[InstCombine] Signed saturation patterns
[llvm-core.git] / include / llvm / ADT / SmallVector.h
blob17586904d2128167ffe285d09a5bf98c2bdee64b
1 //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the SmallVector class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_ADT_SMALLVECTOR_H
14 #define LLVM_ADT_SMALLVECTOR_H
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Support/AlignOf.h"
18 #include "llvm/Support/Compiler.h"
19 #include "llvm/Support/MathExtras.h"
20 #include "llvm/Support/MemAlloc.h"
21 #include "llvm/Support/type_traits.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include <algorithm>
24 #include <cassert>
25 #include <cstddef>
26 #include <cstdlib>
27 #include <cstring>
28 #include <initializer_list>
29 #include <iterator>
30 #include <memory>
31 #include <new>
32 #include <type_traits>
33 #include <utility>
35 namespace llvm {
37 /// This is all the non-templated stuff common to all SmallVectors.
38 class SmallVectorBase {
39 protected:
40 void *BeginX;
41 unsigned Size = 0, Capacity;
43 SmallVectorBase() = delete;
44 SmallVectorBase(void *FirstEl, size_t TotalCapacity)
45 : BeginX(FirstEl), Capacity(TotalCapacity) {}
47 /// This is an implementation of the grow() method which only works
48 /// on POD-like data types and is out of line to reduce code duplication.
49 void grow_pod(void *FirstEl, size_t MinCapacity, size_t TSize);
51 public:
52 size_t size() const { return Size; }
53 size_t capacity() const { return Capacity; }
55 LLVM_NODISCARD bool empty() const { return !Size; }
57 /// Set the array size to \p N, which the current array must have enough
58 /// capacity for.
59 ///
60 /// This does not construct or destroy any elements in the vector.
61 ///
62 /// Clients can use this in conjunction with capacity() to write past the end
63 /// of the buffer when they know that more elements are available, and only
64 /// update the size later. This avoids the cost of value initializing elements
65 /// which will only be overwritten.
66 void set_size(size_t N) {
67 assert(N <= capacity());
68 Size = N;
72 /// Figure out the offset of the first element.
73 template <class T, typename = void> struct SmallVectorAlignmentAndSize {
74 AlignedCharArrayUnion<SmallVectorBase> Base;
75 AlignedCharArrayUnion<T> FirstEl;
78 /// This is the part of SmallVectorTemplateBase which does not depend on whether
79 /// the type T is a POD. The extra dummy template argument is used by ArrayRef
80 /// to avoid unnecessarily requiring T to be complete.
81 template <typename T, typename = void>
82 class SmallVectorTemplateCommon : public SmallVectorBase {
83 /// Find the address of the first element. For this pointer math to be valid
84 /// with small-size of 0 for T with lots of alignment, it's important that
85 /// SmallVectorStorage is properly-aligned even for small-size of 0.
86 void *getFirstEl() const {
87 return const_cast<void *>(reinterpret_cast<const void *>(
88 reinterpret_cast<const char *>(this) +
89 offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)));
91 // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
93 protected:
94 SmallVectorTemplateCommon(size_t Size)
95 : SmallVectorBase(getFirstEl(), Size) {}
97 void grow_pod(size_t MinCapacity, size_t TSize) {
98 SmallVectorBase::grow_pod(getFirstEl(), MinCapacity, TSize);
101 /// Return true if this is a smallvector which has not had dynamic
102 /// memory allocated for it.
103 bool isSmall() const { return BeginX == getFirstEl(); }
105 /// Put this vector in a state of being small.
106 void resetToSmall() {
107 BeginX = getFirstEl();
108 Size = Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
111 public:
112 using size_type = size_t;
113 using difference_type = ptrdiff_t;
114 using value_type = T;
115 using iterator = T *;
116 using const_iterator = const T *;
118 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
119 using reverse_iterator = std::reverse_iterator<iterator>;
121 using reference = T &;
122 using const_reference = const T &;
123 using pointer = T *;
124 using const_pointer = const T *;
126 // forward iterator creation methods.
127 iterator begin() { return (iterator)this->BeginX; }
128 const_iterator begin() const { return (const_iterator)this->BeginX; }
129 iterator end() { return begin() + size(); }
130 const_iterator end() const { return begin() + size(); }
132 // reverse iterator creation methods.
133 reverse_iterator rbegin() { return reverse_iterator(end()); }
134 const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
135 reverse_iterator rend() { return reverse_iterator(begin()); }
136 const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
138 size_type size_in_bytes() const { return size() * sizeof(T); }
139 size_type max_size() const { return size_type(-1) / sizeof(T); }
141 size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
143 /// Return a pointer to the vector's buffer, even if empty().
144 pointer data() { return pointer(begin()); }
145 /// Return a pointer to the vector's buffer, even if empty().
146 const_pointer data() const { return const_pointer(begin()); }
148 reference operator[](size_type idx) {
149 assert(idx < size());
150 return begin()[idx];
152 const_reference operator[](size_type idx) const {
153 assert(idx < size());
154 return begin()[idx];
157 reference front() {
158 assert(!empty());
159 return begin()[0];
161 const_reference front() const {
162 assert(!empty());
163 return begin()[0];
166 reference back() {
167 assert(!empty());
168 return end()[-1];
170 const_reference back() const {
171 assert(!empty());
172 return end()[-1];
176 /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put method
177 /// implementations that are designed to work with non-POD-like T's.
178 template <typename T, bool = is_trivially_copyable<T>::value>
179 class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
180 protected:
181 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
183 static void destroy_range(T *S, T *E) {
184 while (S != E) {
185 --E;
186 E->~T();
190 /// Move the range [I, E) into the uninitialized memory starting with "Dest",
191 /// constructing elements as needed.
192 template<typename It1, typename It2>
193 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
194 std::uninitialized_copy(std::make_move_iterator(I),
195 std::make_move_iterator(E), Dest);
198 /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
199 /// constructing elements as needed.
200 template<typename It1, typename It2>
201 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
202 std::uninitialized_copy(I, E, Dest);
205 /// Grow the allocated memory (without initializing new elements), doubling
206 /// the size of the allocated memory. Guarantees space for at least one more
207 /// element, or MinSize more elements if specified.
208 void grow(size_t MinSize = 0);
210 public:
211 void push_back(const T &Elt) {
212 if (LLVM_UNLIKELY(this->size() >= this->capacity()))
213 this->grow();
214 ::new ((void*) this->end()) T(Elt);
215 this->set_size(this->size() + 1);
218 void push_back(T &&Elt) {
219 if (LLVM_UNLIKELY(this->size() >= this->capacity()))
220 this->grow();
221 ::new ((void*) this->end()) T(::std::move(Elt));
222 this->set_size(this->size() + 1);
225 void pop_back() {
226 this->set_size(this->size() - 1);
227 this->end()->~T();
231 // Define this out-of-line to dissuade the C++ compiler from inlining it.
232 template <typename T, bool TriviallyCopyable>
233 void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
234 if (MinSize > UINT32_MAX)
235 report_bad_alloc_error("SmallVector capacity overflow during allocation");
237 // Always grow, even from zero.
238 size_t NewCapacity = size_t(NextPowerOf2(this->capacity() + 2));
239 NewCapacity = std::min(std::max(NewCapacity, MinSize), size_t(UINT32_MAX));
240 T *NewElts = static_cast<T*>(llvm::safe_malloc(NewCapacity*sizeof(T)));
242 // Move the elements over.
243 this->uninitialized_move(this->begin(), this->end(), NewElts);
245 // Destroy the original elements.
246 destroy_range(this->begin(), this->end());
248 // If this wasn't grown from the inline copy, deallocate the old space.
249 if (!this->isSmall())
250 free(this->begin());
252 this->BeginX = NewElts;
253 this->Capacity = NewCapacity;
256 /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
257 /// method implementations that are designed to work with POD-like T's.
258 template <typename T>
259 class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
260 protected:
261 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
263 // No need to do a destroy loop for POD's.
264 static void destroy_range(T *, T *) {}
266 /// Move the range [I, E) onto the uninitialized memory
267 /// starting with "Dest", constructing elements into it as needed.
268 template<typename It1, typename It2>
269 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
270 // Just do a copy.
271 uninitialized_copy(I, E, Dest);
274 /// Copy the range [I, E) onto the uninitialized memory
275 /// starting with "Dest", constructing elements into it as needed.
276 template<typename It1, typename It2>
277 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
278 // Arbitrary iterator types; just use the basic implementation.
279 std::uninitialized_copy(I, E, Dest);
282 /// Copy the range [I, E) onto the uninitialized memory
283 /// starting with "Dest", constructing elements into it as needed.
284 template <typename T1, typename T2>
285 static void uninitialized_copy(
286 T1 *I, T1 *E, T2 *Dest,
287 typename std::enable_if<std::is_same<typename std::remove_const<T1>::type,
288 T2>::value>::type * = nullptr) {
289 // Use memcpy for PODs iterated by pointers (which includes SmallVector
290 // iterators): std::uninitialized_copy optimizes to memmove, but we can
291 // use memcpy here. Note that I and E are iterators and thus might be
292 // invalid for memcpy if they are equal.
293 if (I != E)
294 memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
297 /// Double the size of the allocated memory, guaranteeing space for at
298 /// least one more element or MinSize if specified.
299 void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
301 public:
302 void push_back(const T &Elt) {
303 if (LLVM_UNLIKELY(this->size() >= this->capacity()))
304 this->grow();
305 memcpy(reinterpret_cast<void *>(this->end()), &Elt, sizeof(T));
306 this->set_size(this->size() + 1);
309 void pop_back() { this->set_size(this->size() - 1); }
312 /// This class consists of common code factored out of the SmallVector class to
313 /// reduce code duplication based on the SmallVector 'N' template parameter.
314 template <typename T>
315 class SmallVectorImpl : public SmallVectorTemplateBase<T> {
316 using SuperClass = SmallVectorTemplateBase<T>;
318 public:
319 using iterator = typename SuperClass::iterator;
320 using const_iterator = typename SuperClass::const_iterator;
321 using reference = typename SuperClass::reference;
322 using size_type = typename SuperClass::size_type;
324 protected:
325 // Default ctor - Initialize to empty.
326 explicit SmallVectorImpl(unsigned N)
327 : SmallVectorTemplateBase<T>(N) {}
329 public:
330 SmallVectorImpl(const SmallVectorImpl &) = delete;
332 ~SmallVectorImpl() {
333 // Subclass has already destructed this vector's elements.
334 // If this wasn't grown from the inline copy, deallocate the old space.
335 if (!this->isSmall())
336 free(this->begin());
339 void clear() {
340 this->destroy_range(this->begin(), this->end());
341 this->Size = 0;
344 void resize(size_type N) {
345 if (N < this->size()) {
346 this->destroy_range(this->begin()+N, this->end());
347 this->set_size(N);
348 } else if (N > this->size()) {
349 if (this->capacity() < N)
350 this->grow(N);
351 for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
352 new (&*I) T();
353 this->set_size(N);
357 void resize(size_type N, const T &NV) {
358 if (N < this->size()) {
359 this->destroy_range(this->begin()+N, this->end());
360 this->set_size(N);
361 } else if (N > this->size()) {
362 if (this->capacity() < N)
363 this->grow(N);
364 std::uninitialized_fill(this->end(), this->begin()+N, NV);
365 this->set_size(N);
369 void reserve(size_type N) {
370 if (this->capacity() < N)
371 this->grow(N);
374 LLVM_NODISCARD T pop_back_val() {
375 T Result = ::std::move(this->back());
376 this->pop_back();
377 return Result;
380 void swap(SmallVectorImpl &RHS);
382 /// Add the specified range to the end of the SmallVector.
383 template <typename in_iter,
384 typename = typename std::enable_if<std::is_convertible<
385 typename std::iterator_traits<in_iter>::iterator_category,
386 std::input_iterator_tag>::value>::type>
387 void append(in_iter in_start, in_iter in_end) {
388 size_type NumInputs = std::distance(in_start, in_end);
389 if (NumInputs > this->capacity() - this->size())
390 this->grow(this->size()+NumInputs);
392 this->uninitialized_copy(in_start, in_end, this->end());
393 this->set_size(this->size() + NumInputs);
396 /// Append \p NumInputs copies of \p Elt to the end.
397 void append(size_type NumInputs, const T &Elt) {
398 if (NumInputs > this->capacity() - this->size())
399 this->grow(this->size()+NumInputs);
401 std::uninitialized_fill_n(this->end(), NumInputs, Elt);
402 this->set_size(this->size() + NumInputs);
405 void append(std::initializer_list<T> IL) {
406 append(IL.begin(), IL.end());
409 // FIXME: Consider assigning over existing elements, rather than clearing &
410 // re-initializing them - for all assign(...) variants.
412 void assign(size_type NumElts, const T &Elt) {
413 clear();
414 if (this->capacity() < NumElts)
415 this->grow(NumElts);
416 this->set_size(NumElts);
417 std::uninitialized_fill(this->begin(), this->end(), Elt);
420 template <typename in_iter,
421 typename = typename std::enable_if<std::is_convertible<
422 typename std::iterator_traits<in_iter>::iterator_category,
423 std::input_iterator_tag>::value>::type>
424 void assign(in_iter in_start, in_iter in_end) {
425 clear();
426 append(in_start, in_end);
429 void assign(std::initializer_list<T> IL) {
430 clear();
431 append(IL);
434 iterator erase(const_iterator CI) {
435 // Just cast away constness because this is a non-const member function.
436 iterator I = const_cast<iterator>(CI);
438 assert(I >= this->begin() && "Iterator to erase is out of bounds.");
439 assert(I < this->end() && "Erasing at past-the-end iterator.");
441 iterator N = I;
442 // Shift all elts down one.
443 std::move(I+1, this->end(), I);
444 // Drop the last elt.
445 this->pop_back();
446 return(N);
449 iterator erase(const_iterator CS, const_iterator CE) {
450 // Just cast away constness because this is a non-const member function.
451 iterator S = const_cast<iterator>(CS);
452 iterator E = const_cast<iterator>(CE);
454 assert(S >= this->begin() && "Range to erase is out of bounds.");
455 assert(S <= E && "Trying to erase invalid range.");
456 assert(E <= this->end() && "Trying to erase past the end.");
458 iterator N = S;
459 // Shift all elts down.
460 iterator I = std::move(E, this->end(), S);
461 // Drop the last elts.
462 this->destroy_range(I, this->end());
463 this->set_size(I - this->begin());
464 return(N);
467 iterator insert(iterator I, T &&Elt) {
468 if (I == this->end()) { // Important special case for empty vector.
469 this->push_back(::std::move(Elt));
470 return this->end()-1;
473 assert(I >= this->begin() && "Insertion iterator is out of bounds.");
474 assert(I <= this->end() && "Inserting past the end of the vector.");
476 if (this->size() >= this->capacity()) {
477 size_t EltNo = I-this->begin();
478 this->grow();
479 I = this->begin()+EltNo;
482 ::new ((void*) this->end()) T(::std::move(this->back()));
483 // Push everything else over.
484 std::move_backward(I, this->end()-1, this->end());
485 this->set_size(this->size() + 1);
487 // If we just moved the element we're inserting, be sure to update
488 // the reference.
489 T *EltPtr = &Elt;
490 if (I <= EltPtr && EltPtr < this->end())
491 ++EltPtr;
493 *I = ::std::move(*EltPtr);
494 return I;
497 iterator insert(iterator I, const T &Elt) {
498 if (I == this->end()) { // Important special case for empty vector.
499 this->push_back(Elt);
500 return this->end()-1;
503 assert(I >= this->begin() && "Insertion iterator is out of bounds.");
504 assert(I <= this->end() && "Inserting past the end of the vector.");
506 if (this->size() >= this->capacity()) {
507 size_t EltNo = I-this->begin();
508 this->grow();
509 I = this->begin()+EltNo;
511 ::new ((void*) this->end()) T(std::move(this->back()));
512 // Push everything else over.
513 std::move_backward(I, this->end()-1, this->end());
514 this->set_size(this->size() + 1);
516 // If we just moved the element we're inserting, be sure to update
517 // the reference.
518 const T *EltPtr = &Elt;
519 if (I <= EltPtr && EltPtr < this->end())
520 ++EltPtr;
522 *I = *EltPtr;
523 return I;
526 iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
527 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
528 size_t InsertElt = I - this->begin();
530 if (I == this->end()) { // Important special case for empty vector.
531 append(NumToInsert, Elt);
532 return this->begin()+InsertElt;
535 assert(I >= this->begin() && "Insertion iterator is out of bounds.");
536 assert(I <= this->end() && "Inserting past the end of the vector.");
538 // Ensure there is enough space.
539 reserve(this->size() + NumToInsert);
541 // Uninvalidate the iterator.
542 I = this->begin()+InsertElt;
544 // If there are more elements between the insertion point and the end of the
545 // range than there are being inserted, we can use a simple approach to
546 // insertion. Since we already reserved space, we know that this won't
547 // reallocate the vector.
548 if (size_t(this->end()-I) >= NumToInsert) {
549 T *OldEnd = this->end();
550 append(std::move_iterator<iterator>(this->end() - NumToInsert),
551 std::move_iterator<iterator>(this->end()));
553 // Copy the existing elements that get replaced.
554 std::move_backward(I, OldEnd-NumToInsert, OldEnd);
556 std::fill_n(I, NumToInsert, Elt);
557 return I;
560 // Otherwise, we're inserting more elements than exist already, and we're
561 // not inserting at the end.
563 // Move over the elements that we're about to overwrite.
564 T *OldEnd = this->end();
565 this->set_size(this->size() + NumToInsert);
566 size_t NumOverwritten = OldEnd-I;
567 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
569 // Replace the overwritten part.
570 std::fill_n(I, NumOverwritten, Elt);
572 // Insert the non-overwritten middle part.
573 std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
574 return I;
577 template <typename ItTy,
578 typename = typename std::enable_if<std::is_convertible<
579 typename std::iterator_traits<ItTy>::iterator_category,
580 std::input_iterator_tag>::value>::type>
581 iterator insert(iterator I, ItTy From, ItTy To) {
582 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
583 size_t InsertElt = I - this->begin();
585 if (I == this->end()) { // Important special case for empty vector.
586 append(From, To);
587 return this->begin()+InsertElt;
590 assert(I >= this->begin() && "Insertion iterator is out of bounds.");
591 assert(I <= this->end() && "Inserting past the end of the vector.");
593 size_t NumToInsert = std::distance(From, To);
595 // Ensure there is enough space.
596 reserve(this->size() + NumToInsert);
598 // Uninvalidate the iterator.
599 I = this->begin()+InsertElt;
601 // If there are more elements between the insertion point and the end of the
602 // range than there are being inserted, we can use a simple approach to
603 // insertion. Since we already reserved space, we know that this won't
604 // reallocate the vector.
605 if (size_t(this->end()-I) >= NumToInsert) {
606 T *OldEnd = this->end();
607 append(std::move_iterator<iterator>(this->end() - NumToInsert),
608 std::move_iterator<iterator>(this->end()));
610 // Copy the existing elements that get replaced.
611 std::move_backward(I, OldEnd-NumToInsert, OldEnd);
613 std::copy(From, To, I);
614 return I;
617 // Otherwise, we're inserting more elements than exist already, and we're
618 // not inserting at the end.
620 // Move over the elements that we're about to overwrite.
621 T *OldEnd = this->end();
622 this->set_size(this->size() + NumToInsert);
623 size_t NumOverwritten = OldEnd-I;
624 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
626 // Replace the overwritten part.
627 for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
628 *J = *From;
629 ++J; ++From;
632 // Insert the non-overwritten middle part.
633 this->uninitialized_copy(From, To, OldEnd);
634 return I;
637 void insert(iterator I, std::initializer_list<T> IL) {
638 insert(I, IL.begin(), IL.end());
641 template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
642 if (LLVM_UNLIKELY(this->size() >= this->capacity()))
643 this->grow();
644 ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
645 this->set_size(this->size() + 1);
646 return this->back();
649 SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
651 SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
653 bool operator==(const SmallVectorImpl &RHS) const {
654 if (this->size() != RHS.size()) return false;
655 return std::equal(this->begin(), this->end(), RHS.begin());
657 bool operator!=(const SmallVectorImpl &RHS) const {
658 return !(*this == RHS);
661 bool operator<(const SmallVectorImpl &RHS) const {
662 return std::lexicographical_compare(this->begin(), this->end(),
663 RHS.begin(), RHS.end());
667 template <typename T>
668 void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
669 if (this == &RHS) return;
671 // We can only avoid copying elements if neither vector is small.
672 if (!this->isSmall() && !RHS.isSmall()) {
673 std::swap(this->BeginX, RHS.BeginX);
674 std::swap(this->Size, RHS.Size);
675 std::swap(this->Capacity, RHS.Capacity);
676 return;
678 if (RHS.size() > this->capacity())
679 this->grow(RHS.size());
680 if (this->size() > RHS.capacity())
681 RHS.grow(this->size());
683 // Swap the shared elements.
684 size_t NumShared = this->size();
685 if (NumShared > RHS.size()) NumShared = RHS.size();
686 for (size_type i = 0; i != NumShared; ++i)
687 std::swap((*this)[i], RHS[i]);
689 // Copy over the extra elts.
690 if (this->size() > RHS.size()) {
691 size_t EltDiff = this->size() - RHS.size();
692 this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
693 RHS.set_size(RHS.size() + EltDiff);
694 this->destroy_range(this->begin()+NumShared, this->end());
695 this->set_size(NumShared);
696 } else if (RHS.size() > this->size()) {
697 size_t EltDiff = RHS.size() - this->size();
698 this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
699 this->set_size(this->size() + EltDiff);
700 this->destroy_range(RHS.begin()+NumShared, RHS.end());
701 RHS.set_size(NumShared);
705 template <typename T>
706 SmallVectorImpl<T> &SmallVectorImpl<T>::
707 operator=(const SmallVectorImpl<T> &RHS) {
708 // Avoid self-assignment.
709 if (this == &RHS) return *this;
711 // If we already have sufficient space, assign the common elements, then
712 // destroy any excess.
713 size_t RHSSize = RHS.size();
714 size_t CurSize = this->size();
715 if (CurSize >= RHSSize) {
716 // Assign common elements.
717 iterator NewEnd;
718 if (RHSSize)
719 NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
720 else
721 NewEnd = this->begin();
723 // Destroy excess elements.
724 this->destroy_range(NewEnd, this->end());
726 // Trim.
727 this->set_size(RHSSize);
728 return *this;
731 // If we have to grow to have enough elements, destroy the current elements.
732 // This allows us to avoid copying them during the grow.
733 // FIXME: don't do this if they're efficiently moveable.
734 if (this->capacity() < RHSSize) {
735 // Destroy current elements.
736 this->destroy_range(this->begin(), this->end());
737 this->set_size(0);
738 CurSize = 0;
739 this->grow(RHSSize);
740 } else if (CurSize) {
741 // Otherwise, use assignment for the already-constructed elements.
742 std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
745 // Copy construct the new elements in place.
746 this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
747 this->begin()+CurSize);
749 // Set end.
750 this->set_size(RHSSize);
751 return *this;
754 template <typename T>
755 SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
756 // Avoid self-assignment.
757 if (this == &RHS) return *this;
759 // If the RHS isn't small, clear this vector and then steal its buffer.
760 if (!RHS.isSmall()) {
761 this->destroy_range(this->begin(), this->end());
762 if (!this->isSmall()) free(this->begin());
763 this->BeginX = RHS.BeginX;
764 this->Size = RHS.Size;
765 this->Capacity = RHS.Capacity;
766 RHS.resetToSmall();
767 return *this;
770 // If we already have sufficient space, assign the common elements, then
771 // destroy any excess.
772 size_t RHSSize = RHS.size();
773 size_t CurSize = this->size();
774 if (CurSize >= RHSSize) {
775 // Assign common elements.
776 iterator NewEnd = this->begin();
777 if (RHSSize)
778 NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
780 // Destroy excess elements and trim the bounds.
781 this->destroy_range(NewEnd, this->end());
782 this->set_size(RHSSize);
784 // Clear the RHS.
785 RHS.clear();
787 return *this;
790 // If we have to grow to have enough elements, destroy the current elements.
791 // This allows us to avoid copying them during the grow.
792 // FIXME: this may not actually make any sense if we can efficiently move
793 // elements.
794 if (this->capacity() < RHSSize) {
795 // Destroy current elements.
796 this->destroy_range(this->begin(), this->end());
797 this->set_size(0);
798 CurSize = 0;
799 this->grow(RHSSize);
800 } else if (CurSize) {
801 // Otherwise, use assignment for the already-constructed elements.
802 std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
805 // Move-construct the new elements in place.
806 this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
807 this->begin()+CurSize);
809 // Set end.
810 this->set_size(RHSSize);
812 RHS.clear();
813 return *this;
816 /// Storage for the SmallVector elements. This is specialized for the N=0 case
817 /// to avoid allocating unnecessary storage.
818 template <typename T, unsigned N>
819 struct SmallVectorStorage {
820 AlignedCharArrayUnion<T> InlineElts[N];
823 /// We need the storage to be properly aligned even for small-size of 0 so that
824 /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
825 /// well-defined.
826 template <typename T> struct alignas(alignof(T)) SmallVectorStorage<T, 0> {};
828 /// This is a 'vector' (really, a variable-sized array), optimized
829 /// for the case when the array is small. It contains some number of elements
830 /// in-place, which allows it to avoid heap allocation when the actual number of
831 /// elements is below that threshold. This allows normal "small" cases to be
832 /// fast without losing generality for large inputs.
834 /// Note that this does not attempt to be exception safe.
836 template <typename T, unsigned N>
837 class SmallVector : public SmallVectorImpl<T>, SmallVectorStorage<T, N> {
838 public:
839 SmallVector() : SmallVectorImpl<T>(N) {}
841 ~SmallVector() {
842 // Destroy the constructed elements in the vector.
843 this->destroy_range(this->begin(), this->end());
846 explicit SmallVector(size_t Size, const T &Value = T())
847 : SmallVectorImpl<T>(N) {
848 this->assign(Size, Value);
851 template <typename ItTy,
852 typename = typename std::enable_if<std::is_convertible<
853 typename std::iterator_traits<ItTy>::iterator_category,
854 std::input_iterator_tag>::value>::type>
855 SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
856 this->append(S, E);
859 template <typename RangeTy>
860 explicit SmallVector(const iterator_range<RangeTy> &R)
861 : SmallVectorImpl<T>(N) {
862 this->append(R.begin(), R.end());
865 SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
866 this->assign(IL);
869 SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
870 if (!RHS.empty())
871 SmallVectorImpl<T>::operator=(RHS);
874 const SmallVector &operator=(const SmallVector &RHS) {
875 SmallVectorImpl<T>::operator=(RHS);
876 return *this;
879 SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
880 if (!RHS.empty())
881 SmallVectorImpl<T>::operator=(::std::move(RHS));
884 SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
885 if (!RHS.empty())
886 SmallVectorImpl<T>::operator=(::std::move(RHS));
889 const SmallVector &operator=(SmallVector &&RHS) {
890 SmallVectorImpl<T>::operator=(::std::move(RHS));
891 return *this;
894 const SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
895 SmallVectorImpl<T>::operator=(::std::move(RHS));
896 return *this;
899 const SmallVector &operator=(std::initializer_list<T> IL) {
900 this->assign(IL);
901 return *this;
905 template <typename T, unsigned N>
906 inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
907 return X.capacity_in_bytes();
910 } // end namespace llvm
912 namespace std {
914 /// Implement std::swap in terms of SmallVector swap.
915 template<typename T>
916 inline void
917 swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
918 LHS.swap(RHS);
921 /// Implement std::swap in terms of SmallVector swap.
922 template<typename T, unsigned N>
923 inline void
924 swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
925 LHS.swap(RHS);
928 } // end namespace std
930 #endif // LLVM_ADT_SMALLVECTOR_H