[InstCombine] Signed saturation patterns
[llvm-core.git] / include / llvm / CodeGen / GlobalISel / RegisterBankInfo.h
blobe84b1c3ea8b15b06cb5f771b50aee235c0e36c0b
1 //===- llvm/CodeGen/GlobalISel/RegisterBankInfo.h ---------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file declares the API for the register bank info.
10 /// This API is responsible for handling the register banks.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_CODEGEN_GLOBALISEL_REGISTERBANKINFO_H
15 #define LLVM_CODEGEN_GLOBALISEL_REGISTERBANKINFO_H
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/CodeGen/Register.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include <cassert>
24 #include <initializer_list>
25 #include <memory>
27 namespace llvm {
29 class MachineInstr;
30 class MachineRegisterInfo;
31 class raw_ostream;
32 class RegisterBank;
33 class TargetInstrInfo;
34 class TargetRegisterClass;
35 class TargetRegisterInfo;
37 /// Holds all the information related to register banks.
38 class RegisterBankInfo {
39 public:
40 /// Helper struct that represents how a value is partially mapped
41 /// into a register.
42 /// The StartIdx and Length represent what region of the orginal
43 /// value this partial mapping covers.
44 /// This can be represented as a Mask of contiguous bit starting
45 /// at StartIdx bit and spanning Length bits.
46 /// StartIdx is the number of bits from the less significant bits.
47 struct PartialMapping {
48 /// Number of bits at which this partial mapping starts in the
49 /// original value. The bits are counted from less significant
50 /// bits to most significant bits.
51 unsigned StartIdx;
53 /// Length of this mapping in bits. This is how many bits this
54 /// partial mapping covers in the original value:
55 /// from StartIdx to StartIdx + Length -1.
56 unsigned Length;
58 /// Register bank where the partial value lives.
59 const RegisterBank *RegBank;
61 PartialMapping() = default;
63 /// Provide a shortcut for quickly building PartialMapping.
64 PartialMapping(unsigned StartIdx, unsigned Length,
65 const RegisterBank &RegBank)
66 : StartIdx(StartIdx), Length(Length), RegBank(&RegBank) {}
68 /// \return the index of in the original value of the most
69 /// significant bit that this partial mapping covers.
70 unsigned getHighBitIdx() const { return StartIdx + Length - 1; }
72 /// Print this partial mapping on dbgs() stream.
73 void dump() const;
75 /// Print this partial mapping on \p OS;
76 void print(raw_ostream &OS) const;
78 /// Check that the Mask is compatible with the RegBank.
79 /// Indeed, if the RegBank cannot accomadate the "active bits" of the mask,
80 /// there is no way this mapping is valid.
81 ///
82 /// \note This method does not check anything when assertions are disabled.
83 ///
84 /// \return True is the check was successful.
85 bool verify() const;
88 /// Helper struct that represents how a value is mapped through
89 /// different register banks.
90 ///
91 /// \note: So far we do not have any users of the complex mappings
92 /// (mappings with more than one partial mapping), but when we do,
93 /// we would have needed to duplicate partial mappings.
94 /// The alternative could be to use an array of pointers of partial
95 /// mapping (i.e., PartialMapping **BreakDown) and duplicate the
96 /// pointers instead.
97 ///
98 /// E.g.,
99 /// Let say we have a 32-bit add and a <2 x 32-bit> vadd. We
100 /// can expand the
101 /// <2 x 32-bit> add into 2 x 32-bit add.
103 /// Currently the TableGen-like file would look like:
104 /// \code
105 /// PartialMapping[] = {
106 /// /*32-bit add*/ {0, 32, GPR}, // Scalar entry repeated for first vec elt.
107 /// /*2x32-bit add*/ {0, 32, GPR}, {32, 32, GPR},
108 /// /*<2x32-bit> vadd {0, 64, VPR}
109 /// }; // PartialMapping duplicated.
111 /// ValueMapping[] {
112 /// /*plain 32-bit add*/ {&PartialMapping[0], 1},
113 /// /*expanded vadd on 2xadd*/ {&PartialMapping[1], 2},
114 /// /*plain <2x32-bit> vadd*/ {&PartialMapping[3], 1}
115 /// };
116 /// \endcode
118 /// With the array of pointer, we would have:
119 /// \code
120 /// PartialMapping[] = {
121 /// /*32-bit add lower */ {0, 32, GPR},
122 /// /*32-bit add upper */ {32, 32, GPR},
123 /// /*<2x32-bit> vadd {0, 64, VPR}
124 /// }; // No more duplication.
126 /// BreakDowns[] = {
127 /// /*AddBreakDown*/ &PartialMapping[0],
128 /// /*2xAddBreakDown*/ &PartialMapping[0], &PartialMapping[1],
129 /// /*VAddBreakDown*/ &PartialMapping[2]
130 /// }; // Addresses of PartialMapping duplicated (smaller).
132 /// ValueMapping[] {
133 /// /*plain 32-bit add*/ {&BreakDowns[0], 1},
134 /// /*expanded vadd on 2xadd*/ {&BreakDowns[1], 2},
135 /// /*plain <2x32-bit> vadd*/ {&BreakDowns[3], 1}
136 /// };
137 /// \endcode
139 /// Given that a PartialMapping is actually small, the code size
140 /// impact is actually a degradation. Moreover the compile time will
141 /// be hit by the additional indirection.
142 /// If PartialMapping gets bigger we may reconsider.
143 struct ValueMapping {
144 /// How the value is broken down between the different register banks.
145 const PartialMapping *BreakDown;
147 /// Number of partial mapping to break down this value.
148 unsigned NumBreakDowns;
150 /// The default constructor creates an invalid (isValid() == false)
151 /// instance.
152 ValueMapping() : ValueMapping(nullptr, 0) {}
154 /// Initialize a ValueMapping with the given parameter.
155 /// \p BreakDown needs to have a life time at least as long
156 /// as this instance.
157 ValueMapping(const PartialMapping *BreakDown, unsigned NumBreakDowns)
158 : BreakDown(BreakDown), NumBreakDowns(NumBreakDowns) {}
160 /// Iterators through the PartialMappings.
161 const PartialMapping *begin() const { return BreakDown; }
162 const PartialMapping *end() const { return BreakDown + NumBreakDowns; }
164 /// \return true if all partial mappings are the same size and register
165 /// bank.
166 bool partsAllUniform() const;
168 /// Check if this ValueMapping is valid.
169 bool isValid() const { return BreakDown && NumBreakDowns; }
171 /// Verify that this mapping makes sense for a value of
172 /// \p MeaningfulBitWidth.
173 /// \note This method does not check anything when assertions are disabled.
175 /// \return True is the check was successful.
176 bool verify(unsigned MeaningfulBitWidth) const;
178 /// Print this on dbgs() stream.
179 void dump() const;
181 /// Print this on \p OS;
182 void print(raw_ostream &OS) const;
185 /// Helper class that represents how the value of an instruction may be
186 /// mapped and what is the related cost of such mapping.
187 class InstructionMapping {
188 /// Identifier of the mapping.
189 /// This is used to communicate between the target and the optimizers
190 /// which mapping should be realized.
191 unsigned ID = InvalidMappingID;
193 /// Cost of this mapping.
194 unsigned Cost = 0;
196 /// Mapping of all the operands.
197 const ValueMapping *OperandsMapping = nullptr;
199 /// Number of operands.
200 unsigned NumOperands = 0;
202 const ValueMapping &getOperandMapping(unsigned i) {
203 assert(i < getNumOperands() && "Out of bound operand");
204 return OperandsMapping[i];
207 public:
208 /// Constructor for the mapping of an instruction.
209 /// \p NumOperands must be equal to number of all the operands of
210 /// the related instruction.
211 /// The rationale is that it is more efficient for the optimizers
212 /// to be able to assume that the mapping of the ith operand is
213 /// at the index i.
214 InstructionMapping(unsigned ID, unsigned Cost,
215 const ValueMapping *OperandsMapping,
216 unsigned NumOperands)
217 : ID(ID), Cost(Cost), OperandsMapping(OperandsMapping),
218 NumOperands(NumOperands) {
221 /// Default constructor.
222 /// Use this constructor to express that the mapping is invalid.
223 InstructionMapping() = default;
225 /// Get the cost.
226 unsigned getCost() const { return Cost; }
228 /// Get the ID.
229 unsigned getID() const { return ID; }
231 /// Get the number of operands.
232 unsigned getNumOperands() const { return NumOperands; }
234 /// Get the value mapping of the ith operand.
235 /// \pre The mapping for the ith operand has been set.
236 /// \pre The ith operand is a register.
237 const ValueMapping &getOperandMapping(unsigned i) const {
238 const ValueMapping &ValMapping =
239 const_cast<InstructionMapping *>(this)->getOperandMapping(i);
240 return ValMapping;
243 /// Set the mapping for all the operands.
244 /// In other words, OpdsMapping should hold at least getNumOperands
245 /// ValueMapping.
246 void setOperandsMapping(const ValueMapping *OpdsMapping) {
247 OperandsMapping = OpdsMapping;
250 /// Check whether this object is valid.
251 /// This is a lightweight check for obvious wrong instance.
252 bool isValid() const {
253 return getID() != InvalidMappingID && OperandsMapping;
256 /// Verifiy that this mapping makes sense for \p MI.
257 /// \pre \p MI must be connected to a MachineFunction.
259 /// \note This method does not check anything when assertions are disabled.
261 /// \return True is the check was successful.
262 bool verify(const MachineInstr &MI) const;
264 /// Print this on dbgs() stream.
265 void dump() const;
267 /// Print this on \p OS;
268 void print(raw_ostream &OS) const;
271 /// Convenient type to represent the alternatives for mapping an
272 /// instruction.
273 /// \todo When we move to TableGen this should be an array ref.
274 using InstructionMappings = SmallVector<const InstructionMapping *, 4>;
276 /// Helper class used to get/create the virtual registers that will be used
277 /// to replace the MachineOperand when applying a mapping.
278 class OperandsMapper {
279 /// The OpIdx-th cell contains the index in NewVRegs where the VRegs of the
280 /// OpIdx-th operand starts. -1 means we do not have such mapping yet.
281 /// Note: We use a SmallVector to avoid heap allocation for most cases.
282 SmallVector<int, 8> OpToNewVRegIdx;
284 /// Hold the registers that will be used to map MI with InstrMapping.
285 SmallVector<Register, 8> NewVRegs;
287 /// Current MachineRegisterInfo, used to create new virtual registers.
288 MachineRegisterInfo &MRI;
290 /// Instruction being remapped.
291 MachineInstr &MI;
293 /// New mapping of the instruction.
294 const InstructionMapping &InstrMapping;
296 /// Constant value identifying that the index in OpToNewVRegIdx
297 /// for an operand has not been set yet.
298 static const int DontKnowIdx;
300 /// Get the range in NewVRegs to store all the partial
301 /// values for the \p OpIdx-th operand.
303 /// \return The iterator range for the space created.
305 /// \pre getMI().getOperand(OpIdx).isReg()
306 iterator_range<SmallVectorImpl<Register>::iterator>
307 getVRegsMem(unsigned OpIdx);
309 /// Get the end iterator for a range starting at \p StartIdx and
310 /// spannig \p NumVal in NewVRegs.
311 /// \pre StartIdx + NumVal <= NewVRegs.size()
312 SmallVectorImpl<Register>::const_iterator
313 getNewVRegsEnd(unsigned StartIdx, unsigned NumVal) const;
314 SmallVectorImpl<Register>::iterator getNewVRegsEnd(unsigned StartIdx,
315 unsigned NumVal);
317 public:
318 /// Create an OperandsMapper that will hold the information to apply \p
319 /// InstrMapping to \p MI.
320 /// \pre InstrMapping.verify(MI)
321 OperandsMapper(MachineInstr &MI, const InstructionMapping &InstrMapping,
322 MachineRegisterInfo &MRI);
324 /// \name Getters.
325 /// @{
326 /// The MachineInstr being remapped.
327 MachineInstr &getMI() const { return MI; }
329 /// The final mapping of the instruction.
330 const InstructionMapping &getInstrMapping() const { return InstrMapping; }
332 /// The MachineRegisterInfo we used to realize the mapping.
333 MachineRegisterInfo &getMRI() const { return MRI; }
334 /// @}
336 /// Create as many new virtual registers as needed for the mapping of the \p
337 /// OpIdx-th operand.
338 /// The number of registers is determined by the number of breakdown for the
339 /// related operand in the instruction mapping.
340 /// The type of the new registers is a plain scalar of the right size.
341 /// The proper type is expected to be set when the mapping is applied to
342 /// the instruction(s) that realizes the mapping.
344 /// \pre getMI().getOperand(OpIdx).isReg()
346 /// \post All the partial mapping of the \p OpIdx-th operand have been
347 /// assigned a new virtual register.
348 void createVRegs(unsigned OpIdx);
350 /// Set the virtual register of the \p PartialMapIdx-th partial mapping of
351 /// the OpIdx-th operand to \p NewVReg.
353 /// \pre getMI().getOperand(OpIdx).isReg()
354 /// \pre getInstrMapping().getOperandMapping(OpIdx).BreakDown.size() >
355 /// PartialMapIdx
356 /// \pre NewReg != 0
358 /// \post the \p PartialMapIdx-th register of the value mapping of the \p
359 /// OpIdx-th operand has been set.
360 void setVRegs(unsigned OpIdx, unsigned PartialMapIdx, Register NewVReg);
362 /// Get all the virtual registers required to map the \p OpIdx-th operand of
363 /// the instruction.
365 /// This return an empty range when createVRegs or setVRegs has not been
366 /// called.
367 /// The iterator may be invalidated by a call to setVRegs or createVRegs.
369 /// When \p ForDebug is true, we will not check that the list of new virtual
370 /// registers does not contain uninitialized values.
372 /// \pre getMI().getOperand(OpIdx).isReg()
373 /// \pre ForDebug || All partial mappings have been set a register
374 iterator_range<SmallVectorImpl<Register>::const_iterator>
375 getVRegs(unsigned OpIdx, bool ForDebug = false) const;
377 /// Print this operands mapper on dbgs() stream.
378 void dump() const;
380 /// Print this operands mapper on \p OS stream.
381 void print(raw_ostream &OS, bool ForDebug = false) const;
384 protected:
385 /// Hold the set of supported register banks.
386 RegisterBank **RegBanks;
388 /// Total number of register banks.
389 unsigned NumRegBanks;
391 /// Keep dynamically allocated PartialMapping in a separate map.
392 /// This shouldn't be needed when everything gets TableGen'ed.
393 mutable DenseMap<unsigned, std::unique_ptr<const PartialMapping>>
394 MapOfPartialMappings;
396 /// Keep dynamically allocated ValueMapping in a separate map.
397 /// This shouldn't be needed when everything gets TableGen'ed.
398 mutable DenseMap<unsigned, std::unique_ptr<const ValueMapping>>
399 MapOfValueMappings;
401 /// Keep dynamically allocated array of ValueMapping in a separate map.
402 /// This shouldn't be needed when everything gets TableGen'ed.
403 mutable DenseMap<unsigned, std::unique_ptr<ValueMapping[]>>
404 MapOfOperandsMappings;
406 /// Keep dynamically allocated InstructionMapping in a separate map.
407 /// This shouldn't be needed when everything gets TableGen'ed.
408 mutable DenseMap<unsigned, std::unique_ptr<const InstructionMapping>>
409 MapOfInstructionMappings;
411 /// Getting the minimal register class of a physreg is expensive.
412 /// Cache this information as we get it.
413 mutable DenseMap<unsigned, const TargetRegisterClass *> PhysRegMinimalRCs;
415 /// Create a RegisterBankInfo that can accommodate up to \p NumRegBanks
416 /// RegisterBank instances.
417 RegisterBankInfo(RegisterBank **RegBanks, unsigned NumRegBanks);
419 /// This constructor is meaningless.
420 /// It just provides a default constructor that can be used at link time
421 /// when GlobalISel is not built.
422 /// That way, targets can still inherit from this class without doing
423 /// crazy gymnastic to avoid link time failures.
424 /// \note That works because the constructor is inlined.
425 RegisterBankInfo() {
426 llvm_unreachable("This constructor should not be executed");
429 /// Get the register bank identified by \p ID.
430 RegisterBank &getRegBank(unsigned ID) {
431 assert(ID < getNumRegBanks() && "Accessing an unknown register bank");
432 return *RegBanks[ID];
435 /// Get the MinimalPhysRegClass for Reg.
436 /// \pre Reg is a physical register.
437 const TargetRegisterClass &
438 getMinimalPhysRegClass(Register Reg, const TargetRegisterInfo &TRI) const;
440 /// Try to get the mapping of \p MI.
441 /// See getInstrMapping for more details on what a mapping represents.
443 /// Unlike getInstrMapping the returned InstructionMapping may be invalid
444 /// (isValid() == false).
445 /// This means that the target independent code is not smart enough
446 /// to get the mapping of \p MI and thus, the target has to provide the
447 /// information for \p MI.
449 /// This implementation is able to get the mapping of:
450 /// - Target specific instructions by looking at the encoding constraints.
451 /// - Any instruction if all the register operands have already been assigned
452 /// a register, a register class, or a register bank.
453 /// - Copies and phis if at least one of the operands has been assigned a
454 /// register, a register class, or a register bank.
455 /// In other words, this method will likely fail to find a mapping for
456 /// any generic opcode that has not been lowered by target specific code.
457 const InstructionMapping &getInstrMappingImpl(const MachineInstr &MI) const;
459 /// Get the uniquely generated PartialMapping for the
460 /// given arguments.
461 const PartialMapping &getPartialMapping(unsigned StartIdx, unsigned Length,
462 const RegisterBank &RegBank) const;
464 /// \name Methods to get a uniquely generated ValueMapping.
465 /// @{
467 /// The most common ValueMapping consists of a single PartialMapping.
468 /// Feature a method for that.
469 const ValueMapping &getValueMapping(unsigned StartIdx, unsigned Length,
470 const RegisterBank &RegBank) const;
472 /// Get the ValueMapping for the given arguments.
473 const ValueMapping &getValueMapping(const PartialMapping *BreakDown,
474 unsigned NumBreakDowns) const;
475 /// @}
477 /// \name Methods to get a uniquely generated array of ValueMapping.
478 /// @{
480 /// Get the uniquely generated array of ValueMapping for the
481 /// elements of between \p Begin and \p End.
483 /// Elements that are nullptr will be replaced by
484 /// invalid ValueMapping (ValueMapping::isValid == false).
486 /// \pre The pointers on ValueMapping between \p Begin and \p End
487 /// must uniquely identify a ValueMapping. Otherwise, there is no
488 /// guarantee that the return instance will be unique, i.e., another
489 /// OperandsMapping could have the same content.
490 template <typename Iterator>
491 const ValueMapping *getOperandsMapping(Iterator Begin, Iterator End) const;
493 /// Get the uniquely generated array of ValueMapping for the
494 /// elements of \p OpdsMapping.
496 /// Elements of \p OpdsMapping that are nullptr will be replaced by
497 /// invalid ValueMapping (ValueMapping::isValid == false).
498 const ValueMapping *getOperandsMapping(
499 const SmallVectorImpl<const ValueMapping *> &OpdsMapping) const;
501 /// Get the uniquely generated array of ValueMapping for the
502 /// given arguments.
504 /// Arguments that are nullptr will be replaced by invalid
505 /// ValueMapping (ValueMapping::isValid == false).
506 const ValueMapping *getOperandsMapping(
507 std::initializer_list<const ValueMapping *> OpdsMapping) const;
508 /// @}
510 /// \name Methods to get a uniquely generated InstructionMapping.
511 /// @{
513 private:
514 /// Method to get a uniquely generated InstructionMapping.
515 const InstructionMapping &
516 getInstructionMappingImpl(bool IsInvalid, unsigned ID = InvalidMappingID,
517 unsigned Cost = 0,
518 const ValueMapping *OperandsMapping = nullptr,
519 unsigned NumOperands = 0) const;
521 public:
522 /// Method to get a uniquely generated InstructionMapping.
523 const InstructionMapping &
524 getInstructionMapping(unsigned ID, unsigned Cost,
525 const ValueMapping *OperandsMapping,
526 unsigned NumOperands) const {
527 return getInstructionMappingImpl(/*IsInvalid*/ false, ID, Cost,
528 OperandsMapping, NumOperands);
531 /// Method to get a uniquely generated invalid InstructionMapping.
532 const InstructionMapping &getInvalidInstructionMapping() const {
533 return getInstructionMappingImpl(/*IsInvalid*/ true);
535 /// @}
537 /// Get the register bank for the \p OpIdx-th operand of \p MI form
538 /// the encoding constraints, if any.
540 /// \return A register bank that covers the register class of the
541 /// related encoding constraints or nullptr if \p MI did not provide
542 /// enough information to deduce it.
543 const RegisterBank *
544 getRegBankFromConstraints(const MachineInstr &MI, unsigned OpIdx,
545 const TargetInstrInfo &TII,
546 const TargetRegisterInfo &TRI) const;
548 /// Helper method to apply something that is like the default mapping.
549 /// Basically, that means that \p OpdMapper.getMI() is left untouched
550 /// aside from the reassignment of the register operand that have been
551 /// remapped.
553 /// The type of all the new registers that have been created by the
554 /// mapper are properly remapped to the type of the original registers
555 /// they replace. In other words, the semantic of the instruction does
556 /// not change, only the register banks.
558 /// If the mapping of one of the operand spans several registers, this
559 /// method will abort as this is not like a default mapping anymore.
561 /// \pre For OpIdx in {0..\p OpdMapper.getMI().getNumOperands())
562 /// the range OpdMapper.getVRegs(OpIdx) is empty or of size 1.
563 static void applyDefaultMapping(const OperandsMapper &OpdMapper);
565 /// See ::applyMapping.
566 virtual void applyMappingImpl(const OperandsMapper &OpdMapper) const {
567 llvm_unreachable("The target has to implement that part");
570 public:
571 virtual ~RegisterBankInfo() = default;
573 /// Get the register bank identified by \p ID.
574 const RegisterBank &getRegBank(unsigned ID) const {
575 return const_cast<RegisterBankInfo *>(this)->getRegBank(ID);
578 /// Get the register bank of \p Reg.
579 /// If Reg has not been assigned a register, a register class,
580 /// or a register bank, then this returns nullptr.
582 /// \pre Reg != 0 (NoRegister)
583 const RegisterBank *getRegBank(Register Reg, const MachineRegisterInfo &MRI,
584 const TargetRegisterInfo &TRI) const;
586 /// Get the total number of register banks.
587 unsigned getNumRegBanks() const { return NumRegBanks; }
589 /// Get a register bank that covers \p RC.
591 /// \pre \p RC is a user-defined register class (as opposed as one
592 /// generated by TableGen).
594 /// \note The mapping RC -> RegBank could be built while adding the
595 /// coverage for the register banks. However, we do not do it, because,
596 /// at least for now, we only need this information for register classes
597 /// that are used in the description of instruction. In other words,
598 /// there are just a handful of them and we do not want to waste space.
600 /// \todo This should be TableGen'ed.
601 virtual const RegisterBank &
602 getRegBankFromRegClass(const TargetRegisterClass &RC) const {
603 llvm_unreachable("The target must override this method");
606 /// Get the cost of a copy from \p B to \p A, or put differently,
607 /// get the cost of A = COPY B. Since register banks may cover
608 /// different size, \p Size specifies what will be the size in bits
609 /// that will be copied around.
611 /// \note Since this is a copy, both registers have the same size.
612 virtual unsigned copyCost(const RegisterBank &A, const RegisterBank &B,
613 unsigned Size) const {
614 // Optimistically assume that copies are coalesced. I.e., when
615 // they are on the same bank, they are free.
616 // Otherwise assume a non-zero cost of 1. The targets are supposed
617 // to override that properly anyway if they care.
618 return &A != &B;
621 /// \returns true if emitting a copy from \p Src to \p Dst is impossible.
622 bool cannotCopy(const RegisterBank &Dst, const RegisterBank &Src,
623 unsigned Size) const {
624 return copyCost(Dst, Src, Size) == std::numeric_limits<unsigned>::max();
627 /// Get the cost of using \p ValMapping to decompose a register. This is
628 /// similar to ::copyCost, except for cases where multiple copy-like
629 /// operations need to be inserted. If the register is used as a source
630 /// operand and already has a bank assigned, \p CurBank is non-null.
631 virtual unsigned getBreakDownCost(const ValueMapping &ValMapping,
632 const RegisterBank *CurBank = nullptr) const {
633 return std::numeric_limits<unsigned>::max();
636 /// Constrain the (possibly generic) virtual register \p Reg to \p RC.
638 /// \pre \p Reg is a virtual register that either has a bank or a class.
639 /// \returns The constrained register class, or nullptr if there is none.
640 /// \note This is a generic variant of MachineRegisterInfo::constrainRegClass
641 /// \note Use MachineRegisterInfo::constrainRegAttrs instead for any non-isel
642 /// purpose, including non-select passes of GlobalISel
643 static const TargetRegisterClass *
644 constrainGenericRegister(Register Reg, const TargetRegisterClass &RC,
645 MachineRegisterInfo &MRI);
647 /// Identifier used when the related instruction mapping instance
648 /// is generated by target independent code.
649 /// Make sure not to use that identifier to avoid possible collision.
650 static const unsigned DefaultMappingID;
652 /// Identifier used when the related instruction mapping instance
653 /// is generated by the default constructor.
654 /// Make sure not to use that identifier.
655 static const unsigned InvalidMappingID;
657 /// Get the mapping of the different operands of \p MI
658 /// on the register bank.
659 /// This mapping should be the direct translation of \p MI.
660 /// In other words, when \p MI is mapped with the returned mapping,
661 /// only the register banks of the operands of \p MI need to be updated.
662 /// In particular, neither the opcode nor the type of \p MI needs to be
663 /// updated for this direct mapping.
665 /// The target independent implementation gives a mapping based on
666 /// the register classes for the target specific opcode.
667 /// It uses the ID RegisterBankInfo::DefaultMappingID for that mapping.
668 /// Make sure you do not use that ID for the alternative mapping
669 /// for MI. See getInstrAlternativeMappings for the alternative
670 /// mappings.
672 /// For instance, if \p MI is a vector add, the mapping should
673 /// not be a scalarization of the add.
675 /// \post returnedVal.verify(MI).
677 /// \note If returnedVal does not verify MI, this would probably mean
678 /// that the target does not support that instruction.
679 virtual const InstructionMapping &
680 getInstrMapping(const MachineInstr &MI) const;
682 /// Get the alternative mappings for \p MI.
683 /// Alternative in the sense different from getInstrMapping.
684 virtual InstructionMappings
685 getInstrAlternativeMappings(const MachineInstr &MI) const;
687 /// Get the possible mapping for \p MI.
688 /// A mapping defines where the different operands may live and at what cost.
689 /// For instance, let us consider:
690 /// v0(16) = G_ADD <2 x i8> v1, v2
691 /// The possible mapping could be:
693 /// {/*ID*/VectorAdd, /*Cost*/1, /*v0*/{(0xFFFF, VPR)}, /*v1*/{(0xFFFF, VPR)},
694 /// /*v2*/{(0xFFFF, VPR)}}
695 /// {/*ID*/ScalarAddx2, /*Cost*/2, /*v0*/{(0x00FF, GPR),(0xFF00, GPR)},
696 /// /*v1*/{(0x00FF, GPR),(0xFF00, GPR)},
697 /// /*v2*/{(0x00FF, GPR),(0xFF00, GPR)}}
699 /// \note The first alternative of the returned mapping should be the
700 /// direct translation of \p MI current form.
702 /// \post !returnedVal.empty().
703 InstructionMappings getInstrPossibleMappings(const MachineInstr &MI) const;
705 /// Apply \p OpdMapper.getInstrMapping() to \p OpdMapper.getMI().
706 /// After this call \p OpdMapper.getMI() may not be valid anymore.
707 /// \p OpdMapper.getInstrMapping().getID() carries the information of
708 /// what has been chosen to map \p OpdMapper.getMI(). This ID is set
709 /// by the various getInstrXXXMapping method.
711 /// Therefore, getting the mapping and applying it should be kept in
712 /// sync.
713 void applyMapping(const OperandsMapper &OpdMapper) const {
714 // The only mapping we know how to handle is the default mapping.
715 if (OpdMapper.getInstrMapping().getID() == DefaultMappingID)
716 return applyDefaultMapping(OpdMapper);
717 // For other mapping, the target needs to do the right thing.
718 // If that means calling applyDefaultMapping, fine, but this
719 // must be explicitly stated.
720 applyMappingImpl(OpdMapper);
723 /// Get the size in bits of \p Reg.
724 /// Utility method to get the size of any registers. Unlike
725 /// MachineRegisterInfo::getSize, the register does not need to be a
726 /// virtual register.
728 /// \pre \p Reg != 0 (NoRegister).
729 unsigned getSizeInBits(Register Reg, const MachineRegisterInfo &MRI,
730 const TargetRegisterInfo &TRI) const;
732 /// Check that information hold by this instance make sense for the
733 /// given \p TRI.
735 /// \note This method does not check anything when assertions are disabled.
737 /// \return True is the check was successful.
738 bool verify(const TargetRegisterInfo &TRI) const;
741 inline raw_ostream &
742 operator<<(raw_ostream &OS,
743 const RegisterBankInfo::PartialMapping &PartMapping) {
744 PartMapping.print(OS);
745 return OS;
748 inline raw_ostream &
749 operator<<(raw_ostream &OS, const RegisterBankInfo::ValueMapping &ValMapping) {
750 ValMapping.print(OS);
751 return OS;
754 inline raw_ostream &
755 operator<<(raw_ostream &OS,
756 const RegisterBankInfo::InstructionMapping &InstrMapping) {
757 InstrMapping.print(OS);
758 return OS;
761 inline raw_ostream &
762 operator<<(raw_ostream &OS, const RegisterBankInfo::OperandsMapper &OpdMapper) {
763 OpdMapper.print(OS, /*ForDebug*/ false);
764 return OS;
767 /// Hashing function for PartialMapping.
768 /// It is required for the hashing of ValueMapping.
769 hash_code hash_value(const RegisterBankInfo::PartialMapping &PartMapping);
771 } // end namespace llvm
773 #endif // LLVM_CODEGEN_GLOBALISEL_REGISTERBANKINFO_H