[InstCombine] Signed saturation patterns
[llvm-core.git] / include / llvm / DebugInfo / GSYM / FunctionInfo.h
blob63e18bb2ecd543bb77b3614720263b7a406ecbfc
1 //===- FunctionInfo.h -------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_DEBUGINFO_GSYM_FUNCTIONINFO_H
10 #define LLVM_DEBUGINFO_GSYM_FUNCTIONINFO_H
12 #include "llvm/ADT/Optional.h"
13 #include "llvm/DebugInfo/GSYM/InlineInfo.h"
14 #include "llvm/DebugInfo/GSYM/LineTable.h"
15 #include "llvm/DebugInfo/GSYM/Range.h"
16 #include "llvm/DebugInfo/GSYM/StringTable.h"
17 #include <tuple>
18 #include <vector>
20 namespace llvm {
21 class raw_ostream;
22 namespace gsym {
24 /// Function information in GSYM files encodes information for one contiguous
25 /// address range. If a function has discontiguous address ranges, they will
26 /// need to be encoded using multiple FunctionInfo objects.
27 ///
28 /// ENCODING
29 ///
30 /// The function information gets the function start address as an argument
31 /// to the FunctionInfo::decode(...) function. This information is calculated
32 /// from the GSYM header and an address offset from the GSYM address offsets
33 /// table. The encoded FunctionInfo information must be alinged to a 4 byte
34 /// boundary.
35 ///
36 /// The encoded data for a FunctionInfo starts with fixed data that all
37 /// function info objects have:
38 ///
39 /// ENCODING NAME DESCRIPTION
40 /// ========= =========== ====================================================
41 /// uint32_t Size The size in bytes of this function.
42 /// uint32_t Name The string table offset of the function name.
43 ///
44 /// The optional data in a FunctionInfo object follows this fixed information
45 /// and consists of a stream of tuples that consist of:
46 ///
47 /// ENCODING NAME DESCRIPTION
48 /// ========= =========== ====================================================
49 /// uint32_t InfoType An "InfoType" enumeration that describes the type
50 /// of optional data that is encoded.
51 /// uint32_t InfoLength The size in bytes of the encoded data that
52 /// immediately follows this length if this value is
53 /// greater than zero.
54 /// uint8_t[] InfoData Encoded bytes that represent the data for the
55 /// "InfoType". These bytes are only present if
56 /// "InfoLength" is greater than zero.
57 ///
58 /// The "InfoType" is an enumeration:
59 ///
60 /// enum InfoType {
61 /// EndOfList = 0u,
62 /// LineTableInfo = 1u,
63 /// InlineInfo = 2u
64 /// };
65 ///
66 /// This stream of tuples is terminated by a "InfoType" whose value is
67 /// InfoType::EndOfList and a zero for "InfoLength". This signifies the end of
68 /// the optional information list. This format allows us to add new optional
69 /// information data to a FunctionInfo object over time and allows older
70 /// clients to still parse the format and skip over any data that they don't
71 /// understand or want to parse.
72 ///
73 /// So the function information encoding essientially looks like:
74 ///
75 /// struct {
76 /// uint32_t Size;
77 /// uint32_t Name;
78 /// struct {
79 /// uint32_t InfoType;
80 /// uint32_t InfoLength;
81 /// uint8_t InfoData[InfoLength];
82 /// }[N];
83 /// }
84 ///
85 /// Where "N" is the number of tuples.
86 struct FunctionInfo {
87 AddressRange Range;
88 uint32_t Name; ///< String table offset in the string table.
89 llvm::Optional<LineTable> OptLineTable;
90 llvm::Optional<InlineInfo> Inline;
92 FunctionInfo(uint64_t Addr = 0, uint64_t Size = 0, uint32_t N = 0)
93 : Range(Addr, Addr + Size), Name(N) {}
95 /// Query if a FunctionInfo has rich debug info.
96 ///
97 /// \returns A bool that indicates if this object has something else than
98 /// range and name. When converting information from a symbol table and from
99 /// debug info, we might end up with multiple FunctionInfo objects for the
100 /// same range and we need to be able to tell which one is the better object
101 /// to use.
102 bool hasRichInfo() const {
103 return OptLineTable.hasValue() || Inline.hasValue();
106 /// Query if a FunctionInfo object is valid.
108 /// Address and size can be zero and there can be no line entries for a
109 /// symbol so the only indication this entry is valid is if the name is
110 /// not zero. This can happen when extracting information from symbol
111 /// tables that do not encode symbol sizes. In that case only the
112 /// address and name will be filled in.
114 /// \returns A boolean indicating if this FunctionInfo is valid.
115 bool isValid() const {
116 return Name != 0;
119 /// Decode an object from a binary data stream.
121 /// \param Data The binary stream to read the data from. This object must
122 /// have the data for the object starting at offset zero. The data
123 /// can contain more data than needed.
125 /// \param BaseAddr The FunctionInfo's start address and will be used as the
126 /// base address when decoding any contained information like the line table
127 /// and the inline info.
129 /// \returns An FunctionInfo or an error describing the issue that was
130 /// encountered during decoding.
131 static llvm::Expected<FunctionInfo> decode(DataExtractor &Data,
132 uint64_t BaseAddr);
134 /// Encode this object into FileWriter stream.
136 /// \param O The binary stream to write the data to at the current file
137 /// position.
139 /// \returns An error object that indicates failure or the offset of the
140 /// function info that was successfully written into the stream.
141 llvm::Expected<uint64_t> encode(FileWriter &O) const;
143 uint64_t startAddress() const { return Range.Start; }
144 uint64_t endAddress() const { return Range.End; }
145 uint64_t size() const { return Range.size(); }
146 void setStartAddress(uint64_t Addr) { Range.Start = Addr; }
147 void setEndAddress(uint64_t Addr) { Range.End = Addr; }
148 void setSize(uint64_t Size) { Range.End = Range.Start + Size; }
150 void clear() {
151 Range = {0, 0};
152 Name = 0;
153 OptLineTable = None;
154 Inline = None;
158 inline bool operator==(const FunctionInfo &LHS, const FunctionInfo &RHS) {
159 return LHS.Range == RHS.Range && LHS.Name == RHS.Name &&
160 LHS.OptLineTable == RHS.OptLineTable && LHS.Inline == RHS.Inline;
162 inline bool operator!=(const FunctionInfo &LHS, const FunctionInfo &RHS) {
163 return !(LHS == RHS);
165 /// This sorting will order things consistently by address range first, but then
166 /// followed by inlining being valid and line tables. We might end up with a
167 /// FunctionInfo from debug info that will have the same range as one from the
168 /// symbol table, but we want to quickly be able to sort and use the best version
169 /// when creating the final GSYM file.
170 inline bool operator<(const FunctionInfo &LHS, const FunctionInfo &RHS) {
171 // First sort by address range
172 if (LHS.Range != RHS.Range)
173 return LHS.Range < RHS.Range;
175 // Then sort by inline
176 if (LHS.Inline.hasValue() != RHS.Inline.hasValue())
177 return RHS.Inline.hasValue();
179 return LHS.OptLineTable < RHS.OptLineTable;
182 raw_ostream &operator<<(raw_ostream &OS, const FunctionInfo &R);
184 } // namespace gsym
185 } // namespace llvm
187 #endif // #ifndef LLVM_DEBUGINFO_GSYM_FUNCTIONINFO_H