[llvm-exegesis] Fix missing std::move.
[llvm-core.git] / tools / llvm-exegesis / lib / Analysis.cpp
blobeaacb5b1d6579e2432d57e2673f422a1984d51af
1 //===-- Analysis.cpp --------------------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "Analysis.h"
11 #include "BenchmarkResult.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/MC/MCAsmInfo.h"
14 #include "llvm/Support/FormatVariadic.h"
15 #include <unordered_set>
16 #include <vector>
18 namespace exegesis {
20 static const char kCsvSep = ',';
22 static unsigned resolveSchedClassId(const llvm::MCSubtargetInfo &STI,
23 unsigned SchedClassId,
24 const llvm::MCInst &MCI) {
25 const auto &SM = STI.getSchedModel();
26 while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant())
27 SchedClassId =
28 STI.resolveVariantSchedClass(SchedClassId, &MCI, SM.getProcessorID());
29 return SchedClassId;
32 namespace {
34 enum EscapeTag { kEscapeCsv, kEscapeHtml, kEscapeHtmlString };
36 template <EscapeTag Tag>
37 void writeEscaped(llvm::raw_ostream &OS, const llvm::StringRef S);
39 template <>
40 void writeEscaped<kEscapeCsv>(llvm::raw_ostream &OS, const llvm::StringRef S) {
41 if (std::find(S.begin(), S.end(), kCsvSep) == S.end()) {
42 OS << S;
43 } else {
44 // Needs escaping.
45 OS << '"';
46 for (const char C : S) {
47 if (C == '"')
48 OS << "\"\"";
49 else
50 OS << C;
52 OS << '"';
56 template <>
57 void writeEscaped<kEscapeHtml>(llvm::raw_ostream &OS, const llvm::StringRef S) {
58 for (const char C : S) {
59 if (C == '<')
60 OS << "&lt;";
61 else if (C == '>')
62 OS << "&gt;";
63 else if (C == '&')
64 OS << "&amp;";
65 else
66 OS << C;
70 template <>
71 void writeEscaped<kEscapeHtmlString>(llvm::raw_ostream &OS,
72 const llvm::StringRef S) {
73 for (const char C : S) {
74 if (C == '"')
75 OS << "\\\"";
76 else
77 OS << C;
81 } // namespace
83 template <EscapeTag Tag>
84 static void
85 writeClusterId(llvm::raw_ostream &OS,
86 const InstructionBenchmarkClustering::ClusterId &CID) {
87 if (CID.isNoise())
88 writeEscaped<Tag>(OS, "[noise]");
89 else if (CID.isError())
90 writeEscaped<Tag>(OS, "[error]");
91 else
92 OS << CID.getId();
95 template <EscapeTag Tag>
96 static void writeMeasurementValue(llvm::raw_ostream &OS, const double Value) {
97 writeEscaped<Tag>(OS, llvm::formatv("{0:F}", Value).str());
100 template <typename EscapeTag, EscapeTag Tag>
101 void Analysis::writeSnippet(llvm::raw_ostream &OS,
102 llvm::ArrayRef<uint8_t> Bytes,
103 const char *Separator) const {
104 llvm::SmallVector<std::string, 3> Lines;
105 // Parse the asm snippet and print it.
106 while (!Bytes.empty()) {
107 llvm::MCInst MI;
108 uint64_t MISize = 0;
109 if (!Disasm_->getInstruction(MI, MISize, Bytes, 0, llvm::nulls(),
110 llvm::nulls())) {
111 writeEscaped<Tag>(OS, llvm::join(Lines, Separator));
112 writeEscaped<Tag>(OS, Separator);
113 writeEscaped<Tag>(OS, "[error decoding asm snippet]");
114 return;
116 Lines.emplace_back();
117 std::string &Line = Lines.back();
118 llvm::raw_string_ostream OSS(Line);
119 InstPrinter_->printInst(&MI, OSS, "", *SubtargetInfo_);
120 Bytes = Bytes.drop_front(MISize);
121 OSS.flush();
122 Line = llvm::StringRef(Line).trim().str();
124 writeEscaped<Tag>(OS, llvm::join(Lines, Separator));
127 // Prints a row representing an instruction, along with scheduling info and
128 // point coordinates (measurements).
129 void Analysis::printInstructionRowCsv(const size_t PointId,
130 llvm::raw_ostream &OS) const {
131 const InstructionBenchmark &Point = Clustering_.getPoints()[PointId];
132 writeClusterId<kEscapeCsv>(OS, Clustering_.getClusterIdForPoint(PointId));
133 OS << kCsvSep;
134 writeSnippet<EscapeTag, kEscapeCsv>(OS, Point.AssembledSnippet, "; ");
135 OS << kCsvSep;
136 writeEscaped<kEscapeCsv>(OS, Point.Key.Config);
137 OS << kCsvSep;
138 assert(!Point.Key.Instructions.empty());
139 const llvm::MCInst &MCI = Point.Key.Instructions[0];
140 const unsigned SchedClassId = resolveSchedClassId(
141 *SubtargetInfo_, InstrInfo_->get(MCI.getOpcode()).getSchedClass(), MCI);
143 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
144 const llvm::MCSchedClassDesc *const SCDesc =
145 SubtargetInfo_->getSchedModel().getSchedClassDesc(SchedClassId);
146 writeEscaped<kEscapeCsv>(OS, SCDesc->Name);
147 #else
148 OS << SchedClassId;
149 #endif
150 for (const auto &Measurement : Point.Measurements) {
151 OS << kCsvSep;
152 writeMeasurementValue<kEscapeCsv>(OS, Measurement.PerInstructionValue);
154 OS << "\n";
157 Analysis::Analysis(const llvm::Target &Target,
158 const InstructionBenchmarkClustering &Clustering)
159 : Clustering_(Clustering) {
160 if (Clustering.getPoints().empty())
161 return;
163 const InstructionBenchmark &FirstPoint = Clustering.getPoints().front();
164 InstrInfo_.reset(Target.createMCInstrInfo());
165 RegInfo_.reset(Target.createMCRegInfo(FirstPoint.LLVMTriple));
166 AsmInfo_.reset(Target.createMCAsmInfo(*RegInfo_, FirstPoint.LLVMTriple));
167 SubtargetInfo_.reset(Target.createMCSubtargetInfo(FirstPoint.LLVMTriple,
168 FirstPoint.CpuName, ""));
169 InstPrinter_.reset(Target.createMCInstPrinter(
170 llvm::Triple(FirstPoint.LLVMTriple), 0 /*default variant*/, *AsmInfo_,
171 *InstrInfo_, *RegInfo_));
173 Context_ = llvm::make_unique<llvm::MCContext>(AsmInfo_.get(), RegInfo_.get(),
174 &ObjectFileInfo_);
175 Disasm_.reset(Target.createMCDisassembler(*SubtargetInfo_, *Context_));
176 assert(Disasm_ && "cannot create MCDisassembler. missing call to "
177 "InitializeXXXTargetDisassembler ?");
180 template <>
181 llvm::Error
182 Analysis::run<Analysis::PrintClusters>(llvm::raw_ostream &OS) const {
183 if (Clustering_.getPoints().empty())
184 return llvm::Error::success();
186 // Write the header.
187 OS << "cluster_id" << kCsvSep << "opcode_name" << kCsvSep << "config"
188 << kCsvSep << "sched_class";
189 for (const auto &Measurement : Clustering_.getPoints().front().Measurements) {
190 OS << kCsvSep;
191 writeEscaped<kEscapeCsv>(OS, Measurement.Key);
193 OS << "\n";
195 // Write the points.
196 const auto &Clusters = Clustering_.getValidClusters();
197 for (size_t I = 0, E = Clusters.size(); I < E; ++I) {
198 for (const size_t PointId : Clusters[I].PointIndices) {
199 printInstructionRowCsv(PointId, OS);
201 OS << "\n\n";
203 return llvm::Error::success();
206 Analysis::ResolvedSchedClassAndPoints::ResolvedSchedClassAndPoints(
207 ResolvedSchedClass &&RSC)
208 : RSC(std::move(RSC)) {}
210 std::vector<Analysis::ResolvedSchedClassAndPoints>
211 Analysis::makePointsPerSchedClass() const {
212 std::vector<ResolvedSchedClassAndPoints> Entries;
213 // Maps SchedClassIds to index in result.
214 std::unordered_map<unsigned, size_t> SchedClassIdToIndex;
215 const auto &Points = Clustering_.getPoints();
216 for (size_t PointId = 0, E = Points.size(); PointId < E; ++PointId) {
217 const InstructionBenchmark &Point = Points[PointId];
218 if (!Point.Error.empty())
219 continue;
220 assert(!Point.Key.Instructions.empty());
221 // FIXME: we should be using the tuple of classes for instructions in the
222 // snippet as key.
223 const llvm::MCInst &MCI = Point.Key.Instructions[0];
224 unsigned SchedClassId = InstrInfo_->get(MCI.getOpcode()).getSchedClass();
225 const bool WasVariant = SchedClassId && SubtargetInfo_->getSchedModel()
226 .getSchedClassDesc(SchedClassId)
227 ->isVariant();
228 SchedClassId = resolveSchedClassId(*SubtargetInfo_, SchedClassId, MCI);
229 const auto IndexIt = SchedClassIdToIndex.find(SchedClassId);
230 if (IndexIt == SchedClassIdToIndex.end()) {
231 // Create a new entry.
232 SchedClassIdToIndex.emplace(SchedClassId, Entries.size());
233 ResolvedSchedClassAndPoints Entry(
234 ResolvedSchedClass(*SubtargetInfo_, SchedClassId, WasVariant));
235 Entry.PointIds.push_back(PointId);
236 Entries.push_back(std::move(Entry));
237 } else {
238 // Append to the existing entry.
239 Entries[IndexIt->second].PointIds.push_back(PointId);
242 return Entries;
245 // Uops repeat the same opcode over again. Just show this opcode and show the
246 // whole snippet only on hover.
247 static void writeUopsSnippetHtml(llvm::raw_ostream &OS,
248 const std::vector<llvm::MCInst> &Instructions,
249 const llvm::MCInstrInfo &InstrInfo) {
250 if (Instructions.empty())
251 return;
252 writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instructions[0].getOpcode()));
253 if (Instructions.size() > 1)
254 OS << " (x" << Instructions.size() << ")";
257 // Latency tries to find a serial path. Just show the opcode path and show the
258 // whole snippet only on hover.
259 static void
260 writeLatencySnippetHtml(llvm::raw_ostream &OS,
261 const std::vector<llvm::MCInst> &Instructions,
262 const llvm::MCInstrInfo &InstrInfo) {
263 bool First = true;
264 for (const llvm::MCInst &Instr : Instructions) {
265 if (First)
266 First = false;
267 else
268 OS << " &rarr; ";
269 writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instr.getOpcode()));
273 void Analysis::printSchedClassClustersHtml(
274 const std::vector<SchedClassCluster> &Clusters,
275 const ResolvedSchedClass &RSC, llvm::raw_ostream &OS) const {
276 const auto &Points = Clustering_.getPoints();
277 OS << "<table class=\"sched-class-clusters\">";
278 OS << "<tr><th>ClusterId</th><th>Opcode/Config</th>";
279 assert(!Clusters.empty());
280 for (const auto &Measurement :
281 Points[Clusters[0].getPointIds()[0]].Measurements) {
282 OS << "<th>";
283 writeEscaped<kEscapeHtml>(OS, Measurement.Key);
284 OS << "</th>";
286 OS << "</tr>";
287 for (const SchedClassCluster &Cluster : Clusters) {
288 OS << "<tr class=\""
289 << (Cluster.measurementsMatch(*SubtargetInfo_, RSC, Clustering_)
290 ? "good-cluster"
291 : "bad-cluster")
292 << "\"><td>";
293 writeClusterId<kEscapeHtml>(OS, Cluster.id());
294 OS << "</td><td><ul>";
295 for (const size_t PointId : Cluster.getPointIds()) {
296 const auto &Point = Points[PointId];
297 OS << "<li><span class=\"mono\" title=\"";
298 writeSnippet<EscapeTag, kEscapeHtmlString>(OS, Point.AssembledSnippet,
299 "\n");
300 OS << "\">";
301 switch (Point.Mode) {
302 case InstructionBenchmark::Latency:
303 writeLatencySnippetHtml(OS, Point.Key.Instructions, *InstrInfo_);
304 break;
305 case InstructionBenchmark::Uops:
306 writeUopsSnippetHtml(OS, Point.Key.Instructions, *InstrInfo_);
307 break;
308 default:
309 llvm_unreachable("invalid mode");
311 OS << "</span> <span class=\"mono\">";
312 writeEscaped<kEscapeHtml>(OS, Point.Key.Config);
313 OS << "</span></li>";
315 OS << "</ul></td>";
316 for (const auto &Stats : Cluster.getRepresentative()) {
317 OS << "<td class=\"measurement\">";
318 writeMeasurementValue<kEscapeHtml>(OS, Stats.avg());
319 OS << "<br><span class=\"minmax\">[";
320 writeMeasurementValue<kEscapeHtml>(OS, Stats.min());
321 OS << ";";
322 writeMeasurementValue<kEscapeHtml>(OS, Stats.max());
323 OS << "]</span></td>";
325 OS << "</tr>";
327 OS << "</table>";
330 // Return the non-redundant list of WriteProcRes used by the given sched class.
331 // The scheduling model for LLVM is such that each instruction has a certain
332 // number of uops which consume resources which are described by WriteProcRes
333 // entries. Each entry describe how many cycles are spent on a specific ProcRes
334 // kind.
335 // For example, an instruction might have 3 uOps, one dispatching on P0
336 // (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
337 // Note that LLVM additionally denormalizes resource consumption to include
338 // usage of super resources by subresources. So in practice if there exists a
339 // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
340 // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
341 // by P06 are also consumed by P016. In the figure below, parenthesized cycles
342 // denote implied usage of superresources by subresources:
343 // P0 P06 P016
344 // uOp1 1 (1) (1)
345 // uOp2 1 (1)
346 // uOp3 1 (1)
347 // =============================
348 // 1 3 3
349 // Eventually we end up with three entries for the WriteProcRes of the
350 // instruction:
351 // {ProcResIdx=1, Cycles=1} // P0
352 // {ProcResIdx=7, Cycles=3} // P06
353 // {ProcResIdx=10, Cycles=3} // P016
355 // Note that in this case, P016 does not contribute any cycles, so it would
356 // be removed by this function.
357 // FIXME: Move this to MCSubtargetInfo and use it in llvm-mca.
358 static llvm::SmallVector<llvm::MCWriteProcResEntry, 8>
359 getNonRedundantWriteProcRes(const llvm::MCSchedClassDesc &SCDesc,
360 const llvm::MCSubtargetInfo &STI) {
361 llvm::SmallVector<llvm::MCWriteProcResEntry, 8> Result;
362 const auto &SM = STI.getSchedModel();
363 const unsigned NumProcRes = SM.getNumProcResourceKinds();
365 // This assumes that the ProcResDescs are sorted in topological order, which
366 // is guaranteed by the tablegen backend.
367 llvm::SmallVector<float, 32> ProcResUnitUsage(NumProcRes);
368 for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc),
369 *const WPREnd = STI.getWriteProcResEnd(&SCDesc);
370 WPR != WPREnd; ++WPR) {
371 const llvm::MCProcResourceDesc *const ProcResDesc =
372 SM.getProcResource(WPR->ProcResourceIdx);
373 if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
374 // This is a ProcResUnit.
375 Result.push_back({WPR->ProcResourceIdx, WPR->Cycles});
376 ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles;
377 } else {
378 // This is a ProcResGroup. First see if it contributes any cycles or if
379 // it has cycles just from subunits.
380 float RemainingCycles = WPR->Cycles;
381 for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
382 SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
383 ++SubResIdx) {
384 RemainingCycles -= ProcResUnitUsage[*SubResIdx];
386 if (RemainingCycles < 0.01f) {
387 // The ProcResGroup contributes no cycles of its own.
388 continue;
390 // The ProcResGroup contributes `RemainingCycles` cycles of its own.
391 Result.push_back({WPR->ProcResourceIdx,
392 static_cast<uint16_t>(std::round(RemainingCycles))});
393 // Spread the remaining cycles over all subunits.
394 for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
395 SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
396 ++SubResIdx) {
397 ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits;
401 return Result;
404 Analysis::ResolvedSchedClass::ResolvedSchedClass(
405 const llvm::MCSubtargetInfo &STI, unsigned ResolvedSchedClassId,
406 bool WasVariant)
407 : SchedClassId(ResolvedSchedClassId), SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)),
408 WasVariant(WasVariant),
409 NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)),
410 IdealizedProcResPressure(computeIdealizedProcResPressure(
411 STI.getSchedModel(), NonRedundantWriteProcRes)) {
412 assert((SCDesc == nullptr || !SCDesc->isVariant()) &&
413 "ResolvedSchedClass should never be variant");
416 void Analysis::SchedClassCluster::addPoint(
417 size_t PointId, const InstructionBenchmarkClustering &Clustering) {
418 PointIds.push_back(PointId);
419 const auto &Point = Clustering.getPoints()[PointId];
420 if (ClusterId.isUndef()) {
421 ClusterId = Clustering.getClusterIdForPoint(PointId);
422 Representative.resize(Point.Measurements.size());
424 for (size_t I = 0, E = Point.Measurements.size(); I < E; ++I) {
425 Representative[I].push(Point.Measurements[I]);
427 assert(ClusterId == Clustering.getClusterIdForPoint(PointId));
430 // Returns a ProxResIdx by id or name.
431 static unsigned findProcResIdx(const llvm::MCSubtargetInfo &STI,
432 const llvm::StringRef NameOrId) {
433 // Interpret the key as an ProcResIdx.
434 unsigned ProcResIdx = 0;
435 if (llvm::to_integer(NameOrId, ProcResIdx, 10))
436 return ProcResIdx;
437 // Interpret the key as a ProcRes name.
438 const auto &SchedModel = STI.getSchedModel();
439 for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) {
440 if (NameOrId == SchedModel.getProcResource(I)->Name)
441 return I;
443 return 0;
446 bool Analysis::SchedClassCluster::measurementsMatch(
447 const llvm::MCSubtargetInfo &STI, const ResolvedSchedClass &RSC,
448 const InstructionBenchmarkClustering &Clustering) const {
449 const size_t NumMeasurements = Representative.size();
450 std::vector<BenchmarkMeasure> ClusterCenterPoint(NumMeasurements);
451 std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements);
452 // Latency case.
453 assert(!Clustering.getPoints().empty());
454 const InstructionBenchmark::ModeE Mode = Clustering.getPoints()[0].Mode;
455 if (Mode == InstructionBenchmark::Latency) {
456 if (NumMeasurements != 1) {
457 llvm::errs()
458 << "invalid number of measurements in latency mode: expected 1, got "
459 << NumMeasurements << "\n";
460 return false;
462 // Find the latency.
463 SchedClassPoint[0].PerInstructionValue = 0.0;
464 for (unsigned I = 0; I < RSC.SCDesc->NumWriteLatencyEntries; ++I) {
465 const llvm::MCWriteLatencyEntry *const WLE =
466 STI.getWriteLatencyEntry(RSC.SCDesc, I);
467 SchedClassPoint[0].PerInstructionValue =
468 std::max<double>(SchedClassPoint[0].PerInstructionValue, WLE->Cycles);
470 ClusterCenterPoint[0].PerInstructionValue = Representative[0].avg();
471 } else if (Mode == InstructionBenchmark::Uops) {
472 for (int I = 0, E = Representative.size(); I < E; ++I) {
473 const auto Key = Representative[I].key();
474 uint16_t ProcResIdx = findProcResIdx(STI, Key);
475 if (ProcResIdx > 0) {
476 // Find the pressure on ProcResIdx `Key`.
477 const auto ProcResPressureIt =
478 std::find_if(RSC.IdealizedProcResPressure.begin(),
479 RSC.IdealizedProcResPressure.end(),
480 [ProcResIdx](const std::pair<uint16_t, float> &WPR) {
481 return WPR.first == ProcResIdx;
483 SchedClassPoint[I].PerInstructionValue =
484 ProcResPressureIt == RSC.IdealizedProcResPressure.end()
485 ? 0.0
486 : ProcResPressureIt->second;
487 } else if (Key == "NumMicroOps") {
488 SchedClassPoint[I].PerInstructionValue = RSC.SCDesc->NumMicroOps;
489 } else {
490 llvm::errs() << "expected `key` to be either a ProcResIdx or a ProcRes "
491 "name, got "
492 << Key << "\n";
493 return false;
495 ClusterCenterPoint[I].PerInstructionValue = Representative[I].avg();
497 } else {
498 llvm::errs() << "unimplemented measurement matching for mode " << Mode
499 << "\n";
500 return false;
502 return Clustering.isNeighbour(ClusterCenterPoint, SchedClassPoint);
505 void Analysis::printSchedClassDescHtml(const ResolvedSchedClass &RSC,
506 llvm::raw_ostream &OS) const {
507 OS << "<table class=\"sched-class-desc\">";
508 OS << "<tr><th>Valid</th><th>Variant</th><th>NumMicroOps</th><th>Latency</"
509 "th><th>WriteProcRes</th><th title=\"This is the idealized unit "
510 "resource (port) pressure assuming ideal distribution\">Idealized "
511 "Resource Pressure</th></tr>";
512 if (RSC.SCDesc->isValid()) {
513 const auto &SM = SubtargetInfo_->getSchedModel();
514 OS << "<tr><td>&#10004;</td>";
515 OS << "<td>" << (RSC.WasVariant ? "&#10004;" : "&#10005;") << "</td>";
516 OS << "<td>" << RSC.SCDesc->NumMicroOps << "</td>";
517 // Latencies.
518 OS << "<td><ul>";
519 for (int I = 0, E = RSC.SCDesc->NumWriteLatencyEntries; I < E; ++I) {
520 const auto *const Entry =
521 SubtargetInfo_->getWriteLatencyEntry(RSC.SCDesc, I);
522 OS << "<li>" << Entry->Cycles;
523 if (RSC.SCDesc->NumWriteLatencyEntries > 1) {
524 // Dismabiguate if more than 1 latency.
525 OS << " (WriteResourceID " << Entry->WriteResourceID << ")";
527 OS << "</li>";
529 OS << "</ul></td>";
530 // WriteProcRes.
531 OS << "<td><ul>";
532 for (const auto &WPR : RSC.NonRedundantWriteProcRes) {
533 OS << "<li><span class=\"mono\">";
534 writeEscaped<kEscapeHtml>(OS,
535 SM.getProcResource(WPR.ProcResourceIdx)->Name);
536 OS << "</span>: " << WPR.Cycles << "</li>";
538 OS << "</ul></td>";
539 // Idealized port pressure.
540 OS << "<td><ul>";
541 for (const auto &Pressure : RSC.IdealizedProcResPressure) {
542 OS << "<li><span class=\"mono\">";
543 writeEscaped<kEscapeHtml>(OS, SubtargetInfo_->getSchedModel()
544 .getProcResource(Pressure.first)
545 ->Name);
546 OS << "</span>: ";
547 writeMeasurementValue<kEscapeHtml>(OS, Pressure.second);
548 OS << "</li>";
550 OS << "</ul></td>";
551 OS << "</tr>";
552 } else {
553 OS << "<tr><td>&#10005;</td><td></td><td></td></tr>";
555 OS << "</table>";
558 static constexpr const char kHtmlHead[] = R"(
559 <head>
560 <title>llvm-exegesis Analysis Results</title>
561 <style>
562 body {
563 font-family: sans-serif
565 span.sched-class-name {
566 font-weight: bold;
567 font-family: monospace;
569 span.opcode {
570 font-family: monospace;
572 span.config {
573 font-family: monospace;
575 div.inconsistency {
576 margin-top: 50px;
578 table {
579 margin-left: 50px;
580 border-collapse: collapse;
582 table, table tr,td,th {
583 border: 1px solid #444;
585 table ul {
586 padding-left: 0px;
587 margin: 0px;
588 list-style-type: none;
590 table.sched-class-clusters td {
591 padding-left: 10px;
592 padding-right: 10px;
593 padding-top: 10px;
594 padding-bottom: 10px;
596 table.sched-class-desc td {
597 padding-left: 10px;
598 padding-right: 10px;
599 padding-top: 2px;
600 padding-bottom: 2px;
602 span.mono {
603 font-family: monospace;
605 td.measurement {
606 text-align: center;
608 tr.good-cluster td.measurement {
609 color: #292
611 tr.bad-cluster td.measurement {
612 color: #922
614 tr.good-cluster td.measurement span.minmax {
615 color: #888;
617 tr.bad-cluster td.measurement span.minmax {
618 color: #888;
620 </style>
621 </head>
624 template <>
625 llvm::Error Analysis::run<Analysis::PrintSchedClassInconsistencies>(
626 llvm::raw_ostream &OS) const {
627 const auto &FirstPoint = Clustering_.getPoints()[0];
628 // Print the header.
629 OS << "<!DOCTYPE html><html>" << kHtmlHead << "<body>";
630 OS << "<h1><span class=\"mono\">llvm-exegesis</span> Analysis Results</h1>";
631 OS << "<h3>Triple: <span class=\"mono\">";
632 writeEscaped<kEscapeHtml>(OS, FirstPoint.LLVMTriple);
633 OS << "</span></h3><h3>Cpu: <span class=\"mono\">";
634 writeEscaped<kEscapeHtml>(OS, FirstPoint.CpuName);
635 OS << "</span></h3>";
637 for (const auto &RSCAndPoints : makePointsPerSchedClass()) {
638 if (!RSCAndPoints.RSC.SCDesc)
639 continue;
640 // Bucket sched class points into sched class clusters.
641 std::vector<SchedClassCluster> SchedClassClusters;
642 for (const size_t PointId : RSCAndPoints.PointIds) {
643 const auto &ClusterId = Clustering_.getClusterIdForPoint(PointId);
644 if (!ClusterId.isValid())
645 continue; // Ignore noise and errors. FIXME: take noise into account ?
646 auto SchedClassClusterIt =
647 std::find_if(SchedClassClusters.begin(), SchedClassClusters.end(),
648 [ClusterId](const SchedClassCluster &C) {
649 return C.id() == ClusterId;
651 if (SchedClassClusterIt == SchedClassClusters.end()) {
652 SchedClassClusters.emplace_back();
653 SchedClassClusterIt = std::prev(SchedClassClusters.end());
655 SchedClassClusterIt->addPoint(PointId, Clustering_);
658 // Print any scheduling class that has at least one cluster that does not
659 // match the checked-in data.
660 if (std::all_of(SchedClassClusters.begin(), SchedClassClusters.end(),
661 [this, &RSCAndPoints](const SchedClassCluster &C) {
662 return C.measurementsMatch(*SubtargetInfo_,
663 RSCAndPoints.RSC, Clustering_);
665 continue; // Nothing weird.
667 OS << "<div class=\"inconsistency\"><p>Sched Class <span "
668 "class=\"sched-class-name\">";
669 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
670 writeEscaped<kEscapeHtml>(OS, RSCAndPoints.RSC.SCDesc->Name);
671 #else
672 OS << RSCAndPoints.RSC.SchedClassId;
673 #endif
674 OS << "</span> contains instructions whose performance characteristics do"
675 " not match that of LLVM:</p>";
676 printSchedClassClustersHtml(SchedClassClusters, RSCAndPoints.RSC, OS);
677 OS << "<p>llvm SchedModel data:</p>";
678 printSchedClassDescHtml(RSCAndPoints.RSC, OS);
679 OS << "</div>";
682 OS << "</body></html>";
683 return llvm::Error::success();
686 // Distributes a pressure budget as evenly as possible on the provided subunits
687 // given the already existing port pressure distribution.
689 // The algorithm is as follows: while there is remaining pressure to
690 // distribute, find the subunits with minimal pressure, and distribute
691 // remaining pressure equally up to the pressure of the unit with
692 // second-to-minimal pressure.
693 // For example, let's assume we want to distribute 2*P1256
694 // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
695 // DensePressure = P0 P1 P2 P3 P4 P5 P6 P7
696 // 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5
697 // RemainingPressure = 2.0
698 // We sort the subunits by pressure:
699 // Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
700 // We'll first start by the subunits with minimal pressure, which are at
701 // the beginning of the sorted array. In this example there is one (P2).
702 // The subunit with second-to-minimal pressure is the next one in the
703 // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
704 // from the budget.
705 // Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
706 // RemainingPressure = 1.9
707 // We repeat this process: distribute 0.2 pressure on each of the minimal
708 // P2 and P1, decrease budget by 2*0.2:
709 // Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
710 // RemainingPressure = 1.5
711 // There are no second-to-minimal subunits so we just share the remaining
712 // budget (1.5 cycles) equally:
713 // Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
714 // RemainingPressure = 0.0
715 // We stop as there is no remaining budget to distribute.
716 void distributePressure(float RemainingPressure,
717 llvm::SmallVector<uint16_t, 32> Subunits,
718 llvm::SmallVector<float, 32> &DensePressure) {
719 // Find the number of subunits with minimal pressure (they are at the
720 // front).
721 llvm::sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) {
722 return DensePressure[A] < DensePressure[B];
724 const auto getPressureForSubunit = [&DensePressure,
725 &Subunits](size_t I) -> float & {
726 return DensePressure[Subunits[I]];
728 size_t NumMinimalSU = 1;
729 while (NumMinimalSU < Subunits.size() &&
730 getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) {
731 ++NumMinimalSU;
733 while (RemainingPressure > 0.0f) {
734 if (NumMinimalSU == Subunits.size()) {
735 // All units are minimal, just distribute evenly and be done.
736 for (size_t I = 0; I < NumMinimalSU; ++I) {
737 getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
739 return;
741 // Distribute the remaining pressure equally.
742 const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1);
743 const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU);
744 assert(MinimalPressure < SecondToMinimalPressure);
745 const float Increment = SecondToMinimalPressure - MinimalPressure;
746 if (RemainingPressure <= NumMinimalSU * Increment) {
747 // There is not enough remaining pressure.
748 for (size_t I = 0; I < NumMinimalSU; ++I) {
749 getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
751 return;
753 // Bump all minimal pressure subunits to `SecondToMinimalPressure`.
754 for (size_t I = 0; I < NumMinimalSU; ++I) {
755 getPressureForSubunit(I) = SecondToMinimalPressure;
756 RemainingPressure -= SecondToMinimalPressure;
758 while (NumMinimalSU < Subunits.size() &&
759 getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) {
760 ++NumMinimalSU;
765 std::vector<std::pair<uint16_t, float>> computeIdealizedProcResPressure(
766 const llvm::MCSchedModel &SM,
767 llvm::SmallVector<llvm::MCWriteProcResEntry, 8> WPRS) {
768 // DensePressure[I] is the port pressure for Proc Resource I.
769 llvm::SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds());
770 llvm::sort(WPRS, [](const llvm::MCWriteProcResEntry &A,
771 const llvm::MCWriteProcResEntry &B) {
772 return A.ProcResourceIdx < B.ProcResourceIdx;
774 for (const llvm::MCWriteProcResEntry &WPR : WPRS) {
775 // Get units for the entry.
776 const llvm::MCProcResourceDesc *const ProcResDesc =
777 SM.getProcResource(WPR.ProcResourceIdx);
778 if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
779 // This is a ProcResUnit.
780 DensePressure[WPR.ProcResourceIdx] += WPR.Cycles;
781 } else {
782 // This is a ProcResGroup.
783 llvm::SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin,
784 ProcResDesc->SubUnitsIdxBegin +
785 ProcResDesc->NumUnits);
786 distributePressure(WPR.Cycles, Subunits, DensePressure);
789 // Turn dense pressure into sparse pressure by removing zero entries.
790 std::vector<std::pair<uint16_t, float>> Pressure;
791 for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) {
792 if (DensePressure[I] > 0.0f)
793 Pressure.emplace_back(I, DensePressure[I]);
795 return Pressure;
798 } // namespace exegesis