdating
,
209 unsigned NumVecs
, const uint16_t *DOpcodes
,
210 const uint16_t *QOpcodes
);
212 /// SelectVLDDup - Select NEON load-duplicate intrinsics. NumVecs
213 /// should be 1, 2, 3 or 4. The opcode array specifies the instructions used
214 /// for loading D registers.
215 void SelectVLDDup(SDNode
*N
, bool IsIntrinsic
, bool isUpdating
,
216 unsigned NumVecs
, const uint16_t *DOpcodes
,
217 const uint16_t *QOpcodes0
= nullptr,
218 const uint16_t *QOpcodes1
= nullptr);
220 /// Try to select SBFX/UBFX instructions for ARM.
221 bool tryV6T2BitfieldExtractOp(SDNode
*N
, bool isSigned
);
223 // Select special operations if node forms integer ABS pattern
224 bool tryABSOp(SDNode
*N
);
226 bool tryReadRegister(SDNode
*N
);
227 bool tryWriteRegister(SDNode
*N
);
229 bool tryInlineAsm(SDNode
*N
);
231 void SelectCMPZ(SDNode
*N
, bool &SwitchEQNEToPLMI
);
233 void SelectCMP_SWAP(SDNode
*N
);
235 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
236 /// inline asm expressions.
237 bool SelectInlineAsmMemoryOperand(const SDValue
&Op
, unsigned ConstraintID
,
238 std::vector
<SDValue
> &OutOps
) override
;
240 // Form pairs of consecutive R, S, D, or Q registers.
241 SDNode
*createGPRPairNode(EVT VT
, SDValue V0
, SDValue V1
);
242 SDNode
*createSRegPairNode(EVT VT
, SDValue V0
, SDValue V1
);
243 SDNode
*createDRegPairNode(EVT VT
, SDValue V0
, SDValue V1
);
244 SDNode
*createQRegPairNode(EVT VT
, SDValue V0
, SDValue V1
);
246 // Form sequences of 4 consecutive S, D, or Q registers.
247 SDNode
*createQuadSRegsNode(EVT VT
, SDValue V0
, SDValue V1
, SDValue V2
, SDValue V3
);
248 SDNode
*createQuadDRegsNode(EVT VT
, SDValue V0
, SDValue V1
, SDValue V2
, SDValue V3
);
249 SDNode
*createQuadQRegsNode(EVT VT
, SDValue V0
, SDValue V1
, SDValue V2
, SDValue V3
);
251 // Get the alignment operand for a NEON VLD or VST instruction.
252 SDValue
GetVLDSTAlign(SDValue Align
, const SDLoc
&dl
, unsigned NumVecs
,
255 /// Checks if N is a multiplication by a constant where we can extract out a
256 /// power of two from the constant so that it can be used in a shift, but only
257 /// if it simplifies the materialization of the constant. Returns true if it
258 /// is, and assigns to PowerOfTwo the power of two that should be extracted
259 /// out and to NewMulConst the new constant to be multiplied by.
260 bool canExtractShiftFromMul(const SDValue
&N
, unsigned MaxShift
,
261 unsigned &PowerOfTwo
, SDValue
&NewMulConst
) const;
263 /// Replace N with M in CurDAG, in a way that also ensures that M gets
264 /// selected when N would have been selected.
265 void replaceDAGValue(const SDValue
&N
, SDValue M
);
269 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
270 /// operand. If so Imm will receive the 32-bit value.
271 static bool isInt32Immediate(SDNode
*N
, unsigned &Imm
) {
272 if (N
->getOpcode() == ISD::Constant
&& N
->getValueType(0) == MVT::i32
) {
273 Imm
= cast
<ConstantSDNode
>(N
)->getZExtValue();
279 // isInt32Immediate - This method tests to see if a constant operand.
280 // If so Imm will receive the 32 bit value.
281 static bool isInt32Immediate(SDValue N
, unsigned &Imm
) {
282 return isInt32Immediate(N
.getNode(), Imm
);
285 // isOpcWithIntImmediate - This method tests to see if the node is a specific
286 // opcode and that it has a immediate integer right operand.
287 // If so Imm will receive the 32 bit value.
288 static bool isOpcWithIntImmediate(SDNode
*N
, unsigned Opc
, unsigned& Imm
) {
289 return N
->getOpcode() == Opc
&&
290 isInt32Immediate(N
->getOperand(1).getNode(), Imm
);
293 /// Check whether a particular node is a constant value representable as
294 /// (N * Scale) where (N in [\p RangeMin, \p RangeMax).
296 /// \param ScaledConstant [out] - On success, the pre-scaled constant value.
297 static bool isScaledConstantInRange(SDValue Node
, int Scale
,
298 int RangeMin
, int RangeMax
,
299 int &ScaledConstant
) {
300 assert(Scale
> 0 && "Invalid scale!");
302 // Check that this is a constant.
303 const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Node
);
307 ScaledConstant
= (int) C
->getZExtValue();
308 if ((ScaledConstant
% Scale
) != 0)
311 ScaledConstant
/= Scale
;
312 return ScaledConstant
>= RangeMin
&& ScaledConstant
< RangeMax
;
315 void ARMDAGToDAGISel::PreprocessISelDAG() {
316 if (!Subtarget
->hasV6T2Ops())
319 bool isThumb2
= Subtarget
->isThumb();
320 for (SelectionDAG::allnodes_iterator I
= CurDAG
->allnodes_begin(),
321 E
= CurDAG
->allnodes_end(); I
!= E
; ) {
322 SDNode
*N
= &*I
++; // Preincrement iterator to avoid invalidation issues.
324 if (N
->getOpcode() != ISD::ADD
)
327 // Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with
328 // leading zeros, followed by consecutive set bits, followed by 1 or 2
329 // trailing zeros, e.g. 1020.
330 // Transform the expression to
331 // (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number
332 // of trailing zeros of c2. The left shift would be folded as an shifter
333 // operand of 'add' and the 'and' and 'srl' would become a bits extraction
336 SDValue N0
= N
->getOperand(0);
337 SDValue N1
= N
->getOperand(1);
338 unsigned And_imm
= 0;
339 if (!isOpcWithIntImmediate(N1
.getNode(), ISD::AND
, And_imm
)) {
340 if (isOpcWithIntImmediate(N0
.getNode(), ISD::AND
, And_imm
))
346 // Check if the AND mask is an immediate of the form: 000.....1111111100
347 unsigned TZ
= countTrailingZeros(And_imm
);
348 if (TZ
!= 1 && TZ
!= 2)
349 // Be conservative here. Shifter operands aren't always free. e.g. On
350 // Swift, left shifter operand of 1 / 2 for free but others are not.
352 // ubfx r3, r1, #16, #8
353 // ldr.w r3, [r0, r3, lsl #2]
356 // and.w r2, r9, r1, lsr #14
360 if (And_imm
& (And_imm
+ 1))
363 // Look for (and (srl X, c1), c2).
364 SDValue Srl
= N1
.getOperand(0);
365 unsigned Srl_imm
= 0;
366 if (!isOpcWithIntImmediate(Srl
.getNode(), ISD::SRL
, Srl_imm
) ||
370 // Make sure first operand is not a shifter operand which would prevent
371 // folding of the left shift.
376 if (SelectImmShifterOperand(N0
, CPTmp0
, CPTmp1
))
379 if (SelectImmShifterOperand(N0
, CPTmp0
, CPTmp1
) ||
380 SelectRegShifterOperand(N0
, CPTmp0
, CPTmp1
, CPTmp2
))
384 // Now make the transformation.
385 Srl
= CurDAG
->getNode(ISD::SRL
, SDLoc(Srl
), MVT::i32
,
387 CurDAG
->getConstant(Srl_imm
+ TZ
, SDLoc(Srl
),
389 N1
= CurDAG
->getNode(ISD::AND
, SDLoc(N1
), MVT::i32
,
391 CurDAG
->getConstant(And_imm
, SDLoc(Srl
), MVT::i32
));
392 N1
= CurDAG
->getNode(ISD::SHL
, SDLoc(N1
), MVT::i32
,
393 N1
, CurDAG
->getConstant(TZ
, SDLoc(Srl
), MVT::i32
));
394 CurDAG
->UpdateNodeOperands(N
, N0
, N1
);
398 /// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
399 /// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
400 /// least on current ARM implementations) which should be avoidded.
401 bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode
*N
) const {
402 if (OptLevel
== CodeGenOpt::None
)
405 if (!Subtarget
->hasVMLxHazards())
411 SDNode
*Use
= *N
->use_begin();
412 if (Use
->getOpcode() == ISD::CopyToReg
)
414 if (Use
->isMachineOpcode()) {
415 const ARMBaseInstrInfo
*TII
= static_cast<const ARMBaseInstrInfo
*>(
416 CurDAG
->getSubtarget().getInstrInfo());
418 const MCInstrDesc
&MCID
= TII
->get(Use
->getMachineOpcode());
421 unsigned Opcode
= MCID
.getOpcode();
422 if (Opcode
== ARM::VMOVRS
|| Opcode
== ARM::VMOVRRD
)
424 // vmlx feeding into another vmlx. We actually want to unfold
425 // the use later in the MLxExpansion pass. e.g.
427 // vmla (stall 8 cycles)
432 // This adds up to about 18 - 19 cycles.
435 // vmul (stall 4 cycles)
436 // vadd adds up to about 14 cycles.
437 return TII
->isFpMLxInstruction(Opcode
);
443 bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue
&Shift
,
444 ARM_AM::ShiftOpc ShOpcVal
,
446 if (!Subtarget
->isLikeA9() && !Subtarget
->isSwift())
448 if (Shift
.hasOneUse())
451 return ShOpcVal
== ARM_AM::lsl
&&
452 (ShAmt
== 2 || (Subtarget
->isSwift() && ShAmt
== 1));
455 bool ARMDAGToDAGISel::canExtractShiftFromMul(const SDValue
&N
,
457 unsigned &PowerOfTwo
,
458 SDValue
&NewMulConst
) const {
459 assert(N
.getOpcode() == ISD::MUL
);
460 assert(MaxShift
> 0);
462 // If the multiply is used in more than one place then changing the constant
463 // will make other uses incorrect, so don't.
464 if (!N
.hasOneUse()) return false;
465 // Check if the multiply is by a constant
466 ConstantSDNode
*MulConst
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
467 if (!MulConst
) return false;
468 // If the constant is used in more than one place then modifying it will mean
469 // we need to materialize two constants instead of one, which is a bad idea.
470 if (!MulConst
->hasOneUse()) return false;
471 unsigned MulConstVal
= MulConst
->getZExtValue();
472 if (MulConstVal
== 0) return false;
474 // Find the largest power of 2 that MulConstVal is a multiple of
475 PowerOfTwo
= MaxShift
;
476 while ((MulConstVal
% (1 << PowerOfTwo
)) != 0) {
478 if (PowerOfTwo
== 0) return false;
481 // Only optimise if the new cost is better
482 unsigned NewMulConstVal
= MulConstVal
/ (1 << PowerOfTwo
);
483 NewMulConst
= CurDAG
->getConstant(NewMulConstVal
, SDLoc(N
), MVT::i32
);
484 unsigned OldCost
= ConstantMaterializationCost(MulConstVal
, Subtarget
);
485 unsigned NewCost
= ConstantMaterializationCost(NewMulConstVal
, Subtarget
);
486 return NewCost
< OldCost
;
489 void ARMDAGToDAGISel::replaceDAGValue(const SDValue
&N
, SDValue M
) {
490 CurDAG
->RepositionNode(N
.getNode()->getIterator(), M
.getNode());
494 bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N
,
497 bool CheckProfitability
) {
498 if (DisableShifterOp
)
501 // If N is a multiply-by-constant and it's profitable to extract a shift and
502 // use it in a shifted operand do so.
503 if (N
.getOpcode() == ISD::MUL
) {
504 unsigned PowerOfTwo
= 0;
506 if (canExtractShiftFromMul(N
, 31, PowerOfTwo
, NewMulConst
)) {
507 HandleSDNode
Handle(N
);
509 replaceDAGValue(N
.getOperand(1), NewMulConst
);
510 BaseReg
= Handle
.getValue();
511 Opc
= CurDAG
->getTargetConstant(
512 ARM_AM::getSORegOpc(ARM_AM::lsl
, PowerOfTwo
), Loc
, MVT::i32
);
517 ARM_AM::ShiftOpc ShOpcVal
= ARM_AM::getShiftOpcForNode(N
.getOpcode());
519 // Don't match base register only case. That is matched to a separate
520 // lower complexity pattern with explicit register operand.
521 if (ShOpcVal
== ARM_AM::no_shift
) return false;
523 BaseReg
= N
.getOperand(0);
524 unsigned ShImmVal
= 0;
525 ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
526 if (!RHS
) return false;
527 ShImmVal
= RHS
->getZExtValue() & 31;
528 Opc
= CurDAG
->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal
, ShImmVal
),
533 bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N
,
537 bool CheckProfitability
) {
538 if (DisableShifterOp
)
541 ARM_AM::ShiftOpc ShOpcVal
= ARM_AM::getShiftOpcForNode(N
.getOpcode());
543 // Don't match base register only case. That is matched to a separate
544 // lower complexity pattern with explicit register operand.
545 if (ShOpcVal
== ARM_AM::no_shift
) return false;
547 BaseReg
= N
.getOperand(0);
548 unsigned ShImmVal
= 0;
549 ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
550 if (RHS
) return false;
552 ShReg
= N
.getOperand(1);
553 if (CheckProfitability
&& !isShifterOpProfitable(N
, ShOpcVal
, ShImmVal
))
555 Opc
= CurDAG
->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal
, ShImmVal
),
560 // Determine whether an ISD::OR's operands are suitable to turn the operation
561 // into an addition, which often has more compact encodings.
562 bool ARMDAGToDAGISel::SelectAddLikeOr(SDNode
*Parent
, SDValue N
, SDValue
&Out
) {
563 assert(Parent
->getOpcode() == ISD::OR
&& "unexpected parent");
565 return CurDAG
->haveNoCommonBitsSet(N
, Parent
->getOperand(1));
569 bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N
,
572 // Match simple R + imm12 operands.
575 if (N
.getOpcode() != ISD::ADD
&& N
.getOpcode() != ISD::SUB
&&
576 !CurDAG
->isBaseWithConstantOffset(N
)) {
577 if (N
.getOpcode() == ISD::FrameIndex
) {
578 // Match frame index.
579 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
580 Base
= CurDAG
->getTargetFrameIndex(
581 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
582 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
586 if (N
.getOpcode() == ARMISD::Wrapper
&&
587 N
.getOperand(0).getOpcode() != ISD::TargetGlobalAddress
&&
588 N
.getOperand(0).getOpcode() != ISD::TargetExternalSymbol
&&
589 N
.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress
) {
590 Base
= N
.getOperand(0);
593 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
597 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
598 int RHSC
= (int)RHS
->getSExtValue();
599 if (N
.getOpcode() == ISD::SUB
)
602 if (RHSC
> -0x1000 && RHSC
< 0x1000) { // 12 bits
603 Base
= N
.getOperand(0);
604 if (Base
.getOpcode() == ISD::FrameIndex
) {
605 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
606 Base
= CurDAG
->getTargetFrameIndex(
607 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
609 OffImm
= CurDAG
->getTargetConstant(RHSC
, SDLoc(N
), MVT::i32
);
616 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
622 bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N
, SDValue
&Base
, SDValue
&Offset
,
624 if (N
.getOpcode() == ISD::MUL
&&
625 ((!Subtarget
->isLikeA9() && !Subtarget
->isSwift()) || N
.hasOneUse())) {
626 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
627 // X * [3,5,9] -> X + X * [2,4,8] etc.
628 int RHSC
= (int)RHS
->getZExtValue();
631 ARM_AM::AddrOpc AddSub
= ARM_AM::add
;
633 AddSub
= ARM_AM::sub
;
636 if (isPowerOf2_32(RHSC
)) {
637 unsigned ShAmt
= Log2_32(RHSC
);
638 Base
= Offset
= N
.getOperand(0);
639 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM2Opc(AddSub
, ShAmt
,
648 if (N
.getOpcode() != ISD::ADD
&& N
.getOpcode() != ISD::SUB
&&
649 // ISD::OR that is equivalent to an ISD::ADD.
650 !CurDAG
->isBaseWithConstantOffset(N
))
653 // Leave simple R +/- imm12 operands for LDRi12
654 if (N
.getOpcode() == ISD::ADD
|| N
.getOpcode() == ISD::OR
) {
656 if (isScaledConstantInRange(N
.getOperand(1), /*Scale=*/1,
657 -0x1000+1, 0x1000, RHSC
)) // 12 bits.
661 // Otherwise this is R +/- [possibly shifted] R.
662 ARM_AM::AddrOpc AddSub
= N
.getOpcode() == ISD::SUB
? ARM_AM::sub
:ARM_AM::add
;
663 ARM_AM::ShiftOpc ShOpcVal
=
664 ARM_AM::getShiftOpcForNode(N
.getOperand(1).getOpcode());
667 Base
= N
.getOperand(0);
668 Offset
= N
.getOperand(1);
670 if (ShOpcVal
!= ARM_AM::no_shift
) {
671 // Check to see if the RHS of the shift is a constant, if not, we can't fold
673 if (ConstantSDNode
*Sh
=
674 dyn_cast
<ConstantSDNode
>(N
.getOperand(1).getOperand(1))) {
675 ShAmt
= Sh
->getZExtValue();
676 if (isShifterOpProfitable(Offset
, ShOpcVal
, ShAmt
))
677 Offset
= N
.getOperand(1).getOperand(0);
680 ShOpcVal
= ARM_AM::no_shift
;
683 ShOpcVal
= ARM_AM::no_shift
;
687 // Try matching (R shl C) + (R).
688 if (N
.getOpcode() != ISD::SUB
&& ShOpcVal
== ARM_AM::no_shift
&&
689 !(Subtarget
->isLikeA9() || Subtarget
->isSwift() ||
690 N
.getOperand(0).hasOneUse())) {
691 ShOpcVal
= ARM_AM::getShiftOpcForNode(N
.getOperand(0).getOpcode());
692 if (ShOpcVal
!= ARM_AM::no_shift
) {
693 // Check to see if the RHS of the shift is a constant, if not, we can't
695 if (ConstantSDNode
*Sh
=
696 dyn_cast
<ConstantSDNode
>(N
.getOperand(0).getOperand(1))) {
697 ShAmt
= Sh
->getZExtValue();
698 if (isShifterOpProfitable(N
.getOperand(0), ShOpcVal
, ShAmt
)) {
699 Offset
= N
.getOperand(0).getOperand(0);
700 Base
= N
.getOperand(1);
703 ShOpcVal
= ARM_AM::no_shift
;
706 ShOpcVal
= ARM_AM::no_shift
;
711 // If Offset is a multiply-by-constant and it's profitable to extract a shift
712 // and use it in a shifted operand do so.
713 if (Offset
.getOpcode() == ISD::MUL
&& N
.hasOneUse()) {
714 unsigned PowerOfTwo
= 0;
716 if (canExtractShiftFromMul(Offset
, 31, PowerOfTwo
, NewMulConst
)) {
717 HandleSDNode
Handle(Offset
);
718 replaceDAGValue(Offset
.getOperand(1), NewMulConst
);
719 Offset
= Handle
.getValue();
721 ShOpcVal
= ARM_AM::lsl
;
725 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM2Opc(AddSub
, ShAmt
, ShOpcVal
),
730 bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode
*Op
, SDValue N
,
731 SDValue
&Offset
, SDValue
&Opc
) {
732 unsigned Opcode
= Op
->getOpcode();
733 ISD::MemIndexedMode AM
= (Opcode
== ISD::LOAD
)
734 ? cast
<LoadSDNode
>(Op
)->getAddressingMode()
735 : cast
<StoreSDNode
>(Op
)->getAddressingMode();
736 ARM_AM::AddrOpc AddSub
= (AM
== ISD::PRE_INC
|| AM
== ISD::POST_INC
)
737 ? ARM_AM::add
: ARM_AM::sub
;
739 if (isScaledConstantInRange(N
, /*Scale=*/1, 0, 0x1000, Val
))
743 ARM_AM::ShiftOpc ShOpcVal
= ARM_AM::getShiftOpcForNode(N
.getOpcode());
745 if (ShOpcVal
!= ARM_AM::no_shift
) {
746 // Check to see if the RHS of the shift is a constant, if not, we can't fold
748 if (ConstantSDNode
*Sh
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
749 ShAmt
= Sh
->getZExtValue();
750 if (isShifterOpProfitable(N
, ShOpcVal
, ShAmt
))
751 Offset
= N
.getOperand(0);
754 ShOpcVal
= ARM_AM::no_shift
;
757 ShOpcVal
= ARM_AM::no_shift
;
761 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM2Opc(AddSub
, ShAmt
, ShOpcVal
),
766 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode
*Op
, SDValue N
,
767 SDValue
&Offset
, SDValue
&Opc
) {
768 unsigned Opcode
= Op
->getOpcode();
769 ISD::MemIndexedMode AM
= (Opcode
== ISD::LOAD
)
770 ? cast
<LoadSDNode
>(Op
)->getAddressingMode()
771 : cast
<StoreSDNode
>(Op
)->getAddressingMode();
772 ARM_AM::AddrOpc AddSub
= (AM
== ISD::PRE_INC
|| AM
== ISD::POST_INC
)
773 ? ARM_AM::add
: ARM_AM::sub
;
775 if (isScaledConstantInRange(N
, /*Scale=*/1, 0, 0x1000, Val
)) { // 12 bits.
776 if (AddSub
== ARM_AM::sub
) Val
*= -1;
777 Offset
= CurDAG
->getRegister(0, MVT::i32
);
778 Opc
= CurDAG
->getTargetConstant(Val
, SDLoc(Op
), MVT::i32
);
786 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode
*Op
, SDValue N
,
787 SDValue
&Offset
, SDValue
&Opc
) {
788 unsigned Opcode
= Op
->getOpcode();
789 ISD::MemIndexedMode AM
= (Opcode
== ISD::LOAD
)
790 ? cast
<LoadSDNode
>(Op
)->getAddressingMode()
791 : cast
<StoreSDNode
>(Op
)->getAddressingMode();
792 ARM_AM::AddrOpc AddSub
= (AM
== ISD::PRE_INC
|| AM
== ISD::POST_INC
)
793 ? ARM_AM::add
: ARM_AM::sub
;
795 if (isScaledConstantInRange(N
, /*Scale=*/1, 0, 0x1000, Val
)) { // 12 bits.
796 Offset
= CurDAG
->getRegister(0, MVT::i32
);
797 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM2Opc(AddSub
, Val
,
799 SDLoc(Op
), MVT::i32
);
806 bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N
, SDValue
&Base
) {
811 bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N
,
812 SDValue
&Base
, SDValue
&Offset
,
814 if (N
.getOpcode() == ISD::SUB
) {
815 // X - C is canonicalize to X + -C, no need to handle it here.
816 Base
= N
.getOperand(0);
817 Offset
= N
.getOperand(1);
818 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub
, 0), SDLoc(N
),
823 if (!CurDAG
->isBaseWithConstantOffset(N
)) {
825 if (N
.getOpcode() == ISD::FrameIndex
) {
826 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
827 Base
= CurDAG
->getTargetFrameIndex(
828 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
830 Offset
= CurDAG
->getRegister(0, MVT::i32
);
831 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add
, 0), SDLoc(N
),
836 // If the RHS is +/- imm8, fold into addr mode.
838 if (isScaledConstantInRange(N
.getOperand(1), /*Scale=*/1,
839 -256 + 1, 256, RHSC
)) { // 8 bits.
840 Base
= N
.getOperand(0);
841 if (Base
.getOpcode() == ISD::FrameIndex
) {
842 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
843 Base
= CurDAG
->getTargetFrameIndex(
844 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
846 Offset
= CurDAG
->getRegister(0, MVT::i32
);
848 ARM_AM::AddrOpc AddSub
= ARM_AM::add
;
850 AddSub
= ARM_AM::sub
;
853 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM3Opc(AddSub
, RHSC
), SDLoc(N
),
858 Base
= N
.getOperand(0);
859 Offset
= N
.getOperand(1);
860 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add
, 0), SDLoc(N
),
865 bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode
*Op
, SDValue N
,
866 SDValue
&Offset
, SDValue
&Opc
) {
867 unsigned Opcode
= Op
->getOpcode();
868 ISD::MemIndexedMode AM
= (Opcode
== ISD::LOAD
)
869 ? cast
<LoadSDNode
>(Op
)->getAddressingMode()
870 : cast
<StoreSDNode
>(Op
)->getAddressingMode();
871 ARM_AM::AddrOpc AddSub
= (AM
== ISD::PRE_INC
|| AM
== ISD::POST_INC
)
872 ? ARM_AM::add
: ARM_AM::sub
;
874 if (isScaledConstantInRange(N
, /*Scale=*/1, 0, 256, Val
)) { // 12 bits.
875 Offset
= CurDAG
->getRegister(0, MVT::i32
);
876 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM3Opc(AddSub
, Val
), SDLoc(Op
),
882 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM3Opc(AddSub
, 0), SDLoc(Op
),
887 bool ARMDAGToDAGISel::IsAddressingMode5(SDValue N
, SDValue
&Base
, SDValue
&Offset
,
889 if (!CurDAG
->isBaseWithConstantOffset(N
)) {
891 if (N
.getOpcode() == ISD::FrameIndex
) {
892 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
893 Base
= CurDAG
->getTargetFrameIndex(
894 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
895 } else if (N
.getOpcode() == ARMISD::Wrapper
&&
896 N
.getOperand(0).getOpcode() != ISD::TargetGlobalAddress
&&
897 N
.getOperand(0).getOpcode() != ISD::TargetExternalSymbol
&&
898 N
.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress
) {
899 Base
= N
.getOperand(0);
901 Offset
= CurDAG
->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add
, 0),
906 // If the RHS is +/- imm8, fold into addr mode.
908 const int Scale
= FP16
? 2 : 4;
910 if (isScaledConstantInRange(N
.getOperand(1), Scale
, -255, 256, RHSC
)) {
911 Base
= N
.getOperand(0);
912 if (Base
.getOpcode() == ISD::FrameIndex
) {
913 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
914 Base
= CurDAG
->getTargetFrameIndex(
915 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
918 ARM_AM::AddrOpc AddSub
= ARM_AM::add
;
920 AddSub
= ARM_AM::sub
;
925 Offset
= CurDAG
->getTargetConstant(ARM_AM::getAM5FP16Opc(AddSub
, RHSC
),
928 Offset
= CurDAG
->getTargetConstant(ARM_AM::getAM5Opc(AddSub
, RHSC
),
937 Offset
= CurDAG
->getTargetConstant(ARM_AM::getAM5FP16Opc(ARM_AM::add
, 0),
940 Offset
= CurDAG
->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add
, 0),
946 bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N
,
947 SDValue
&Base
, SDValue
&Offset
) {
948 return IsAddressingMode5(N
, Base
, Offset
, /*FP16=*/ false);
951 bool ARMDAGToDAGISel::SelectAddrMode5FP16(SDValue N
,
952 SDValue
&Base
, SDValue
&Offset
) {
953 return IsAddressingMode5(N
, Base
, Offset
, /*FP16=*/ true);
956 bool ARMDAGToDAGISel::SelectAddrMode6(SDNode
*Parent
, SDValue N
, SDValue
&Addr
,
960 unsigned Alignment
= 0;
962 MemSDNode
*MemN
= cast
<MemSDNode
>(Parent
);
964 if (isa
<LSBaseSDNode
>(MemN
) ||
965 ((MemN
->getOpcode() == ARMISD::VST1_UPD
||
966 MemN
->getOpcode() == ARMISD::VLD1_UPD
) &&
967 MemN
->getConstantOperandVal(MemN
->getNumOperands() - 1) == 1)) {
968 // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
969 // The maximum alignment is equal to the memory size being referenced.
970 unsigned MMOAlign
= MemN
->getAlignment();
971 unsigned MemSize
= MemN
->getMemoryVT().getSizeInBits() / 8;
972 if (MMOAlign
>= MemSize
&& MemSize
> 1)
975 // All other uses of addrmode6 are for intrinsics. For now just record
976 // the raw alignment value; it will be refined later based on the legal
977 // alignment operands for the intrinsic.
978 Alignment
= MemN
->getAlignment();
981 Align
= CurDAG
->getTargetConstant(Alignment
, SDLoc(N
), MVT::i32
);
985 bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode
*Op
, SDValue N
,
987 LSBaseSDNode
*LdSt
= cast
<LSBaseSDNode
>(Op
);
988 ISD::MemIndexedMode AM
= LdSt
->getAddressingMode();
989 if (AM
!= ISD::POST_INC
)
992 if (ConstantSDNode
*NC
= dyn_cast
<ConstantSDNode
>(N
)) {
993 if (NC
->getZExtValue() * 8 == LdSt
->getMemoryVT().getSizeInBits())
994 Offset
= CurDAG
->getRegister(0, MVT::i32
);
999 bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N
,
1000 SDValue
&Offset
, SDValue
&Label
) {
1001 if (N
.getOpcode() == ARMISD::PIC_ADD
&& N
.hasOneUse()) {
1002 Offset
= N
.getOperand(0);
1003 SDValue N1
= N
.getOperand(1);
1004 Label
= CurDAG
->getTargetConstant(cast
<ConstantSDNode
>(N1
)->getZExtValue(),
1005 SDLoc(N
), MVT::i32
);
1013 //===----------------------------------------------------------------------===//
1014 // Thumb Addressing Modes
1015 //===----------------------------------------------------------------------===//
1017 static bool shouldUseZeroOffsetLdSt(SDValue N
) {
1018 // Negative numbers are difficult to materialise in thumb1. If we are
1019 // selecting the add of a negative, instead try to select ri with a zero
1020 // offset, so create the add node directly which will become a sub.
1021 if (N
.getOpcode() != ISD::ADD
)
1024 // Look for an imm which is not legal for ld/st, but is legal for sub.
1025 if (auto C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1)))
1026 return C
->getSExtValue() < 0 && C
->getSExtValue() >= -255;
1031 bool ARMDAGToDAGISel::SelectThumbAddrModeRRSext(SDValue N
, SDValue
&Base
,
1033 if (N
.getOpcode() != ISD::ADD
&& !CurDAG
->isBaseWithConstantOffset(N
)) {
1034 ConstantSDNode
*NC
= dyn_cast
<ConstantSDNode
>(N
);
1035 if (!NC
|| !NC
->isNullValue())
1042 Base
= N
.getOperand(0);
1043 Offset
= N
.getOperand(1);
1047 bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N
, SDValue
&Base
,
1049 if (shouldUseZeroOffsetLdSt(N
))
1050 return false; // Select ri instead
1051 return SelectThumbAddrModeRRSext(N
, Base
, Offset
);
1055 ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N
, unsigned Scale
,
1056 SDValue
&Base
, SDValue
&OffImm
) {
1057 if (shouldUseZeroOffsetLdSt(N
)) {
1059 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
1063 if (!CurDAG
->isBaseWithConstantOffset(N
)) {
1064 if (N
.getOpcode() == ISD::ADD
) {
1065 return false; // We want to select register offset instead
1066 } else if (N
.getOpcode() == ARMISD::Wrapper
&&
1067 N
.getOperand(0).getOpcode() != ISD::TargetGlobalAddress
&&
1068 N
.getOperand(0).getOpcode() != ISD::TargetExternalSymbol
&&
1069 N
.getOperand(0).getOpcode() != ISD::TargetConstantPool
&&
1070 N
.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress
) {
1071 Base
= N
.getOperand(0);
1076 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
1080 // If the RHS is + imm5 * scale, fold into addr mode.
1082 if (isScaledConstantInRange(N
.getOperand(1), Scale
, 0, 32, RHSC
)) {
1083 Base
= N
.getOperand(0);
1084 OffImm
= CurDAG
->getTargetConstant(RHSC
, SDLoc(N
), MVT::i32
);
1088 // Offset is too large, so use register offset instead.
1093 ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N
, SDValue
&Base
,
1095 return SelectThumbAddrModeImm5S(N
, 4, Base
, OffImm
);
1099 ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N
, SDValue
&Base
,
1101 return SelectThumbAddrModeImm5S(N
, 2, Base
, OffImm
);
1105 ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N
, SDValue
&Base
,
1107 return SelectThumbAddrModeImm5S(N
, 1, Base
, OffImm
);
1110 bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N
,
1111 SDValue
&Base
, SDValue
&OffImm
) {
1112 if (N
.getOpcode() == ISD::FrameIndex
) {
1113 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
1114 // Only multiples of 4 are allowed for the offset, so the frame object
1115 // alignment must be at least 4.
1116 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1117 if (MFI
.getObjectAlignment(FI
) < 4)
1118 MFI
.setObjectAlignment(FI
, 4);
1119 Base
= CurDAG
->getTargetFrameIndex(
1120 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
1121 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
1125 if (!CurDAG
->isBaseWithConstantOffset(N
))
1128 if (N
.getOperand(0).getOpcode() == ISD::FrameIndex
) {
1129 // If the RHS is + imm8 * scale, fold into addr mode.
1131 if (isScaledConstantInRange(N
.getOperand(1), /*Scale=*/4, 0, 256, RHSC
)) {
1132 Base
= N
.getOperand(0);
1133 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
1134 // Make sure the offset is inside the object, or we might fail to
1135 // allocate an emergency spill slot. (An out-of-range access is UB, but
1136 // it could show up anyway.)
1137 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1138 if (RHSC
* 4 < MFI
.getObjectSize(FI
)) {
1139 // For LHS+RHS to result in an offset that's a multiple of 4 the object
1140 // indexed by the LHS must be 4-byte aligned.
1141 if (!MFI
.isFixedObjectIndex(FI
) && MFI
.getObjectAlignment(FI
) < 4)
1142 MFI
.setObjectAlignment(FI
, 4);
1143 if (MFI
.getObjectAlignment(FI
) >= 4) {
1144 Base
= CurDAG
->getTargetFrameIndex(
1145 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
1146 OffImm
= CurDAG
->getTargetConstant(RHSC
, SDLoc(N
), MVT::i32
);
1156 template <unsigned Shift
>
1157 bool ARMDAGToDAGISel::SelectTAddrModeImm7(SDValue N
, SDValue
&Base
,
1159 if (N
.getOpcode() == ISD::SUB
|| CurDAG
->isBaseWithConstantOffset(N
)) {
1161 if (isScaledConstantInRange(N
.getOperand(1), 1 << Shift
, -0x7f, 0x80,
1163 Base
= N
.getOperand(0);
1164 if (N
.getOpcode() == ISD::SUB
)
1167 CurDAG
->getTargetConstant(RHSC
* (1 << Shift
), SDLoc(N
), MVT::i32
);
1174 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
1179 //===----------------------------------------------------------------------===//
1180 // Thumb 2 Addressing Modes
1181 //===----------------------------------------------------------------------===//
1184 bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N
,
1185 SDValue
&Base
, SDValue
&OffImm
) {
1186 // Match simple R + imm12 operands.
1189 if (N
.getOpcode() != ISD::ADD
&& N
.getOpcode() != ISD::SUB
&&
1190 !CurDAG
->isBaseWithConstantOffset(N
)) {
1191 if (N
.getOpcode() == ISD::FrameIndex
) {
1192 // Match frame index.
1193 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
1194 Base
= CurDAG
->getTargetFrameIndex(
1195 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
1196 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
1200 if (N
.getOpcode() == ARMISD::Wrapper
&&
1201 N
.getOperand(0).getOpcode() != ISD::TargetGlobalAddress
&&
1202 N
.getOperand(0).getOpcode() != ISD::TargetExternalSymbol
&&
1203 N
.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress
) {
1204 Base
= N
.getOperand(0);
1205 if (Base
.getOpcode() == ISD::TargetConstantPool
)
1206 return false; // We want to select t2LDRpci instead.
1209 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
1213 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
1214 if (SelectT2AddrModeImm8(N
, Base
, OffImm
))
1215 // Let t2LDRi8 handle (R - imm8).
1218 int RHSC
= (int)RHS
->getZExtValue();
1219 if (N
.getOpcode() == ISD::SUB
)
1222 if (RHSC
>= 0 && RHSC
< 0x1000) { // 12 bits (unsigned)
1223 Base
= N
.getOperand(0);
1224 if (Base
.getOpcode() == ISD::FrameIndex
) {
1225 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
1226 Base
= CurDAG
->getTargetFrameIndex(
1227 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
1229 OffImm
= CurDAG
->getTargetConstant(RHSC
, SDLoc(N
), MVT::i32
);
1236 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
1240 bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N
,
1241 SDValue
&Base
, SDValue
&OffImm
) {
1242 // Match simple R - imm8 operands.
1243 if (N
.getOpcode() != ISD::ADD
&& N
.getOpcode() != ISD::SUB
&&
1244 !CurDAG
->isBaseWithConstantOffset(N
))
1247 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
1248 int RHSC
= (int)RHS
->getSExtValue();
1249 if (N
.getOpcode() == ISD::SUB
)
1252 if ((RHSC
>= -255) && (RHSC
< 0)) { // 8 bits (always negative)
1253 Base
= N
.getOperand(0);
1254 if (Base
.getOpcode() == ISD::FrameIndex
) {
1255 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
1256 Base
= CurDAG
->getTargetFrameIndex(
1257 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
1259 OffImm
= CurDAG
->getTargetConstant(RHSC
, SDLoc(N
), MVT::i32
);
1267 bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode
*Op
, SDValue N
,
1269 unsigned Opcode
= Op
->getOpcode();
1270 ISD::MemIndexedMode AM
= (Opcode
== ISD::LOAD
)
1271 ? cast
<LoadSDNode
>(Op
)->getAddressingMode()
1272 : cast
<StoreSDNode
>(Op
)->getAddressingMode();
1274 if (isScaledConstantInRange(N
, /*Scale=*/1, 0, 0x100, RHSC
)) { // 8 bits.
1275 OffImm
= ((AM
== ISD::PRE_INC
) || (AM
== ISD::POST_INC
))
1276 ? CurDAG
->getTargetConstant(RHSC
, SDLoc(N
), MVT::i32
)
1277 : CurDAG
->getTargetConstant(-RHSC
, SDLoc(N
), MVT::i32
);
1284 template <unsigned Shift
>
1285 bool ARMDAGToDAGISel::SelectT2AddrModeImm7(SDValue N
, SDValue
&Base
,
1287 if (N
.getOpcode() == ISD::SUB
|| CurDAG
->isBaseWithConstantOffset(N
)) {
1289 if (isScaledConstantInRange(N
.getOperand(1), 1 << Shift
, -0x7f, 0x80,
1291 Base
= N
.getOperand(0);
1292 if (Base
.getOpcode() == ISD::FrameIndex
) {
1293 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
1294 Base
= CurDAG
->getTargetFrameIndex(
1295 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
1298 if (N
.getOpcode() == ISD::SUB
)
1301 CurDAG
->getTargetConstant(RHSC
* (1 << Shift
), SDLoc(N
), MVT::i32
);
1308 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
1312 template <unsigned Shift
>
1313 bool ARMDAGToDAGISel::SelectT2AddrModeImm7Offset(SDNode
*Op
, SDValue N
,
1315 return SelectT2AddrModeImm7Offset(Op
, N
, OffImm
, Shift
);
1318 bool ARMDAGToDAGISel::SelectT2AddrModeImm7Offset(SDNode
*Op
, SDValue N
,
1321 unsigned Opcode
= Op
->getOpcode();
1322 ISD::MemIndexedMode AM
= (Opcode
== ISD::LOAD
)
1323 ? cast
<LoadSDNode
>(Op
)->getAddressingMode()
1324 : cast
<StoreSDNode
>(Op
)->getAddressingMode();
1326 if (isScaledConstantInRange(N
, 1 << Shift
, 0, 0x80, RHSC
)) { // 7 bits.
1328 ((AM
== ISD::PRE_INC
) || (AM
== ISD::POST_INC
))
1329 ? CurDAG
->getTargetConstant(RHSC
* (1 << Shift
), SDLoc(N
), MVT::i32
)
1330 : CurDAG
->getTargetConstant(-RHSC
* (1 << Shift
), SDLoc(N
),
1337 bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N
,
1339 SDValue
&OffReg
, SDValue
&ShImm
) {
1340 // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
1341 if (N
.getOpcode() != ISD::ADD
&& !CurDAG
->isBaseWithConstantOffset(N
))
1344 // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
1345 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
1346 int RHSC
= (int)RHS
->getZExtValue();
1347 if (RHSC
>= 0 && RHSC
< 0x1000) // 12 bits (unsigned)
1349 else if (RHSC
< 0 && RHSC
>= -255) // 8 bits
1353 // Look for (R + R) or (R + (R << [1,2,3])).
1355 Base
= N
.getOperand(0);
1356 OffReg
= N
.getOperand(1);
1358 // Swap if it is ((R << c) + R).
1359 ARM_AM::ShiftOpc ShOpcVal
= ARM_AM::getShiftOpcForNode(OffReg
.getOpcode());
1360 if (ShOpcVal
!= ARM_AM::lsl
) {
1361 ShOpcVal
= ARM_AM::getShiftOpcForNode(Base
.getOpcode());
1362 if (ShOpcVal
== ARM_AM::lsl
)
1363 std::swap(Base
, OffReg
);
1366 if (ShOpcVal
== ARM_AM::lsl
) {
1367 // Check to see if the RHS of the shift is a constant, if not, we can't fold
1369 if (ConstantSDNode
*Sh
= dyn_cast
<ConstantSDNode
>(OffReg
.getOperand(1))) {
1370 ShAmt
= Sh
->getZExtValue();
1371 if (ShAmt
< 4 && isShifterOpProfitable(OffReg
, ShOpcVal
, ShAmt
))
1372 OffReg
= OffReg
.getOperand(0);
1379 // If OffReg is a multiply-by-constant and it's profitable to extract a shift
1380 // and use it in a shifted operand do so.
1381 if (OffReg
.getOpcode() == ISD::MUL
&& N
.hasOneUse()) {
1382 unsigned PowerOfTwo
= 0;
1383 SDValue NewMulConst
;
1384 if (canExtractShiftFromMul(OffReg
, 3, PowerOfTwo
, NewMulConst
)) {
1385 HandleSDNode
Handle(OffReg
);
1386 replaceDAGValue(OffReg
.getOperand(1), NewMulConst
);
1387 OffReg
= Handle
.getValue();
1392 ShImm
= CurDAG
->getTargetConstant(ShAmt
, SDLoc(N
), MVT::i32
);
1397 bool ARMDAGToDAGISel::SelectT2AddrModeExclusive(SDValue N
, SDValue
&Base
,
1399 // This *must* succeed since it's used for the irreplaceable ldrex and strex
1402 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
1404 if (N
.getOpcode() != ISD::ADD
|| !CurDAG
->isBaseWithConstantOffset(N
))
1407 ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
1411 uint32_t RHSC
= (int)RHS
->getZExtValue();
1412 if (RHSC
> 1020 || RHSC
% 4 != 0)
1415 Base
= N
.getOperand(0);
1416 if (Base
.getOpcode() == ISD::FrameIndex
) {
1417 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
1418 Base
= CurDAG
->getTargetFrameIndex(
1419 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
1422 OffImm
= CurDAG
->getTargetConstant(RHSC
/4, SDLoc(N
), MVT::i32
);
1426 //===--------------------------------------------------------------------===//
1428 /// getAL - Returns a ARMCC::AL immediate node.
1429 static inline SDValue
getAL(SelectionDAG
*CurDAG
, const SDLoc
&dl
) {
1430 return CurDAG
->getTargetConstant((uint64_t)ARMCC::AL
, dl
, MVT::i32
);
1433 void ARMDAGToDAGISel::transferMemOperands(SDNode
*N
, SDNode
*Result
) {
1434 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
1435 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(Result
), {MemOp
});
1438 bool ARMDAGToDAGISel::tryARMIndexedLoad(SDNode
*N
) {
1439 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1440 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
1441 if (AM
== ISD::UNINDEXED
)
1444 EVT LoadedVT
= LD
->getMemoryVT();
1445 SDValue Offset
, AMOpc
;
1446 bool isPre
= (AM
== ISD::PRE_INC
) || (AM
== ISD::PRE_DEC
);
1447 unsigned Opcode
= 0;
1449 if (LoadedVT
== MVT::i32
&& isPre
&&
1450 SelectAddrMode2OffsetImmPre(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1451 Opcode
= ARM::LDR_PRE_IMM
;
1453 } else if (LoadedVT
== MVT::i32
&& !isPre
&&
1454 SelectAddrMode2OffsetImm(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1455 Opcode
= ARM::LDR_POST_IMM
;
1457 } else if (LoadedVT
== MVT::i32
&&
1458 SelectAddrMode2OffsetReg(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1459 Opcode
= isPre
? ARM::LDR_PRE_REG
: ARM::LDR_POST_REG
;
1462 } else if (LoadedVT
== MVT::i16
&&
1463 SelectAddrMode3Offset(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1465 Opcode
= (LD
->getExtensionType() == ISD::SEXTLOAD
)
1466 ? (isPre
? ARM::LDRSH_PRE
: ARM::LDRSH_POST
)
1467 : (isPre
? ARM::LDRH_PRE
: ARM::LDRH_POST
);
1468 } else if (LoadedVT
== MVT::i8
|| LoadedVT
== MVT::i1
) {
1469 if (LD
->getExtensionType() == ISD::SEXTLOAD
) {
1470 if (SelectAddrMode3Offset(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1472 Opcode
= isPre
? ARM::LDRSB_PRE
: ARM::LDRSB_POST
;
1476 SelectAddrMode2OffsetImmPre(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1478 Opcode
= ARM::LDRB_PRE_IMM
;
1479 } else if (!isPre
&&
1480 SelectAddrMode2OffsetImm(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1482 Opcode
= ARM::LDRB_POST_IMM
;
1483 } else if (SelectAddrMode2OffsetReg(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1485 Opcode
= isPre
? ARM::LDRB_PRE_REG
: ARM::LDRB_POST_REG
;
1491 if (Opcode
== ARM::LDR_PRE_IMM
|| Opcode
== ARM::LDRB_PRE_IMM
) {
1492 SDValue Chain
= LD
->getChain();
1493 SDValue Base
= LD
->getBasePtr();
1494 SDValue Ops
[]= { Base
, AMOpc
, getAL(CurDAG
, SDLoc(N
)),
1495 CurDAG
->getRegister(0, MVT::i32
), Chain
};
1496 SDNode
*New
= CurDAG
->getMachineNode(Opcode
, SDLoc(N
), MVT::i32
, MVT::i32
,
1498 transferMemOperands(N
, New
);
1499 ReplaceNode(N
, New
);
1502 SDValue Chain
= LD
->getChain();
1503 SDValue Base
= LD
->getBasePtr();
1504 SDValue Ops
[]= { Base
, Offset
, AMOpc
, getAL(CurDAG
, SDLoc(N
)),
1505 CurDAG
->getRegister(0, MVT::i32
), Chain
};
1506 SDNode
*New
= CurDAG
->getMachineNode(Opcode
, SDLoc(N
), MVT::i32
, MVT::i32
,
1508 transferMemOperands(N
, New
);
1509 ReplaceNode(N
, New
);
1517 bool ARMDAGToDAGISel::tryT1IndexedLoad(SDNode
*N
) {
1518 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1519 EVT LoadedVT
= LD
->getMemoryVT();
1520 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
1521 if (AM
!= ISD::POST_INC
|| LD
->getExtensionType() != ISD::NON_EXTLOAD
||
1522 LoadedVT
.getSimpleVT().SimpleTy
!= MVT::i32
)
1525 auto *COffs
= dyn_cast
<ConstantSDNode
>(LD
->getOffset());
1526 if (!COffs
|| COffs
->getZExtValue() != 4)
1529 // A T1 post-indexed load is just a single register LDM: LDM r0!, {r1}.
1530 // The encoding of LDM is not how the rest of ISel expects a post-inc load to
1531 // look however, so we use a pseudo here and switch it for a tLDMIA_UPD after
1533 SDValue Chain
= LD
->getChain();
1534 SDValue Base
= LD
->getBasePtr();
1535 SDValue Ops
[]= { Base
, getAL(CurDAG
, SDLoc(N
)),
1536 CurDAG
->getRegister(0, MVT::i32
), Chain
};
1537 SDNode
*New
= CurDAG
->getMachineNode(ARM::tLDR_postidx
, SDLoc(N
), MVT::i32
,
1538 MVT::i32
, MVT::Other
, Ops
);
1539 transferMemOperands(N
, New
);
1540 ReplaceNode(N
, New
);
1544 bool ARMDAGToDAGISel::tryT2IndexedLoad(SDNode
*N
) {
1545 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1546 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
1547 if (AM
== ISD::UNINDEXED
)
1550 EVT LoadedVT
= LD
->getMemoryVT();
1551 bool isSExtLd
= LD
->getExtensionType() == ISD::SEXTLOAD
;
1553 bool isPre
= (AM
== ISD::PRE_INC
) || (AM
== ISD::PRE_DEC
);
1554 unsigned Opcode
= 0;
1556 if (SelectT2AddrModeImm8Offset(N
, LD
->getOffset(), Offset
)) {
1557 switch (LoadedVT
.getSimpleVT().SimpleTy
) {
1559 Opcode
= isPre
? ARM::t2LDR_PRE
: ARM::t2LDR_POST
;
1563 Opcode
= isPre
? ARM::t2LDRSH_PRE
: ARM::t2LDRSH_POST
;
1565 Opcode
= isPre
? ARM::t2LDRH_PRE
: ARM::t2LDRH_POST
;
1570 Opcode
= isPre
? ARM::t2LDRSB_PRE
: ARM::t2LDRSB_POST
;
1572 Opcode
= isPre
? ARM::t2LDRB_PRE
: ARM::t2LDRB_POST
;
1581 SDValue Chain
= LD
->getChain();
1582 SDValue Base
= LD
->getBasePtr();
1583 SDValue Ops
[]= { Base
, Offset
, getAL(CurDAG
, SDLoc(N
)),
1584 CurDAG
->getRegister(0, MVT::i32
), Chain
};
1585 SDNode
*New
= CurDAG
->getMachineNode(Opcode
, SDLoc(N
), MVT::i32
, MVT::i32
,
1587 transferMemOperands(N
, New
);
1588 ReplaceNode(N
, New
);
1595 bool ARMDAGToDAGISel::tryMVEIndexedLoad(SDNode
*N
) {
1596 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1597 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
1598 if (AM
== ISD::UNINDEXED
)
1600 EVT LoadedVT
= LD
->getMemoryVT();
1601 if (!LoadedVT
.isVector())
1603 bool isSExtLd
= LD
->getExtensionType() == ISD::SEXTLOAD
;
1605 bool isPre
= (AM
== ISD::PRE_INC
) || (AM
== ISD::PRE_DEC
);
1606 unsigned Opcode
= 0;
1607 unsigned Align
= LD
->getAlignment();
1608 bool IsLE
= Subtarget
->isLittle();
1610 if (Align
>= 2 && LoadedVT
== MVT::v4i16
&&
1611 SelectT2AddrModeImm7Offset(N
, LD
->getOffset(), Offset
, 1)) {
1613 Opcode
= isPre
? ARM::MVE_VLDRHS32_pre
: ARM::MVE_VLDRHS32_post
;
1615 Opcode
= isPre
? ARM::MVE_VLDRHU32_pre
: ARM::MVE_VLDRHU32_post
;
1616 } else if (LoadedVT
== MVT::v8i8
&&
1617 SelectT2AddrModeImm7Offset(N
, LD
->getOffset(), Offset
, 0)) {
1619 Opcode
= isPre
? ARM::MVE_VLDRBS16_pre
: ARM::MVE_VLDRBS16_post
;
1621 Opcode
= isPre
? ARM::MVE_VLDRBU16_pre
: ARM::MVE_VLDRBU16_post
;
1622 } else if (LoadedVT
== MVT::v4i8
&&
1623 SelectT2AddrModeImm7Offset(N
, LD
->getOffset(), Offset
, 0)) {
1625 Opcode
= isPre
? ARM::MVE_VLDRBS32_pre
: ARM::MVE_VLDRBS32_post
;
1627 Opcode
= isPre
? ARM::MVE_VLDRBU32_pre
: ARM::MVE_VLDRBU32_post
;
1628 } else if (Align
>= 4 &&
1629 (IsLE
|| LoadedVT
== MVT::v4i32
|| LoadedVT
== MVT::v4f32
) &&
1630 SelectT2AddrModeImm7Offset(N
, LD
->getOffset(), Offset
, 2))
1631 Opcode
= isPre
? ARM::MVE_VLDRWU32_pre
: ARM::MVE_VLDRWU32_post
;
1632 else if (Align
>= 2 &&
1633 (IsLE
|| LoadedVT
== MVT::v8i16
|| LoadedVT
== MVT::v8f16
) &&
1634 SelectT2AddrModeImm7Offset(N
, LD
->getOffset(), Offset
, 1))
1635 Opcode
= isPre
? ARM::MVE_VLDRHU16_pre
: ARM::MVE_VLDRHU16_post
;
1636 else if ((IsLE
|| LoadedVT
== MVT::v16i8
) &&
1637 SelectT2AddrModeImm7Offset(N
, LD
->getOffset(), Offset
, 0))
1638 Opcode
= isPre
? ARM::MVE_VLDRBU8_pre
: ARM::MVE_VLDRBU8_post
;
1642 SDValue Chain
= LD
->getChain();
1643 SDValue Base
= LD
->getBasePtr();
1644 SDValue Ops
[] = {Base
, Offset
,
1645 CurDAG
->getTargetConstant(ARMVCC::None
, SDLoc(N
), MVT::i32
),
1646 CurDAG
->getRegister(0, MVT::i32
), Chain
};
1647 SDNode
*New
= CurDAG
->getMachineNode(Opcode
, SDLoc(N
), LD
->getValueType(0),
1648 MVT::i32
, MVT::Other
, Ops
);
1649 transferMemOperands(N
, New
);
1650 ReplaceUses(SDValue(N
, 0), SDValue(New
, 1));
1651 ReplaceUses(SDValue(N
, 1), SDValue(New
, 0));
1652 ReplaceUses(SDValue(N
, 2), SDValue(New
, 2));
1653 CurDAG
->RemoveDeadNode(N
);
1657 /// Form a GPRPair pseudo register from a pair of GPR regs.
1658 SDNode
*ARMDAGToDAGISel::createGPRPairNode(EVT VT
, SDValue V0
, SDValue V1
) {
1659 SDLoc
dl(V0
.getNode());
1661 CurDAG
->getTargetConstant(ARM::GPRPairRegClassID
, dl
, MVT::i32
);
1662 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::gsub_0
, dl
, MVT::i32
);
1663 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::gsub_1
, dl
, MVT::i32
);
1664 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
};
1665 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
);
1668 /// Form a D register from a pair of S registers.
1669 SDNode
*ARMDAGToDAGISel::createSRegPairNode(EVT VT
, SDValue V0
, SDValue V1
) {
1670 SDLoc
dl(V0
.getNode());
1672 CurDAG
->getTargetConstant(ARM::DPR_VFP2RegClassID
, dl
, MVT::i32
);
1673 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::ssub_0
, dl
, MVT::i32
);
1674 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::ssub_1
, dl
, MVT::i32
);
1675 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
};
1676 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
);
1679 /// Form a quad register from a pair of D registers.
1680 SDNode
*ARMDAGToDAGISel::createDRegPairNode(EVT VT
, SDValue V0
, SDValue V1
) {
1681 SDLoc
dl(V0
.getNode());
1682 SDValue RegClass
= CurDAG
->getTargetConstant(ARM::QPRRegClassID
, dl
,
1684 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::dsub_0
, dl
, MVT::i32
);
1685 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::dsub_1
, dl
, MVT::i32
);
1686 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
};
1687 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
);
1690 /// Form 4 consecutive D registers from a pair of Q registers.
1691 SDNode
*ARMDAGToDAGISel::createQRegPairNode(EVT VT
, SDValue V0
, SDValue V1
) {
1692 SDLoc
dl(V0
.getNode());
1693 SDValue RegClass
= CurDAG
->getTargetConstant(ARM::QQPRRegClassID
, dl
,
1695 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::qsub_0
, dl
, MVT::i32
);
1696 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::qsub_1
, dl
, MVT::i32
);
1697 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
};
1698 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
);
1701 /// Form 4 consecutive S registers.
1702 SDNode
*ARMDAGToDAGISel::createQuadSRegsNode(EVT VT
, SDValue V0
, SDValue V1
,
1703 SDValue V2
, SDValue V3
) {
1704 SDLoc
dl(V0
.getNode());
1706 CurDAG
->getTargetConstant(ARM::QPR_VFP2RegClassID
, dl
, MVT::i32
);
1707 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::ssub_0
, dl
, MVT::i32
);
1708 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::ssub_1
, dl
, MVT::i32
);
1709 SDValue SubReg2
= CurDAG
->getTargetConstant(ARM::ssub_2
, dl
, MVT::i32
);
1710 SDValue SubReg3
= CurDAG
->getTargetConstant(ARM::ssub_3
, dl
, MVT::i32
);
1711 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
,
1712 V2
, SubReg2
, V3
, SubReg3
};
1713 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
);
1716 /// Form 4 consecutive D registers.
1717 SDNode
*ARMDAGToDAGISel::createQuadDRegsNode(EVT VT
, SDValue V0
, SDValue V1
,
1718 SDValue V2
, SDValue V3
) {
1719 SDLoc
dl(V0
.getNode());
1720 SDValue RegClass
= CurDAG
->getTargetConstant(ARM::QQPRRegClassID
, dl
,
1722 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::dsub_0
, dl
, MVT::i32
);
1723 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::dsub_1
, dl
, MVT::i32
);
1724 SDValue SubReg2
= CurDAG
->getTargetConstant(ARM::dsub_2
, dl
, MVT::i32
);
1725 SDValue SubReg3
= CurDAG
->getTargetConstant(ARM::dsub_3
, dl
, MVT::i32
);
1726 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
,
1727 V2
, SubReg2
, V3
, SubReg3
};
1728 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
);
1731 /// Form 4 consecutive Q registers.
1732 SDNode
*ARMDAGToDAGISel::createQuadQRegsNode(EVT VT
, SDValue V0
, SDValue V1
,
1733 SDValue V2
, SDValue V3
) {
1734 SDLoc
dl(V0
.getNode());
1735 SDValue RegClass
= CurDAG
->getTargetConstant(ARM::QQQQPRRegClassID
, dl
,
1737 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::qsub_0
, dl
, MVT::i32
);
1738 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::qsub_1
, dl
, MVT::i32
);
1739 SDValue SubReg2
= CurDAG
->getTargetConstant(ARM::qsub_2
, dl
, MVT::i32
);
1740 SDValue SubReg3
= CurDAG
->getTargetConstant(ARM::qsub_3
, dl
, MVT::i32
);
1741 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
,
1742 V2
, SubReg2
, V3
, SubReg3
};
1743 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
);
1746 /// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
1747 /// of a NEON VLD or VST instruction. The supported values depend on the
1748 /// number of registers being loaded.
1749 SDValue
ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align
, const SDLoc
&dl
,
1750 unsigned NumVecs
, bool is64BitVector
) {
1751 unsigned NumRegs
= NumVecs
;
1752 if (!is64BitVector
&& NumVecs
< 3)
1755 unsigned Alignment
= cast
<ConstantSDNode
>(Align
)->getZExtValue();
1756 if (Alignment
>= 32 && NumRegs
== 4)
1758 else if (Alignment
>= 16 && (NumRegs
== 2 || NumRegs
== 4))
1760 else if (Alignment
>= 8)
1765 return CurDAG
->getTargetConstant(Alignment
, dl
, MVT::i32
);
1768 static bool isVLDfixed(unsigned Opc
)
1771 default: return false;
1772 case ARM::VLD1d8wb_fixed
: return true;
1773 case ARM::VLD1d16wb_fixed
: return true;
1774 case ARM::VLD1d64Qwb_fixed
: return true;
1775 case ARM::VLD1d32wb_fixed
: return true;
1776 case ARM::VLD1d64wb_fixed
: return true;
1777 case ARM::VLD1d64TPseudoWB_fixed
: return true;
1778 case ARM::VLD1d64QPseudoWB_fixed
: return true;
1779 case ARM::VLD1q8wb_fixed
: return true;
1780 case ARM::VLD1q16wb_fixed
: return true;
1781 case ARM::VLD1q32wb_fixed
: return true;
1782 case ARM::VLD1q64wb_fixed
: return true;
1783 case ARM::VLD1DUPd8wb_fixed
: return true;
1784 case ARM::VLD1DUPd16wb_fixed
: return true;
1785 case ARM::VLD1DUPd32wb_fixed
: return true;
1786 case ARM::VLD1DUPq8wb_fixed
: return true;
1787 case ARM::VLD1DUPq16wb_fixed
: return true;
1788 case ARM::VLD1DUPq32wb_fixed
: return true;
1789 case ARM::VLD2d8wb_fixed
: return true;
1790 case ARM::VLD2d16wb_fixed
: return true;
1791 case ARM::VLD2d32wb_fixed
: return true;
1792 case ARM::VLD2q8PseudoWB_fixed
: return true;
1793 case ARM::VLD2q16PseudoWB_fixed
: return true;
1794 case ARM::VLD2q32PseudoWB_fixed
: return true;
1795 case ARM::VLD2DUPd8wb_fixed
: return true;
1796 case ARM::VLD2DUPd16wb_fixed
: return true;
1797 case ARM::VLD2DUPd32wb_fixed
: return true;
1801 static bool isVSTfixed(unsigned Opc
)
1804 default: return false;
1805 case ARM::VST1d8wb_fixed
: return true;
1806 case ARM::VST1d16wb_fixed
: return true;
1807 case ARM::VST1d32wb_fixed
: return true;
1808 case ARM::VST1d64wb_fixed
: return true;
1809 case ARM::VST1q8wb_fixed
: return true;
1810 case ARM::VST1q16wb_fixed
: return true;
1811 case ARM::VST1q32wb_fixed
: return true;
1812 case ARM::VST1q64wb_fixed
: return true;
1813 case ARM::VST1d64TPseudoWB_fixed
: return true;
1814 case ARM::VST1d64QPseudoWB_fixed
: return true;
1815 case ARM::VST2d8wb_fixed
: return true;
1816 case ARM::VST2d16wb_fixed
: return true;
1817 case ARM::VST2d32wb_fixed
: return true;
1818 case ARM::VST2q8PseudoWB_fixed
: return true;
1819 case ARM::VST2q16PseudoWB_fixed
: return true;
1820 case ARM::VST2q32PseudoWB_fixed
: return true;
1824 // Get the register stride update opcode of a VLD/VST instruction that
1825 // is otherwise equivalent to the given fixed stride updating instruction.
1826 static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc
) {
1827 assert((isVLDfixed(Opc
) || isVSTfixed(Opc
))
1828 && "Incorrect fixed stride updating instruction.");
1831 case ARM::VLD1d8wb_fixed
: return ARM::VLD1d8wb_register
;
1832 case ARM::VLD1d16wb_fixed
: return ARM::VLD1d16wb_register
;
1833 case ARM::VLD1d32wb_fixed
: return ARM::VLD1d32wb_register
;
1834 case ARM::VLD1d64wb_fixed
: return ARM::VLD1d64wb_register
;
1835 case ARM::VLD1q8wb_fixed
: return ARM::VLD1q8wb_register
;
1836 case ARM::VLD1q16wb_fixed
: return ARM::VLD1q16wb_register
;
1837 case ARM::VLD1q32wb_fixed
: return ARM::VLD1q32wb_register
;
1838 case ARM::VLD1q64wb_fixed
: return ARM::VLD1q64wb_register
;
1839 case ARM::VLD1d64Twb_fixed
: return ARM::VLD1d64Twb_register
;
1840 case ARM::VLD1d64Qwb_fixed
: return ARM::VLD1d64Qwb_register
;
1841 case ARM::VLD1d64TPseudoWB_fixed
: return ARM::VLD1d64TPseudoWB_register
;
1842 case ARM::VLD1d64QPseudoWB_fixed
: return ARM::VLD1d64QPseudoWB_register
;
1843 case ARM::VLD1DUPd8wb_fixed
: return ARM::VLD1DUPd8wb_register
;
1844 case ARM::VLD1DUPd16wb_fixed
: return ARM::VLD1DUPd16wb_register
;
1845 case ARM::VLD1DUPd32wb_fixed
: return ARM::VLD1DUPd32wb_register
;
1846 case ARM::VLD1DUPq8wb_fixed
: return ARM::VLD1DUPq8wb_register
;
1847 case ARM::VLD1DUPq16wb_fixed
: return ARM::VLD1DUPq16wb_register
;
1848 case ARM::VLD1DUPq32wb_fixed
: return ARM::VLD1DUPq32wb_register
;
1850 case ARM::VST1d8wb_fixed
: return ARM::VST1d8wb_register
;
1851 case ARM::VST1d16wb_fixed
: return ARM::VST1d16wb_register
;
1852 case ARM::VST1d32wb_fixed
: return ARM::VST1d32wb_register
;
1853 case ARM::VST1d64wb_fixed
: return ARM::VST1d64wb_register
;
1854 case ARM::VST1q8wb_fixed
: return ARM::VST1q8wb_register
;
1855 case ARM::VST1q16wb_fixed
: return ARM::VST1q16wb_register
;
1856 case ARM::VST1q32wb_fixed
: return ARM::VST1q32wb_register
;
1857 case ARM::VST1q64wb_fixed
: return ARM::VST1q64wb_register
;
1858 case ARM::VST1d64TPseudoWB_fixed
: return ARM::VST1d64TPseudoWB_register
;
1859 case ARM::VST1d64QPseudoWB_fixed
: return ARM::VST1d64QPseudoWB_register
;
1861 case ARM::VLD2d8wb_fixed
: return ARM::VLD2d8wb_register
;
1862 case ARM::VLD2d16wb_fixed
: return ARM::VLD2d16wb_register
;
1863 case ARM::VLD2d32wb_fixed
: return ARM::VLD2d32wb_register
;
1864 case ARM::VLD2q8PseudoWB_fixed
: return ARM::VLD2q8PseudoWB_register
;
1865 case ARM::VLD2q16PseudoWB_fixed
: return ARM::VLD2q16PseudoWB_register
;
1866 case ARM::VLD2q32PseudoWB_fixed
: return ARM::VLD2q32PseudoWB_register
;
1868 case ARM::VST2d8wb_fixed
: return ARM::VST2d8wb_register
;
1869 case ARM::VST2d16wb_fixed
: return ARM::VST2d16wb_register
;
1870 case ARM::VST2d32wb_fixed
: return ARM::VST2d32wb_register
;
1871 case ARM::VST2q8PseudoWB_fixed
: return ARM::VST2q8PseudoWB_register
;
1872 case ARM::VST2q16PseudoWB_fixed
: return ARM::VST2q16PseudoWB_register
;
1873 case ARM::VST2q32PseudoWB_fixed
: return ARM::VST2q32PseudoWB_register
;
1875 case ARM::VLD2DUPd8wb_fixed
: return ARM::VLD2DUPd8wb_register
;
1876 case ARM::VLD2DUPd16wb_fixed
: return ARM::VLD2DUPd16wb_register
;
1877 case ARM::VLD2DUPd32wb_fixed
: return ARM::VLD2DUPd32wb_register
;
1879 return Opc
; // If not one we handle, return it unchanged.
1882 /// Returns true if the given increment is a Constant known to be equal to the
1883 /// access size performed by a NEON load/store. This means the "[rN]!" form can
1885 static bool isPerfectIncrement(SDValue Inc
, EVT VecTy
, unsigned NumVecs
) {
1886 auto C
= dyn_cast
<ConstantSDNode
>(Inc
);
1887 return C
&& C
->getZExtValue() == VecTy
.getSizeInBits() / 8 * NumVecs
;
1890 void ARMDAGToDAGISel::SelectVLD(SDNode
*N
, bool isUpdating
, unsigned NumVecs
,
1891 const uint16_t *DOpcodes
,
1892 const uint16_t *QOpcodes0
,
1893 const uint16_t *QOpcodes1
) {
1894 assert(NumVecs
>= 1 && NumVecs
<= 4 && "VLD NumVecs out-of-range");
1897 SDValue MemAddr
, Align
;
1898 bool IsIntrinsic
= !isUpdating
; // By coincidence, all supported updating
1899 // nodes are not intrinsics.
1900 unsigned AddrOpIdx
= IsIntrinsic
? 2 : 1;
1901 if (!SelectAddrMode6(N
, N
->getOperand(AddrOpIdx
), MemAddr
, Align
))
1904 SDValue Chain
= N
->getOperand(0);
1905 EVT VT
= N
->getValueType(0);
1906 bool is64BitVector
= VT
.is64BitVector();
1907 Align
= GetVLDSTAlign(Align
, dl
, NumVecs
, is64BitVector
);
1909 unsigned OpcodeIndex
;
1910 switch (VT
.getSimpleVT().SimpleTy
) {
1911 default: llvm_unreachable("unhandled vld type");
1912 // Double-register operations:
1913 case MVT::v8i8
: OpcodeIndex
= 0; break;
1915 case MVT::v4i16
: OpcodeIndex
= 1; break;
1917 case MVT::v2i32
: OpcodeIndex
= 2; break;
1918 case MVT::v1i64
: OpcodeIndex
= 3; break;
1919 // Quad-register operations:
1920 case MVT::v16i8
: OpcodeIndex
= 0; break;
1922 case MVT::v8i16
: OpcodeIndex
= 1; break;
1924 case MVT::v4i32
: OpcodeIndex
= 2; break;
1926 case MVT::v2i64
: OpcodeIndex
= 3; break;
1933 unsigned ResTyElts
= (NumVecs
== 3) ? 4 : NumVecs
;
1936 ResTy
= EVT::getVectorVT(*CurDAG
->getContext(), MVT::i64
, ResTyElts
);
1938 std::vector
<EVT
> ResTys
;
1939 ResTys
.push_back(ResTy
);
1941 ResTys
.push_back(MVT::i32
);
1942 ResTys
.push_back(MVT::Other
);
1944 SDValue Pred
= getAL(CurDAG
, dl
);
1945 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
1947 SmallVector
<SDValue
, 7> Ops
;
1949 // Double registers and VLD1/VLD2 quad registers are directly supported.
1950 if (is64BitVector
|| NumVecs
<= 2) {
1951 unsigned Opc
= (is64BitVector
? DOpcodes
[OpcodeIndex
] :
1952 QOpcodes0
[OpcodeIndex
]);
1953 Ops
.push_back(MemAddr
);
1954 Ops
.push_back(Align
);
1956 SDValue Inc
= N
->getOperand(AddrOpIdx
+ 1);
1957 bool IsImmUpdate
= isPerfectIncrement(Inc
, VT
, NumVecs
);
1959 // We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so
1960 // check for the opcode rather than the number of vector elements.
1961 if (isVLDfixed(Opc
))
1962 Opc
= getVLDSTRegisterUpdateOpcode(Opc
);
1964 // VLD1/VLD2 fixed increment does not need Reg0 so only include it in
1965 // the operands if not such an opcode.
1966 } else if (!isVLDfixed(Opc
))
1967 Ops
.push_back(Reg0
);
1969 Ops
.push_back(Pred
);
1970 Ops
.push_back(Reg0
);
1971 Ops
.push_back(Chain
);
1972 VLd
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1975 // Otherwise, quad registers are loaded with two separate instructions,
1976 // where one loads the even registers and the other loads the odd registers.
1977 EVT AddrTy
= MemAddr
.getValueType();
1979 // Load the even subregs. This is always an updating load, so that it
1980 // provides the address to the second load for the odd subregs.
1982 SDValue(CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, dl
, ResTy
), 0);
1983 const SDValue OpsA
[] = { MemAddr
, Align
, Reg0
, ImplDef
, Pred
, Reg0
, Chain
};
1984 SDNode
*VLdA
= CurDAG
->getMachineNode(QOpcodes0
[OpcodeIndex
], dl
,
1985 ResTy
, AddrTy
, MVT::Other
, OpsA
);
1986 Chain
= SDValue(VLdA
, 2);
1988 // Load the odd subregs.
1989 Ops
.push_back(SDValue(VLdA
, 1));
1990 Ops
.push_back(Align
);
1992 SDValue Inc
= N
->getOperand(AddrOpIdx
+ 1);
1993 assert(isa
<ConstantSDNode
>(Inc
.getNode()) &&
1994 "only constant post-increment update allowed for VLD3/4");
1996 Ops
.push_back(Reg0
);
1998 Ops
.push_back(SDValue(VLdA
, 0));
1999 Ops
.push_back(Pred
);
2000 Ops
.push_back(Reg0
);
2001 Ops
.push_back(Chain
);
2002 VLd
= CurDAG
->getMachineNode(QOpcodes1
[OpcodeIndex
], dl
, ResTys
, Ops
);
2005 // Transfer memoperands.
2006 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
2007 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(VLd
), {MemOp
});
2010 ReplaceNode(N
, VLd
);
2014 // Extract out the subregisters.
2015 SDValue SuperReg
= SDValue(VLd
, 0);
2016 static_assert(ARM::dsub_7
== ARM::dsub_0
+ 7 &&
2017 ARM::qsub_3
== ARM::qsub_0
+ 3,
2018 "Unexpected subreg numbering");
2019 unsigned Sub0
= (is64BitVector
? ARM::dsub_0
: ARM::qsub_0
);
2020 for (unsigned Vec
= 0; Vec
< NumVecs
; ++Vec
)
2021 ReplaceUses(SDValue(N
, Vec
),
2022 CurDAG
->getTargetExtractSubreg(Sub0
+ Vec
, dl
, VT
, SuperReg
));
2023 ReplaceUses(SDValue(N
, NumVecs
), SDValue(VLd
, 1));
2025 ReplaceUses(SDValue(N
, NumVecs
+ 1), SDValue(VLd
, 2));
2026 CurDAG
->RemoveDeadNode(N
);
2029 void ARMDAGToDAGISel::SelectVST(SDNode
*N
, bool isUpdating
, unsigned NumVecs
,
2030 const uint16_t *DOpcodes
,
2031 const uint16_t *QOpcodes0
,
2032 const uint16_t *QOpcodes1
) {
2033 assert(NumVecs
>= 1 && NumVecs
<= 4 && "VST NumVecs out-of-range");
2036 SDValue MemAddr
, Align
;
2037 bool IsIntrinsic
= !isUpdating
; // By coincidence, all supported updating
2038 // nodes are not intrinsics.
2039 unsigned AddrOpIdx
= IsIntrinsic
? 2 : 1;
2040 unsigned Vec0Idx
= 3; // AddrOpIdx + (isUpdating ? 2 : 1)
2041 if (!SelectAddrMode6(N
, N
->getOperand(AddrOpIdx
), MemAddr
, Align
))
2044 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
2046 SDValue Chain
= N
->getOperand(0);
2047 EVT VT
= N
->getOperand(Vec0Idx
).getValueType();
2048 bool is64BitVector
= VT
.is64BitVector();
2049 Align
= GetVLDSTAlign(Align
, dl
, NumVecs
, is64BitVector
);
2051 unsigned OpcodeIndex
;
2052 switch (VT
.getSimpleVT().SimpleTy
) {
2053 default: llvm_unreachable("unhandled vst type");
2054 // Double-register operations:
2055 case MVT::v8i8
: OpcodeIndex
= 0; break;
2057 case MVT::v4i16
: OpcodeIndex
= 1; break;
2059 case MVT::v2i32
: OpcodeIndex
= 2; break;
2060 case MVT::v1i64
: OpcodeIndex
= 3; break;
2061 // Quad-register operations:
2062 case MVT::v16i8
: OpcodeIndex
= 0; break;
2064 case MVT::v8i16
: OpcodeIndex
= 1; break;
2066 case MVT::v4i32
: OpcodeIndex
= 2; break;
2068 case MVT::v2i64
: OpcodeIndex
= 3; break;
2071 std::vector
<EVT
> ResTys
;
2073 ResTys
.push_back(MVT::i32
);
2074 ResTys
.push_back(MVT::Other
);
2076 SDValue Pred
= getAL(CurDAG
, dl
);
2077 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2078 SmallVector
<SDValue
, 7> Ops
;
2080 // Double registers and VST1/VST2 quad registers are directly supported.
2081 if (is64BitVector
|| NumVecs
<= 2) {
2084 SrcReg
= N
->getOperand(Vec0Idx
);
2085 } else if (is64BitVector
) {
2086 // Form a REG_SEQUENCE to force register allocation.
2087 SDValue V0
= N
->getOperand(Vec0Idx
+ 0);
2088 SDValue V1
= N
->getOperand(Vec0Idx
+ 1);
2090 SrcReg
= SDValue(createDRegPairNode(MVT::v2i64
, V0
, V1
), 0);
2092 SDValue V2
= N
->getOperand(Vec0Idx
+ 2);
2093 // If it's a vst3, form a quad D-register and leave the last part as
2095 SDValue V3
= (NumVecs
== 3)
2096 ? SDValue(CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
,dl
,VT
), 0)
2097 : N
->getOperand(Vec0Idx
+ 3);
2098 SrcReg
= SDValue(createQuadDRegsNode(MVT::v4i64
, V0
, V1
, V2
, V3
), 0);
2101 // Form a QQ register.
2102 SDValue Q0
= N
->getOperand(Vec0Idx
);
2103 SDValue Q1
= N
->getOperand(Vec0Idx
+ 1);
2104 SrcReg
= SDValue(createQRegPairNode(MVT::v4i64
, Q0
, Q1
), 0);
2107 unsigned Opc
= (is64BitVector
? DOpcodes
[OpcodeIndex
] :
2108 QOpcodes0
[OpcodeIndex
]);
2109 Ops
.push_back(MemAddr
);
2110 Ops
.push_back(Align
);
2112 SDValue Inc
= N
->getOperand(AddrOpIdx
+ 1);
2113 bool IsImmUpdate
= isPerfectIncrement(Inc
, VT
, NumVecs
);
2115 // We use a VST1 for v1i64 even if the pseudo says VST2/3/4, so
2116 // check for the opcode rather than the number of vector elements.
2117 if (isVSTfixed(Opc
))
2118 Opc
= getVLDSTRegisterUpdateOpcode(Opc
);
2121 // VST1/VST2 fixed increment does not need Reg0 so only include it in
2122 // the operands if not such an opcode.
2123 else if (!isVSTfixed(Opc
))
2124 Ops
.push_back(Reg0
);
2126 Ops
.push_back(SrcReg
);
2127 Ops
.push_back(Pred
);
2128 Ops
.push_back(Reg0
);
2129 Ops
.push_back(Chain
);
2130 SDNode
*VSt
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
2132 // Transfer memoperands.
2133 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(VSt
), {MemOp
});
2135 ReplaceNode(N
, VSt
);
2139 // Otherwise, quad registers are stored with two separate instructions,
2140 // where one stores the even registers and the other stores the odd registers.
2142 // Form the QQQQ REG_SEQUENCE.
2143 SDValue V0
= N
->getOperand(Vec0Idx
+ 0);
2144 SDValue V1
= N
->getOperand(Vec0Idx
+ 1);
2145 SDValue V2
= N
->getOperand(Vec0Idx
+ 2);
2146 SDValue V3
= (NumVecs
== 3)
2147 ? SDValue(CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, dl
, VT
), 0)
2148 : N
->getOperand(Vec0Idx
+ 3);
2149 SDValue RegSeq
= SDValue(createQuadQRegsNode(MVT::v8i64
, V0
, V1
, V2
, V3
), 0);
2151 // Store the even D registers. This is always an updating store, so that it
2152 // provides the address to the second store for the odd subregs.
2153 const SDValue OpsA
[] = { MemAddr
, Align
, Reg0
, RegSeq
, Pred
, Reg0
, Chain
};
2154 SDNode
*VStA
= CurDAG
->getMachineNode(QOpcodes0
[OpcodeIndex
], dl
,
2155 MemAddr
.getValueType(),
2157 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(VStA
), {MemOp
});
2158 Chain
= SDValue(VStA
, 1);
2160 // Store the odd D registers.
2161 Ops
.push_back(SDValue(VStA
, 0));
2162 Ops
.push_back(Align
);
2164 SDValue Inc
= N
->getOperand(AddrOpIdx
+ 1);
2165 assert(isa
<ConstantSDNode
>(Inc
.getNode()) &&
2166 "only constant post-increment update allowed for VST3/4");
2168 Ops
.push_back(Reg0
);
2170 Ops
.push_back(RegSeq
);
2171 Ops
.push_back(Pred
);
2172 Ops
.push_back(Reg0
);
2173 Ops
.push_back(Chain
);
2174 SDNode
*VStB
= CurDAG
->getMachineNode(QOpcodes1
[OpcodeIndex
], dl
, ResTys
,
2176 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(VStB
), {MemOp
});
2177 ReplaceNode(N
, VStB
);
2180 void ARMDAGToDAGISel::SelectVLDSTLane(SDNode
*N
, bool IsLoad
, bool isUpdating
,
2182 const uint16_t *DOpcodes
,
2183 const uint16_t *QOpcodes
) {
2184 assert(NumVecs
>=2 && NumVecs
<= 4 && "VLDSTLane NumVecs out-of-range");
2187 SDValue MemAddr
, Align
;
2188 bool IsIntrinsic
= !isUpdating
; // By coincidence, all supported updating
2189 // nodes are not intrinsics.
2190 unsigned AddrOpIdx
= IsIntrinsic
? 2 : 1;
2191 unsigned Vec0Idx
= 3; // AddrOpIdx + (isUpdating ? 2 : 1)
2192 if (!SelectAddrMode6(N
, N
->getOperand(AddrOpIdx
), MemAddr
, Align
))
2195 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
2197 SDValue Chain
= N
->getOperand(0);
2199 cast
<ConstantSDNode
>(N
->getOperand(Vec0Idx
+ NumVecs
))->getZExtValue();
2200 EVT VT
= N
->getOperand(Vec0Idx
).getValueType();
2201 bool is64BitVector
= VT
.is64BitVector();
2203 unsigned Alignment
= 0;
2205 Alignment
= cast
<ConstantSDNode
>(Align
)->getZExtValue();
2206 unsigned NumBytes
= NumVecs
* VT
.getScalarSizeInBits() / 8;
2207 if (Alignment
> NumBytes
)
2208 Alignment
= NumBytes
;
2209 if (Alignment
< 8 && Alignment
< NumBytes
)
2211 // Alignment must be a power of two; make sure of that.
2212 Alignment
= (Alignment
& -Alignment
);
2216 Align
= CurDAG
->getTargetConstant(Alignment
, dl
, MVT::i32
);
2218 unsigned OpcodeIndex
;
2219 switch (VT
.getSimpleVT().SimpleTy
) {
2220 default: llvm_unreachable("unhandled vld/vst lane type");
2221 // Double-register operations:
2222 case MVT::v8i8
: OpcodeIndex
= 0; break;
2224 case MVT::v4i16
: OpcodeIndex
= 1; break;
2226 case MVT::v2i32
: OpcodeIndex
= 2; break;
2227 // Quad-register operations:
2229 case MVT::v8i16
: OpcodeIndex
= 0; break;
2231 case MVT::v4i32
: OpcodeIndex
= 1; break;
2234 std::vector
<EVT
> ResTys
;
2236 unsigned ResTyElts
= (NumVecs
== 3) ? 4 : NumVecs
;
2239 ResTys
.push_back(EVT::getVectorVT(*CurDAG
->getContext(),
2240 MVT::i64
, ResTyElts
));
2243 ResTys
.push_back(MVT::i32
);
2244 ResTys
.push_back(MVT::Other
);
2246 SDValue Pred
= getAL(CurDAG
, dl
);
2247 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2249 SmallVector
<SDValue
, 8> Ops
;
2250 Ops
.push_back(MemAddr
);
2251 Ops
.push_back(Align
);
2253 SDValue Inc
= N
->getOperand(AddrOpIdx
+ 1);
2255 isPerfectIncrement(Inc
, VT
.getVectorElementType(), NumVecs
);
2256 Ops
.push_back(IsImmUpdate
? Reg0
: Inc
);
2260 SDValue V0
= N
->getOperand(Vec0Idx
+ 0);
2261 SDValue V1
= N
->getOperand(Vec0Idx
+ 1);
2264 SuperReg
= SDValue(createDRegPairNode(MVT::v2i64
, V0
, V1
), 0);
2266 SuperReg
= SDValue(createQRegPairNode(MVT::v4i64
, V0
, V1
), 0);
2268 SDValue V2
= N
->getOperand(Vec0Idx
+ 2);
2269 SDValue V3
= (NumVecs
== 3)
2270 ? SDValue(CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, dl
, VT
), 0)
2271 : N
->getOperand(Vec0Idx
+ 3);
2273 SuperReg
= SDValue(createQuadDRegsNode(MVT::v4i64
, V0
, V1
, V2
, V3
), 0);
2275 SuperReg
= SDValue(createQuadQRegsNode(MVT::v8i64
, V0
, V1
, V2
, V3
), 0);
2277 Ops
.push_back(SuperReg
);
2278 Ops
.push_back(getI32Imm(Lane
, dl
));
2279 Ops
.push_back(Pred
);
2280 Ops
.push_back(Reg0
);
2281 Ops
.push_back(Chain
);
2283 unsigned Opc
= (is64BitVector
? DOpcodes
[OpcodeIndex
] :
2284 QOpcodes
[OpcodeIndex
]);
2285 SDNode
*VLdLn
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
2286 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(VLdLn
), {MemOp
});
2288 ReplaceNode(N
, VLdLn
);
2292 // Extract the subregisters.
2293 SuperReg
= SDValue(VLdLn
, 0);
2294 static_assert(ARM::dsub_7
== ARM::dsub_0
+ 7 &&
2295 ARM::qsub_3
== ARM::qsub_0
+ 3,
2296 "Unexpected subreg numbering");
2297 unsigned Sub0
= is64BitVector
? ARM::dsub_0
: ARM::qsub_0
;
2298 for (unsigned Vec
= 0; Vec
< NumVecs
; ++Vec
)
2299 ReplaceUses(SDValue(N
, Vec
),
2300 CurDAG
->getTargetExtractSubreg(Sub0
+ Vec
, dl
, VT
, SuperReg
));
2301 ReplaceUses(SDValue(N
, NumVecs
), SDValue(VLdLn
, 1));
2303 ReplaceUses(SDValue(N
, NumVecs
+ 1), SDValue(VLdLn
, 2));
2304 CurDAG
->RemoveDeadNode(N
);
2307 void ARMDAGToDAGISel::SelectVLDDup(SDNode
*N
, bool IsIntrinsic
,
2308 bool isUpdating
, unsigned NumVecs
,
2309 const uint16_t *DOpcodes
,
2310 const uint16_t *QOpcodes0
,
2311 const uint16_t *QOpcodes1
) {
2312 assert(NumVecs
>= 1 && NumVecs
<= 4 && "VLDDup NumVecs out-of-range");
2315 SDValue MemAddr
, Align
;
2316 unsigned AddrOpIdx
= IsIntrinsic
? 2 : 1;
2317 if (!SelectAddrMode6(N
, N
->getOperand(AddrOpIdx
), MemAddr
, Align
))
2320 SDValue Chain
= N
->getOperand(0);
2321 EVT VT
= N
->getValueType(0);
2322 bool is64BitVector
= VT
.is64BitVector();
2324 unsigned Alignment
= 0;
2326 Alignment
= cast
<ConstantSDNode
>(Align
)->getZExtValue();
2327 unsigned NumBytes
= NumVecs
* VT
.getScalarSizeInBits() / 8;
2328 if (Alignment
> NumBytes
)
2329 Alignment
= NumBytes
;
2330 if (Alignment
< 8 && Alignment
< NumBytes
)
2332 // Alignment must be a power of two; make sure of that.
2333 Alignment
= (Alignment
& -Alignment
);
2337 Align
= CurDAG
->getTargetConstant(Alignment
, dl
, MVT::i32
);
2339 unsigned OpcodeIndex
;
2340 switch (VT
.getSimpleVT().SimpleTy
) {
2341 default: llvm_unreachable("unhandled vld-dup type");
2343 case MVT::v16i8
: OpcodeIndex
= 0; break;
2348 OpcodeIndex
= 1; break;
2352 case MVT::v4i32
: OpcodeIndex
= 2; break;
2354 case MVT::v1i64
: OpcodeIndex
= 3; break;
2357 unsigned ResTyElts
= (NumVecs
== 3) ? 4 : NumVecs
;
2360 EVT ResTy
= EVT::getVectorVT(*CurDAG
->getContext(), MVT::i64
, ResTyElts
);
2362 std::vector
<EVT
> ResTys
;
2363 ResTys
.push_back(ResTy
);
2365 ResTys
.push_back(MVT::i32
);
2366 ResTys
.push_back(MVT::Other
);
2368 SDValue Pred
= getAL(CurDAG
, dl
);
2369 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2372 if (is64BitVector
|| NumVecs
== 1) {
2373 SmallVector
<SDValue
, 6> Ops
;
2374 Ops
.push_back(MemAddr
);
2375 Ops
.push_back(Align
);
2376 unsigned Opc
= is64BitVector
? DOpcodes
[OpcodeIndex
] :
2377 QOpcodes0
[OpcodeIndex
];
2379 // fixed-stride update instructions don't have an explicit writeback
2380 // operand. It's implicit in the opcode itself.
2381 SDValue Inc
= N
->getOperand(2);
2383 isPerfectIncrement(Inc
, VT
.getVectorElementType(), NumVecs
);
2384 if (NumVecs
<= 2 && !IsImmUpdate
)
2385 Opc
= getVLDSTRegisterUpdateOpcode(Opc
);
2388 // FIXME: VLD3 and VLD4 haven't been updated to that form yet.
2389 else if (NumVecs
> 2)
2390 Ops
.push_back(Reg0
);
2392 Ops
.push_back(Pred
);
2393 Ops
.push_back(Reg0
);
2394 Ops
.push_back(Chain
);
2395 VLdDup
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
2396 } else if (NumVecs
== 2) {
2397 const SDValue OpsA
[] = { MemAddr
, Align
, Pred
, Reg0
, Chain
};
2398 SDNode
*VLdA
= CurDAG
->getMachineNode(QOpcodes0
[OpcodeIndex
],
2401 Chain
= SDValue(VLdA
, 1);
2402 const SDValue OpsB
[] = { MemAddr
, Align
, Pred
, Reg0
, Chain
};
2403 VLdDup
= CurDAG
->getMachineNode(QOpcodes1
[OpcodeIndex
], dl
, ResTys
, OpsB
);
2406 SDValue(CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, dl
, ResTy
), 0);
2407 const SDValue OpsA
[] = { MemAddr
, Align
, ImplDef
, Pred
, Reg0
, Chain
};
2408 SDNode
*VLdA
= CurDAG
->getMachineNode(QOpcodes0
[OpcodeIndex
],
2411 SDValue SuperReg
= SDValue(VLdA
, 0);
2412 Chain
= SDValue(VLdA
, 1);
2413 const SDValue OpsB
[] = { MemAddr
, Align
, SuperReg
, Pred
, Reg0
, Chain
};
2414 VLdDup
= CurDAG
->getMachineNode(QOpcodes1
[OpcodeIndex
], dl
, ResTys
, OpsB
);
2417 // Transfer memoperands.
2418 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
2419 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(VLdDup
), {MemOp
});
2421 // Extract the subregisters.
2423 ReplaceUses(SDValue(N
, 0), SDValue(VLdDup
, 0));
2425 SDValue SuperReg
= SDValue(VLdDup
, 0);
2426 static_assert(ARM::dsub_7
== ARM::dsub_0
+ 7, "Unexpected subreg numbering");
2427 unsigned SubIdx
= is64BitVector
? ARM::dsub_0
: ARM::qsub_0
;
2428 for (unsigned Vec
= 0; Vec
!= NumVecs
; ++Vec
) {
2429 ReplaceUses(SDValue(N
, Vec
),
2430 CurDAG
->getTargetExtractSubreg(SubIdx
+Vec
, dl
, VT
, SuperReg
));
2433 ReplaceUses(SDValue(N
, NumVecs
), SDValue(VLdDup
, 1));
2435 ReplaceUses(SDValue(N
, NumVecs
+ 1), SDValue(VLdDup
, 2));
2436 CurDAG
->RemoveDeadNode(N
);
2439 bool ARMDAGToDAGISel::tryV6T2BitfieldExtractOp(SDNode
*N
, bool isSigned
) {
2440 if (!Subtarget
->hasV6T2Ops())
2443 unsigned Opc
= isSigned
2444 ? (Subtarget
->isThumb() ? ARM::t2SBFX
: ARM::SBFX
)
2445 : (Subtarget
->isThumb() ? ARM::t2UBFX
: ARM::UBFX
);
2448 // For unsigned extracts, check for a shift right and mask
2449 unsigned And_imm
= 0;
2450 if (N
->getOpcode() == ISD::AND
) {
2451 if (isOpcWithIntImmediate(N
, ISD::AND
, And_imm
)) {
2453 // The immediate is a mask of the low bits iff imm & (imm+1) == 0
2454 if (And_imm
& (And_imm
+ 1))
2457 unsigned Srl_imm
= 0;
2458 if (isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::SRL
,
2460 assert(Srl_imm
> 0 && Srl_imm
< 32 && "bad amount in shift node!");
2462 // Mask off the unnecessary bits of the AND immediate; normally
2463 // DAGCombine will do this, but that might not happen if
2464 // targetShrinkDemandedConstant chooses a different immediate.
2465 And_imm
&= -1U >> Srl_imm
;
2467 // Note: The width operand is encoded as width-1.
2468 unsigned Width
= countTrailingOnes(And_imm
) - 1;
2469 unsigned LSB
= Srl_imm
;
2471 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2473 if ((LSB
+ Width
+ 1) == N
->getValueType(0).getSizeInBits()) {
2474 // It's cheaper to use a right shift to extract the top bits.
2475 if (Subtarget
->isThumb()) {
2476 Opc
= isSigned
? ARM::t2ASRri
: ARM::t2LSRri
;
2477 SDValue Ops
[] = { N
->getOperand(0).getOperand(0),
2478 CurDAG
->getTargetConstant(LSB
, dl
, MVT::i32
),
2479 getAL(CurDAG
, dl
), Reg0
, Reg0
};
2480 CurDAG
->SelectNodeTo(N
, Opc
, MVT::i32
, Ops
);
2484 // ARM models shift instructions as MOVsi with shifter operand.
2485 ARM_AM::ShiftOpc ShOpcVal
= ARM_AM::getShiftOpcForNode(ISD::SRL
);
2487 CurDAG
->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal
, LSB
), dl
,
2489 SDValue Ops
[] = { N
->getOperand(0).getOperand(0), ShOpc
,
2490 getAL(CurDAG
, dl
), Reg0
, Reg0
};
2491 CurDAG
->SelectNodeTo(N
, ARM::MOVsi
, MVT::i32
, Ops
);
2495 assert(LSB
+ Width
+ 1 <= 32 && "Shouldn't create an invalid ubfx");
2496 SDValue Ops
[] = { N
->getOperand(0).getOperand(0),
2497 CurDAG
->getTargetConstant(LSB
, dl
, MVT::i32
),
2498 CurDAG
->getTargetConstant(Width
, dl
, MVT::i32
),
2499 getAL(CurDAG
, dl
), Reg0
};
2500 CurDAG
->SelectNodeTo(N
, Opc
, MVT::i32
, Ops
);
2507 // Otherwise, we're looking for a shift of a shift
2508 unsigned Shl_imm
= 0;
2509 if (isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::SHL
, Shl_imm
)) {
2510 assert(Shl_imm
> 0 && Shl_imm
< 32 && "bad amount in shift node!");
2511 unsigned Srl_imm
= 0;
2512 if (isInt32Immediate(N
->getOperand(1), Srl_imm
)) {
2513 assert(Srl_imm
> 0 && Srl_imm
< 32 && "bad amount in shift node!");
2514 // Note: The width operand is encoded as width-1.
2515 unsigned Width
= 32 - Srl_imm
- 1;
2516 int LSB
= Srl_imm
- Shl_imm
;
2519 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2520 assert(LSB
+ Width
+ 1 <= 32 && "Shouldn't create an invalid ubfx");
2521 SDValue Ops
[] = { N
->getOperand(0).getOperand(0),
2522 CurDAG
->getTargetConstant(LSB
, dl
, MVT::i32
),
2523 CurDAG
->getTargetConstant(Width
, dl
, MVT::i32
),
2524 getAL(CurDAG
, dl
), Reg0
};
2525 CurDAG
->SelectNodeTo(N
, Opc
, MVT::i32
, Ops
);
2530 // Or we are looking for a shift of an and, with a mask operand
2531 if (isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::AND
, And_imm
) &&
2532 isShiftedMask_32(And_imm
)) {
2533 unsigned Srl_imm
= 0;
2534 unsigned LSB
= countTrailingZeros(And_imm
);
2535 // Shift must be the same as the ands lsb
2536 if (isInt32Immediate(N
->getOperand(1), Srl_imm
) && Srl_imm
== LSB
) {
2537 assert(Srl_imm
> 0 && Srl_imm
< 32 && "bad amount in shift node!");
2538 unsigned MSB
= 31 - countLeadingZeros(And_imm
);
2539 // Note: The width operand is encoded as width-1.
2540 unsigned Width
= MSB
- LSB
;
2541 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2542 assert(Srl_imm
+ Width
+ 1 <= 32 && "Shouldn't create an invalid ubfx");
2543 SDValue Ops
[] = { N
->getOperand(0).getOperand(0),
2544 CurDAG
->getTargetConstant(Srl_imm
, dl
, MVT::i32
),
2545 CurDAG
->getTargetConstant(Width
, dl
, MVT::i32
),
2546 getAL(CurDAG
, dl
), Reg0
};
2547 CurDAG
->SelectNodeTo(N
, Opc
, MVT::i32
, Ops
);
2552 if (N
->getOpcode() == ISD::SIGN_EXTEND_INREG
) {
2553 unsigned Width
= cast
<VTSDNode
>(N
->getOperand(1))->getVT().getSizeInBits();
2555 if (!isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::SRL
, LSB
) &&
2556 !isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::SRA
, LSB
))
2559 if (LSB
+ Width
> 32)
2562 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2563 assert(LSB
+ Width
<= 32 && "Shouldn't create an invalid ubfx");
2564 SDValue Ops
[] = { N
->getOperand(0).getOperand(0),
2565 CurDAG
->getTargetConstant(LSB
, dl
, MVT::i32
),
2566 CurDAG
->getTargetConstant(Width
- 1, dl
, MVT::i32
),
2567 getAL(CurDAG
, dl
), Reg0
};
2568 CurDAG
->SelectNodeTo(N
, Opc
, MVT::i32
, Ops
);
2575 /// Target-specific DAG combining for ISD::XOR.
2576 /// Target-independent combining lowers SELECT_CC nodes of the form
2577 /// select_cc setg[ge] X, 0, X, -X
2578 /// select_cc setgt X, -1, X, -X
2579 /// select_cc setl[te] X, 0, -X, X
2580 /// select_cc setlt X, 1, -X, X
2581 /// which represent Integer ABS into:
2582 /// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
2583 /// ARM instruction selection detects the latter and matches it to
2584 /// ARM::ABS or ARM::t2ABS machine node.
2585 bool ARMDAGToDAGISel::tryABSOp(SDNode
*N
){
2586 SDValue XORSrc0
= N
->getOperand(0);
2587 SDValue XORSrc1
= N
->getOperand(1);
2588 EVT VT
= N
->getValueType(0);
2590 if (Subtarget
->isThumb1Only())
2593 if (XORSrc0
.getOpcode() != ISD::ADD
|| XORSrc1
.getOpcode() != ISD::SRA
)
2596 SDValue ADDSrc0
= XORSrc0
.getOperand(0);
2597 SDValue ADDSrc1
= XORSrc0
.getOperand(1);
2598 SDValue SRASrc0
= XORSrc1
.getOperand(0);
2599 SDValue SRASrc1
= XORSrc1
.getOperand(1);
2600 ConstantSDNode
*SRAConstant
= dyn_cast
<ConstantSDNode
>(SRASrc1
);
2601 EVT XType
= SRASrc0
.getValueType();
2602 unsigned Size
= XType
.getSizeInBits() - 1;
2604 if (ADDSrc1
== XORSrc1
&& ADDSrc0
== SRASrc0
&&
2605 XType
.isInteger() && SRAConstant
!= nullptr &&
2606 Size
== SRAConstant
->getZExtValue()) {
2607 unsigned Opcode
= Subtarget
->isThumb2() ? ARM::t2ABS
: ARM::ABS
;
2608 CurDAG
->SelectNodeTo(N
, Opcode
, VT
, ADDSrc0
);
2615 /// We've got special pseudo-instructions for these
2616 void ARMDAGToDAGISel::SelectCMP_SWAP(SDNode
*N
) {
2618 EVT MemTy
= cast
<MemSDNode
>(N
)->getMemoryVT();
2619 if (MemTy
== MVT::i8
)
2620 Opcode
= ARM::CMP_SWAP_8
;
2621 else if (MemTy
== MVT::i16
)
2622 Opcode
= ARM::CMP_SWAP_16
;
2623 else if (MemTy
== MVT::i32
)
2624 Opcode
= ARM::CMP_SWAP_32
;
2626 llvm_unreachable("Unknown AtomicCmpSwap type");
2628 SDValue Ops
[] = {N
->getOperand(1), N
->getOperand(2), N
->getOperand(3),
2630 SDNode
*CmpSwap
= CurDAG
->getMachineNode(
2632 CurDAG
->getVTList(MVT::i32
, MVT::i32
, MVT::Other
), Ops
);
2634 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
2635 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
2637 ReplaceUses(SDValue(N
, 0), SDValue(CmpSwap
, 0));
2638 ReplaceUses(SDValue(N
, 1), SDValue(CmpSwap
, 2));
2639 CurDAG
->RemoveDeadNode(N
);
2642 static Optional
<std::pair
<unsigned, unsigned>>
2643 getContiguousRangeOfSetBits(const APInt
&A
) {
2644 unsigned FirstOne
= A
.getBitWidth() - A
.countLeadingZeros() - 1;
2645 unsigned LastOne
= A
.countTrailingZeros();
2646 if (A
.countPopulation() != (FirstOne
- LastOne
+ 1))
2647 return Optional
<std::pair
<unsigned,unsigned>>();
2648 return std::make_pair(FirstOne
, LastOne
);
2651 void ARMDAGToDAGISel::SelectCMPZ(SDNode
*N
, bool &SwitchEQNEToPLMI
) {
2652 assert(N
->getOpcode() == ARMISD::CMPZ
);
2653 SwitchEQNEToPLMI
= false;
2655 if (!Subtarget
->isThumb())
2656 // FIXME: Work out whether it is profitable to do this in A32 mode - LSL and
2657 // LSR don't exist as standalone instructions - they need the barrel shifter.
2660 // select (cmpz (and X, C), #0) -> (LSLS X) or (LSRS X) or (LSRS (LSLS X))
2661 SDValue And
= N
->getOperand(0);
2662 if (!And
->hasOneUse())
2665 SDValue Zero
= N
->getOperand(1);
2666 if (!isa
<ConstantSDNode
>(Zero
) || !cast
<ConstantSDNode
>(Zero
)->isNullValue() ||
2667 And
->getOpcode() != ISD::AND
)
2669 SDValue X
= And
.getOperand(0);
2670 auto C
= dyn_cast
<ConstantSDNode
>(And
.getOperand(1));
2674 auto Range
= getContiguousRangeOfSetBits(C
->getAPIntValue());
2678 // There are several ways to lower this:
2682 auto EmitShift
= [&](unsigned Opc
, SDValue Src
, unsigned Imm
) -> SDNode
* {
2683 if (Subtarget
->isThumb2()) {
2684 Opc
= (Opc
== ARM::tLSLri
) ? ARM::t2LSLri
: ARM::t2LSRri
;
2685 SDValue Ops
[] = { Src
, CurDAG
->getTargetConstant(Imm
, dl
, MVT::i32
),
2686 getAL(CurDAG
, dl
), CurDAG
->getRegister(0, MVT::i32
),
2687 CurDAG
->getRegister(0, MVT::i32
) };
2688 return CurDAG
->getMachineNode(Opc
, dl
, MVT::i32
, Ops
);
2690 SDValue Ops
[] = {CurDAG
->getRegister(ARM::CPSR
, MVT::i32
), Src
,
2691 CurDAG
->getTargetConstant(Imm
, dl
, MVT::i32
),
2692 getAL(CurDAG
, dl
), CurDAG
->getRegister(0, MVT::i32
)};
2693 return CurDAG
->getMachineNode(Opc
, dl
, MVT::i32
, Ops
);
2697 if (Range
->second
== 0) {
2698 // 1. Mask includes the LSB -> Simply shift the top N bits off
2699 NewN
= EmitShift(ARM::tLSLri
, X
, 31 - Range
->first
);
2700 ReplaceNode(And
.getNode(), NewN
);
2701 } else if (Range
->first
== 31) {
2702 // 2. Mask includes the MSB -> Simply shift the bottom N bits off
2703 NewN
= EmitShift(ARM::tLSRri
, X
, Range
->second
);
2704 ReplaceNode(And
.getNode(), NewN
);
2705 } else if (Range
->first
== Range
->second
) {
2706 // 3. Only one bit is set. We can shift this into the sign bit and use a
2707 // PL/MI comparison.
2708 NewN
= EmitShift(ARM::tLSLri
, X
, 31 - Range
->first
);
2709 ReplaceNode(And
.getNode(), NewN
);
2711 SwitchEQNEToPLMI
= true;
2712 } else if (!Subtarget
->hasV6T2Ops()) {
2713 // 4. Do a double shift to clear bottom and top bits, but only in
2714 // thumb-1 mode as in thumb-2 we can use UBFX.
2715 NewN
= EmitShift(ARM::tLSLri
, X
, 31 - Range
->first
);
2716 NewN
= EmitShift(ARM::tLSRri
, SDValue(NewN
, 0),
2717 Range
->second
+ (31 - Range
->first
));
2718 ReplaceNode(And
.getNode(), NewN
);
2723 void ARMDAGToDAGISel::Select(SDNode
*N
) {
2726 if (N
->isMachineOpcode()) {
2728 return; // Already selected.
2731 switch (N
->getOpcode()) {
2734 // For Thumb1, match an sp-relative store in C++. This is a little
2735 // unfortunate, but I don't think I can make the chain check work
2736 // otherwise. (The chain of the store has to be the same as the chain
2737 // of the CopyFromReg, or else we can't replace the CopyFromReg with
2738 // a direct reference to "SP".)
2740 // This is only necessary on Thumb1 because Thumb1 sp-relative stores use
2741 // a different addressing mode from other four-byte stores.
2743 // This pattern usually comes up with call arguments.
2744 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
2745 SDValue Ptr
= ST
->getBasePtr();
2746 if (Subtarget
->isThumb1Only() && ST
->isUnindexed()) {
2748 if (Ptr
.getOpcode() == ISD::ADD
&&
2749 isScaledConstantInRange(Ptr
.getOperand(1), /*Scale=*/4, 0, 256, RHSC
))
2750 Ptr
= Ptr
.getOperand(0);
2752 if (Ptr
.getOpcode() == ISD::CopyFromReg
&&
2753 cast
<RegisterSDNode
>(Ptr
.getOperand(1))->getReg() == ARM::SP
&&
2754 Ptr
.getOperand(0) == ST
->getChain()) {
2755 SDValue Ops
[] = {ST
->getValue(),
2756 CurDAG
->getRegister(ARM::SP
, MVT::i32
),
2757 CurDAG
->getTargetConstant(RHSC
, dl
, MVT::i32
),
2759 CurDAG
->getRegister(0, MVT::i32
),
2761 MachineSDNode
*ResNode
=
2762 CurDAG
->getMachineNode(ARM::tSTRspi
, dl
, MVT::Other
, Ops
);
2763 MachineMemOperand
*MemOp
= ST
->getMemOperand();
2764 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(ResNode
), {MemOp
});
2765 ReplaceNode(N
, ResNode
);
2771 case ISD::WRITE_REGISTER
:
2772 if (tryWriteRegister(N
))
2775 case ISD::READ_REGISTER
:
2776 if (tryReadRegister(N
))
2779 case ISD::INLINEASM
:
2780 case ISD::INLINEASM_BR
:
2781 if (tryInlineAsm(N
))
2785 // Select special operations if XOR node forms integer ABS pattern
2788 // Other cases are autogenerated.
2790 case ISD::Constant
: {
2791 unsigned Val
= cast
<ConstantSDNode
>(N
)->getZExtValue();
2792 // If we can't materialize the constant we need to use a literal pool
2793 if (ConstantMaterializationCost(Val
, Subtarget
) > 2) {
2794 SDValue CPIdx
= CurDAG
->getTargetConstantPool(
2795 ConstantInt::get(Type::getInt32Ty(*CurDAG
->getContext()), Val
),
2796 TLI
->getPointerTy(CurDAG
->getDataLayout()));
2799 if (Subtarget
->isThumb()) {
2803 CurDAG
->getRegister(0, MVT::i32
),
2804 CurDAG
->getEntryNode()
2806 ResNode
= CurDAG
->getMachineNode(ARM::tLDRpci
, dl
, MVT::i32
, MVT::Other
,
2811 CurDAG
->getTargetConstant(0, dl
, MVT::i32
),
2813 CurDAG
->getRegister(0, MVT::i32
),
2814 CurDAG
->getEntryNode()
2816 ResNode
= CurDAG
->getMachineNode(ARM::LDRcp
, dl
, MVT::i32
, MVT::Other
,
2819 // Annotate the Node with memory operand information so that MachineInstr
2820 // queries work properly. This e.g. gives the register allocation the
2821 // required information for rematerialization.
2822 MachineFunction
& MF
= CurDAG
->getMachineFunction();
2823 MachineMemOperand
*MemOp
=
2824 MF
.getMachineMemOperand(MachinePointerInfo::getConstantPool(MF
),
2825 MachineMemOperand::MOLoad
, 4, 4);
2827 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(ResNode
), {MemOp
});
2829 ReplaceNode(N
, ResNode
);
2833 // Other cases are autogenerated.
2836 case ISD::FrameIndex
: {
2837 // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
2838 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
2839 SDValue TFI
= CurDAG
->getTargetFrameIndex(
2840 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
2841 if (Subtarget
->isThumb1Only()) {
2842 // Set the alignment of the frame object to 4, to avoid having to generate
2843 // more than one ADD
2844 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
2845 if (MFI
.getObjectAlignment(FI
) < 4)
2846 MFI
.setObjectAlignment(FI
, 4);
2847 CurDAG
->SelectNodeTo(N
, ARM::tADDframe
, MVT::i32
, TFI
,
2848 CurDAG
->getTargetConstant(0, dl
, MVT::i32
));
2851 unsigned Opc
= ((Subtarget
->isThumb() && Subtarget
->hasThumb2()) ?
2852 ARM::t2ADDri
: ARM::ADDri
);
2853 SDValue Ops
[] = { TFI
, CurDAG
->getTargetConstant(0, dl
, MVT::i32
),
2854 getAL(CurDAG
, dl
), CurDAG
->getRegister(0, MVT::i32
),
2855 CurDAG
->getRegister(0, MVT::i32
) };
2856 CurDAG
->SelectNodeTo(N
, Opc
, MVT::i32
, Ops
);
2861 if (tryV6T2BitfieldExtractOp(N
, false))
2864 case ISD::SIGN_EXTEND_INREG
:
2866 if (tryV6T2BitfieldExtractOp(N
, true))
2870 if (Subtarget
->isThumb1Only())
2872 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))) {
2873 unsigned RHSV
= C
->getZExtValue();
2875 if (isPowerOf2_32(RHSV
-1)) { // 2^n+1?
2876 unsigned ShImm
= Log2_32(RHSV
-1);
2879 SDValue V
= N
->getOperand(0);
2880 ShImm
= ARM_AM::getSORegOpc(ARM_AM::lsl
, ShImm
);
2881 SDValue ShImmOp
= CurDAG
->getTargetConstant(ShImm
, dl
, MVT::i32
);
2882 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2883 if (Subtarget
->isThumb()) {
2884 SDValue Ops
[] = { V
, V
, ShImmOp
, getAL(CurDAG
, dl
), Reg0
, Reg0
};
2885 CurDAG
->SelectNodeTo(N
, ARM::t2ADDrs
, MVT::i32
, Ops
);
2888 SDValue Ops
[] = { V
, V
, Reg0
, ShImmOp
, getAL(CurDAG
, dl
), Reg0
,
2890 CurDAG
->SelectNodeTo(N
, ARM::ADDrsi
, MVT::i32
, Ops
);
2894 if (isPowerOf2_32(RHSV
+1)) { // 2^n-1?
2895 unsigned ShImm
= Log2_32(RHSV
+1);
2898 SDValue V
= N
->getOperand(0);
2899 ShImm
= ARM_AM::getSORegOpc(ARM_AM::lsl
, ShImm
);
2900 SDValue ShImmOp
= CurDAG
->getTargetConstant(ShImm
, dl
, MVT::i32
);
2901 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2902 if (Subtarget
->isThumb()) {
2903 SDValue Ops
[] = { V
, V
, ShImmOp
, getAL(CurDAG
, dl
), Reg0
, Reg0
};
2904 CurDAG
->SelectNodeTo(N
, ARM::t2RSBrs
, MVT::i32
, Ops
);
2907 SDValue Ops
[] = { V
, V
, Reg0
, ShImmOp
, getAL(CurDAG
, dl
), Reg0
,
2909 CurDAG
->SelectNodeTo(N
, ARM::RSBrsi
, MVT::i32
, Ops
);
2916 // Check for unsigned bitfield extract
2917 if (tryV6T2BitfieldExtractOp(N
, false))
2920 // If an immediate is used in an AND node, it is possible that the immediate
2921 // can be more optimally materialized when negated. If this is the case we
2922 // can negate the immediate and use a BIC instead.
2923 auto *N1C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2924 if (N1C
&& N1C
->hasOneUse() && Subtarget
->isThumb()) {
2925 uint32_t Imm
= (uint32_t) N1C
->getZExtValue();
2927 // In Thumb2 mode, an AND can take a 12-bit immediate. If this
2928 // immediate can be negated and fit in the immediate operand of
2929 // a t2BIC, don't do any manual transform here as this can be
2930 // handled by the generic ISel machinery.
2931 bool PreferImmediateEncoding
=
2932 Subtarget
->hasThumb2() && (is_t2_so_imm(Imm
) || is_t2_so_imm_not(Imm
));
2933 if (!PreferImmediateEncoding
&&
2934 ConstantMaterializationCost(Imm
, Subtarget
) >
2935 ConstantMaterializationCost(~Imm
, Subtarget
)) {
2936 // The current immediate costs more to materialize than a negated
2937 // immediate, so negate the immediate and use a BIC.
2939 CurDAG
->getConstant(~N1C
->getZExtValue(), dl
, MVT::i32
);
2940 // If the new constant didn't exist before, reposition it in the topological
2941 // ordering so it is just before N. Otherwise, don't touch its location.
2942 if (NewImm
->getNodeId() == -1)
2943 CurDAG
->RepositionNode(N
->getIterator(), NewImm
.getNode());
2945 if (!Subtarget
->hasThumb2()) {
2946 SDValue Ops
[] = {CurDAG
->getRegister(ARM::CPSR
, MVT::i32
),
2947 N
->getOperand(0), NewImm
, getAL(CurDAG
, dl
),
2948 CurDAG
->getRegister(0, MVT::i32
)};
2949 ReplaceNode(N
, CurDAG
->getMachineNode(ARM::tBIC
, dl
, MVT::i32
, Ops
));
2952 SDValue Ops
[] = {N
->getOperand(0), NewImm
, getAL(CurDAG
, dl
),
2953 CurDAG
->getRegister(0, MVT::i32
),
2954 CurDAG
->getRegister(0, MVT::i32
)};
2956 CurDAG
->getMachineNode(ARM::t2BICrr
, dl
, MVT::i32
, Ops
));
2962 // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
2963 // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
2964 // are entirely contributed by c2 and lower 16-bits are entirely contributed
2965 // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
2966 // Select it to: "movt x, ((c1 & 0xffff) >> 16)
2967 EVT VT
= N
->getValueType(0);
2970 unsigned Opc
= (Subtarget
->isThumb() && Subtarget
->hasThumb2())
2972 : (Subtarget
->hasV6T2Ops() ? ARM::MOVTi16
: 0);
2975 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
2976 N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2979 if (N0
.getOpcode() == ISD::OR
&& N0
.getNode()->hasOneUse()) {
2980 SDValue N2
= N0
.getOperand(1);
2981 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
);
2984 unsigned N1CVal
= N1C
->getZExtValue();
2985 unsigned N2CVal
= N2C
->getZExtValue();
2986 if ((N1CVal
& 0xffff0000U
) == (N2CVal
& 0xffff0000U
) &&
2987 (N1CVal
& 0xffffU
) == 0xffffU
&&
2988 (N2CVal
& 0xffffU
) == 0x0U
) {
2989 SDValue Imm16
= CurDAG
->getTargetConstant((N2CVal
& 0xFFFF0000U
) >> 16,
2991 SDValue Ops
[] = { N0
.getOperand(0), Imm16
,
2992 getAL(CurDAG
, dl
), CurDAG
->getRegister(0, MVT::i32
) };
2993 ReplaceNode(N
, CurDAG
->getMachineNode(Opc
, dl
, VT
, Ops
));
3000 case ARMISD::UMAAL
: {
3001 unsigned Opc
= Subtarget
->isThumb() ? ARM::t2UMAAL
: ARM::UMAAL
;
3002 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1),
3003 N
->getOperand(2), N
->getOperand(3),
3005 CurDAG
->getRegister(0, MVT::i32
) };
3006 ReplaceNode(N
, CurDAG
->getMachineNode(Opc
, dl
, MVT::i32
, MVT::i32
, Ops
));
3009 case ARMISD::UMLAL
:{
3010 if (Subtarget
->isThumb()) {
3011 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), N
->getOperand(2),
3012 N
->getOperand(3), getAL(CurDAG
, dl
),
3013 CurDAG
->getRegister(0, MVT::i32
)};
3015 N
, CurDAG
->getMachineNode(ARM::t2UMLAL
, dl
, MVT::i32
, MVT::i32
, Ops
));
3018 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), N
->getOperand(2),
3019 N
->getOperand(3), getAL(CurDAG
, dl
),
3020 CurDAG
->getRegister(0, MVT::i32
),
3021 CurDAG
->getRegister(0, MVT::i32
) };
3022 ReplaceNode(N
, CurDAG
->getMachineNode(
3023 Subtarget
->hasV6Ops() ? ARM::UMLAL
: ARM::UMLALv5
, dl
,
3024 MVT::i32
, MVT::i32
, Ops
));
3028 case ARMISD::SMLAL
:{
3029 if (Subtarget
->isThumb()) {
3030 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), N
->getOperand(2),
3031 N
->getOperand(3), getAL(CurDAG
, dl
),
3032 CurDAG
->getRegister(0, MVT::i32
)};
3034 N
, CurDAG
->getMachineNode(ARM::t2SMLAL
, dl
, MVT::i32
, MVT::i32
, Ops
));
3037 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), N
->getOperand(2),
3038 N
->getOperand(3), getAL(CurDAG
, dl
),
3039 CurDAG
->getRegister(0, MVT::i32
),
3040 CurDAG
->getRegister(0, MVT::i32
) };
3041 ReplaceNode(N
, CurDAG
->getMachineNode(
3042 Subtarget
->hasV6Ops() ? ARM::SMLAL
: ARM::SMLALv5
, dl
,
3043 MVT::i32
, MVT::i32
, Ops
));
3047 case ARMISD::SUBE
: {
3048 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
3050 // Look for a pattern to match SMMLS
3051 // (sube a, (smul_loHi a, b), (subc 0, (smul_LOhi(a, b))))
3052 if (N
->getOperand(1).getOpcode() != ISD::SMUL_LOHI
||
3053 N
->getOperand(2).getOpcode() != ARMISD::SUBC
||
3054 !SDValue(N
, 1).use_empty())
3057 if (Subtarget
->isThumb())
3058 assert(Subtarget
->hasThumb2() &&
3059 "This pattern should not be generated for Thumb");
3061 SDValue SmulLoHi
= N
->getOperand(1);
3062 SDValue Subc
= N
->getOperand(2);
3063 auto *Zero
= dyn_cast
<ConstantSDNode
>(Subc
.getOperand(0));
3065 if (!Zero
|| Zero
->getZExtValue() != 0 ||
3066 Subc
.getOperand(1) != SmulLoHi
.getValue(0) ||
3067 N
->getOperand(1) != SmulLoHi
.getValue(1) ||
3068 N
->getOperand(2) != Subc
.getValue(1))
3071 unsigned Opc
= Subtarget
->isThumb2() ? ARM::t2SMMLS
: ARM::SMMLS
;
3072 SDValue Ops
[] = { SmulLoHi
.getOperand(0), SmulLoHi
.getOperand(1),
3073 N
->getOperand(0), getAL(CurDAG
, dl
),
3074 CurDAG
->getRegister(0, MVT::i32
) };
3075 ReplaceNode(N
, CurDAG
->getMachineNode(Opc
, dl
, MVT::i32
, Ops
));
3079 if (Subtarget
->hasMVEIntegerOps() && tryMVEIndexedLoad(N
))
3081 if (Subtarget
->isThumb() && Subtarget
->hasThumb2()) {
3082 if (tryT2IndexedLoad(N
))
3084 } else if (Subtarget
->isThumb()) {
3085 if (tryT1IndexedLoad(N
))
3087 } else if (tryARMIndexedLoad(N
))
3089 // Other cases are autogenerated.
3094 SDValue Ops
[] = { N
->getOperand(1),
3097 unsigned Opc
= N
->getOpcode() == ARMISD::WLS
?
3098 ARM::t2WhileLoopStart
: ARM::t2LoopEnd
;
3099 SDNode
*New
= CurDAG
->getMachineNode(Opc
, dl
, MVT::Other
, Ops
);
3100 ReplaceUses(N
, New
);
3101 CurDAG
->RemoveDeadNode(N
);
3104 case ARMISD::LOOP_DEC
: {
3105 SDValue Ops
[] = { N
->getOperand(1),
3109 CurDAG
->getMachineNode(ARM::t2LoopDec
, dl
,
3110 CurDAG
->getVTList(MVT::i32
, MVT::Other
), Ops
);
3111 ReplaceUses(N
, Dec
);
3112 CurDAG
->RemoveDeadNode(N
);
3115 case ARMISD::BRCOND
: {
3116 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
3117 // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
3118 // Pattern complexity = 6 cost = 1 size = 0
3120 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
3121 // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
3122 // Pattern complexity = 6 cost = 1 size = 0
3124 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
3125 // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
3126 // Pattern complexity = 6 cost = 1 size = 0
3128 unsigned Opc
= Subtarget
->isThumb() ?
3129 ((Subtarget
->hasThumb2()) ? ARM::t2Bcc
: ARM::tBcc
) : ARM::Bcc
;
3130 SDValue Chain
= N
->getOperand(0);
3131 SDValue N1
= N
->getOperand(1);
3132 SDValue N2
= N
->getOperand(2);
3133 SDValue N3
= N
->getOperand(3);
3134 SDValue InFlag
= N
->getOperand(4);
3135 assert(N1
.getOpcode() == ISD::BasicBlock
);
3136 assert(N2
.getOpcode() == ISD::Constant
);
3137 assert(N3
.getOpcode() == ISD::Register
);
3139 unsigned CC
= (unsigned) cast
<ConstantSDNode
>(N2
)->getZExtValue();
3141 if (InFlag
.getOpcode() == ARMISD::CMPZ
) {
3142 if (InFlag
.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN
) {
3143 SDValue Int
= InFlag
.getOperand(0);
3144 uint64_t ID
= cast
<ConstantSDNode
>(Int
->getOperand(1))->getZExtValue();
3146 // Handle low-overhead loops.
3147 if (ID
== Intrinsic::loop_decrement_reg
) {
3148 SDValue Elements
= Int
.getOperand(2);
3149 SDValue Size
= CurDAG
->getTargetConstant(
3150 cast
<ConstantSDNode
>(Int
.getOperand(3))->getZExtValue(), dl
,
3153 SDValue Args
[] = { Elements
, Size
, Int
.getOperand(0) };
3155 CurDAG
->getMachineNode(ARM::t2LoopDec
, dl
,
3156 CurDAG
->getVTList(MVT::i32
, MVT::Other
),
3158 ReplaceUses(Int
.getNode(), LoopDec
);
3160 SDValue EndArgs
[] = { SDValue(LoopDec
, 0), N1
, Chain
};
3162 CurDAG
->getMachineNode(ARM::t2LoopEnd
, dl
, MVT::Other
, EndArgs
);
3164 ReplaceUses(N
, LoopEnd
);
3165 CurDAG
->RemoveDeadNode(N
);
3166 CurDAG
->RemoveDeadNode(InFlag
.getNode());
3167 CurDAG
->RemoveDeadNode(Int
.getNode());
3172 bool SwitchEQNEToPLMI
;
3173 SelectCMPZ(InFlag
.getNode(), SwitchEQNEToPLMI
);
3174 InFlag
= N
->getOperand(4);
3176 if (SwitchEQNEToPLMI
) {
3177 switch ((ARMCC::CondCodes
)CC
) {
3178 default: llvm_unreachable("CMPZ must be either NE or EQ!");
3180 CC
= (unsigned)ARMCC::MI
;
3183 CC
= (unsigned)ARMCC::PL
;
3189 SDValue Tmp2
= CurDAG
->getTargetConstant(CC
, dl
, MVT::i32
);
3190 SDValue Ops
[] = { N1
, Tmp2
, N3
, Chain
, InFlag
};
3191 SDNode
*ResNode
= CurDAG
->getMachineNode(Opc
, dl
, MVT::Other
,
3193 Chain
= SDValue(ResNode
, 0);
3194 if (N
->getNumValues() == 2) {
3195 InFlag
= SDValue(ResNode
, 1);
3196 ReplaceUses(SDValue(N
, 1), InFlag
);
3198 ReplaceUses(SDValue(N
, 0),
3199 SDValue(Chain
.getNode(), Chain
.getResNo()));
3200 CurDAG
->RemoveDeadNode(N
);
3204 case ARMISD::CMPZ
: {
3205 // select (CMPZ X, #-C) -> (CMPZ (ADDS X, #C), #0)
3206 // This allows us to avoid materializing the expensive negative constant.
3207 // The CMPZ #0 is useless and will be peepholed away but we need to keep it
3208 // for its glue output.
3209 SDValue X
= N
->getOperand(0);
3210 auto *C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1).getNode());
3211 if (C
&& C
->getSExtValue() < 0 && Subtarget
->isThumb()) {
3212 int64_t Addend
= -C
->getSExtValue();
3214 SDNode
*Add
= nullptr;
3215 // ADDS can be better than CMN if the immediate fits in a
3216 // 16-bit ADDS, which means either [0,256) for tADDi8 or [0,8) for tADDi3.
3217 // Outside that range we can just use a CMN which is 32-bit but has a
3218 // 12-bit immediate range.
3219 if (Addend
< 1<<8) {
3220 if (Subtarget
->isThumb2()) {
3221 SDValue Ops
[] = { X
, CurDAG
->getTargetConstant(Addend
, dl
, MVT::i32
),
3222 getAL(CurDAG
, dl
), CurDAG
->getRegister(0, MVT::i32
),
3223 CurDAG
->getRegister(0, MVT::i32
) };
3224 Add
= CurDAG
->getMachineNode(ARM::t2ADDri
, dl
, MVT::i32
, Ops
);
3226 unsigned Opc
= (Addend
< 1<<3) ? ARM::tADDi3
: ARM::tADDi8
;
3227 SDValue Ops
[] = {CurDAG
->getRegister(ARM::CPSR
, MVT::i32
), X
,
3228 CurDAG
->getTargetConstant(Addend
, dl
, MVT::i32
),
3229 getAL(CurDAG
, dl
), CurDAG
->getRegister(0, MVT::i32
)};
3230 Add
= CurDAG
->getMachineNode(Opc
, dl
, MVT::i32
, Ops
);
3234 SDValue Ops2
[] = {SDValue(Add
, 0), CurDAG
->getConstant(0, dl
, MVT::i32
)};
3235 CurDAG
->MorphNodeTo(N
, ARMISD::CMPZ
, CurDAG
->getVTList(MVT::Glue
), Ops2
);
3238 // Other cases are autogenerated.
3242 case ARMISD::CMOV
: {
3243 SDValue InFlag
= N
->getOperand(4);
3245 if (InFlag
.getOpcode() == ARMISD::CMPZ
) {
3246 bool SwitchEQNEToPLMI
;
3247 SelectCMPZ(InFlag
.getNode(), SwitchEQNEToPLMI
);
3249 if (SwitchEQNEToPLMI
) {
3250 SDValue ARMcc
= N
->getOperand(2);
3251 ARMCC::CondCodes CC
=
3252 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
3255 default: llvm_unreachable("CMPZ must be either NE or EQ!");
3263 SDValue NewARMcc
= CurDAG
->getConstant((unsigned)CC
, dl
, MVT::i32
);
3264 SDValue Ops
[] = {N
->getOperand(0), N
->getOperand(1), NewARMcc
,
3265 N
->getOperand(3), N
->getOperand(4)};
3266 CurDAG
->MorphNodeTo(N
, ARMISD::CMOV
, N
->getVTList(), Ops
);
3270 // Other cases are autogenerated.
3274 case ARMISD::VZIP
: {
3276 EVT VT
= N
->getValueType(0);
3277 switch (VT
.getSimpleVT().SimpleTy
) {
3279 case MVT::v8i8
: Opc
= ARM::VZIPd8
; break;
3281 case MVT::v4i16
: Opc
= ARM::VZIPd16
; break;
3283 // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
3284 case MVT::v2i32
: Opc
= ARM::VTRNd32
; break;
3285 case MVT::v16i8
: Opc
= ARM::VZIPq8
; break;
3287 case MVT::v8i16
: Opc
= ARM::VZIPq16
; break;
3289 case MVT::v4i32
: Opc
= ARM::VZIPq32
; break;
3291 SDValue Pred
= getAL(CurDAG
, dl
);
3292 SDValue PredReg
= CurDAG
->getRegister(0, MVT::i32
);
3293 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), Pred
, PredReg
};
3294 ReplaceNode(N
, CurDAG
->getMachineNode(Opc
, dl
, VT
, VT
, Ops
));
3297 case ARMISD::VUZP
: {
3299 EVT VT
= N
->getValueType(0);
3300 switch (VT
.getSimpleVT().SimpleTy
) {
3302 case MVT::v8i8
: Opc
= ARM::VUZPd8
; break;
3304 case MVT::v4i16
: Opc
= ARM::VUZPd16
; break;
3306 // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
3307 case MVT::v2i32
: Opc
= ARM::VTRNd32
; break;
3308 case MVT::v16i8
: Opc
= ARM::VUZPq8
; break;
3310 case MVT::v8i16
: Opc
= ARM::VUZPq16
; break;
3312 case MVT::v4i32
: Opc
= ARM::VUZPq32
; break;
3314 SDValue Pred
= getAL(CurDAG
, dl
);
3315 SDValue PredReg
= CurDAG
->getRegister(0, MVT::i32
);
3316 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), Pred
, PredReg
};
3317 ReplaceNode(N
, CurDAG
->getMachineNode(Opc
, dl
, VT
, VT
, Ops
));
3320 case ARMISD::VTRN
: {
3322 EVT VT
= N
->getValueType(0);
3323 switch (VT
.getSimpleVT().SimpleTy
) {
3325 case MVT::v8i8
: Opc
= ARM::VTRNd8
; break;
3327 case MVT::v4i16
: Opc
= ARM::VTRNd16
; break;
3329 case MVT::v2i32
: Opc
= ARM::VTRNd32
; break;
3330 case MVT::v16i8
: Opc
= ARM::VTRNq8
; break;
3332 case MVT::v8i16
: Opc
= ARM::VTRNq16
; break;
3334 case MVT::v4i32
: Opc
= ARM::VTRNq32
; break;
3336 SDValue Pred
= getAL(CurDAG
, dl
);
3337 SDValue PredReg
= CurDAG
->getRegister(0, MVT::i32
);
3338 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), Pred
, PredReg
};
3339 ReplaceNode(N
, CurDAG
->getMachineNode(Opc
, dl
, VT
, VT
, Ops
));
3342 case ARMISD::BUILD_VECTOR
: {
3343 EVT VecVT
= N
->getValueType(0);
3344 EVT EltVT
= VecVT
.getVectorElementType();
3345 unsigned NumElts
= VecVT
.getVectorNumElements();
3346 if (EltVT
== MVT::f64
) {
3347 assert(NumElts
== 2 && "unexpected type for BUILD_VECTOR");
3349 N
, createDRegPairNode(VecVT
, N
->getOperand(0), N
->getOperand(1)));
3352 assert(EltVT
== MVT::f32
&& "unexpected type for BUILD_VECTOR");
3355 N
, createSRegPairNode(VecVT
, N
->getOperand(0), N
->getOperand(1)));
3358 assert(NumElts
== 4 && "unexpected type for BUILD_VECTOR");
3360 createQuadSRegsNode(VecVT
, N
->getOperand(0), N
->getOperand(1),
3361 N
->getOperand(2), N
->getOperand(3)));
3365 case ARMISD::VLD1DUP
: {
3366 static const uint16_t DOpcodes
[] = { ARM::VLD1DUPd8
, ARM::VLD1DUPd16
,
3368 static const uint16_t QOpcodes
[] = { ARM::VLD1DUPq8
, ARM::VLD1DUPq16
,
3370 SelectVLDDup(N
, /* IsIntrinsic= */ false, false, 1, DOpcodes
, QOpcodes
);
3374 case ARMISD::VLD2DUP
: {
3375 static const uint16_t Opcodes
[] = { ARM::VLD2DUPd8
, ARM::VLD2DUPd16
,
3377 SelectVLDDup(N
, /* IsIntrinsic= */ false, false, 2, Opcodes
);
3381 case ARMISD::VLD3DUP
: {
3382 static const uint16_t Opcodes
[] = { ARM::VLD3DUPd8Pseudo
,
3383 ARM::VLD3DUPd16Pseudo
,
3384 ARM::VLD3DUPd32Pseudo
};
3385 SelectVLDDup(N
, /* IsIntrinsic= */ false, false, 3, Opcodes
);
3389 case ARMISD::VLD4DUP
: {
3390 static const uint16_t Opcodes
[] = { ARM::VLD4DUPd8Pseudo
,
3391 ARM::VLD4DUPd16Pseudo
,
3392 ARM::VLD4DUPd32Pseudo
};
3393 SelectVLDDup(N
, /* IsIntrinsic= */ false, false, 4, Opcodes
);
3397 case ARMISD::VLD1DUP_UPD
: {
3398 static const uint16_t DOpcodes
[] = { ARM::VLD1DUPd8wb_fixed
,
3399 ARM::VLD1DUPd16wb_fixed
,
3400 ARM::VLD1DUPd32wb_fixed
};
3401 static const uint16_t QOpcodes
[] = { ARM::VLD1DUPq8wb_fixed
,
3402 ARM::VLD1DUPq16wb_fixed
,
3403 ARM::VLD1DUPq32wb_fixed
};
3404 SelectVLDDup(N
, /* IsIntrinsic= */ false, true, 1, DOpcodes
, QOpcodes
);
3408 case ARMISD::VLD2DUP_UPD
: {
3409 static const uint16_t Opcodes
[] = { ARM::VLD2DUPd8wb_fixed
,
3410 ARM::VLD2DUPd16wb_fixed
,
3411 ARM::VLD2DUPd32wb_fixed
};
3412 SelectVLDDup(N
, /* IsIntrinsic= */ false, true, 2, Opcodes
);
3416 case ARMISD::VLD3DUP_UPD
: {
3417 static const uint16_t Opcodes
[] = { ARM::VLD3DUPd8Pseudo_UPD
,
3418 ARM::VLD3DUPd16Pseudo_UPD
,
3419 ARM::VLD3DUPd32Pseudo_UPD
};
3420 SelectVLDDup(N
, /* IsIntrinsic= */ false, true, 3, Opcodes
);
3424 case ARMISD::VLD4DUP_UPD
: {
3425 static const uint16_t Opcodes
[] = { ARM::VLD4DUPd8Pseudo_UPD
,
3426 ARM::VLD4DUPd16Pseudo_UPD
,
3427 ARM::VLD4DUPd32Pseudo_UPD
};
3428 SelectVLDDup(N
, /* IsIntrinsic= */ false, true, 4, Opcodes
);
3432 case ARMISD::VLD1_UPD
: {
3433 static const uint16_t DOpcodes
[] = { ARM::VLD1d8wb_fixed
,
3434 ARM::VLD1d16wb_fixed
,
3435 ARM::VLD1d32wb_fixed
,
3436 ARM::VLD1d64wb_fixed
};
3437 static const uint16_t QOpcodes
[] = { ARM::VLD1q8wb_fixed
,
3438 ARM::VLD1q16wb_fixed
,
3439 ARM::VLD1q32wb_fixed
,
3440 ARM::VLD1q64wb_fixed
};
3441 SelectVLD(N
, true, 1, DOpcodes
, QOpcodes
, nullptr);
3445 case ARMISD::VLD2_UPD
: {
3446 static const uint16_t DOpcodes
[] = { ARM::VLD2d8wb_fixed
,
3447 ARM::VLD2d16wb_fixed
,
3448 ARM::VLD2d32wb_fixed
,
3449 ARM::VLD1q64wb_fixed
};
3450 static const uint16_t QOpcodes
[] = { ARM::VLD2q8PseudoWB_fixed
,
3451 ARM::VLD2q16PseudoWB_fixed
,
3452 ARM::VLD2q32PseudoWB_fixed
};
3453 SelectVLD(N
, true, 2, DOpcodes
, QOpcodes
, nullptr);
3457 case ARMISD::VLD3_UPD
: {
3458 static const uint16_t DOpcodes
[] = { ARM::VLD3d8Pseudo_UPD
,
3459 ARM::VLD3d16Pseudo_UPD
,
3460 ARM::VLD3d32Pseudo_UPD
,
3461 ARM::VLD1d64TPseudoWB_fixed
};
3462 static const uint16_t QOpcodes0
[] = { ARM::VLD3q8Pseudo_UPD
,
3463 ARM::VLD3q16Pseudo_UPD
,
3464 ARM::VLD3q32Pseudo_UPD
};
3465 static const uint16_t QOpcodes1
[] = { ARM::VLD3q8oddPseudo_UPD
,
3466 ARM::VLD3q16oddPseudo_UPD
,
3467 ARM::VLD3q32oddPseudo_UPD
};
3468 SelectVLD(N
, true, 3, DOpcodes
, QOpcodes0
, QOpcodes1
);
3472 case ARMISD::VLD4_UPD
: {
3473 static const uint16_t DOpcodes
[] = { ARM::VLD4d8Pseudo_UPD
,
3474 ARM::VLD4d16Pseudo_UPD
,
3475 ARM::VLD4d32Pseudo_UPD
,
3476 ARM::VLD1d64QPseudoWB_fixed
};
3477 static const uint16_t QOpcodes0
[] = { ARM::VLD4q8Pseudo_UPD
,
3478 ARM::VLD4q16Pseudo_UPD
,
3479 ARM::VLD4q32Pseudo_UPD
};
3480 static const uint16_t QOpcodes1
[] = { ARM::VLD4q8oddPseudo_UPD
,
3481 ARM::VLD4q16oddPseudo_UPD
,
3482 ARM::VLD4q32oddPseudo_UPD
};
3483 SelectVLD(N
, true, 4, DOpcodes
, QOpcodes0
, QOpcodes1
);
3487 case ARMISD::VLD2LN_UPD
: {
3488 static const uint16_t DOpcodes
[] = { ARM::VLD2LNd8Pseudo_UPD
,
3489 ARM::VLD2LNd16Pseudo_UPD
,
3490 ARM::VLD2LNd32Pseudo_UPD
};
3491 static const uint16_t QOpcodes
[] = { ARM::VLD2LNq16Pseudo_UPD
,
3492 ARM::VLD2LNq32Pseudo_UPD
};
3493 SelectVLDSTLane(N
, true, true, 2, DOpcodes
, QOpcodes
);
3497 case ARMISD::VLD3LN_UPD
: {
3498 static const uint16_t DOpcodes
[] = { ARM::VLD3LNd8Pseudo_UPD
,
3499 ARM::VLD3LNd16Pseudo_UPD
,
3500 ARM::VLD3LNd32Pseudo_UPD
};
3501 static const uint16_t QOpcodes
[] = { ARM::VLD3LNq16Pseudo_UPD
,
3502 ARM::VLD3LNq32Pseudo_UPD
};
3503 SelectVLDSTLane(N
, true, true, 3, DOpcodes
, QOpcodes
);
3507 case ARMISD::VLD4LN_UPD
: {
3508 static const uint16_t DOpcodes
[] = { ARM::VLD4LNd8Pseudo_UPD
,
3509 ARM::VLD4LNd16Pseudo_UPD
,
3510 ARM::VLD4LNd32Pseudo_UPD
};
3511 static const uint16_t QOpcodes
[] = { ARM::VLD4LNq16Pseudo_UPD
,
3512 ARM::VLD4LNq32Pseudo_UPD
};
3513 SelectVLDSTLane(N
, true, true, 4, DOpcodes
, QOpcodes
);
3517 case ARMISD::VST1_UPD
: {
3518 static const uint16_t DOpcodes
[] = { ARM::VST1d8wb_fixed
,
3519 ARM::VST1d16wb_fixed
,
3520 ARM::VST1d32wb_fixed
,
3521 ARM::VST1d64wb_fixed
};
3522 static const uint16_t QOpcodes
[] = { ARM::VST1q8wb_fixed
,
3523 ARM::VST1q16wb_fixed
,
3524 ARM::VST1q32wb_fixed
,
3525 ARM::VST1q64wb_fixed
};
3526 SelectVST(N
, true, 1, DOpcodes
, QOpcodes
, nullptr);
3530 case ARMISD::VST2_UPD
: {
3531 static const uint16_t DOpcodes
[] = { ARM::VST2d8wb_fixed
,
3532 ARM::VST2d16wb_fixed
,
3533 ARM::VST2d32wb_fixed
,
3534 ARM::VST1q64wb_fixed
};
3535 static const uint16_t QOpcodes
[] = { ARM::VST2q8PseudoWB_fixed
,
3536 ARM::VST2q16PseudoWB_fixed
,
3537 ARM::VST2q32PseudoWB_fixed
};
3538 SelectVST(N
, true, 2, DOpcodes
, QOpcodes
, nullptr);
3542 case ARMISD::VST3_UPD
: {
3543 static const uint16_t DOpcodes
[] = { ARM::VST3d8Pseudo_UPD
,
3544 ARM::VST3d16Pseudo_UPD
,
3545 ARM::VST3d32Pseudo_UPD
,
3546 ARM::VST1d64TPseudoWB_fixed
};
3547 static const uint16_t QOpcodes0
[] = { ARM::VST3q8Pseudo_UPD
,
3548 ARM::VST3q16Pseudo_UPD
,
3549 ARM::VST3q32Pseudo_UPD
};
3550 static const uint16_t QOpcodes1
[] = { ARM::VST3q8oddPseudo_UPD
,
3551 ARM::VST3q16oddPseudo_UPD
,
3552 ARM::VST3q32oddPseudo_UPD
};
3553 SelectVST(N
, true, 3, DOpcodes
, QOpcodes0
, QOpcodes1
);
3557 case ARMISD::VST4_UPD
: {
3558 static const uint16_t DOpcodes
[] = { ARM::VST4d8Pseudo_UPD
,
3559 ARM::VST4d16Pseudo_UPD
,
3560 ARM::VST4d32Pseudo_UPD
,
3561 ARM::VST1d64QPseudoWB_fixed
};
3562 static const uint16_t QOpcodes0
[] = { ARM::VST4q8Pseudo_UPD
,
3563 ARM::VST4q16Pseudo_UPD
,
3564 ARM::VST4q32Pseudo_UPD
};
3565 static const uint16_t QOpcodes1
[] = { ARM::VST4q8oddPseudo_UPD
,
3566 ARM::VST4q16oddPseudo_UPD
,
3567 ARM::VST4q32oddPseudo_UPD
};
3568 SelectVST(N
, true, 4, DOpcodes
, QOpcodes0
, QOpcodes1
);
3572 case ARMISD::VST2LN_UPD
: {
3573 static const uint16_t DOpcodes
[] = { ARM::VST2LNd8Pseudo_UPD
,
3574 ARM::VST2LNd16Pseudo_UPD
,
3575 ARM::VST2LNd32Pseudo_UPD
};
3576 static const uint16_t QOpcodes
[] = { ARM::VST2LNq16Pseudo_UPD
,
3577 ARM::VST2LNq32Pseudo_UPD
};
3578 SelectVLDSTLane(N
, false, true, 2, DOpcodes
, QOpcodes
);
3582 case ARMISD::VST3LN_UPD
: {
3583 static const uint16_t DOpcodes
[] = { ARM::VST3LNd8Pseudo_UPD
,
3584 ARM::VST3LNd16Pseudo_UPD
,
3585 ARM::VST3LNd32Pseudo_UPD
};
3586 static const uint16_t QOpcodes
[] = { ARM::VST3LNq16Pseudo_UPD
,
3587 ARM::VST3LNq32Pseudo_UPD
};
3588 SelectVLDSTLane(N
, false, true, 3, DOpcodes
, QOpcodes
);
3592 case ARMISD::VST4LN_UPD
: {
3593 static const uint16_t DOpcodes
[] = { ARM::VST4LNd8Pseudo_UPD
,
3594 ARM::VST4LNd16Pseudo_UPD
,
3595 ARM::VST4LNd32Pseudo_UPD
};
3596 static const uint16_t QOpcodes
[] = { ARM::VST4LNq16Pseudo_UPD
,
3597 ARM::VST4LNq32Pseudo_UPD
};
3598 SelectVLDSTLane(N
, false, true, 4, DOpcodes
, QOpcodes
);
3602 case ISD::INTRINSIC_VOID
:
3603 case ISD::INTRINSIC_W_CHAIN
: {
3604 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
3609 case Intrinsic::arm_mrrc
:
3610 case Intrinsic::arm_mrrc2
: {
3612 SDValue Chain
= N
->getOperand(0);
3615 if (Subtarget
->isThumb())
3616 Opc
= (IntNo
== Intrinsic::arm_mrrc
? ARM::t2MRRC
: ARM::t2MRRC2
);
3618 Opc
= (IntNo
== Intrinsic::arm_mrrc
? ARM::MRRC
: ARM::MRRC2
);
3620 SmallVector
<SDValue
, 5> Ops
;
3621 Ops
.push_back(getI32Imm(cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue(), dl
)); /* coproc */
3622 Ops
.push_back(getI32Imm(cast
<ConstantSDNode
>(N
->getOperand(3))->getZExtValue(), dl
)); /* opc */
3623 Ops
.push_back(getI32Imm(cast
<ConstantSDNode
>(N
->getOperand(4))->getZExtValue(), dl
)); /* CRm */
3625 // The mrrc2 instruction in ARM doesn't allow predicates, the top 4 bits of the encoded
3626 // instruction will always be '1111' but it is possible in assembly language to specify
3627 // AL as a predicate to mrrc2 but it doesn't make any difference to the encoded instruction.
3628 if (Opc
!= ARM::MRRC2
) {
3629 Ops
.push_back(getAL(CurDAG
, dl
));
3630 Ops
.push_back(CurDAG
->getRegister(0, MVT::i32
));
3633 Ops
.push_back(Chain
);
3635 // Writes to two registers.
3636 const EVT RetType
[] = {MVT::i32
, MVT::i32
, MVT::Other
};
3638 ReplaceNode(N
, CurDAG
->getMachineNode(Opc
, dl
, RetType
, Ops
));
3641 case Intrinsic::arm_ldaexd
:
3642 case Intrinsic::arm_ldrexd
: {
3644 SDValue Chain
= N
->getOperand(0);
3645 SDValue MemAddr
= N
->getOperand(2);
3646 bool isThumb
= Subtarget
->isThumb() && Subtarget
->hasV8MBaselineOps();
3648 bool IsAcquire
= IntNo
== Intrinsic::arm_ldaexd
;
3649 unsigned NewOpc
= isThumb
? (IsAcquire
? ARM::t2LDAEXD
: ARM::t2LDREXD
)
3650 : (IsAcquire
? ARM::LDAEXD
: ARM::LDREXD
);
3652 // arm_ldrexd returns a i64 value in {i32, i32}
3653 std::vector
<EVT
> ResTys
;
3655 ResTys
.push_back(MVT::i32
);
3656 ResTys
.push_back(MVT::i32
);
3658 ResTys
.push_back(MVT::Untyped
);
3659 ResTys
.push_back(MVT::Other
);
3661 // Place arguments in the right order.
3662 SDValue Ops
[] = {MemAddr
, getAL(CurDAG
, dl
),
3663 CurDAG
->getRegister(0, MVT::i32
), Chain
};
3664 SDNode
*Ld
= CurDAG
->getMachineNode(NewOpc
, dl
, ResTys
, Ops
);
3665 // Transfer memoperands.
3666 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
3667 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(Ld
), {MemOp
});
3670 SDValue OutChain
= isThumb
? SDValue(Ld
, 2) : SDValue(Ld
, 1);
3671 if (!SDValue(N
, 0).use_empty()) {
3674 Result
= SDValue(Ld
, 0);
3677 CurDAG
->getTargetConstant(ARM::gsub_0
, dl
, MVT::i32
);
3678 SDNode
*ResNode
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
3679 dl
, MVT::i32
, SDValue(Ld
, 0), SubRegIdx
);
3680 Result
= SDValue(ResNode
,0);
3682 ReplaceUses(SDValue(N
, 0), Result
);
3684 if (!SDValue(N
, 1).use_empty()) {
3687 Result
= SDValue(Ld
, 1);
3690 CurDAG
->getTargetConstant(ARM::gsub_1
, dl
, MVT::i32
);
3691 SDNode
*ResNode
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
3692 dl
, MVT::i32
, SDValue(Ld
, 0), SubRegIdx
);
3693 Result
= SDValue(ResNode
,0);
3695 ReplaceUses(SDValue(N
, 1), Result
);
3697 ReplaceUses(SDValue(N
, 2), OutChain
);
3698 CurDAG
->RemoveDeadNode(N
);
3701 case Intrinsic::arm_stlexd
:
3702 case Intrinsic::arm_strexd
: {
3704 SDValue Chain
= N
->getOperand(0);
3705 SDValue Val0
= N
->getOperand(2);
3706 SDValue Val1
= N
->getOperand(3);
3707 SDValue MemAddr
= N
->getOperand(4);
3709 // Store exclusive double return a i32 value which is the return status
3710 // of the issued store.
3711 const EVT ResTys
[] = {MVT::i32
, MVT::Other
};
3713 bool isThumb
= Subtarget
->isThumb() && Subtarget
->hasThumb2();
3714 // Place arguments in the right order.
3715 SmallVector
<SDValue
, 7> Ops
;
3717 Ops
.push_back(Val0
);
3718 Ops
.push_back(Val1
);
3720 // arm_strexd uses GPRPair.
3721 Ops
.push_back(SDValue(createGPRPairNode(MVT::Untyped
, Val0
, Val1
), 0));
3722 Ops
.push_back(MemAddr
);
3723 Ops
.push_back(getAL(CurDAG
, dl
));
3724 Ops
.push_back(CurDAG
->getRegister(0, MVT::i32
));
3725 Ops
.push_back(Chain
);
3727 bool IsRelease
= IntNo
== Intrinsic::arm_stlexd
;
3728 unsigned NewOpc
= isThumb
? (IsRelease
? ARM::t2STLEXD
: ARM::t2STREXD
)
3729 : (IsRelease
? ARM::STLEXD
: ARM::STREXD
);
3731 SDNode
*St
= CurDAG
->getMachineNode(NewOpc
, dl
, ResTys
, Ops
);
3732 // Transfer memoperands.
3733 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
3734 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(St
), {MemOp
});
3740 case Intrinsic::arm_neon_vld1
: {
3741 static const uint16_t DOpcodes
[] = { ARM::VLD1d8
, ARM::VLD1d16
,
3742 ARM::VLD1d32
, ARM::VLD1d64
};
3743 static const uint16_t QOpcodes
[] = { ARM::VLD1q8
, ARM::VLD1q16
,
3744 ARM::VLD1q32
, ARM::VLD1q64
};
3745 SelectVLD(N
, false, 1, DOpcodes
, QOpcodes
, nullptr);
3749 case Intrinsic::arm_neon_vld1x2
: {
3750 static const uint16_t DOpcodes
[] = { ARM::VLD1q8
, ARM::VLD1q16
,
3751 ARM::VLD1q32
, ARM::VLD1q64
};
3752 static const uint16_t QOpcodes
[] = { ARM::VLD1d8QPseudo
,
3753 ARM::VLD1d16QPseudo
,
3754 ARM::VLD1d32QPseudo
,
3755 ARM::VLD1d64QPseudo
};
3756 SelectVLD(N
, false, 2, DOpcodes
, QOpcodes
, nullptr);
3760 case Intrinsic::arm_neon_vld1x3
: {
3761 static const uint16_t DOpcodes
[] = { ARM::VLD1d8TPseudo
,
3762 ARM::VLD1d16TPseudo
,
3763 ARM::VLD1d32TPseudo
,
3764 ARM::VLD1d64TPseudo
};
3765 static const uint16_t QOpcodes0
[] = { ARM::VLD1q8LowTPseudo_UPD
,
3766 ARM::VLD1q16LowTPseudo_UPD
,
3767 ARM::VLD1q32LowTPseudo_UPD
,
3768 ARM::VLD1q64LowTPseudo_UPD
};
3769 static const uint16_t QOpcodes1
[] = { ARM::VLD1q8HighTPseudo
,
3770 ARM::VLD1q16HighTPseudo
,
3771 ARM::VLD1q32HighTPseudo
,
3772 ARM::VLD1q64HighTPseudo
};
3773 SelectVLD(N
, false, 3, DOpcodes
, QOpcodes0
, QOpcodes1
);
3777 case Intrinsic::arm_neon_vld1x4
: {
3778 static const uint16_t DOpcodes
[] = { ARM::VLD1d8QPseudo
,
3779 ARM::VLD1d16QPseudo
,
3780 ARM::VLD1d32QPseudo
,
3781 ARM::VLD1d64QPseudo
};
3782 static const uint16_t QOpcodes0
[] = { ARM::VLD1q8LowQPseudo_UPD
,
3783 ARM::VLD1q16LowQPseudo_UPD
,
3784 ARM::VLD1q32LowQPseudo_UPD
,
3785 ARM::VLD1q64LowQPseudo_UPD
};
3786 static const uint16_t QOpcodes1
[] = { ARM::VLD1q8HighQPseudo
,
3787 ARM::VLD1q16HighQPseudo
,
3788 ARM::VLD1q32HighQPseudo
,
3789 ARM::VLD1q64HighQPseudo
};
3790 SelectVLD(N
, false, 4, DOpcodes
, QOpcodes0
, QOpcodes1
);
3794 case Intrinsic::arm_neon_vld2
: {
3795 static const uint16_t DOpcodes
[] = { ARM::VLD2d8
, ARM::VLD2d16
,
3796 ARM::VLD2d32
, ARM::VLD1q64
};
3797 static const uint16_t QOpcodes
[] = { ARM::VLD2q8Pseudo
, ARM::VLD2q16Pseudo
,
3798 ARM::VLD2q32Pseudo
};
3799 SelectVLD(N
, false, 2, DOpcodes
, QOpcodes
, nullptr);
3803 case Intrinsic::arm_neon_vld3
: {
3804 static const uint16_t DOpcodes
[] = { ARM::VLD3d8Pseudo
,
3807 ARM::VLD1d64TPseudo
};
3808 static const uint16_t QOpcodes0
[] = { ARM::VLD3q8Pseudo_UPD
,
3809 ARM::VLD3q16Pseudo_UPD
,
3810 ARM::VLD3q32Pseudo_UPD
};
3811 static const uint16_t QOpcodes1
[] = { ARM::VLD3q8oddPseudo
,
3812 ARM::VLD3q16oddPseudo
,
3813 ARM::VLD3q32oddPseudo
};
3814 SelectVLD(N
, false, 3, DOpcodes
, QOpcodes0
, QOpcodes1
);
3818 case Intrinsic::arm_neon_vld4
: {
3819 static const uint16_t DOpcodes
[] = { ARM::VLD4d8Pseudo
,
3822 ARM::VLD1d64QPseudo
};
3823 static const uint16_t QOpcodes0
[] = { ARM::VLD4q8Pseudo_UPD
,
3824 ARM::VLD4q16Pseudo_UPD
,
3825 ARM::VLD4q32Pseudo_UPD
};
3826 static const uint16_t QOpcodes1
[] = { ARM::VLD4q8oddPseudo
,
3827 ARM::VLD4q16oddPseudo
,
3828 ARM::VLD4q32oddPseudo
};
3829 SelectVLD(N
, false, 4, DOpcodes
, QOpcodes0
, QOpcodes1
);
3833 case Intrinsic::arm_neon_vld2dup
: {
3834 static const uint16_t DOpcodes
[] = { ARM::VLD2DUPd8
, ARM::VLD2DUPd16
,
3835 ARM::VLD2DUPd32
, ARM::VLD1q64
};
3836 static const uint16_t QOpcodes0
[] = { ARM::VLD2DUPq8EvenPseudo
,
3837 ARM::VLD2DUPq16EvenPseudo
,
3838 ARM::VLD2DUPq32EvenPseudo
};
3839 static const uint16_t QOpcodes1
[] = { ARM::VLD2DUPq8OddPseudo
,
3840 ARM::VLD2DUPq16OddPseudo
,
3841 ARM::VLD2DUPq32OddPseudo
};
3842 SelectVLDDup(N
, /* IsIntrinsic= */ true, false, 2,
3843 DOpcodes
, QOpcodes0
, QOpcodes1
);
3847 case Intrinsic::arm_neon_vld3dup
: {
3848 static const uint16_t DOpcodes
[] = { ARM::VLD3DUPd8Pseudo
,
3849 ARM::VLD3DUPd16Pseudo
,
3850 ARM::VLD3DUPd32Pseudo
,
3851 ARM::VLD1d64TPseudo
};
3852 static const uint16_t QOpcodes0
[] = { ARM::VLD3DUPq8EvenPseudo
,
3853 ARM::VLD3DUPq16EvenPseudo
,
3854 ARM::VLD3DUPq32EvenPseudo
};
3855 static const uint16_t QOpcodes1
[] = { ARM::VLD3DUPq8OddPseudo
,
3856 ARM::VLD3DUPq16OddPseudo
,
3857 ARM::VLD3DUPq32OddPseudo
};
3858 SelectVLDDup(N
, /* IsIntrinsic= */ true, false, 3,
3859 DOpcodes
, QOpcodes0
, QOpcodes1
);
3863 case Intrinsic::arm_neon_vld4dup
: {
3864 static const uint16_t DOpcodes
[] = { ARM::VLD4DUPd8Pseudo
,
3865 ARM::VLD4DUPd16Pseudo
,
3866 ARM::VLD4DUPd32Pseudo
,
3867 ARM::VLD1d64QPseudo
};
3868 static const uint16_t QOpcodes0
[] = { ARM::VLD4DUPq8EvenPseudo
,
3869 ARM::VLD4DUPq16EvenPseudo
,
3870 ARM::VLD4DUPq32EvenPseudo
};
3871 static const uint16_t QOpcodes1
[] = { ARM::VLD4DUPq8OddPseudo
,
3872 ARM::VLD4DUPq16OddPseudo
,
3873 ARM::VLD4DUPq32OddPseudo
};
3874 SelectVLDDup(N
, /* IsIntrinsic= */ true, false, 4,
3875 DOpcodes
, QOpcodes0
, QOpcodes1
);
3879 case Intrinsic::arm_neon_vld2lane
: {
3880 static const uint16_t DOpcodes
[] = { ARM::VLD2LNd8Pseudo
,
3881 ARM::VLD2LNd16Pseudo
,
3882 ARM::VLD2LNd32Pseudo
};
3883 static const uint16_t QOpcodes
[] = { ARM::VLD2LNq16Pseudo
,
3884 ARM::VLD2LNq32Pseudo
};
3885 SelectVLDSTLane(N
, true, false, 2, DOpcodes
, QOpcodes
);
3889 case Intrinsic::arm_neon_vld3lane
: {
3890 static const uint16_t DOpcodes
[] = { ARM::VLD3LNd8Pseudo
,
3891 ARM::VLD3LNd16Pseudo
,
3892 ARM::VLD3LNd32Pseudo
};
3893 static const uint16_t QOpcodes
[] = { ARM::VLD3LNq16Pseudo
,
3894 ARM::VLD3LNq32Pseudo
};
3895 SelectVLDSTLane(N
, true, false, 3, DOpcodes
, QOpcodes
);
3899 case Intrinsic::arm_neon_vld4lane
: {
3900 static const uint16_t DOpcodes
[] = { ARM::VLD4LNd8Pseudo
,
3901 ARM::VLD4LNd16Pseudo
,
3902 ARM::VLD4LNd32Pseudo
};
3903 static const uint16_t QOpcodes
[] = { ARM::VLD4LNq16Pseudo
,
3904 ARM::VLD4LNq32Pseudo
};
3905 SelectVLDSTLane(N
, true, false, 4, DOpcodes
, QOpcodes
);
3909 case Intrinsic::arm_neon_vst1
: {
3910 static const uint16_t DOpcodes
[] = { ARM::VST1d8
, ARM::VST1d16
,
3911 ARM::VST1d32
, ARM::VST1d64
};
3912 static const uint16_t QOpcodes
[] = { ARM::VST1q8
, ARM::VST1q16
,
3913 ARM::VST1q32
, ARM::VST1q64
};
3914 SelectVST(N
, false, 1, DOpcodes
, QOpcodes
, nullptr);
3918 case Intrinsic::arm_neon_vst1x2
: {
3919 static const uint16_t DOpcodes
[] = { ARM::VST1q8
, ARM::VST1q16
,
3920 ARM::VST1q32
, ARM::VST1q64
};
3921 static const uint16_t QOpcodes
[] = { ARM::VST1d8QPseudo
,
3922 ARM::VST1d16QPseudo
,
3923 ARM::VST1d32QPseudo
,
3924 ARM::VST1d64QPseudo
};
3925 SelectVST(N
, false, 2, DOpcodes
, QOpcodes
, nullptr);
3929 case Intrinsic::arm_neon_vst1x3
: {
3930 static const uint16_t DOpcodes
[] = { ARM::VST1d8TPseudo
,
3931 ARM::VST1d16TPseudo
,
3932 ARM::VST1d32TPseudo
,
3933 ARM::VST1d64TPseudo
};
3934 static const uint16_t QOpcodes0
[] = { ARM::VST1q8LowTPseudo_UPD
,
3935 ARM::VST1q16LowTPseudo_UPD
,
3936 ARM::VST1q32LowTPseudo_UPD
,
3937 ARM::VST1q64LowTPseudo_UPD
};
3938 static const uint16_t QOpcodes1
[] = { ARM::VST1q8HighTPseudo
,
3939 ARM::VST1q16HighTPseudo
,
3940 ARM::VST1q32HighTPseudo
,
3941 ARM::VST1q64HighTPseudo
};
3942 SelectVST(N
, false, 3, DOpcodes
, QOpcodes0
, QOpcodes1
);
3946 case Intrinsic::arm_neon_vst1x4
: {
3947 static const uint16_t DOpcodes
[] = { ARM::VST1d8QPseudo
,
3948 ARM::VST1d16QPseudo
,
3949 ARM::VST1d32QPseudo
,
3950 ARM::VST1d64QPseudo
};
3951 static const uint16_t QOpcodes0
[] = { ARM::VST1q8LowQPseudo_UPD
,
3952 ARM::VST1q16LowQPseudo_UPD
,
3953 ARM::VST1q32LowQPseudo_UPD
,
3954 ARM::VST1q64LowQPseudo_UPD
};
3955 static const uint16_t QOpcodes1
[] = { ARM::VST1q8HighQPseudo
,
3956 ARM::VST1q16HighQPseudo
,
3957 ARM::VST1q32HighQPseudo
,
3958 ARM::VST1q64HighQPseudo
};
3959 SelectVST(N
, false, 4, DOpcodes
, QOpcodes0
, QOpcodes1
);
3963 case Intrinsic::arm_neon_vst2
: {
3964 static const uint16_t DOpcodes
[] = { ARM::VST2d8
, ARM::VST2d16
,
3965 ARM::VST2d32
, ARM::VST1q64
};
3966 static const uint16_t QOpcodes
[] = { ARM::VST2q8Pseudo
, ARM::VST2q16Pseudo
,
3967 ARM::VST2q32Pseudo
};
3968 SelectVST(N
, false, 2, DOpcodes
, QOpcodes
, nullptr);
3972 case Intrinsic::arm_neon_vst3
: {
3973 static const uint16_t DOpcodes
[] = { ARM::VST3d8Pseudo
,
3976 ARM::VST1d64TPseudo
};
3977 static const uint16_t QOpcodes0
[] = { ARM::VST3q8Pseudo_UPD
,
3978 ARM::VST3q16Pseudo_UPD
,
3979 ARM::VST3q32Pseudo_UPD
};
3980 static const uint16_t QOpcodes1
[] = { ARM::VST3q8oddPseudo
,
3981 ARM::VST3q16oddPseudo
,
3982 ARM::VST3q32oddPseudo
};
3983 SelectVST(N
, false, 3, DOpcodes
, QOpcodes0
, QOpcodes1
);
3987 case Intrinsic::arm_neon_vst4
: {
3988 static const uint16_t DOpcodes
[] = { ARM::VST4d8Pseudo
,
3991 ARM::VST1d64QPseudo
};
3992 static const uint16_t QOpcodes0
[] = { ARM::VST4q8Pseudo_UPD
,
3993 ARM::VST4q16Pseudo_UPD
,
3994 ARM::VST4q32Pseudo_UPD
};
3995 static const uint16_t QOpcodes1
[] = { ARM::VST4q8oddPseudo
,
3996 ARM::VST4q16oddPseudo
,
3997 ARM::VST4q32oddPseudo
};
3998 SelectVST(N
, false, 4, DOpcodes
, QOpcodes0
, QOpcodes1
);
4002 case Intrinsic::arm_neon_vst2lane
: {
4003 static const uint16_t DOpcodes
[] = { ARM::VST2LNd8Pseudo
,
4004 ARM::VST2LNd16Pseudo
,
4005 ARM::VST2LNd32Pseudo
};
4006 static const uint16_t QOpcodes
[] = { ARM::VST2LNq16Pseudo
,
4007 ARM::VST2LNq32Pseudo
};
4008 SelectVLDSTLane(N
, false, false, 2, DOpcodes
, QOpcodes
);
4012 case Intrinsic::arm_neon_vst3lane
: {
4013 static const uint16_t DOpcodes
[] = { ARM::VST3LNd8Pseudo
,
4014 ARM::VST3LNd16Pseudo
,
4015 ARM::VST3LNd32Pseudo
};
4016 static const uint16_t QOpcodes
[] = { ARM::VST3LNq16Pseudo
,
4017 ARM::VST3LNq32Pseudo
};
4018 SelectVLDSTLane(N
, false, false, 3, DOpcodes
, QOpcodes
);
4022 case Intrinsic::arm_neon_vst4lane
: {
4023 static const uint16_t DOpcodes
[] = { ARM::VST4LNd8Pseudo
,
4024 ARM::VST4LNd16Pseudo
,
4025 ARM::VST4LNd32Pseudo
};
4026 static const uint16_t QOpcodes
[] = { ARM::VST4LNq16Pseudo
,
4027 ARM::VST4LNq32Pseudo
};
4028 SelectVLDSTLane(N
, false, false, 4, DOpcodes
, QOpcodes
);
4035 case ISD::ATOMIC_CMP_SWAP
:
4043 // Inspect a register string of the form
4044 // cp<coprocessor>:<opc1>:c<CRn>:c<CRm>:<opc2> (32bit) or
4045 // cp<coprocessor>:<opc1>:c<CRm> (64bit) inspect the fields of the string
4046 // and obtain the integer operands from them, adding these operands to the
4048 static void getIntOperandsFromRegisterString(StringRef RegString
,
4049 SelectionDAG
*CurDAG
,
4051 std::vector
<SDValue
> &Ops
) {
4052 SmallVector
<StringRef
, 5> Fields
;
4053 RegString
.split(Fields
, ':');
4055 if (Fields
.size() > 1) {
4056 bool AllIntFields
= true;
4058 for (StringRef Field
: Fields
) {
4059 // Need to trim out leading 'cp' characters and get the integer field.
4061 AllIntFields
&= !Field
.trim("CPcp").getAsInteger(10, IntField
);
4062 Ops
.push_back(CurDAG
->getTargetConstant(IntField
, DL
, MVT::i32
));
4065 assert(AllIntFields
&&
4066 "Unexpected non-integer value in special register string.");
4070 // Maps a Banked Register string to its mask value. The mask value returned is
4071 // for use in the MRSbanked / MSRbanked instruction nodes as the Banked Register
4072 // mask operand, which expresses which register is to be used, e.g. r8, and in
4073 // which mode it is to be used, e.g. usr. Returns -1 to signify that the string
4075 static inline int getBankedRegisterMask(StringRef RegString
) {
4076 auto TheReg
= ARMBankedReg::lookupBankedRegByName(RegString
.lower());
4079 return TheReg
->Encoding
;
4082 // The flags here are common to those allowed for apsr in the A class cores and
4083 // those allowed for the special registers in the M class cores. Returns a
4084 // value representing which flags were present, -1 if invalid.
4085 static inline int getMClassFlagsMask(StringRef Flags
) {
4086 return StringSwitch
<int>(Flags
)
4087 .Case("", 0x2) // no flags means nzcvq for psr registers, and 0x2 is
4088 // correct when flags are not permitted
4091 .Case("nzcvqg", 0x3)
4095 // Maps MClass special registers string to its value for use in the
4096 // t2MRS_M/t2MSR_M instruction nodes as the SYSm value operand.
4097 // Returns -1 to signify that the string was invalid.
4098 static int getMClassRegisterMask(StringRef Reg
, const ARMSubtarget
*Subtarget
) {
4099 auto TheReg
= ARMSysReg::lookupMClassSysRegByName(Reg
);
4100 const FeatureBitset
&FeatureBits
= Subtarget
->getFeatureBits();
4101 if (!TheReg
|| !TheReg
->hasRequiredFeatures(FeatureBits
))
4103 return (int)(TheReg
->Encoding
& 0xFFF); // SYSm value
4106 static int getARClassRegisterMask(StringRef Reg
, StringRef Flags
) {
4107 // The mask operand contains the special register (R Bit) in bit 4, whether
4108 // the register is spsr (R bit is 1) or one of cpsr/apsr (R bit is 0), and
4109 // bits 3-0 contains the fields to be accessed in the special register, set by
4110 // the flags provided with the register.
4112 if (Reg
== "apsr") {
4113 // The flags permitted for apsr are the same flags that are allowed in
4114 // M class registers. We get the flag value and then shift the flags into
4115 // the correct place to combine with the mask.
4116 Mask
= getMClassFlagsMask(Flags
);
4122 if (Reg
!= "cpsr" && Reg
!= "spsr") {
4126 // This is the same as if the flags were "fc"
4127 if (Flags
.empty() || Flags
== "all")
4130 // Inspect the supplied flags string and set the bits in the mask for
4131 // the relevant and valid flags allowed for cpsr and spsr.
4132 for (char Flag
: Flags
) {
4151 // This avoids allowing strings where the same flag bit appears twice.
4152 if (!FlagVal
|| (Mask
& FlagVal
))
4157 // If the register is spsr then we need to set the R bit.
4164 // Lower the read_register intrinsic to ARM specific DAG nodes
4165 // using the supplied metadata string to select the instruction node to use
4166 // and the registers/masks to construct as operands for the node.
4167 bool ARMDAGToDAGISel::tryReadRegister(SDNode
*N
){
4168 const MDNodeSDNode
*MD
= dyn_cast
<MDNodeSDNode
>(N
->getOperand(1));
4169 const MDString
*RegString
= dyn_cast
<MDString
>(MD
->getMD()->getOperand(0));
4170 bool IsThumb2
= Subtarget
->isThumb2();
4173 std::vector
<SDValue
> Ops
;
4174 getIntOperandsFromRegisterString(RegString
->getString(), CurDAG
, DL
, Ops
);
4177 // If the special register string was constructed of fields (as defined
4178 // in the ACLE) then need to lower to MRC node (32 bit) or
4179 // MRRC node(64 bit), we can make the distinction based on the number of
4180 // operands we have.
4182 SmallVector
<EVT
, 3> ResTypes
;
4183 if (Ops
.size() == 5){
4184 Opcode
= IsThumb2
? ARM::t2MRC
: ARM::MRC
;
4185 ResTypes
.append({ MVT::i32
, MVT::Other
});
4187 assert(Ops
.size() == 3 &&
4188 "Invalid number of fields in special register string.");
4189 Opcode
= IsThumb2
? ARM::t2MRRC
: ARM::MRRC
;
4190 ResTypes
.append({ MVT::i32
, MVT::i32
, MVT::Other
});
4193 Ops
.push_back(getAL(CurDAG
, DL
));
4194 Ops
.push_back(CurDAG
->getRegister(0, MVT::i32
));
4195 Ops
.push_back(N
->getOperand(0));
4196 ReplaceNode(N
, CurDAG
->getMachineNode(Opcode
, DL
, ResTypes
, Ops
));
4200 std::string SpecialReg
= RegString
->getString().lower();
4202 int BankedReg
= getBankedRegisterMask(SpecialReg
);
4203 if (BankedReg
!= -1) {
4204 Ops
= { CurDAG
->getTargetConstant(BankedReg
, DL
, MVT::i32
),
4205 getAL(CurDAG
, DL
), CurDAG
->getRegister(0, MVT::i32
),
4208 N
, CurDAG
->getMachineNode(IsThumb2
? ARM::t2MRSbanked
: ARM::MRSbanked
,
4209 DL
, MVT::i32
, MVT::Other
, Ops
));
4213 // The VFP registers are read by creating SelectionDAG nodes with opcodes
4214 // corresponding to the register that is being read from. So we switch on the
4215 // string to find which opcode we need to use.
4216 unsigned Opcode
= StringSwitch
<unsigned>(SpecialReg
)
4217 .Case("fpscr", ARM::VMRS
)
4218 .Case("fpexc", ARM::VMRS_FPEXC
)
4219 .Case("fpsid", ARM::VMRS_FPSID
)
4220 .Case("mvfr0", ARM::VMRS_MVFR0
)
4221 .Case("mvfr1", ARM::VMRS_MVFR1
)
4222 .Case("mvfr2", ARM::VMRS_MVFR2
)
4223 .Case("fpinst", ARM::VMRS_FPINST
)
4224 .Case("fpinst2", ARM::VMRS_FPINST2
)
4227 // If an opcode was found then we can lower the read to a VFP instruction.
4229 if (!Subtarget
->hasVFP2Base())
4231 if (Opcode
== ARM::VMRS_MVFR2
&& !Subtarget
->hasFPARMv8Base())
4234 Ops
= { getAL(CurDAG
, DL
), CurDAG
->getRegister(0, MVT::i32
),
4237 CurDAG
->getMachineNode(Opcode
, DL
, MVT::i32
, MVT::Other
, Ops
));
4241 // If the target is M Class then need to validate that the register string
4242 // is an acceptable value, so check that a mask can be constructed from the
4244 if (Subtarget
->isMClass()) {
4245 int SYSmValue
= getMClassRegisterMask(SpecialReg
, Subtarget
);
4246 if (SYSmValue
== -1)
4249 SDValue Ops
[] = { CurDAG
->getTargetConstant(SYSmValue
, DL
, MVT::i32
),
4250 getAL(CurDAG
, DL
), CurDAG
->getRegister(0, MVT::i32
),
4253 N
, CurDAG
->getMachineNode(ARM::t2MRS_M
, DL
, MVT::i32
, MVT::Other
, Ops
));
4257 // Here we know the target is not M Class so we need to check if it is one
4258 // of the remaining possible values which are apsr, cpsr or spsr.
4259 if (SpecialReg
== "apsr" || SpecialReg
== "cpsr") {
4260 Ops
= { getAL(CurDAG
, DL
), CurDAG
->getRegister(0, MVT::i32
),
4262 ReplaceNode(N
, CurDAG
->getMachineNode(IsThumb2
? ARM::t2MRS_AR
: ARM::MRS
,
4263 DL
, MVT::i32
, MVT::Other
, Ops
));
4267 if (SpecialReg
== "spsr") {
4268 Ops
= { getAL(CurDAG
, DL
), CurDAG
->getRegister(0, MVT::i32
),
4271 N
, CurDAG
->getMachineNode(IsThumb2
? ARM::t2MRSsys_AR
: ARM::MRSsys
, DL
,
4272 MVT::i32
, MVT::Other
, Ops
));
4279 // Lower the write_register intrinsic to ARM specific DAG nodes
4280 // using the supplied metadata string to select the instruction node to use
4281 // and the registers/masks to use in the nodes
4282 bool ARMDAGToDAGISel::tryWriteRegister(SDNode
*N
){
4283 const MDNodeSDNode
*MD
= dyn_cast
<MDNodeSDNode
>(N
->getOperand(1));
4284 const MDString
*RegString
= dyn_cast
<MDString
>(MD
->getMD()->getOperand(0));
4285 bool IsThumb2
= Subtarget
->isThumb2();
4288 std::vector
<SDValue
> Ops
;
4289 getIntOperandsFromRegisterString(RegString
->getString(), CurDAG
, DL
, Ops
);
4292 // If the special register string was constructed of fields (as defined
4293 // in the ACLE) then need to lower to MCR node (32 bit) or
4294 // MCRR node(64 bit), we can make the distinction based on the number of
4295 // operands we have.
4297 if (Ops
.size() == 5) {
4298 Opcode
= IsThumb2
? ARM::t2MCR
: ARM::MCR
;
4299 Ops
.insert(Ops
.begin()+2, N
->getOperand(2));
4301 assert(Ops
.size() == 3 &&
4302 "Invalid number of fields in special register string.");
4303 Opcode
= IsThumb2
? ARM::t2MCRR
: ARM::MCRR
;
4304 SDValue WriteValue
[] = { N
->getOperand(2), N
->getOperand(3) };
4305 Ops
.insert(Ops
.begin()+2, WriteValue
, WriteValue
+2);
4308 Ops
.push_back(getAL(CurDAG
, DL
));
4309 Ops
.push_back(CurDAG
->getRegister(0, MVT::i32
));
4310 Ops
.push_back(N
->getOperand(0));
4312 ReplaceNode(N
, CurDAG
->getMachineNode(Opcode
, DL
, MVT::Other
, Ops
));
4316 std::string SpecialReg
= RegString
->getString().lower();
4317 int BankedReg
= getBankedRegisterMask(SpecialReg
);
4318 if (BankedReg
!= -1) {
4319 Ops
= { CurDAG
->getTargetConstant(BankedReg
, DL
, MVT::i32
), N
->getOperand(2),
4320 getAL(CurDAG
, DL
), CurDAG
->getRegister(0, MVT::i32
),
4323 N
, CurDAG
->getMachineNode(IsThumb2
? ARM::t2MSRbanked
: ARM::MSRbanked
,
4324 DL
, MVT::Other
, Ops
));
4328 // The VFP registers are written to by creating SelectionDAG nodes with
4329 // opcodes corresponding to the register that is being written. So we switch
4330 // on the string to find which opcode we need to use.
4331 unsigned Opcode
= StringSwitch
<unsigned>(SpecialReg
)
4332 .Case("fpscr", ARM::VMSR
)
4333 .Case("fpexc", ARM::VMSR_FPEXC
)
4334 .Case("fpsid", ARM::VMSR_FPSID
)
4335 .Case("fpinst", ARM::VMSR_FPINST
)
4336 .Case("fpinst2", ARM::VMSR_FPINST2
)
4340 if (!Subtarget
->hasVFP2Base())
4342 Ops
= { N
->getOperand(2), getAL(CurDAG
, DL
),
4343 CurDAG
->getRegister(0, MVT::i32
), N
->getOperand(0) };
4344 ReplaceNode(N
, CurDAG
->getMachineNode(Opcode
, DL
, MVT::Other
, Ops
));
4348 std::pair
<StringRef
, StringRef
> Fields
;
4349 Fields
= StringRef(SpecialReg
).rsplit('_');
4350 std::string Reg
= Fields
.first
.str();
4351 StringRef Flags
= Fields
.second
;
4353 // If the target was M Class then need to validate the special register value
4354 // and retrieve the mask for use in the instruction node.
4355 if (Subtarget
->isMClass()) {
4356 int SYSmValue
= getMClassRegisterMask(SpecialReg
, Subtarget
);
4357 if (SYSmValue
== -1)
4360 SDValue Ops
[] = { CurDAG
->getTargetConstant(SYSmValue
, DL
, MVT::i32
),
4361 N
->getOperand(2), getAL(CurDAG
, DL
),
4362 CurDAG
->getRegister(0, MVT::i32
), N
->getOperand(0) };
4363 ReplaceNode(N
, CurDAG
->getMachineNode(ARM::t2MSR_M
, DL
, MVT::Other
, Ops
));
4367 // We then check to see if a valid mask can be constructed for one of the
4368 // register string values permitted for the A and R class cores. These values
4369 // are apsr, spsr and cpsr; these are also valid on older cores.
4370 int Mask
= getARClassRegisterMask(Reg
, Flags
);
4372 Ops
= { CurDAG
->getTargetConstant(Mask
, DL
, MVT::i32
), N
->getOperand(2),
4373 getAL(CurDAG
, DL
), CurDAG
->getRegister(0, MVT::i32
),
4375 ReplaceNode(N
, CurDAG
->getMachineNode(IsThumb2
? ARM::t2MSR_AR
: ARM::MSR
,
4376 DL
, MVT::Other
, Ops
));
4383 bool ARMDAGToDAGISel::tryInlineAsm(SDNode
*N
){
4384 std::vector
<SDValue
> AsmNodeOperands
;
4385 unsigned Flag
, Kind
;
4386 bool Changed
= false;
4387 unsigned NumOps
= N
->getNumOperands();
4389 // Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint.
4390 // However, some instrstions (e.g. ldrexd/strexd in ARM mode) require
4391 // (even/even+1) GPRs and use %n and %Hn to refer to the individual regs
4392 // respectively. Since there is no constraint to explicitly specify a
4393 // reg pair, we use GPRPair reg class for "%r" for 64-bit data. For Thumb,
4394 // the 64-bit data may be referred by H, Q, R modifiers, so we still pack
4395 // them into a GPRPair.
4398 SDValue Glue
= N
->getGluedNode() ? N
->getOperand(NumOps
-1)
4399 : SDValue(nullptr,0);
4401 SmallVector
<bool, 8> OpChanged
;
4402 // Glue node will be appended late.
4403 for(unsigned i
= 0, e
= N
->getGluedNode() ? NumOps
- 1 : NumOps
; i
< e
; ++i
) {
4404 SDValue op
= N
->getOperand(i
);
4405 AsmNodeOperands
.push_back(op
);
4407 if (i
< InlineAsm::Op_FirstOperand
)
4410 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(i
))) {
4411 Flag
= C
->getZExtValue();
4412 Kind
= InlineAsm::getKind(Flag
);
4417 // Immediate operands to inline asm in the SelectionDAG are modeled with
4418 // two operands. The first is a constant of value InlineAsm::Kind_Imm, and
4419 // the second is a constant with the value of the immediate. If we get here
4420 // and we have a Kind_Imm, skip the next operand, and continue.
4421 if (Kind
== InlineAsm::Kind_Imm
) {
4422 SDValue op
= N
->getOperand(++i
);
4423 AsmNodeOperands
.push_back(op
);
4427 unsigned NumRegs
= InlineAsm::getNumOperandRegisters(Flag
);
4429 OpChanged
.push_back(false);
4431 unsigned DefIdx
= 0;
4432 bool IsTiedToChangedOp
= false;
4433 // If it's a use that is tied with a previous def, it has no
4434 // reg class constraint.
4435 if (Changed
&& InlineAsm::isUseOperandTiedToDef(Flag
, DefIdx
))
4436 IsTiedToChangedOp
= OpChanged
[DefIdx
];
4438 // Memory operands to inline asm in the SelectionDAG are modeled with two
4439 // operands: a constant of value InlineAsm::Kind_Mem followed by the input
4440 // operand. If we get here and we have a Kind_Mem, skip the next operand (so
4441 // it doesn't get misinterpreted), and continue. We do this here because
4442 // it's important to update the OpChanged array correctly before moving on.
4443 if (Kind
== InlineAsm::Kind_Mem
) {
4444 SDValue op
= N
->getOperand(++i
);
4445 AsmNodeOperands
.push_back(op
);
4449 if (Kind
!= InlineAsm::Kind_RegUse
&& Kind
!= InlineAsm::Kind_RegDef
4450 && Kind
!= InlineAsm::Kind_RegDefEarlyClobber
)
4454 bool HasRC
= InlineAsm::hasRegClassConstraint(Flag
, RC
);
4455 if ((!IsTiedToChangedOp
&& (!HasRC
|| RC
!= ARM::GPRRegClassID
))
4459 assert((i
+2 < NumOps
) && "Invalid number of operands in inline asm");
4460 SDValue V0
= N
->getOperand(i
+1);
4461 SDValue V1
= N
->getOperand(i
+2);
4462 unsigned Reg0
= cast
<RegisterSDNode
>(V0
)->getReg();
4463 unsigned Reg1
= cast
<RegisterSDNode
>(V1
)->getReg();
4465 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
4467 if (Kind
== InlineAsm::Kind_RegDef
||
4468 Kind
== InlineAsm::Kind_RegDefEarlyClobber
) {
4469 // Replace the two GPRs with 1 GPRPair and copy values from GPRPair to
4470 // the original GPRs.
4472 Register GPVR
= MRI
.createVirtualRegister(&ARM::GPRPairRegClass
);
4473 PairedReg
= CurDAG
->getRegister(GPVR
, MVT::Untyped
);
4474 SDValue Chain
= SDValue(N
,0);
4476 SDNode
*GU
= N
->getGluedUser();
4477 SDValue RegCopy
= CurDAG
->getCopyFromReg(Chain
, dl
, GPVR
, MVT::Untyped
,
4480 // Extract values from a GPRPair reg and copy to the original GPR reg.
4481 SDValue Sub0
= CurDAG
->getTargetExtractSubreg(ARM::gsub_0
, dl
, MVT::i32
,
4483 SDValue Sub1
= CurDAG
->getTargetExtractSubreg(ARM::gsub_1
, dl
, MVT::i32
,
4485 SDValue T0
= CurDAG
->getCopyToReg(Sub0
, dl
, Reg0
, Sub0
,
4486 RegCopy
.getValue(1));
4487 SDValue T1
= CurDAG
->getCopyToReg(Sub1
, dl
, Reg1
, Sub1
, T0
.getValue(1));
4489 // Update the original glue user.
4490 std::vector
<SDValue
> Ops(GU
->op_begin(), GU
->op_end()-1);
4491 Ops
.push_back(T1
.getValue(1));
4492 CurDAG
->UpdateNodeOperands(GU
, Ops
);
4495 // For Kind == InlineAsm::Kind_RegUse, we first copy two GPRs into a
4496 // GPRPair and then pass the GPRPair to the inline asm.
4497 SDValue Chain
= AsmNodeOperands
[InlineAsm::Op_InputChain
];
4499 // As REG_SEQ doesn't take RegisterSDNode, we copy them first.
4500 SDValue T0
= CurDAG
->getCopyFromReg(Chain
, dl
, Reg0
, MVT::i32
,
4502 SDValue T1
= CurDAG
->getCopyFromReg(Chain
, dl
, Reg1
, MVT::i32
,
4504 SDValue Pair
= SDValue(createGPRPairNode(MVT::Untyped
, T0
, T1
), 0);
4506 // Copy REG_SEQ into a GPRPair-typed VR and replace the original two
4507 // i32 VRs of inline asm with it.
4508 Register GPVR
= MRI
.createVirtualRegister(&ARM::GPRPairRegClass
);
4509 PairedReg
= CurDAG
->getRegister(GPVR
, MVT::Untyped
);
4510 Chain
= CurDAG
->getCopyToReg(T1
, dl
, GPVR
, Pair
, T1
.getValue(1));
4512 AsmNodeOperands
[InlineAsm::Op_InputChain
] = Chain
;
4513 Glue
= Chain
.getValue(1);
4518 if(PairedReg
.getNode()) {
4519 OpChanged
[OpChanged
.size() -1 ] = true;
4520 Flag
= InlineAsm::getFlagWord(Kind
, 1 /* RegNum*/);
4521 if (IsTiedToChangedOp
)
4522 Flag
= InlineAsm::getFlagWordForMatchingOp(Flag
, DefIdx
);
4524 Flag
= InlineAsm::getFlagWordForRegClass(Flag
, ARM::GPRPairRegClassID
);
4525 // Replace the current flag.
4526 AsmNodeOperands
[AsmNodeOperands
.size() -1] = CurDAG
->getTargetConstant(
4527 Flag
, dl
, MVT::i32
);
4528 // Add the new register node and skip the original two GPRs.
4529 AsmNodeOperands
.push_back(PairedReg
);
4530 // Skip the next two GPRs.
4536 AsmNodeOperands
.push_back(Glue
);
4540 SDValue New
= CurDAG
->getNode(N
->getOpcode(), SDLoc(N
),
4541 CurDAG
->getVTList(MVT::Other
, MVT::Glue
), AsmNodeOperands
);
4543 ReplaceNode(N
, New
.getNode());
4548 bool ARMDAGToDAGISel::
4549 SelectInlineAsmMemoryOperand(const SDValue
&Op
, unsigned ConstraintID
,
4550 std::vector
<SDValue
> &OutOps
) {
4551 switch(ConstraintID
) {
4553 llvm_unreachable("Unexpected asm memory constraint");
4554 case InlineAsm::Constraint_i
:
4555 // FIXME: It seems strange that 'i' is needed here since it's supposed to
4556 // be an immediate and not a memory constraint.
4558 case InlineAsm::Constraint_m
:
4559 case InlineAsm::Constraint_o
:
4560 case InlineAsm::Constraint_Q
:
4561 case InlineAsm::Constraint_Um
:
4562 case InlineAsm::Constraint_Un
:
4563 case InlineAsm::Constraint_Uq
:
4564 case InlineAsm::Constraint_Us
:
4565 case InlineAsm::Constraint_Ut
:
4566 case InlineAsm::Constraint_Uv
:
4567 case InlineAsm::Constraint_Uy
:
4568 // Require the address to be in a register. That is safe for all ARM
4569 // variants and it is hard to do anything much smarter without knowing
4570 // how the operand is used.
4571 OutOps
.push_back(Op
);
4577 /// createARMISelDag - This pass converts a legalized DAG into a
4578 /// ARM-specific DAG, ready for instruction scheduling.
4580 FunctionPass
*llvm::createARMISelDag(ARMBaseTargetMachine
&TM
,
4581 CodeGenOpt::Level OptLevel
) {
4582 return new ARMDAGToDAGISel(TM
, OptLevel
);