[InstCombine] Signed saturation patterns
[llvm-core.git] / include / llvm / ADT / STLExtras.h
blob274933bc5204b07ebf086c9488f41a792a466a13
1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains some templates that are useful if you are working with the
10 // STL at all.
12 // No library is required when using these functions.
14 //===----------------------------------------------------------------------===//
16 #ifndef LLVM_ADT_STLEXTRAS_H
17 #define LLVM_ADT_STLEXTRAS_H
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Config/abi-breaking.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <algorithm>
26 #include <cassert>
27 #include <cstddef>
28 #include <cstdint>
29 #include <cstdlib>
30 #include <functional>
31 #include <initializer_list>
32 #include <iterator>
33 #include <limits>
34 #include <memory>
35 #include <tuple>
36 #include <type_traits>
37 #include <utility>
39 #ifdef EXPENSIVE_CHECKS
40 #include <random> // for std::mt19937
41 #endif
43 namespace llvm {
45 // Only used by compiler if both template types are the same. Useful when
46 // using SFINAE to test for the existence of member functions.
47 template <typename T, T> struct SameType;
49 namespace detail {
51 template <typename RangeT>
52 using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
54 template <typename RangeT>
55 using ValueOfRange = typename std::remove_reference<decltype(
56 *std::begin(std::declval<RangeT &>()))>::type;
58 } // end namespace detail
60 //===----------------------------------------------------------------------===//
61 // Extra additions to <type_traits>
62 //===----------------------------------------------------------------------===//
64 template <typename T>
65 struct negation : std::integral_constant<bool, !bool(T::value)> {};
67 template <typename...> struct conjunction : std::true_type {};
68 template <typename B1> struct conjunction<B1> : B1 {};
69 template <typename B1, typename... Bn>
70 struct conjunction<B1, Bn...>
71 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
73 template <typename T> struct make_const_ptr {
74 using type =
75 typename std::add_pointer<typename std::add_const<T>::type>::type;
78 template <typename T> struct make_const_ref {
79 using type = typename std::add_lvalue_reference<
80 typename std::add_const<T>::type>::type;
83 //===----------------------------------------------------------------------===//
84 // Extra additions to <functional>
85 //===----------------------------------------------------------------------===//
87 template <class Ty> struct identity {
88 using argument_type = Ty;
90 Ty &operator()(Ty &self) const {
91 return self;
93 const Ty &operator()(const Ty &self) const {
94 return self;
98 /// An efficient, type-erasing, non-owning reference to a callable. This is
99 /// intended for use as the type of a function parameter that is not used
100 /// after the function in question returns.
102 /// This class does not own the callable, so it is not in general safe to store
103 /// a function_ref.
104 template<typename Fn> class function_ref;
106 template<typename Ret, typename ...Params>
107 class function_ref<Ret(Params...)> {
108 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
109 intptr_t callable;
111 template<typename Callable>
112 static Ret callback_fn(intptr_t callable, Params ...params) {
113 return (*reinterpret_cast<Callable*>(callable))(
114 std::forward<Params>(params)...);
117 public:
118 function_ref() = default;
119 function_ref(std::nullptr_t) {}
121 template <typename Callable>
122 function_ref(Callable &&callable,
123 typename std::enable_if<
124 !std::is_same<typename std::remove_reference<Callable>::type,
125 function_ref>::value>::type * = nullptr)
126 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
127 callable(reinterpret_cast<intptr_t>(&callable)) {}
129 Ret operator()(Params ...params) const {
130 return callback(callable, std::forward<Params>(params)...);
133 operator bool() const { return callback; }
136 // deleter - Very very very simple method that is used to invoke operator
137 // delete on something. It is used like this:
139 // for_each(V.begin(), B.end(), deleter<Interval>);
140 template <class T>
141 inline void deleter(T *Ptr) {
142 delete Ptr;
145 //===----------------------------------------------------------------------===//
146 // Extra additions to <iterator>
147 //===----------------------------------------------------------------------===//
149 namespace adl_detail {
151 using std::begin;
153 template <typename ContainerTy>
154 auto adl_begin(ContainerTy &&container)
155 -> decltype(begin(std::forward<ContainerTy>(container))) {
156 return begin(std::forward<ContainerTy>(container));
159 using std::end;
161 template <typename ContainerTy>
162 auto adl_end(ContainerTy &&container)
163 -> decltype(end(std::forward<ContainerTy>(container))) {
164 return end(std::forward<ContainerTy>(container));
167 using std::swap;
169 template <typename T>
170 void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
171 std::declval<T>()))) {
172 swap(std::forward<T>(lhs), std::forward<T>(rhs));
175 } // end namespace adl_detail
177 template <typename ContainerTy>
178 auto adl_begin(ContainerTy &&container)
179 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
180 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
183 template <typename ContainerTy>
184 auto adl_end(ContainerTy &&container)
185 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
186 return adl_detail::adl_end(std::forward<ContainerTy>(container));
189 template <typename T>
190 void adl_swap(T &&lhs, T &&rhs) noexcept(
191 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
192 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
195 /// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
196 template <typename T>
197 constexpr bool empty(const T &RangeOrContainer) {
198 return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
201 // mapped_iterator - This is a simple iterator adapter that causes a function to
202 // be applied whenever operator* is invoked on the iterator.
204 template <typename ItTy, typename FuncTy,
205 typename FuncReturnTy =
206 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
207 class mapped_iterator
208 : public iterator_adaptor_base<
209 mapped_iterator<ItTy, FuncTy>, ItTy,
210 typename std::iterator_traits<ItTy>::iterator_category,
211 typename std::remove_reference<FuncReturnTy>::type> {
212 public:
213 mapped_iterator(ItTy U, FuncTy F)
214 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
216 ItTy getCurrent() { return this->I; }
218 FuncReturnTy operator*() { return F(*this->I); }
220 private:
221 FuncTy F;
224 // map_iterator - Provide a convenient way to create mapped_iterators, just like
225 // make_pair is useful for creating pairs...
226 template <class ItTy, class FuncTy>
227 inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
228 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
231 template <class ContainerTy, class FuncTy>
232 auto map_range(ContainerTy &&C, FuncTy F)
233 -> decltype(make_range(map_iterator(C.begin(), F),
234 map_iterator(C.end(), F))) {
235 return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F));
238 /// Helper to determine if type T has a member called rbegin().
239 template <typename Ty> class has_rbegin_impl {
240 using yes = char[1];
241 using no = char[2];
243 template <typename Inner>
244 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
246 template <typename>
247 static no& test(...);
249 public:
250 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
253 /// Metafunction to determine if T& or T has a member called rbegin().
254 template <typename Ty>
255 struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
258 // Returns an iterator_range over the given container which iterates in reverse.
259 // Note that the container must have rbegin()/rend() methods for this to work.
260 template <typename ContainerTy>
261 auto reverse(ContainerTy &&C,
262 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
263 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
264 return make_range(C.rbegin(), C.rend());
267 // Returns a std::reverse_iterator wrapped around the given iterator.
268 template <typename IteratorTy>
269 std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
270 return std::reverse_iterator<IteratorTy>(It);
273 // Returns an iterator_range over the given container which iterates in reverse.
274 // Note that the container must have begin()/end() methods which return
275 // bidirectional iterators for this to work.
276 template <typename ContainerTy>
277 auto reverse(
278 ContainerTy &&C,
279 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
280 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
281 llvm::make_reverse_iterator(std::begin(C)))) {
282 return make_range(llvm::make_reverse_iterator(std::end(C)),
283 llvm::make_reverse_iterator(std::begin(C)));
286 /// An iterator adaptor that filters the elements of given inner iterators.
288 /// The predicate parameter should be a callable object that accepts the wrapped
289 /// iterator's reference type and returns a bool. When incrementing or
290 /// decrementing the iterator, it will call the predicate on each element and
291 /// skip any where it returns false.
293 /// \code
294 /// int A[] = { 1, 2, 3, 4 };
295 /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
296 /// // R contains { 1, 3 }.
297 /// \endcode
299 /// Note: filter_iterator_base implements support for forward iteration.
300 /// filter_iterator_impl exists to provide support for bidirectional iteration,
301 /// conditional on whether the wrapped iterator supports it.
302 template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
303 class filter_iterator_base
304 : public iterator_adaptor_base<
305 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
306 WrappedIteratorT,
307 typename std::common_type<
308 IterTag, typename std::iterator_traits<
309 WrappedIteratorT>::iterator_category>::type> {
310 using BaseT = iterator_adaptor_base<
311 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
312 WrappedIteratorT,
313 typename std::common_type<
314 IterTag, typename std::iterator_traits<
315 WrappedIteratorT>::iterator_category>::type>;
317 protected:
318 WrappedIteratorT End;
319 PredicateT Pred;
321 void findNextValid() {
322 while (this->I != End && !Pred(*this->I))
323 BaseT::operator++();
326 // Construct the iterator. The begin iterator needs to know where the end
327 // is, so that it can properly stop when it gets there. The end iterator only
328 // needs the predicate to support bidirectional iteration.
329 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
330 PredicateT Pred)
331 : BaseT(Begin), End(End), Pred(Pred) {
332 findNextValid();
335 public:
336 using BaseT::operator++;
338 filter_iterator_base &operator++() {
339 BaseT::operator++();
340 findNextValid();
341 return *this;
345 /// Specialization of filter_iterator_base for forward iteration only.
346 template <typename WrappedIteratorT, typename PredicateT,
347 typename IterTag = std::forward_iterator_tag>
348 class filter_iterator_impl
349 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
350 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
352 public:
353 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
354 PredicateT Pred)
355 : BaseT(Begin, End, Pred) {}
358 /// Specialization of filter_iterator_base for bidirectional iteration.
359 template <typename WrappedIteratorT, typename PredicateT>
360 class filter_iterator_impl<WrappedIteratorT, PredicateT,
361 std::bidirectional_iterator_tag>
362 : public filter_iterator_base<WrappedIteratorT, PredicateT,
363 std::bidirectional_iterator_tag> {
364 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
365 std::bidirectional_iterator_tag>;
366 void findPrevValid() {
367 while (!this->Pred(*this->I))
368 BaseT::operator--();
371 public:
372 using BaseT::operator--;
374 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
375 PredicateT Pred)
376 : BaseT(Begin, End, Pred) {}
378 filter_iterator_impl &operator--() {
379 BaseT::operator--();
380 findPrevValid();
381 return *this;
385 namespace detail {
387 template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
388 using type = std::forward_iterator_tag;
391 template <> struct fwd_or_bidi_tag_impl<true> {
392 using type = std::bidirectional_iterator_tag;
395 /// Helper which sets its type member to forward_iterator_tag if the category
396 /// of \p IterT does not derive from bidirectional_iterator_tag, and to
397 /// bidirectional_iterator_tag otherwise.
398 template <typename IterT> struct fwd_or_bidi_tag {
399 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
400 std::bidirectional_iterator_tag,
401 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
404 } // namespace detail
406 /// Defines filter_iterator to a suitable specialization of
407 /// filter_iterator_impl, based on the underlying iterator's category.
408 template <typename WrappedIteratorT, typename PredicateT>
409 using filter_iterator = filter_iterator_impl<
410 WrappedIteratorT, PredicateT,
411 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
413 /// Convenience function that takes a range of elements and a predicate,
414 /// and return a new filter_iterator range.
416 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
417 /// lifetime of that temporary is not kept by the returned range object, and the
418 /// temporary is going to be dropped on the floor after the make_iterator_range
419 /// full expression that contains this function call.
420 template <typename RangeT, typename PredicateT>
421 iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
422 make_filter_range(RangeT &&Range, PredicateT Pred) {
423 using FilterIteratorT =
424 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
425 return make_range(
426 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
427 std::end(std::forward<RangeT>(Range)), Pred),
428 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
429 std::end(std::forward<RangeT>(Range)), Pred));
432 /// A pseudo-iterator adaptor that is designed to implement "early increment"
433 /// style loops.
435 /// This is *not a normal iterator* and should almost never be used directly. It
436 /// is intended primarily to be used with range based for loops and some range
437 /// algorithms.
439 /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
440 /// somewhere between them. The constraints of these iterators are:
442 /// - On construction or after being incremented, it is comparable and
443 /// dereferencable. It is *not* incrementable.
444 /// - After being dereferenced, it is neither comparable nor dereferencable, it
445 /// is only incrementable.
447 /// This means you can only dereference the iterator once, and you can only
448 /// increment it once between dereferences.
449 template <typename WrappedIteratorT>
450 class early_inc_iterator_impl
451 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
452 WrappedIteratorT, std::input_iterator_tag> {
453 using BaseT =
454 iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
455 WrappedIteratorT, std::input_iterator_tag>;
457 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
459 protected:
460 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
461 bool IsEarlyIncremented = false;
462 #endif
464 public:
465 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
467 using BaseT::operator*;
468 typename BaseT::reference operator*() {
469 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
470 assert(!IsEarlyIncremented && "Cannot dereference twice!");
471 IsEarlyIncremented = true;
472 #endif
473 return *(this->I)++;
476 using BaseT::operator++;
477 early_inc_iterator_impl &operator++() {
478 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
479 assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
480 IsEarlyIncremented = false;
481 #endif
482 return *this;
485 using BaseT::operator==;
486 bool operator==(const early_inc_iterator_impl &RHS) const {
487 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
488 assert(!IsEarlyIncremented && "Cannot compare after dereferencing!");
489 #endif
490 return BaseT::operator==(RHS);
494 /// Make a range that does early increment to allow mutation of the underlying
495 /// range without disrupting iteration.
497 /// The underlying iterator will be incremented immediately after it is
498 /// dereferenced, allowing deletion of the current node or insertion of nodes to
499 /// not disrupt iteration provided they do not invalidate the *next* iterator --
500 /// the current iterator can be invalidated.
502 /// This requires a very exact pattern of use that is only really suitable to
503 /// range based for loops and other range algorithms that explicitly guarantee
504 /// to dereference exactly once each element, and to increment exactly once each
505 /// element.
506 template <typename RangeT>
507 iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
508 make_early_inc_range(RangeT &&Range) {
509 using EarlyIncIteratorT =
510 early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
511 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
512 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
515 // forward declarations required by zip_shortest/zip_first/zip_longest
516 template <typename R, typename UnaryPredicate>
517 bool all_of(R &&range, UnaryPredicate P);
518 template <typename R, typename UnaryPredicate>
519 bool any_of(R &&range, UnaryPredicate P);
521 namespace detail {
523 using std::declval;
525 // We have to alias this since inlining the actual type at the usage site
526 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
527 template<typename... Iters> struct ZipTupleType {
528 using type = std::tuple<decltype(*declval<Iters>())...>;
531 template <typename ZipType, typename... Iters>
532 using zip_traits = iterator_facade_base<
533 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
534 typename std::iterator_traits<
535 Iters>::iterator_category...>::type,
536 // ^ TODO: Implement random access methods.
537 typename ZipTupleType<Iters...>::type,
538 typename std::iterator_traits<typename std::tuple_element<
539 0, std::tuple<Iters...>>::type>::difference_type,
540 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
541 // inner iterators have the same difference_type. It would fail if, for
542 // instance, the second field's difference_type were non-numeric while the
543 // first is.
544 typename ZipTupleType<Iters...>::type *,
545 typename ZipTupleType<Iters...>::type>;
547 template <typename ZipType, typename... Iters>
548 struct zip_common : public zip_traits<ZipType, Iters...> {
549 using Base = zip_traits<ZipType, Iters...>;
550 using value_type = typename Base::value_type;
552 std::tuple<Iters...> iterators;
554 protected:
555 template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
556 return value_type(*std::get<Ns>(iterators)...);
559 template <size_t... Ns>
560 decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
561 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
564 template <size_t... Ns>
565 decltype(iterators) tup_dec(std::index_sequence<Ns...>) const {
566 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
569 public:
570 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
572 value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); }
574 const value_type operator*() const {
575 return deref(std::index_sequence_for<Iters...>{});
578 ZipType &operator++() {
579 iterators = tup_inc(std::index_sequence_for<Iters...>{});
580 return *reinterpret_cast<ZipType *>(this);
583 ZipType &operator--() {
584 static_assert(Base::IsBidirectional,
585 "All inner iterators must be at least bidirectional.");
586 iterators = tup_dec(std::index_sequence_for<Iters...>{});
587 return *reinterpret_cast<ZipType *>(this);
591 template <typename... Iters>
592 struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
593 using Base = zip_common<zip_first<Iters...>, Iters...>;
595 bool operator==(const zip_first<Iters...> &other) const {
596 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
599 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
602 template <typename... Iters>
603 class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
604 template <size_t... Ns>
605 bool test(const zip_shortest<Iters...> &other,
606 std::index_sequence<Ns...>) const {
607 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
608 std::get<Ns>(other.iterators)...},
609 identity<bool>{});
612 public:
613 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
615 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
617 bool operator==(const zip_shortest<Iters...> &other) const {
618 return !test(other, std::index_sequence_for<Iters...>{});
622 template <template <typename...> class ItType, typename... Args> class zippy {
623 public:
624 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
625 using iterator_category = typename iterator::iterator_category;
626 using value_type = typename iterator::value_type;
627 using difference_type = typename iterator::difference_type;
628 using pointer = typename iterator::pointer;
629 using reference = typename iterator::reference;
631 private:
632 std::tuple<Args...> ts;
634 template <size_t... Ns>
635 iterator begin_impl(std::index_sequence<Ns...>) const {
636 return iterator(std::begin(std::get<Ns>(ts))...);
638 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
639 return iterator(std::end(std::get<Ns>(ts))...);
642 public:
643 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
645 iterator begin() const {
646 return begin_impl(std::index_sequence_for<Args...>{});
648 iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
651 } // end namespace detail
653 /// zip iterator for two or more iteratable types.
654 template <typename T, typename U, typename... Args>
655 detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
656 Args &&... args) {
657 return detail::zippy<detail::zip_shortest, T, U, Args...>(
658 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
661 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to
662 /// be the shortest.
663 template <typename T, typename U, typename... Args>
664 detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
665 Args &&... args) {
666 return detail::zippy<detail::zip_first, T, U, Args...>(
667 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
670 namespace detail {
671 template <typename Iter>
672 static Iter next_or_end(const Iter &I, const Iter &End) {
673 if (I == End)
674 return End;
675 return std::next(I);
678 template <typename Iter>
679 static auto deref_or_none(const Iter &I, const Iter &End)
680 -> llvm::Optional<typename std::remove_const<
681 typename std::remove_reference<decltype(*I)>::type>::type> {
682 if (I == End)
683 return None;
684 return *I;
687 template <typename Iter> struct ZipLongestItemType {
688 using type =
689 llvm::Optional<typename std::remove_const<typename std::remove_reference<
690 decltype(*std::declval<Iter>())>::type>::type>;
693 template <typename... Iters> struct ZipLongestTupleType {
694 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
697 template <typename... Iters>
698 class zip_longest_iterator
699 : public iterator_facade_base<
700 zip_longest_iterator<Iters...>,
701 typename std::common_type<
702 std::forward_iterator_tag,
703 typename std::iterator_traits<Iters>::iterator_category...>::type,
704 typename ZipLongestTupleType<Iters...>::type,
705 typename std::iterator_traits<typename std::tuple_element<
706 0, std::tuple<Iters...>>::type>::difference_type,
707 typename ZipLongestTupleType<Iters...>::type *,
708 typename ZipLongestTupleType<Iters...>::type> {
709 public:
710 using value_type = typename ZipLongestTupleType<Iters...>::type;
712 private:
713 std::tuple<Iters...> iterators;
714 std::tuple<Iters...> end_iterators;
716 template <size_t... Ns>
717 bool test(const zip_longest_iterator<Iters...> &other,
718 std::index_sequence<Ns...>) const {
719 return llvm::any_of(
720 std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
721 std::get<Ns>(other.iterators)...},
722 identity<bool>{});
725 template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
726 return value_type(
727 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
730 template <size_t... Ns>
731 decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
732 return std::tuple<Iters...>(
733 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
736 public:
737 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
738 : iterators(std::forward<Iters>(ts.first)...),
739 end_iterators(std::forward<Iters>(ts.second)...) {}
741 value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); }
743 value_type operator*() const {
744 return deref(std::index_sequence_for<Iters...>{});
747 zip_longest_iterator<Iters...> &operator++() {
748 iterators = tup_inc(std::index_sequence_for<Iters...>{});
749 return *this;
752 bool operator==(const zip_longest_iterator<Iters...> &other) const {
753 return !test(other, std::index_sequence_for<Iters...>{});
757 template <typename... Args> class zip_longest_range {
758 public:
759 using iterator =
760 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
761 using iterator_category = typename iterator::iterator_category;
762 using value_type = typename iterator::value_type;
763 using difference_type = typename iterator::difference_type;
764 using pointer = typename iterator::pointer;
765 using reference = typename iterator::reference;
767 private:
768 std::tuple<Args...> ts;
770 template <size_t... Ns>
771 iterator begin_impl(std::index_sequence<Ns...>) const {
772 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
773 adl_end(std::get<Ns>(ts)))...);
776 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
777 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
778 adl_end(std::get<Ns>(ts)))...);
781 public:
782 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
784 iterator begin() const {
785 return begin_impl(std::index_sequence_for<Args...>{});
787 iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
789 } // namespace detail
791 /// Iterate over two or more iterators at the same time. Iteration continues
792 /// until all iterators reach the end. The llvm::Optional only contains a value
793 /// if the iterator has not reached the end.
794 template <typename T, typename U, typename... Args>
795 detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
796 Args &&... args) {
797 return detail::zip_longest_range<T, U, Args...>(
798 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
801 /// Iterator wrapper that concatenates sequences together.
803 /// This can concatenate different iterators, even with different types, into
804 /// a single iterator provided the value types of all the concatenated
805 /// iterators expose `reference` and `pointer` types that can be converted to
806 /// `ValueT &` and `ValueT *` respectively. It doesn't support more
807 /// interesting/customized pointer or reference types.
809 /// Currently this only supports forward or higher iterator categories as
810 /// inputs and always exposes a forward iterator interface.
811 template <typename ValueT, typename... IterTs>
812 class concat_iterator
813 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
814 std::forward_iterator_tag, ValueT> {
815 using BaseT = typename concat_iterator::iterator_facade_base;
817 /// We store both the current and end iterators for each concatenated
818 /// sequence in a tuple of pairs.
820 /// Note that something like iterator_range seems nice at first here, but the
821 /// range properties are of little benefit and end up getting in the way
822 /// because we need to do mutation on the current iterators.
823 std::tuple<IterTs...> Begins;
824 std::tuple<IterTs...> Ends;
826 /// Attempts to increment a specific iterator.
828 /// Returns true if it was able to increment the iterator. Returns false if
829 /// the iterator is already at the end iterator.
830 template <size_t Index> bool incrementHelper() {
831 auto &Begin = std::get<Index>(Begins);
832 auto &End = std::get<Index>(Ends);
833 if (Begin == End)
834 return false;
836 ++Begin;
837 return true;
840 /// Increments the first non-end iterator.
842 /// It is an error to call this with all iterators at the end.
843 template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
844 // Build a sequence of functions to increment each iterator if possible.
845 bool (concat_iterator::*IncrementHelperFns[])() = {
846 &concat_iterator::incrementHelper<Ns>...};
848 // Loop over them, and stop as soon as we succeed at incrementing one.
849 for (auto &IncrementHelperFn : IncrementHelperFns)
850 if ((this->*IncrementHelperFn)())
851 return;
853 llvm_unreachable("Attempted to increment an end concat iterator!");
856 /// Returns null if the specified iterator is at the end. Otherwise,
857 /// dereferences the iterator and returns the address of the resulting
858 /// reference.
859 template <size_t Index> ValueT *getHelper() const {
860 auto &Begin = std::get<Index>(Begins);
861 auto &End = std::get<Index>(Ends);
862 if (Begin == End)
863 return nullptr;
865 return &*Begin;
868 /// Finds the first non-end iterator, dereferences, and returns the resulting
869 /// reference.
871 /// It is an error to call this with all iterators at the end.
872 template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
873 // Build a sequence of functions to get from iterator if possible.
874 ValueT *(concat_iterator::*GetHelperFns[])() const = {
875 &concat_iterator::getHelper<Ns>...};
877 // Loop over them, and return the first result we find.
878 for (auto &GetHelperFn : GetHelperFns)
879 if (ValueT *P = (this->*GetHelperFn)())
880 return *P;
882 llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
885 public:
886 /// Constructs an iterator from a squence of ranges.
888 /// We need the full range to know how to switch between each of the
889 /// iterators.
890 template <typename... RangeTs>
891 explicit concat_iterator(RangeTs &&... Ranges)
892 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
894 using BaseT::operator++;
896 concat_iterator &operator++() {
897 increment(std::index_sequence_for<IterTs...>());
898 return *this;
901 ValueT &operator*() const {
902 return get(std::index_sequence_for<IterTs...>());
905 bool operator==(const concat_iterator &RHS) const {
906 return Begins == RHS.Begins && Ends == RHS.Ends;
910 namespace detail {
912 /// Helper to store a sequence of ranges being concatenated and access them.
914 /// This is designed to facilitate providing actual storage when temporaries
915 /// are passed into the constructor such that we can use it as part of range
916 /// based for loops.
917 template <typename ValueT, typename... RangeTs> class concat_range {
918 public:
919 using iterator =
920 concat_iterator<ValueT,
921 decltype(std::begin(std::declval<RangeTs &>()))...>;
923 private:
924 std::tuple<RangeTs...> Ranges;
926 template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) {
927 return iterator(std::get<Ns>(Ranges)...);
929 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
930 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
931 std::end(std::get<Ns>(Ranges)))...);
934 public:
935 concat_range(RangeTs &&... Ranges)
936 : Ranges(std::forward<RangeTs>(Ranges)...) {}
938 iterator begin() { return begin_impl(std::index_sequence_for<RangeTs...>{}); }
939 iterator end() { return end_impl(std::index_sequence_for<RangeTs...>{}); }
942 } // end namespace detail
944 /// Concatenated range across two or more ranges.
946 /// The desired value type must be explicitly specified.
947 template <typename ValueT, typename... RangeTs>
948 detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
949 static_assert(sizeof...(RangeTs) > 1,
950 "Need more than one range to concatenate!");
951 return detail::concat_range<ValueT, RangeTs...>(
952 std::forward<RangeTs>(Ranges)...);
955 //===----------------------------------------------------------------------===//
956 // Extra additions to <utility>
957 //===----------------------------------------------------------------------===//
959 /// Function object to check whether the first component of a std::pair
960 /// compares less than the first component of another std::pair.
961 struct less_first {
962 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
963 return lhs.first < rhs.first;
967 /// Function object to check whether the second component of a std::pair
968 /// compares less than the second component of another std::pair.
969 struct less_second {
970 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
971 return lhs.second < rhs.second;
975 /// \brief Function object to apply a binary function to the first component of
976 /// a std::pair.
977 template<typename FuncTy>
978 struct on_first {
979 FuncTy func;
981 template <typename T>
982 auto operator()(const T &lhs, const T &rhs) const
983 -> decltype(func(lhs.first, rhs.first)) {
984 return func(lhs.first, rhs.first);
988 /// Utility type to build an inheritance chain that makes it easy to rank
989 /// overload candidates.
990 template <int N> struct rank : rank<N - 1> {};
991 template <> struct rank<0> {};
993 /// traits class for checking whether type T is one of any of the given
994 /// types in the variadic list.
995 template <typename T, typename... Ts> struct is_one_of {
996 static const bool value = false;
999 template <typename T, typename U, typename... Ts>
1000 struct is_one_of<T, U, Ts...> {
1001 static const bool value =
1002 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
1005 /// traits class for checking whether type T is a base class for all
1006 /// the given types in the variadic list.
1007 template <typename T, typename... Ts> struct are_base_of {
1008 static const bool value = true;
1011 template <typename T, typename U, typename... Ts>
1012 struct are_base_of<T, U, Ts...> {
1013 static const bool value =
1014 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
1017 //===----------------------------------------------------------------------===//
1018 // Extra additions for arrays
1019 //===----------------------------------------------------------------------===//
1021 /// Find the length of an array.
1022 template <class T, std::size_t N>
1023 constexpr inline size_t array_lengthof(T (&)[N]) {
1024 return N;
1027 /// Adapt std::less<T> for array_pod_sort.
1028 template<typename T>
1029 inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1030 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1031 *reinterpret_cast<const T*>(P2)))
1032 return -1;
1033 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1034 *reinterpret_cast<const T*>(P1)))
1035 return 1;
1036 return 0;
1039 /// get_array_pod_sort_comparator - This is an internal helper function used to
1040 /// get type deduction of T right.
1041 template<typename T>
1042 inline int (*get_array_pod_sort_comparator(const T &))
1043 (const void*, const void*) {
1044 return array_pod_sort_comparator<T>;
1047 /// array_pod_sort - This sorts an array with the specified start and end
1048 /// extent. This is just like std::sort, except that it calls qsort instead of
1049 /// using an inlined template. qsort is slightly slower than std::sort, but
1050 /// most sorts are not performance critical in LLVM and std::sort has to be
1051 /// template instantiated for each type, leading to significant measured code
1052 /// bloat. This function should generally be used instead of std::sort where
1053 /// possible.
1055 /// This function assumes that you have simple POD-like types that can be
1056 /// compared with std::less and can be moved with memcpy. If this isn't true,
1057 /// you should use std::sort.
1059 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
1060 /// default to std::less.
1061 template<class IteratorTy>
1062 inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1063 // Don't inefficiently call qsort with one element or trigger undefined
1064 // behavior with an empty sequence.
1065 auto NElts = End - Start;
1066 if (NElts <= 1) return;
1067 #ifdef EXPENSIVE_CHECKS
1068 std::mt19937 Generator(std::random_device{}());
1069 std::shuffle(Start, End, Generator);
1070 #endif
1071 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1074 template <class IteratorTy>
1075 inline void array_pod_sort(
1076 IteratorTy Start, IteratorTy End,
1077 int (*Compare)(
1078 const typename std::iterator_traits<IteratorTy>::value_type *,
1079 const typename std::iterator_traits<IteratorTy>::value_type *)) {
1080 // Don't inefficiently call qsort with one element or trigger undefined
1081 // behavior with an empty sequence.
1082 auto NElts = End - Start;
1083 if (NElts <= 1) return;
1084 #ifdef EXPENSIVE_CHECKS
1085 std::mt19937 Generator(std::random_device{}());
1086 std::shuffle(Start, End, Generator);
1087 #endif
1088 qsort(&*Start, NElts, sizeof(*Start),
1089 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1092 // Provide wrappers to std::sort which shuffle the elements before sorting
1093 // to help uncover non-deterministic behavior (PR35135).
1094 template <typename IteratorTy>
1095 inline void sort(IteratorTy Start, IteratorTy End) {
1096 #ifdef EXPENSIVE_CHECKS
1097 std::mt19937 Generator(std::random_device{}());
1098 std::shuffle(Start, End, Generator);
1099 #endif
1100 std::sort(Start, End);
1103 template <typename Container> inline void sort(Container &&C) {
1104 llvm::sort(adl_begin(C), adl_end(C));
1107 template <typename IteratorTy, typename Compare>
1108 inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1109 #ifdef EXPENSIVE_CHECKS
1110 std::mt19937 Generator(std::random_device{}());
1111 std::shuffle(Start, End, Generator);
1112 #endif
1113 std::sort(Start, End, Comp);
1116 template <typename Container, typename Compare>
1117 inline void sort(Container &&C, Compare Comp) {
1118 llvm::sort(adl_begin(C), adl_end(C), Comp);
1121 //===----------------------------------------------------------------------===//
1122 // Extra additions to <algorithm>
1123 //===----------------------------------------------------------------------===//
1125 /// For a container of pointers, deletes the pointers and then clears the
1126 /// container.
1127 template<typename Container>
1128 void DeleteContainerPointers(Container &C) {
1129 for (auto V : C)
1130 delete V;
1131 C.clear();
1134 /// In a container of pairs (usually a map) whose second element is a pointer,
1135 /// deletes the second elements and then clears the container.
1136 template<typename Container>
1137 void DeleteContainerSeconds(Container &C) {
1138 for (auto &V : C)
1139 delete V.second;
1140 C.clear();
1143 /// Get the size of a range. This is a wrapper function around std::distance
1144 /// which is only enabled when the operation is O(1).
1145 template <typename R>
1146 auto size(R &&Range, typename std::enable_if<
1147 std::is_same<typename std::iterator_traits<decltype(
1148 Range.begin())>::iterator_category,
1149 std::random_access_iterator_tag>::value,
1150 void>::type * = nullptr)
1151 -> decltype(std::distance(Range.begin(), Range.end())) {
1152 return std::distance(Range.begin(), Range.end());
1155 /// Provide wrappers to std::for_each which take ranges instead of having to
1156 /// pass begin/end explicitly.
1157 template <typename R, typename UnaryPredicate>
1158 UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1159 return std::for_each(adl_begin(Range), adl_end(Range), P);
1162 /// Provide wrappers to std::all_of which take ranges instead of having to pass
1163 /// begin/end explicitly.
1164 template <typename R, typename UnaryPredicate>
1165 bool all_of(R &&Range, UnaryPredicate P) {
1166 return std::all_of(adl_begin(Range), adl_end(Range), P);
1169 /// Provide wrappers to std::any_of which take ranges instead of having to pass
1170 /// begin/end explicitly.
1171 template <typename R, typename UnaryPredicate>
1172 bool any_of(R &&Range, UnaryPredicate P) {
1173 return std::any_of(adl_begin(Range), adl_end(Range), P);
1176 /// Provide wrappers to std::none_of which take ranges instead of having to pass
1177 /// begin/end explicitly.
1178 template <typename R, typename UnaryPredicate>
1179 bool none_of(R &&Range, UnaryPredicate P) {
1180 return std::none_of(adl_begin(Range), adl_end(Range), P);
1183 /// Provide wrappers to std::find which take ranges instead of having to pass
1184 /// begin/end explicitly.
1185 template <typename R, typename T>
1186 auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1187 return std::find(adl_begin(Range), adl_end(Range), Val);
1190 /// Provide wrappers to std::find_if which take ranges instead of having to pass
1191 /// begin/end explicitly.
1192 template <typename R, typename UnaryPredicate>
1193 auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1194 return std::find_if(adl_begin(Range), adl_end(Range), P);
1197 template <typename R, typename UnaryPredicate>
1198 auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1199 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1202 /// Provide wrappers to std::remove_if which take ranges instead of having to
1203 /// pass begin/end explicitly.
1204 template <typename R, typename UnaryPredicate>
1205 auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1206 return std::remove_if(adl_begin(Range), adl_end(Range), P);
1209 /// Provide wrappers to std::copy_if which take ranges instead of having to
1210 /// pass begin/end explicitly.
1211 template <typename R, typename OutputIt, typename UnaryPredicate>
1212 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1213 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1216 template <typename R, typename OutputIt>
1217 OutputIt copy(R &&Range, OutputIt Out) {
1218 return std::copy(adl_begin(Range), adl_end(Range), Out);
1221 /// Wrapper function around std::find to detect if an element exists
1222 /// in a container.
1223 template <typename R, typename E>
1224 bool is_contained(R &&Range, const E &Element) {
1225 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1228 /// Wrapper function around std::count to count the number of times an element
1229 /// \p Element occurs in the given range \p Range.
1230 template <typename R, typename E>
1231 auto count(R &&Range, const E &Element) ->
1232 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1233 return std::count(adl_begin(Range), adl_end(Range), Element);
1236 /// Wrapper function around std::count_if to count the number of times an
1237 /// element satisfying a given predicate occurs in a range.
1238 template <typename R, typename UnaryPredicate>
1239 auto count_if(R &&Range, UnaryPredicate P) ->
1240 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1241 return std::count_if(adl_begin(Range), adl_end(Range), P);
1244 /// Wrapper function around std::transform to apply a function to a range and
1245 /// store the result elsewhere.
1246 template <typename R, typename OutputIt, typename UnaryPredicate>
1247 OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1248 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1251 /// Provide wrappers to std::partition which take ranges instead of having to
1252 /// pass begin/end explicitly.
1253 template <typename R, typename UnaryPredicate>
1254 auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1255 return std::partition(adl_begin(Range), adl_end(Range), P);
1258 /// Provide wrappers to std::lower_bound which take ranges instead of having to
1259 /// pass begin/end explicitly.
1260 template <typename R, typename T>
1261 auto lower_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1262 return std::lower_bound(adl_begin(Range), adl_end(Range),
1263 std::forward<T>(Value));
1266 template <typename R, typename T, typename Compare>
1267 auto lower_bound(R &&Range, T &&Value, Compare C)
1268 -> decltype(adl_begin(Range)) {
1269 return std::lower_bound(adl_begin(Range), adl_end(Range),
1270 std::forward<T>(Value), C);
1273 /// Provide wrappers to std::upper_bound which take ranges instead of having to
1274 /// pass begin/end explicitly.
1275 template <typename R, typename T>
1276 auto upper_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1277 return std::upper_bound(adl_begin(Range), adl_end(Range),
1278 std::forward<T>(Value));
1281 template <typename R, typename T, typename Compare>
1282 auto upper_bound(R &&Range, T &&Value, Compare C)
1283 -> decltype(adl_begin(Range)) {
1284 return std::upper_bound(adl_begin(Range), adl_end(Range),
1285 std::forward<T>(Value), C);
1288 template <typename R>
1289 void stable_sort(R &&Range) {
1290 std::stable_sort(adl_begin(Range), adl_end(Range));
1293 template <typename R, typename Compare>
1294 void stable_sort(R &&Range, Compare C) {
1295 std::stable_sort(adl_begin(Range), adl_end(Range), C);
1298 /// Binary search for the first iterator in a range where a predicate is false.
1299 /// Requires that C is always true below some limit, and always false above it.
1300 template <typename R, typename Predicate,
1301 typename Val = decltype(*adl_begin(std::declval<R>()))>
1302 auto partition_point(R &&Range, Predicate P) -> decltype(adl_begin(Range)) {
1303 return std::partition_point(adl_begin(Range), adl_end(Range), P);
1306 /// Wrapper function around std::equal to detect if all elements
1307 /// in a container are same.
1308 template <typename R>
1309 bool is_splat(R &&Range) {
1310 size_t range_size = size(Range);
1311 return range_size != 0 && (range_size == 1 ||
1312 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1315 /// Given a range of type R, iterate the entire range and return a
1316 /// SmallVector with elements of the vector. This is useful, for example,
1317 /// when you want to iterate a range and then sort the results.
1318 template <unsigned Size, typename R>
1319 SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1320 to_vector(R &&Range) {
1321 return {adl_begin(Range), adl_end(Range)};
1324 /// Provide a container algorithm similar to C++ Library Fundamentals v2's
1325 /// `erase_if` which is equivalent to:
1327 /// C.erase(remove_if(C, pred), C.end());
1329 /// This version works for any container with an erase method call accepting
1330 /// two iterators.
1331 template <typename Container, typename UnaryPredicate>
1332 void erase_if(Container &C, UnaryPredicate P) {
1333 C.erase(remove_if(C, P), C.end());
1336 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
1337 /// the range [ValIt, ValEnd) (which is not from the same container).
1338 template<typename Container, typename RandomAccessIterator>
1339 void replace(Container &Cont, typename Container::iterator ContIt,
1340 typename Container::iterator ContEnd, RandomAccessIterator ValIt,
1341 RandomAccessIterator ValEnd) {
1342 while (true) {
1343 if (ValIt == ValEnd) {
1344 Cont.erase(ContIt, ContEnd);
1345 return;
1346 } else if (ContIt == ContEnd) {
1347 Cont.insert(ContIt, ValIt, ValEnd);
1348 return;
1350 *ContIt++ = *ValIt++;
1354 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
1355 /// the range R.
1356 template<typename Container, typename Range = std::initializer_list<
1357 typename Container::value_type>>
1358 void replace(Container &Cont, typename Container::iterator ContIt,
1359 typename Container::iterator ContEnd, Range R) {
1360 replace(Cont, ContIt, ContEnd, R.begin(), R.end());
1363 //===----------------------------------------------------------------------===//
1364 // Extra additions to <memory>
1365 //===----------------------------------------------------------------------===//
1367 struct FreeDeleter {
1368 void operator()(void* v) {
1369 ::free(v);
1373 template<typename First, typename Second>
1374 struct pair_hash {
1375 size_t operator()(const std::pair<First, Second> &P) const {
1376 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1380 /// Binary functor that adapts to any other binary functor after dereferencing
1381 /// operands.
1382 template <typename T> struct deref {
1383 T func;
1385 // Could be further improved to cope with non-derivable functors and
1386 // non-binary functors (should be a variadic template member function
1387 // operator()).
1388 template <typename A, typename B>
1389 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1390 assert(lhs);
1391 assert(rhs);
1392 return func(*lhs, *rhs);
1396 namespace detail {
1398 template <typename R> class enumerator_iter;
1400 template <typename R> struct result_pair {
1401 using value_reference =
1402 typename std::iterator_traits<IterOfRange<R>>::reference;
1404 friend class enumerator_iter<R>;
1406 result_pair() = default;
1407 result_pair(std::size_t Index, IterOfRange<R> Iter)
1408 : Index(Index), Iter(Iter) {}
1410 result_pair<R> &operator=(const result_pair<R> &Other) {
1411 Index = Other.Index;
1412 Iter = Other.Iter;
1413 return *this;
1416 std::size_t index() const { return Index; }
1417 const value_reference value() const { return *Iter; }
1418 value_reference value() { return *Iter; }
1420 private:
1421 std::size_t Index = std::numeric_limits<std::size_t>::max();
1422 IterOfRange<R> Iter;
1425 template <typename R>
1426 class enumerator_iter
1427 : public iterator_facade_base<
1428 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1429 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1430 typename std::iterator_traits<IterOfRange<R>>::pointer,
1431 typename std::iterator_traits<IterOfRange<R>>::reference> {
1432 using result_type = result_pair<R>;
1434 public:
1435 explicit enumerator_iter(IterOfRange<R> EndIter)
1436 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1438 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1439 : Result(Index, Iter) {}
1441 result_type &operator*() { return Result; }
1442 const result_type &operator*() const { return Result; }
1444 enumerator_iter<R> &operator++() {
1445 assert(Result.Index != std::numeric_limits<size_t>::max());
1446 ++Result.Iter;
1447 ++Result.Index;
1448 return *this;
1451 bool operator==(const enumerator_iter<R> &RHS) const {
1452 // Don't compare indices here, only iterators. It's possible for an end
1453 // iterator to have different indices depending on whether it was created
1454 // by calling std::end() versus incrementing a valid iterator.
1455 return Result.Iter == RHS.Result.Iter;
1458 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1459 Result = Other.Result;
1460 return *this;
1463 private:
1464 result_type Result;
1467 template <typename R> class enumerator {
1468 public:
1469 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1471 enumerator_iter<R> begin() {
1472 return enumerator_iter<R>(0, std::begin(TheRange));
1475 enumerator_iter<R> end() {
1476 return enumerator_iter<R>(std::end(TheRange));
1479 private:
1480 R TheRange;
1483 } // end namespace detail
1485 /// Given an input range, returns a new range whose values are are pair (A,B)
1486 /// such that A is the 0-based index of the item in the sequence, and B is
1487 /// the value from the original sequence. Example:
1489 /// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1490 /// for (auto X : enumerate(Items)) {
1491 /// printf("Item %d - %c\n", X.index(), X.value());
1492 /// }
1494 /// Output:
1495 /// Item 0 - A
1496 /// Item 1 - B
1497 /// Item 2 - C
1498 /// Item 3 - D
1500 template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1501 return detail::enumerator<R>(std::forward<R>(TheRange));
1504 namespace detail {
1506 template <typename F, typename Tuple, std::size_t... I>
1507 auto apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>)
1508 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1509 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1512 } // end namespace detail
1514 /// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1515 /// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1516 /// return the result.
1517 template <typename F, typename Tuple>
1518 auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1519 std::forward<F>(f), std::forward<Tuple>(t),
1520 std::make_index_sequence<
1521 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1522 using Indices = std::make_index_sequence<
1523 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1525 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1526 Indices{});
1529 /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
1530 /// time. Not meant for use with random-access iterators.
1531 template <typename IterTy>
1532 bool hasNItems(
1533 IterTy &&Begin, IterTy &&End, unsigned N,
1534 typename std::enable_if<
1535 !std::is_same<
1536 typename std::iterator_traits<typename std::remove_reference<
1537 decltype(Begin)>::type>::iterator_category,
1538 std::random_access_iterator_tag>::value,
1539 void>::type * = nullptr) {
1540 for (; N; --N, ++Begin)
1541 if (Begin == End)
1542 return false; // Too few.
1543 return Begin == End;
1546 /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
1547 /// time. Not meant for use with random-access iterators.
1548 template <typename IterTy>
1549 bool hasNItemsOrMore(
1550 IterTy &&Begin, IterTy &&End, unsigned N,
1551 typename std::enable_if<
1552 !std::is_same<
1553 typename std::iterator_traits<typename std::remove_reference<
1554 decltype(Begin)>::type>::iterator_category,
1555 std::random_access_iterator_tag>::value,
1556 void>::type * = nullptr) {
1557 for (; N; --N, ++Begin)
1558 if (Begin == End)
1559 return false; // Too few.
1560 return true;
1563 /// Returns a raw pointer that represents the same address as the argument.
1565 /// The late bound return should be removed once we move to C++14 to better
1566 /// align with the C++20 declaration. Also, this implementation can be removed
1567 /// once we move to C++20 where it's defined as std::to_addres()
1569 /// The std::pointer_traits<>::to_address(p) variations of these overloads has
1570 /// not been implemented.
1571 template <class Ptr> auto to_address(const Ptr &P) -> decltype(P.operator->()) {
1572 return P.operator->();
1574 template <class T> constexpr T *to_address(T *P) { return P; }
1576 } // end namespace llvm
1578 #endif // LLVM_ADT_STLEXTRAS_H