[InstCombine] Signed saturation patterns
[llvm-core.git] / examples / Kaleidoscope / MCJIT / lazy / toy.cpp
blob3511f3ac93bfb525b708db8a0970796a088f012d
1 #define MINIMAL_STDERR_OUTPUT
3 #include "llvm/Analysis/Passes.h"
4 #include "llvm/ExecutionEngine/ExecutionEngine.h"
5 #include "llvm/ExecutionEngine/MCJIT.h"
6 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
7 #include "llvm/IR/DataLayout.h"
8 #include "llvm/IR/DerivedTypes.h"
9 #include "llvm/IR/IRBuilder.h"
10 #include "llvm/IR/LLVMContext.h"
11 #include "llvm/IR/LegacyPassManager.h"
12 #include "llvm/IR/Module.h"
13 #include "llvm/IR/Verifier.h"
14 #include "llvm/Support/TargetSelect.h"
15 #include "llvm/Transforms/Scalar.h"
16 #include <cctype>
17 #include <cstdio>
18 #include <map>
19 #include <string>
20 #include <vector>
21 using namespace llvm;
23 //===----------------------------------------------------------------------===//
24 // Lexer
25 //===----------------------------------------------------------------------===//
27 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
28 // of these for known things.
29 enum Token {
30 tok_eof = -1,
32 // commands
33 tok_def = -2, tok_extern = -3,
35 // primary
36 tok_identifier = -4, tok_number = -5,
38 // control
39 tok_if = -6, tok_then = -7, tok_else = -8,
40 tok_for = -9, tok_in = -10,
42 // operators
43 tok_binary = -11, tok_unary = -12,
45 // var definition
46 tok_var = -13
49 static std::string IdentifierStr; // Filled in if tok_identifier
50 static double NumVal; // Filled in if tok_number
52 /// gettok - Return the next token from standard input.
53 static int gettok() {
54 static int LastChar = ' ';
56 // Skip any whitespace.
57 while (isspace(LastChar))
58 LastChar = getchar();
60 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
61 IdentifierStr = LastChar;
62 while (isalnum((LastChar = getchar())))
63 IdentifierStr += LastChar;
65 if (IdentifierStr == "def") return tok_def;
66 if (IdentifierStr == "extern") return tok_extern;
67 if (IdentifierStr == "if") return tok_if;
68 if (IdentifierStr == "then") return tok_then;
69 if (IdentifierStr == "else") return tok_else;
70 if (IdentifierStr == "for") return tok_for;
71 if (IdentifierStr == "in") return tok_in;
72 if (IdentifierStr == "binary") return tok_binary;
73 if (IdentifierStr == "unary") return tok_unary;
74 if (IdentifierStr == "var") return tok_var;
75 return tok_identifier;
78 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
79 std::string NumStr;
80 do {
81 NumStr += LastChar;
82 LastChar = getchar();
83 } while (isdigit(LastChar) || LastChar == '.');
85 NumVal = strtod(NumStr.c_str(), 0);
86 return tok_number;
89 if (LastChar == '#') {
90 // Comment until end of line.
91 do LastChar = getchar();
92 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
94 if (LastChar != EOF)
95 return gettok();
98 // Check for end of file. Don't eat the EOF.
99 if (LastChar == EOF)
100 return tok_eof;
102 // Otherwise, just return the character as its ascii value.
103 int ThisChar = LastChar;
104 LastChar = getchar();
105 return ThisChar;
108 //===----------------------------------------------------------------------===//
109 // Abstract Syntax Tree (aka Parse Tree)
110 //===----------------------------------------------------------------------===//
112 /// ExprAST - Base class for all expression nodes.
113 class ExprAST {
114 public:
115 virtual ~ExprAST() {}
116 virtual Value *Codegen() = 0;
119 /// NumberExprAST - Expression class for numeric literals like "1.0".
120 class NumberExprAST : public ExprAST {
121 double Val;
122 public:
123 NumberExprAST(double val) : Val(val) {}
124 virtual Value *Codegen();
127 /// VariableExprAST - Expression class for referencing a variable, like "a".
128 class VariableExprAST : public ExprAST {
129 std::string Name;
130 public:
131 VariableExprAST(const std::string &name) : Name(name) {}
132 const std::string &getName() const { return Name; }
133 virtual Value *Codegen();
136 /// UnaryExprAST - Expression class for a unary operator.
137 class UnaryExprAST : public ExprAST {
138 char Opcode;
139 ExprAST *Operand;
140 public:
141 UnaryExprAST(char opcode, ExprAST *operand)
142 : Opcode(opcode), Operand(operand) {}
143 virtual Value *Codegen();
146 /// BinaryExprAST - Expression class for a binary operator.
147 class BinaryExprAST : public ExprAST {
148 char Op;
149 ExprAST *LHS, *RHS;
150 public:
151 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
152 : Op(op), LHS(lhs), RHS(rhs) {}
153 virtual Value *Codegen();
156 /// CallExprAST - Expression class for function calls.
157 class CallExprAST : public ExprAST {
158 std::string Callee;
159 std::vector<ExprAST*> Args;
160 public:
161 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
162 : Callee(callee), Args(args) {}
163 virtual Value *Codegen();
166 /// IfExprAST - Expression class for if/then/else.
167 class IfExprAST : public ExprAST {
168 ExprAST *Cond, *Then, *Else;
169 public:
170 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
171 : Cond(cond), Then(then), Else(_else) {}
172 virtual Value *Codegen();
175 /// ForExprAST - Expression class for for/in.
176 class ForExprAST : public ExprAST {
177 std::string VarName;
178 ExprAST *Start, *End, *Step, *Body;
179 public:
180 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
181 ExprAST *step, ExprAST *body)
182 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
183 virtual Value *Codegen();
186 /// VarExprAST - Expression class for var/in
187 class VarExprAST : public ExprAST {
188 std::vector<std::pair<std::string, ExprAST*> > VarNames;
189 ExprAST *Body;
190 public:
191 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
192 ExprAST *body)
193 : VarNames(varnames), Body(body) {}
195 virtual Value *Codegen();
198 /// PrototypeAST - This class represents the "prototype" for a function,
199 /// which captures its argument names as well as if it is an operator.
200 class PrototypeAST {
201 std::string Name;
202 std::vector<std::string> Args;
203 bool isOperator;
204 unsigned Precedence; // Precedence if a binary op.
205 public:
206 PrototypeAST(const std::string &name, const std::vector<std::string> &args,
207 bool isoperator = false, unsigned prec = 0)
208 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
210 bool isUnaryOp() const { return isOperator && Args.size() == 1; }
211 bool isBinaryOp() const { return isOperator && Args.size() == 2; }
213 char getOperatorName() const {
214 assert(isUnaryOp() || isBinaryOp());
215 return Name[Name.size()-1];
218 unsigned getBinaryPrecedence() const { return Precedence; }
220 Function *Codegen();
222 void CreateArgumentAllocas(Function *F);
225 /// FunctionAST - This class represents a function definition itself.
226 class FunctionAST {
227 PrototypeAST *Proto;
228 ExprAST *Body;
229 public:
230 FunctionAST(PrototypeAST *proto, ExprAST *body)
231 : Proto(proto), Body(body) {}
233 Function *Codegen();
236 //===----------------------------------------------------------------------===//
237 // Parser
238 //===----------------------------------------------------------------------===//
240 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
241 /// token the parser is looking at. getNextToken reads another token from the
242 /// lexer and updates CurTok with its results.
243 static int CurTok;
244 static int getNextToken() {
245 return CurTok = gettok();
248 /// BinopPrecedence - This holds the precedence for each binary operator that is
249 /// defined.
250 static std::map<char, int> BinopPrecedence;
252 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
253 static int GetTokPrecedence() {
254 if (!isascii(CurTok))
255 return -1;
257 // Make sure it's a declared binop.
258 int TokPrec = BinopPrecedence[CurTok];
259 if (TokPrec <= 0) return -1;
260 return TokPrec;
263 /// Error* - These are little helper functions for error handling.
264 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
265 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
266 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
268 static ExprAST *ParseExpression();
270 /// identifierexpr
271 /// ::= identifier
272 /// ::= identifier '(' expression* ')'
273 static ExprAST *ParseIdentifierExpr() {
274 std::string IdName = IdentifierStr;
276 getNextToken(); // eat identifier.
278 if (CurTok != '(') // Simple variable ref.
279 return new VariableExprAST(IdName);
281 // Call.
282 getNextToken(); // eat (
283 std::vector<ExprAST*> Args;
284 if (CurTok != ')') {
285 while (1) {
286 ExprAST *Arg = ParseExpression();
287 if (!Arg) return 0;
288 Args.push_back(Arg);
290 if (CurTok == ')') break;
292 if (CurTok != ',')
293 return Error("Expected ')' or ',' in argument list");
294 getNextToken();
298 // Eat the ')'.
299 getNextToken();
301 return new CallExprAST(IdName, Args);
304 /// numberexpr ::= number
305 static ExprAST *ParseNumberExpr() {
306 ExprAST *Result = new NumberExprAST(NumVal);
307 getNextToken(); // consume the number
308 return Result;
311 /// parenexpr ::= '(' expression ')'
312 static ExprAST *ParseParenExpr() {
313 getNextToken(); // eat (.
314 ExprAST *V = ParseExpression();
315 if (!V) return 0;
317 if (CurTok != ')')
318 return Error("expected ')'");
319 getNextToken(); // eat ).
320 return V;
323 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
324 static ExprAST *ParseIfExpr() {
325 getNextToken(); // eat the if.
327 // condition.
328 ExprAST *Cond = ParseExpression();
329 if (!Cond) return 0;
331 if (CurTok != tok_then)
332 return Error("expected then");
333 getNextToken(); // eat the then
335 ExprAST *Then = ParseExpression();
336 if (Then == 0) return 0;
338 if (CurTok != tok_else)
339 return Error("expected else");
341 getNextToken();
343 ExprAST *Else = ParseExpression();
344 if (!Else) return 0;
346 return new IfExprAST(Cond, Then, Else);
349 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
350 static ExprAST *ParseForExpr() {
351 getNextToken(); // eat the for.
353 if (CurTok != tok_identifier)
354 return Error("expected identifier after for");
356 std::string IdName = IdentifierStr;
357 getNextToken(); // eat identifier.
359 if (CurTok != '=')
360 return Error("expected '=' after for");
361 getNextToken(); // eat '='.
364 ExprAST *Start = ParseExpression();
365 if (Start == 0) return 0;
366 if (CurTok != ',')
367 return Error("expected ',' after for start value");
368 getNextToken();
370 ExprAST *End = ParseExpression();
371 if (End == 0) return 0;
373 // The step value is optional.
374 ExprAST *Step = 0;
375 if (CurTok == ',') {
376 getNextToken();
377 Step = ParseExpression();
378 if (Step == 0) return 0;
381 if (CurTok != tok_in)
382 return Error("expected 'in' after for");
383 getNextToken(); // eat 'in'.
385 ExprAST *Body = ParseExpression();
386 if (Body == 0) return 0;
388 return new ForExprAST(IdName, Start, End, Step, Body);
391 /// varexpr ::= 'var' identifier ('=' expression)?
392 // (',' identifier ('=' expression)?)* 'in' expression
393 static ExprAST *ParseVarExpr() {
394 getNextToken(); // eat the var.
396 std::vector<std::pair<std::string, ExprAST*> > VarNames;
398 // At least one variable name is required.
399 if (CurTok != tok_identifier)
400 return Error("expected identifier after var");
402 while (1) {
403 std::string Name = IdentifierStr;
404 getNextToken(); // eat identifier.
406 // Read the optional initializer.
407 ExprAST *Init = 0;
408 if (CurTok == '=') {
409 getNextToken(); // eat the '='.
411 Init = ParseExpression();
412 if (Init == 0) return 0;
415 VarNames.push_back(std::make_pair(Name, Init));
417 // End of var list, exit loop.
418 if (CurTok != ',') break;
419 getNextToken(); // eat the ','.
421 if (CurTok != tok_identifier)
422 return Error("expected identifier list after var");
425 // At this point, we have to have 'in'.
426 if (CurTok != tok_in)
427 return Error("expected 'in' keyword after 'var'");
428 getNextToken(); // eat 'in'.
430 ExprAST *Body = ParseExpression();
431 if (Body == 0) return 0;
433 return new VarExprAST(VarNames, Body);
436 /// primary
437 /// ::= identifierexpr
438 /// ::= numberexpr
439 /// ::= parenexpr
440 /// ::= ifexpr
441 /// ::= forexpr
442 /// ::= varexpr
443 static ExprAST *ParsePrimary() {
444 switch (CurTok) {
445 default: return Error("unknown token when expecting an expression");
446 case tok_identifier: return ParseIdentifierExpr();
447 case tok_number: return ParseNumberExpr();
448 case '(': return ParseParenExpr();
449 case tok_if: return ParseIfExpr();
450 case tok_for: return ParseForExpr();
451 case tok_var: return ParseVarExpr();
455 /// unary
456 /// ::= primary
457 /// ::= '!' unary
458 static ExprAST *ParseUnary() {
459 // If the current token is not an operator, it must be a primary expr.
460 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
461 return ParsePrimary();
463 // If this is a unary operator, read it.
464 int Opc = CurTok;
465 getNextToken();
466 if (ExprAST *Operand = ParseUnary())
467 return new UnaryExprAST(Opc, Operand);
468 return 0;
471 /// binoprhs
472 /// ::= ('+' unary)*
473 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
474 // If this is a binop, find its precedence.
475 while (1) {
476 int TokPrec = GetTokPrecedence();
478 // If this is a binop that binds at least as tightly as the current binop,
479 // consume it, otherwise we are done.
480 if (TokPrec < ExprPrec)
481 return LHS;
483 // Okay, we know this is a binop.
484 int BinOp = CurTok;
485 getNextToken(); // eat binop
487 // Parse the unary expression after the binary operator.
488 ExprAST *RHS = ParseUnary();
489 if (!RHS) return 0;
491 // If BinOp binds less tightly with RHS than the operator after RHS, let
492 // the pending operator take RHS as its LHS.
493 int NextPrec = GetTokPrecedence();
494 if (TokPrec < NextPrec) {
495 RHS = ParseBinOpRHS(TokPrec+1, RHS);
496 if (RHS == 0) return 0;
499 // Merge LHS/RHS.
500 LHS = new BinaryExprAST(BinOp, LHS, RHS);
504 /// expression
505 /// ::= unary binoprhs
507 static ExprAST *ParseExpression() {
508 ExprAST *LHS = ParseUnary();
509 if (!LHS) return 0;
511 return ParseBinOpRHS(0, LHS);
514 /// prototype
515 /// ::= id '(' id* ')'
516 /// ::= binary LETTER number? (id, id)
517 /// ::= unary LETTER (id)
518 static PrototypeAST *ParsePrototype() {
519 std::string FnName;
521 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
522 unsigned BinaryPrecedence = 30;
524 switch (CurTok) {
525 default:
526 return ErrorP("Expected function name in prototype");
527 case tok_identifier:
528 FnName = IdentifierStr;
529 Kind = 0;
530 getNextToken();
531 break;
532 case tok_unary:
533 getNextToken();
534 if (!isascii(CurTok))
535 return ErrorP("Expected unary operator");
536 FnName = "unary";
537 FnName += (char)CurTok;
538 Kind = 1;
539 getNextToken();
540 break;
541 case tok_binary:
542 getNextToken();
543 if (!isascii(CurTok))
544 return ErrorP("Expected binary operator");
545 FnName = "binary";
546 FnName += (char)CurTok;
547 Kind = 2;
548 getNextToken();
550 // Read the precedence if present.
551 if (CurTok == tok_number) {
552 if (NumVal < 1 || NumVal > 100)
553 return ErrorP("Invalid precedecnce: must be 1..100");
554 BinaryPrecedence = (unsigned)NumVal;
555 getNextToken();
557 break;
560 if (CurTok != '(')
561 return ErrorP("Expected '(' in prototype");
563 std::vector<std::string> ArgNames;
564 while (getNextToken() == tok_identifier)
565 ArgNames.push_back(IdentifierStr);
566 if (CurTok != ')')
567 return ErrorP("Expected ')' in prototype");
569 // success.
570 getNextToken(); // eat ')'.
572 // Verify right number of names for operator.
573 if (Kind && ArgNames.size() != Kind)
574 return ErrorP("Invalid number of operands for operator");
576 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
579 /// definition ::= 'def' prototype expression
580 static FunctionAST *ParseDefinition() {
581 getNextToken(); // eat def.
582 PrototypeAST *Proto = ParsePrototype();
583 if (Proto == 0) return 0;
585 if (ExprAST *E = ParseExpression())
586 return new FunctionAST(Proto, E);
587 return 0;
590 /// toplevelexpr ::= expression
591 static FunctionAST *ParseTopLevelExpr() {
592 if (ExprAST *E = ParseExpression()) {
593 // Make an anonymous proto.
594 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
595 return new FunctionAST(Proto, E);
597 return 0;
600 /// external ::= 'extern' prototype
601 static PrototypeAST *ParseExtern() {
602 getNextToken(); // eat extern.
603 return ParsePrototype();
606 //===----------------------------------------------------------------------===//
607 // Quick and dirty hack
608 //===----------------------------------------------------------------------===//
610 // FIXME: Obviously we can do better than this
611 std::string GenerateUniqueName(const char *root)
613 static int i = 0;
614 char s[16];
615 sprintf(s, "%s%d", root, i++);
616 std::string S = s;
617 return S;
620 std::string MakeLegalFunctionName(std::string Name)
622 std::string NewName;
623 if (!Name.length())
624 return GenerateUniqueName("anon_func_");
626 // Start with what we have
627 NewName = Name;
629 // Look for a numberic first character
630 if (NewName.find_first_of("0123456789") == 0) {
631 NewName.insert(0, 1, 'n');
634 // Replace illegal characters with their ASCII equivalent
635 std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
636 size_t pos;
637 while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
638 char old_c = NewName.at(pos);
639 char new_str[16];
640 sprintf(new_str, "%d", (int)old_c);
641 NewName = NewName.replace(pos, 1, new_str);
644 return NewName;
647 //===----------------------------------------------------------------------===//
648 // MCJIT helper class
649 //===----------------------------------------------------------------------===//
651 class MCJITHelper
653 public:
654 MCJITHelper(LLVMContext& C) : Context(C), OpenModule(NULL) {}
655 ~MCJITHelper();
657 Function *getFunction(const std::string FnName);
658 Module *getModuleForNewFunction();
659 void *getPointerToFunction(Function* F);
660 void *getPointerToNamedFunction(const std::string &Name);
661 ExecutionEngine *compileModule(Module *M);
662 void closeCurrentModule();
663 void dump();
665 private:
666 typedef std::vector<Module*> ModuleVector;
668 LLVMContext &Context;
669 Module *OpenModule;
670 ModuleVector Modules;
671 std::map<Module *, ExecutionEngine *> EngineMap;
674 class HelpingMemoryManager : public SectionMemoryManager
676 HelpingMemoryManager(const HelpingMemoryManager&) = delete;
677 void operator=(const HelpingMemoryManager&) = delete;
679 public:
680 HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
681 virtual ~HelpingMemoryManager() {}
683 /// This method returns the address of the specified function.
684 /// Our implementation will attempt to find functions in other
685 /// modules associated with the MCJITHelper to cross link functions
686 /// from one generated module to another.
688 /// If \p AbortOnFailure is false and no function with the given name is
689 /// found, this function returns a null pointer. Otherwise, it prints a
690 /// message to stderr and aborts.
691 virtual void *getPointerToNamedFunction(const std::string &Name,
692 bool AbortOnFailure = true);
693 private:
694 MCJITHelper *MasterHelper;
697 void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name,
698 bool AbortOnFailure)
700 // Try the standard symbol resolution first, but ask it not to abort.
701 void *pfn = SectionMemoryManager::getPointerToNamedFunction(Name, false);
702 if (pfn)
703 return pfn;
705 pfn = MasterHelper->getPointerToNamedFunction(Name);
706 if (!pfn && AbortOnFailure)
707 report_fatal_error("Program used external function '" + Name +
708 "' which could not be resolved!");
709 return pfn;
712 MCJITHelper::~MCJITHelper()
714 // Walk the vector of modules.
715 ModuleVector::iterator it, end;
716 for (it = Modules.begin(), end = Modules.end();
717 it != end; ++it) {
718 // See if we have an execution engine for this module.
719 std::map<Module*, ExecutionEngine*>::iterator mapIt = EngineMap.find(*it);
720 // If we have an EE, the EE owns the module so just delete the EE.
721 if (mapIt != EngineMap.end()) {
722 delete mapIt->second;
723 } else {
724 // Otherwise, we still own the module. Delete it now.
725 delete *it;
730 Function *MCJITHelper::getFunction(const std::string FnName) {
731 ModuleVector::iterator begin = Modules.begin();
732 ModuleVector::iterator end = Modules.end();
733 ModuleVector::iterator it;
734 for (it = begin; it != end; ++it) {
735 Function *F = (*it)->getFunction(FnName);
736 if (F) {
737 if (*it == OpenModule)
738 return F;
740 assert(OpenModule != NULL);
742 // This function is in a module that has already been JITed.
743 // We need to generate a new prototype for external linkage.
744 Function *PF = OpenModule->getFunction(FnName);
745 if (PF && !PF->empty()) {
746 ErrorF("redefinition of function across modules");
747 return 0;
750 // If we don't have a prototype yet, create one.
751 if (!PF)
752 PF = Function::Create(F->getFunctionType(),
753 Function::ExternalLinkage,
754 FnName,
755 OpenModule);
756 return PF;
759 return NULL;
762 Module *MCJITHelper::getModuleForNewFunction() {
763 // If we have a Module that hasn't been JITed, use that.
764 if (OpenModule)
765 return OpenModule;
767 // Otherwise create a new Module.
768 std::string ModName = GenerateUniqueName("mcjit_module_");
769 Module *M = new Module(ModName, Context);
770 Modules.push_back(M);
771 OpenModule = M;
772 return M;
775 void *MCJITHelper::getPointerToFunction(Function* F) {
776 // Look for this function in an existing module
777 ModuleVector::iterator begin = Modules.begin();
778 ModuleVector::iterator end = Modules.end();
779 ModuleVector::iterator it;
780 std::string FnName = F->getName();
781 for (it = begin; it != end; ++it) {
782 Function *MF = (*it)->getFunction(FnName);
783 if (MF == F) {
784 std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
785 if (eeIt != EngineMap.end()) {
786 void *P = eeIt->second->getPointerToFunction(F);
787 if (P)
788 return P;
789 } else {
790 ExecutionEngine *EE = compileModule(*it);
791 void *P = EE->getPointerToFunction(F);
792 if (P)
793 return P;
797 return NULL;
800 void MCJITHelper::closeCurrentModule() {
801 OpenModule = NULL;
804 ExecutionEngine *MCJITHelper::compileModule(Module *M) {
805 if (M == OpenModule)
806 closeCurrentModule();
808 std::string ErrStr;
809 ExecutionEngine *NewEngine = EngineBuilder(M)
810 .setErrorStr(&ErrStr)
811 .setMCJITMemoryManager(new HelpingMemoryManager(this))
812 .create();
813 if (!NewEngine) {
814 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
815 exit(1);
818 // Create a function pass manager for this engine
819 FunctionPassManager *FPM = new FunctionPassManager(M);
821 // Set up the optimizer pipeline. Start with registering info about how the
822 // target lays out data structures.
823 FPM->add(new DataLayout(*NewEngine->getDataLayout()));
824 // Provide basic AliasAnalysis support for GVN.
825 FPM->add(createBasicAliasAnalysisPass());
826 // Promote allocas to registers.
827 FPM->add(createPromoteMemoryToRegisterPass());
828 // Do simple "peephole" optimizations and bit-twiddling optzns.
829 FPM->add(createInstructionCombiningPass());
830 // Reassociate expressions.
831 FPM->add(createReassociatePass());
832 // Eliminate Common SubExpressions.
833 FPM->add(createGVNPass());
834 // Simplify the control flow graph (deleting unreachable blocks, etc).
835 FPM->add(createCFGSimplificationPass());
836 FPM->doInitialization();
838 // For each function in the module
839 Module::iterator it;
840 Module::iterator end = M->end();
841 for (it = M->begin(); it != end; ++it) {
842 // Run the FPM on this function
843 FPM->run(*it);
846 // We don't need this anymore
847 delete FPM;
849 // Store this engine
850 EngineMap[M] = NewEngine;
851 NewEngine->finalizeObject();
853 return NewEngine;
856 void *MCJITHelper::getPointerToNamedFunction(const std::string &Name)
858 // Look for the functions in our modules, compiling only as necessary
859 ModuleVector::iterator begin = Modules.begin();
860 ModuleVector::iterator end = Modules.end();
861 ModuleVector::iterator it;
862 for (it = begin; it != end; ++it) {
863 Function *F = (*it)->getFunction(Name);
864 if (F && !F->empty()) {
865 std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
866 if (eeIt != EngineMap.end()) {
867 void *P = eeIt->second->getPointerToFunction(F);
868 if (P)
869 return P;
870 } else {
871 ExecutionEngine *EE = compileModule(*it);
872 void *P = EE->getPointerToFunction(F);
873 if (P)
874 return P;
878 return NULL;
881 void MCJITHelper::dump()
883 ModuleVector::iterator begin = Modules.begin();
884 ModuleVector::iterator end = Modules.end();
885 ModuleVector::iterator it;
886 for (it = begin; it != end; ++it)
887 (*it)->dump();
890 //===----------------------------------------------------------------------===//
891 // Code Generation
892 //===----------------------------------------------------------------------===//
894 static MCJITHelper *TheHelper;
895 static LLVMContext TheContext;
896 static IRBuilder<> Builder(TheContext);
897 static std::map<std::string, AllocaInst*> NamedValues;
899 Value *ErrorV(const char *Str) { Error(Str); return 0; }
901 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
902 /// the function. This is used for mutable variables etc.
903 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
904 const std::string &VarName) {
905 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
906 TheFunction->getEntryBlock().begin());
907 return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), 0, VarName.c_str());
910 Value *NumberExprAST::Codegen() {
911 return ConstantFP::get(TheContext, APFloat(Val));
914 Value *VariableExprAST::Codegen() {
915 // Look this variable up in the function.
916 Value *V = NamedValues[Name];
917 char ErrStr[256];
918 sprintf(ErrStr, "Unknown variable name %s", Name.c_str());
919 if (V == 0) return ErrorV(ErrStr);
921 // Load the value.
922 return Builder.CreateLoad(V, Name.c_str());
925 Value *UnaryExprAST::Codegen() {
926 Value *OperandV = Operand->Codegen();
927 if (OperandV == 0) return 0;
929 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
930 if (F == 0)
931 return ErrorV("Unknown unary operator");
933 return Builder.CreateCall(F, OperandV, "unop");
936 Value *BinaryExprAST::Codegen() {
937 // Special case '=' because we don't want to emit the LHS as an expression.
938 if (Op == '=') {
939 // Assignment requires the LHS to be an identifier.
940 VariableExprAST *LHSE = static_cast<VariableExprAST*>(LHS);
941 if (!LHSE)
942 return ErrorV("destination of '=' must be a variable");
943 // Codegen the RHS.
944 Value *Val = RHS->Codegen();
945 if (Val == 0) return 0;
947 // Look up the name.
948 Value *Variable = NamedValues[LHSE->getName()];
949 if (Variable == 0) return ErrorV("Unknown variable name");
951 Builder.CreateStore(Val, Variable);
952 return Val;
955 Value *L = LHS->Codegen();
956 Value *R = RHS->Codegen();
957 if (L == 0 || R == 0) return 0;
959 switch (Op) {
960 case '+': return Builder.CreateFAdd(L, R, "addtmp");
961 case '-': return Builder.CreateFSub(L, R, "subtmp");
962 case '*': return Builder.CreateFMul(L, R, "multmp");
963 case '/': return Builder.CreateFDiv(L, R, "divtmp");
964 case '<':
965 L = Builder.CreateFCmpULT(L, R, "cmptmp");
966 // Convert bool 0/1 to double 0.0 or 1.0
967 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
968 default: break;
971 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
972 // a call to it.
973 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op));
974 assert(F && "binary operator not found!");
976 Value *Ops[] = { L, R };
977 return Builder.CreateCall(F, Ops, "binop");
980 Value *CallExprAST::Codegen() {
981 // Look up the name in the global module table.
982 Function *CalleeF = TheHelper->getFunction(Callee);
983 if (CalleeF == 0)
984 return ErrorV("Unknown function referenced");
986 // If argument mismatch error.
987 if (CalleeF->arg_size() != Args.size())
988 return ErrorV("Incorrect # arguments passed");
990 std::vector<Value*> ArgsV;
991 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
992 ArgsV.push_back(Args[i]->Codegen());
993 if (ArgsV.back() == 0) return 0;
996 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
999 Value *IfExprAST::Codegen() {
1000 Value *CondV = Cond->Codegen();
1001 if (CondV == 0) return 0;
1003 // Convert condition to a bool by comparing equal to 0.0.
1004 CondV = Builder.CreateFCmpONE(
1005 CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
1007 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1009 // Create blocks for the then and else cases. Insert the 'then' block at the
1010 // end of the function.
1011 BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
1012 BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
1013 BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");
1015 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
1017 // Emit then value.
1018 Builder.SetInsertPoint(ThenBB);
1020 Value *ThenV = Then->Codegen();
1021 if (ThenV == 0) return 0;
1023 Builder.CreateBr(MergeBB);
1024 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
1025 ThenBB = Builder.GetInsertBlock();
1027 // Emit else block.
1028 TheFunction->getBasicBlockList().push_back(ElseBB);
1029 Builder.SetInsertPoint(ElseBB);
1031 Value *ElseV = Else->Codegen();
1032 if (ElseV == 0) return 0;
1034 Builder.CreateBr(MergeBB);
1035 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
1036 ElseBB = Builder.GetInsertBlock();
1038 // Emit merge block.
1039 TheFunction->getBasicBlockList().push_back(MergeBB);
1040 Builder.SetInsertPoint(MergeBB);
1041 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");
1043 PN->addIncoming(ThenV, ThenBB);
1044 PN->addIncoming(ElseV, ElseBB);
1045 return PN;
1048 Value *ForExprAST::Codegen() {
1049 // Output this as:
1050 // var = alloca double
1051 // ...
1052 // start = startexpr
1053 // store start -> var
1054 // goto loop
1055 // loop:
1056 // ...
1057 // bodyexpr
1058 // ...
1059 // loopend:
1060 // step = stepexpr
1061 // endcond = endexpr
1063 // curvar = load var
1064 // nextvar = curvar + step
1065 // store nextvar -> var
1066 // br endcond, loop, endloop
1067 // outloop:
1069 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1071 // Create an alloca for the variable in the entry block.
1072 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1074 // Emit the start code first, without 'variable' in scope.
1075 Value *StartVal = Start->Codegen();
1076 if (StartVal == 0) return 0;
1078 // Store the value into the alloca.
1079 Builder.CreateStore(StartVal, Alloca);
1081 // Make the new basic block for the loop header, inserting after current
1082 // block.
1083 BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);
1085 // Insert an explicit fall through from the current block to the LoopBB.
1086 Builder.CreateBr(LoopBB);
1088 // Start insertion in LoopBB.
1089 Builder.SetInsertPoint(LoopBB);
1091 // Within the loop, the variable is defined equal to the PHI node. If it
1092 // shadows an existing variable, we have to restore it, so save it now.
1093 AllocaInst *OldVal = NamedValues[VarName];
1094 NamedValues[VarName] = Alloca;
1096 // Emit the body of the loop. This, like any other expr, can change the
1097 // current BB. Note that we ignore the value computed by the body, but don't
1098 // allow an error.
1099 if (Body->Codegen() == 0)
1100 return 0;
1102 // Emit the step value.
1103 Value *StepVal;
1104 if (Step) {
1105 StepVal = Step->Codegen();
1106 if (StepVal == 0) return 0;
1107 } else {
1108 // If not specified, use 1.0.
1109 StepVal = ConstantFP::get(TheContext, APFloat(1.0));
1112 // Compute the end condition.
1113 Value *EndCond = End->Codegen();
1114 if (EndCond == 0) return EndCond;
1116 // Reload, increment, and restore the alloca. This handles the case where
1117 // the body of the loop mutates the variable.
1118 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
1119 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
1120 Builder.CreateStore(NextVar, Alloca);
1122 // Convert condition to a bool by comparing equal to 0.0.
1123 EndCond = Builder.CreateFCmpONE(
1124 EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");
1126 // Create the "after loop" block and insert it.
1127 BasicBlock *AfterBB =
1128 BasicBlock::Create(TheContext, "afterloop", TheFunction);
1130 // Insert the conditional branch into the end of LoopEndBB.
1131 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
1133 // Any new code will be inserted in AfterBB.
1134 Builder.SetInsertPoint(AfterBB);
1136 // Restore the unshadowed variable.
1137 if (OldVal)
1138 NamedValues[VarName] = OldVal;
1139 else
1140 NamedValues.erase(VarName);
1143 // for expr always returns 0.0.
1144 return Constant::getNullValue(Type::getDoubleTy(TheContext));
1147 Value *VarExprAST::Codegen() {
1148 std::vector<AllocaInst *> OldBindings;
1150 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1152 // Register all variables and emit their initializer.
1153 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
1154 const std::string &VarName = VarNames[i].first;
1155 ExprAST *Init = VarNames[i].second;
1157 // Emit the initializer before adding the variable to scope, this prevents
1158 // the initializer from referencing the variable itself, and permits stuff
1159 // like this:
1160 // var a = 1 in
1161 // var a = a in ... # refers to outer 'a'.
1162 Value *InitVal;
1163 if (Init) {
1164 InitVal = Init->Codegen();
1165 if (InitVal == 0) return 0;
1166 } else { // If not specified, use 0.0.
1167 InitVal = ConstantFP::get(TheContext, APFloat(0.0));
1170 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1171 Builder.CreateStore(InitVal, Alloca);
1173 // Remember the old variable binding so that we can restore the binding when
1174 // we unrecurse.
1175 OldBindings.push_back(NamedValues[VarName]);
1177 // Remember this binding.
1178 NamedValues[VarName] = Alloca;
1181 // Codegen the body, now that all vars are in scope.
1182 Value *BodyVal = Body->Codegen();
1183 if (BodyVal == 0) return 0;
1185 // Pop all our variables from scope.
1186 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1187 NamedValues[VarNames[i].first] = OldBindings[i];
1189 // Return the body computation.
1190 return BodyVal;
1193 Function *PrototypeAST::Codegen() {
1194 // Make the function type: double(double,double) etc.
1195 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
1196 FunctionType *FT =
1197 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);
1199 std::string FnName = MakeLegalFunctionName(Name);
1201 Module* M = TheHelper->getModuleForNewFunction();
1203 Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
1205 // If F conflicted, there was already something named 'FnName'. If it has a
1206 // body, don't allow redefinition or reextern.
1207 if (F->getName() != FnName) {
1208 // Delete the one we just made and get the existing one.
1209 F->eraseFromParent();
1210 F = M->getFunction(Name);
1212 // If F already has a body, reject this.
1213 if (!F->empty()) {
1214 ErrorF("redefinition of function");
1215 return 0;
1218 // If F took a different number of args, reject.
1219 if (F->arg_size() != Args.size()) {
1220 ErrorF("redefinition of function with different # args");
1221 return 0;
1225 // Set names for all arguments.
1226 unsigned Idx = 0;
1227 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
1228 ++AI, ++Idx)
1229 AI->setName(Args[Idx]);
1231 return F;
1234 /// CreateArgumentAllocas - Create an alloca for each argument and register the
1235 /// argument in the symbol table so that references to it will succeed.
1236 void PrototypeAST::CreateArgumentAllocas(Function *F) {
1237 Function::arg_iterator AI = F->arg_begin();
1238 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
1239 // Create an alloca for this variable.
1240 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
1242 // Store the initial value into the alloca.
1243 Builder.CreateStore(AI, Alloca);
1245 // Add arguments to variable symbol table.
1246 NamedValues[Args[Idx]] = Alloca;
1250 Function *FunctionAST::Codegen() {
1251 NamedValues.clear();
1253 Function *TheFunction = Proto->Codegen();
1254 if (TheFunction == 0)
1255 return 0;
1257 // If this is an operator, install it.
1258 if (Proto->isBinaryOp())
1259 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
1261 // Create a new basic block to start insertion into.
1262 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
1263 Builder.SetInsertPoint(BB);
1265 // Add all arguments to the symbol table and create their allocas.
1266 Proto->CreateArgumentAllocas(TheFunction);
1268 if (Value *RetVal = Body->Codegen()) {
1269 // Finish off the function.
1270 Builder.CreateRet(RetVal);
1272 // Validate the generated code, checking for consistency.
1273 verifyFunction(*TheFunction);
1275 return TheFunction;
1278 // Error reading body, remove function.
1279 TheFunction->eraseFromParent();
1281 if (Proto->isBinaryOp())
1282 BinopPrecedence.erase(Proto->getOperatorName());
1283 return 0;
1286 //===----------------------------------------------------------------------===//
1287 // Top-Level parsing and JIT Driver
1288 //===----------------------------------------------------------------------===//
1290 static void HandleDefinition() {
1291 if (FunctionAST *F = ParseDefinition()) {
1292 TheHelper->closeCurrentModule();
1293 if (Function *LF = F->Codegen()) {
1294 #ifndef MINIMAL_STDERR_OUTPUT
1295 fprintf(stderr, "Read function definition:");
1296 LF->print(errs());
1297 fprintf(stderr, "\n");
1298 #endif
1300 } else {
1301 // Skip token for error recovery.
1302 getNextToken();
1306 static void HandleExtern() {
1307 if (PrototypeAST *P = ParseExtern()) {
1308 if (Function *F = P->Codegen()) {
1309 #ifndef MINIMAL_STDERR_OUTPUT
1310 fprintf(stderr, "Read extern: ");
1311 F->print(errs());
1312 fprintf(stderr, "\n");
1313 #endif
1315 } else {
1316 // Skip token for error recovery.
1317 getNextToken();
1321 static void HandleTopLevelExpression() {
1322 // Evaluate a top-level expression into an anonymous function.
1323 if (FunctionAST *F = ParseTopLevelExpr()) {
1324 if (Function *LF = F->Codegen()) {
1325 // JIT the function, returning a function pointer.
1326 void *FPtr = TheHelper->getPointerToFunction(LF);
1328 // Cast it to the right type (takes no arguments, returns a double) so we
1329 // can call it as a native function.
1330 double (*FP)() = (double (*)())(intptr_t)FPtr;
1331 #ifdef MINIMAL_STDERR_OUTPUT
1332 FP();
1333 #else
1334 fprintf(stderr, "Evaluated to %f\n", FP());
1335 #endif
1337 } else {
1338 // Skip token for error recovery.
1339 getNextToken();
1343 /// top ::= definition | external | expression | ';'
1344 static void MainLoop() {
1345 while (1) {
1346 #ifndef MINIMAL_STDERR_OUTPUT
1347 fprintf(stderr, "ready> ");
1348 #endif
1349 switch (CurTok) {
1350 case tok_eof: return;
1351 case ';': getNextToken(); break; // ignore top-level semicolons.
1352 case tok_def: HandleDefinition(); break;
1353 case tok_extern: HandleExtern(); break;
1354 default: HandleTopLevelExpression(); break;
1359 //===----------------------------------------------------------------------===//
1360 // "Library" functions that can be "extern'd" from user code.
1361 //===----------------------------------------------------------------------===//
1363 /// putchard - putchar that takes a double and returns 0.
1364 extern "C"
1365 double putchard(double X) {
1366 putchar((char)X);
1367 return 0;
1370 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1371 extern "C"
1372 double printd(double X) {
1373 printf("%f", X);
1374 return 0;
1377 extern "C"
1378 double printlf() {
1379 printf("\n");
1380 return 0;
1383 //===----------------------------------------------------------------------===//
1384 // Main driver code.
1385 //===----------------------------------------------------------------------===//
1387 int main() {
1388 InitializeNativeTarget();
1389 InitializeNativeTargetAsmPrinter();
1390 InitializeNativeTargetAsmParser();
1391 LLVMContext &Context = TheContext;
1393 // Install standard binary operators.
1394 // 1 is lowest precedence.
1395 BinopPrecedence['='] = 2;
1396 BinopPrecedence['<'] = 10;
1397 BinopPrecedence['+'] = 20;
1398 BinopPrecedence['-'] = 20;
1399 BinopPrecedence['/'] = 40;
1400 BinopPrecedence['*'] = 40; // highest.
1402 // Prime the first token.
1403 #ifndef MINIMAL_STDERR_OUTPUT
1404 fprintf(stderr, "ready> ");
1405 #endif
1406 getNextToken();
1408 // Make the helper, which holds all the code.
1409 TheHelper = new MCJITHelper(Context);
1411 // Run the main "interpreter loop" now.
1412 MainLoop();
1414 #ifndef MINIMAL_STDERR_OUTPUT
1415 // Print out all of the generated code.
1416 TheHelper->dump();
1417 #endif
1419 return 0;