1 //===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines layout properties related to datatype size/offset/alignment
10 // information. It uses lazy annotations to cache information about how
11 // structure types are laid out and used.
13 // This structure should be created once, filled in if the defaults are not
14 // correct and then passed around by const&. None of the members functions
15 // require modification to the object.
17 //===----------------------------------------------------------------------===//
19 #ifndef LLVM_IR_DATALAYOUT_H
20 #define LLVM_IR_DATALAYOUT_H
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/Alignment.h"
32 #include "llvm/Support/TypeSize.h"
37 // This needs to be outside of the namespace, to avoid conflict with llvm-c
39 using LLVMTargetDataRef
= struct LLVMOpaqueTargetData
*;
50 /// Enum used to categorize the alignment types stored by LayoutAlignElem
59 // FIXME: Currently the DataLayout string carries a "preferred alignment"
60 // for types. As the DataLayout is module/global, this should likely be
61 // sunk down to an FTTI element that is queried rather than a global
64 /// Layout alignment element.
66 /// Stores the alignment data associated with a given alignment type (integer,
67 /// vector, float) and type bit width.
69 /// \note The unusual order of elements in the structure attempts to reduce
70 /// padding and make the structure slightly more cache friendly.
71 struct LayoutAlignElem
{
72 /// Alignment type from \c AlignTypeEnum
73 unsigned AlignType
: 8;
74 unsigned TypeBitWidth
: 24;
78 static LayoutAlignElem
get(AlignTypeEnum align_type
, Align abi_align
,
79 Align pref_align
, uint32_t bit_width
);
81 bool operator==(const LayoutAlignElem
&rhs
) const;
84 /// Layout pointer alignment element.
86 /// Stores the alignment data associated with a given pointer and address space.
88 /// \note The unusual order of elements in the structure attempts to reduce
89 /// padding and make the structure slightly more cache friendly.
90 struct PointerAlignElem
{
93 uint32_t TypeByteWidth
;
94 uint32_t AddressSpace
;
98 static PointerAlignElem
get(uint32_t AddressSpace
, Align ABIAlign
,
99 Align PrefAlign
, uint32_t TypeByteWidth
,
100 uint32_t IndexWidth
);
102 bool operator==(const PointerAlignElem
&rhs
) const;
105 /// A parsed version of the target data layout string in and methods for
108 /// The target data layout string is specified *by the target* - a frontend
109 /// generating LLVM IR is required to generate the right target data for the
110 /// target being codegen'd to.
113 enum class FunctionPtrAlignType
{
114 /// The function pointer alignment is independent of the function alignment.
116 /// The function pointer alignment is a multiple of the function alignment.
117 MultipleOfFunctionAlign
,
120 /// Defaults to false.
123 unsigned AllocaAddrSpace
;
124 MaybeAlign StackNaturalAlign
;
125 unsigned ProgramAddrSpace
;
127 MaybeAlign FunctionPtrAlign
;
128 FunctionPtrAlignType TheFunctionPtrAlignType
;
138 ManglingModeT ManglingMode
;
140 SmallVector
<unsigned char, 8> LegalIntWidths
;
142 /// Primitive type alignment data. This is sorted by type and bit
143 /// width during construction.
144 using AlignmentsTy
= SmallVector
<LayoutAlignElem
, 16>;
145 AlignmentsTy Alignments
;
147 AlignmentsTy::const_iterator
148 findAlignmentLowerBound(AlignTypeEnum AlignType
, uint32_t BitWidth
) const {
149 return const_cast<DataLayout
*>(this)->findAlignmentLowerBound(AlignType
,
153 AlignmentsTy::iterator
154 findAlignmentLowerBound(AlignTypeEnum AlignType
, uint32_t BitWidth
);
156 /// The string representation used to create this DataLayout
157 std::string StringRepresentation
;
159 using PointersTy
= SmallVector
<PointerAlignElem
, 8>;
162 PointersTy::const_iterator
163 findPointerLowerBound(uint32_t AddressSpace
) const {
164 return const_cast<DataLayout
*>(this)->findPointerLowerBound(AddressSpace
);
167 PointersTy::iterator
findPointerLowerBound(uint32_t AddressSpace
);
169 // The StructType -> StructLayout map.
170 mutable void *LayoutMap
= nullptr;
172 /// Pointers in these address spaces are non-integral, and don't have a
173 /// well-defined bitwise representation.
174 SmallVector
<unsigned, 8> NonIntegralAddressSpaces
;
176 void setAlignment(AlignTypeEnum align_type
, Align abi_align
, Align pref_align
,
178 Align
getAlignmentInfo(AlignTypeEnum align_type
, uint32_t bit_width
,
179 bool ABIAlign
, Type
*Ty
) const;
180 void setPointerAlignment(uint32_t AddrSpace
, Align ABIAlign
, Align PrefAlign
,
181 uint32_t TypeByteWidth
, uint32_t IndexWidth
);
183 /// Internal helper method that returns requested alignment for type.
184 Align
getAlignment(Type
*Ty
, bool abi_or_pref
) const;
186 /// Parses a target data specification string. Assert if the string is
188 void parseSpecifier(StringRef LayoutDescription
);
190 // Free all internal data structures.
194 /// Constructs a DataLayout from a specification string. See reset().
195 explicit DataLayout(StringRef LayoutDescription
) {
196 reset(LayoutDescription
);
199 /// Initialize target data from properties stored in the module.
200 explicit DataLayout(const Module
*M
);
202 DataLayout(const DataLayout
&DL
) { *this = DL
; }
204 ~DataLayout(); // Not virtual, do not subclass this class
206 DataLayout
&operator=(const DataLayout
&DL
) {
208 StringRepresentation
= DL
.StringRepresentation
;
209 BigEndian
= DL
.isBigEndian();
210 AllocaAddrSpace
= DL
.AllocaAddrSpace
;
211 StackNaturalAlign
= DL
.StackNaturalAlign
;
212 FunctionPtrAlign
= DL
.FunctionPtrAlign
;
213 TheFunctionPtrAlignType
= DL
.TheFunctionPtrAlignType
;
214 ProgramAddrSpace
= DL
.ProgramAddrSpace
;
215 ManglingMode
= DL
.ManglingMode
;
216 LegalIntWidths
= DL
.LegalIntWidths
;
217 Alignments
= DL
.Alignments
;
218 Pointers
= DL
.Pointers
;
219 NonIntegralAddressSpaces
= DL
.NonIntegralAddressSpaces
;
223 bool operator==(const DataLayout
&Other
) const;
224 bool operator!=(const DataLayout
&Other
) const { return !(*this == Other
); }
226 void init(const Module
*M
);
228 /// Parse a data layout string (with fallback to default values).
229 void reset(StringRef LayoutDescription
);
231 /// Layout endianness...
232 bool isLittleEndian() const { return !BigEndian
; }
233 bool isBigEndian() const { return BigEndian
; }
235 /// Returns the string representation of the DataLayout.
237 /// This representation is in the same format accepted by the string
238 /// constructor above. This should not be used to compare two DataLayout as
239 /// different string can represent the same layout.
240 const std::string
&getStringRepresentation() const {
241 return StringRepresentation
;
244 /// Test if the DataLayout was constructed from an empty string.
245 bool isDefault() const { return StringRepresentation
.empty(); }
247 /// Returns true if the specified type is known to be a native integer
248 /// type supported by the CPU.
250 /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
251 /// on any known one. This returns false if the integer width is not legal.
253 /// The width is specified in bits.
254 bool isLegalInteger(uint64_t Width
) const {
255 for (unsigned LegalIntWidth
: LegalIntWidths
)
256 if (LegalIntWidth
== Width
)
261 bool isIllegalInteger(uint64_t Width
) const { return !isLegalInteger(Width
); }
263 /// Returns true if the given alignment exceeds the natural stack alignment.
264 bool exceedsNaturalStackAlignment(Align Alignment
) const {
265 return StackNaturalAlign
&& (Alignment
> StackNaturalAlign
);
268 Align
getStackAlignment() const {
269 assert(StackNaturalAlign
&& "StackNaturalAlign must be defined");
270 return *StackNaturalAlign
;
273 unsigned getAllocaAddrSpace() const { return AllocaAddrSpace
; }
275 /// Returns the alignment of function pointers, which may or may not be
276 /// related to the alignment of functions.
277 /// \see getFunctionPtrAlignType
278 MaybeAlign
getFunctionPtrAlign() const { return FunctionPtrAlign
; }
280 /// Return the type of function pointer alignment.
281 /// \see getFunctionPtrAlign
282 FunctionPtrAlignType
getFunctionPtrAlignType() const {
283 return TheFunctionPtrAlignType
;
286 unsigned getProgramAddressSpace() const { return ProgramAddrSpace
; }
288 bool hasMicrosoftFastStdCallMangling() const {
289 return ManglingMode
== MM_WinCOFFX86
;
292 /// Returns true if symbols with leading question marks should not receive IR
293 /// mangling. True for Windows mangling modes.
294 bool doNotMangleLeadingQuestionMark() const {
295 return ManglingMode
== MM_WinCOFF
|| ManglingMode
== MM_WinCOFFX86
;
298 bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode
== MM_MachO
; }
300 StringRef
getLinkerPrivateGlobalPrefix() const {
301 if (ManglingMode
== MM_MachO
)
306 char getGlobalPrefix() const {
307 switch (ManglingMode
) {
317 llvm_unreachable("invalid mangling mode");
320 StringRef
getPrivateGlobalPrefix() const {
321 switch (ManglingMode
) {
333 llvm_unreachable("invalid mangling mode");
336 static const char *getManglingComponent(const Triple
&T
);
338 /// Returns true if the specified type fits in a native integer type
339 /// supported by the CPU.
341 /// For example, if the CPU only supports i32 as a native integer type, then
342 /// i27 fits in a legal integer type but i45 does not.
343 bool fitsInLegalInteger(unsigned Width
) const {
344 for (unsigned LegalIntWidth
: LegalIntWidths
)
345 if (Width
<= LegalIntWidth
)
350 /// Layout pointer alignment
351 Align
getPointerABIAlignment(unsigned AS
) const;
353 /// Return target's alignment for stack-based pointers
354 /// FIXME: The defaults need to be removed once all of
355 /// the backends/clients are updated.
356 Align
getPointerPrefAlignment(unsigned AS
= 0) const;
358 /// Layout pointer size
359 /// FIXME: The defaults need to be removed once all of
360 /// the backends/clients are updated.
361 unsigned getPointerSize(unsigned AS
= 0) const;
363 /// Returns the maximum pointer size over all address spaces.
364 unsigned getMaxPointerSize() const;
366 // Index size used for address calculation.
367 unsigned getIndexSize(unsigned AS
) const;
369 /// Return the address spaces containing non-integral pointers. Pointers in
370 /// this address space don't have a well-defined bitwise representation.
371 ArrayRef
<unsigned> getNonIntegralAddressSpaces() const {
372 return NonIntegralAddressSpaces
;
375 bool isNonIntegralAddressSpace(unsigned AddrSpace
) const {
376 ArrayRef
<unsigned> NonIntegralSpaces
= getNonIntegralAddressSpaces();
377 return find(NonIntegralSpaces
, AddrSpace
) != NonIntegralSpaces
.end();
380 bool isNonIntegralPointerType(PointerType
*PT
) const {
381 return isNonIntegralAddressSpace(PT
->getAddressSpace());
384 bool isNonIntegralPointerType(Type
*Ty
) const {
385 auto *PTy
= dyn_cast
<PointerType
>(Ty
);
386 return PTy
&& isNonIntegralPointerType(PTy
);
389 /// Layout pointer size, in bits
390 /// FIXME: The defaults need to be removed once all of
391 /// the backends/clients are updated.
392 unsigned getPointerSizeInBits(unsigned AS
= 0) const {
393 return getPointerSize(AS
) * 8;
396 /// Returns the maximum pointer size over all address spaces.
397 unsigned getMaxPointerSizeInBits() const {
398 return getMaxPointerSize() * 8;
401 /// Size in bits of index used for address calculation in getelementptr.
402 unsigned getIndexSizeInBits(unsigned AS
) const {
403 return getIndexSize(AS
) * 8;
406 /// Layout pointer size, in bits, based on the type. If this function is
407 /// called with a pointer type, then the type size of the pointer is returned.
408 /// If this function is called with a vector of pointers, then the type size
409 /// of the pointer is returned. This should only be called with a pointer or
410 /// vector of pointers.
411 unsigned getPointerTypeSizeInBits(Type
*) const;
413 /// Layout size of the index used in GEP calculation.
414 /// The function should be called with pointer or vector of pointers type.
415 unsigned getIndexTypeSizeInBits(Type
*Ty
) const;
417 unsigned getPointerTypeSize(Type
*Ty
) const {
418 return getPointerTypeSizeInBits(Ty
) / 8;
423 /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
424 /// ---- ---------- --------------- ---------------
433 /// X86_FP80 80 80 96
435 /// [*] The alloc size depends on the alignment, and thus on the target.
436 /// These values are for x86-32 linux.
438 /// Returns the number of bits necessary to hold the specified type.
440 /// If Ty is a scalable vector type, the scalable property will be set and
441 /// the runtime size will be a positive integer multiple of the base size.
443 /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
444 /// have a size (Type::isSized() must return true).
445 TypeSize
getTypeSizeInBits(Type
*Ty
) const;
447 /// Returns the maximum number of bytes that may be overwritten by
448 /// storing the specified type.
450 /// If Ty is a scalable vector type, the scalable property will be set and
451 /// the runtime size will be a positive integer multiple of the base size.
453 /// For example, returns 5 for i36 and 10 for x86_fp80.
454 TypeSize
getTypeStoreSize(Type
*Ty
) const {
455 TypeSize BaseSize
= getTypeSizeInBits(Ty
);
456 return { (BaseSize
.getKnownMinSize() + 7) / 8, BaseSize
.isScalable() };
459 /// Returns the maximum number of bits that may be overwritten by
460 /// storing the specified type; always a multiple of 8.
462 /// If Ty is a scalable vector type, the scalable property will be set and
463 /// the runtime size will be a positive integer multiple of the base size.
465 /// For example, returns 40 for i36 and 80 for x86_fp80.
466 TypeSize
getTypeStoreSizeInBits(Type
*Ty
) const {
467 return 8 * getTypeStoreSize(Ty
);
470 /// Returns true if no extra padding bits are needed when storing the
473 /// For example, returns false for i19 that has a 24-bit store size.
474 bool typeSizeEqualsStoreSize(Type
*Ty
) const {
475 return getTypeSizeInBits(Ty
) == getTypeStoreSizeInBits(Ty
);
478 /// Returns the offset in bytes between successive objects of the
479 /// specified type, including alignment padding.
481 /// If Ty is a scalable vector type, the scalable property will be set and
482 /// the runtime size will be a positive integer multiple of the base size.
484 /// This is the amount that alloca reserves for this type. For example,
485 /// returns 12 or 16 for x86_fp80, depending on alignment.
486 TypeSize
getTypeAllocSize(Type
*Ty
) const {
487 // Round up to the next alignment boundary.
488 return alignTo(getTypeStoreSize(Ty
), getABITypeAlignment(Ty
));
491 /// Returns the offset in bits between successive objects of the
492 /// specified type, including alignment padding; always a multiple of 8.
494 /// If Ty is a scalable vector type, the scalable property will be set and
495 /// the runtime size will be a positive integer multiple of the base size.
497 /// This is the amount that alloca reserves for this type. For example,
498 /// returns 96 or 128 for x86_fp80, depending on alignment.
499 TypeSize
getTypeAllocSizeInBits(Type
*Ty
) const {
500 return 8 * getTypeAllocSize(Ty
);
503 /// Returns the minimum ABI-required alignment for the specified type.
504 unsigned getABITypeAlignment(Type
*Ty
) const;
506 /// Helper function to return `Alignment` if it's set or the result of
507 /// `getABITypeAlignment(Ty)`, in any case the result is a valid alignment.
508 inline Align
getValueOrABITypeAlignment(MaybeAlign Alignment
,
510 return Alignment
? *Alignment
: Align(getABITypeAlignment(Ty
));
513 /// Returns the minimum ABI-required alignment for an integer type of
514 /// the specified bitwidth.
515 Align
getABIIntegerTypeAlignment(unsigned BitWidth
) const;
517 /// Returns the preferred stack/global alignment for the specified
520 /// This is always at least as good as the ABI alignment.
521 unsigned getPrefTypeAlignment(Type
*Ty
) const;
523 /// Returns an integer type with size at least as big as that of a
524 /// pointer in the given address space.
525 IntegerType
*getIntPtrType(LLVMContext
&C
, unsigned AddressSpace
= 0) const;
527 /// Returns an integer (vector of integer) type with size at least as
528 /// big as that of a pointer of the given pointer (vector of pointer) type.
529 Type
*getIntPtrType(Type
*) const;
531 /// Returns the smallest integer type with size at least as big as
533 Type
*getSmallestLegalIntType(LLVMContext
&C
, unsigned Width
= 0) const;
535 /// Returns the largest legal integer type, or null if none are set.
536 Type
*getLargestLegalIntType(LLVMContext
&C
) const {
537 unsigned LargestSize
= getLargestLegalIntTypeSizeInBits();
538 return (LargestSize
== 0) ? nullptr : Type::getIntNTy(C
, LargestSize
);
541 /// Returns the size of largest legal integer type size, or 0 if none
543 unsigned getLargestLegalIntTypeSizeInBits() const;
545 /// Returns the type of a GEP index.
546 /// If it was not specified explicitly, it will be the integer type of the
547 /// pointer width - IntPtrType.
548 Type
*getIndexType(Type
*PtrTy
) const;
550 /// Returns the offset from the beginning of the type for the specified
553 /// Note that this takes the element type, not the pointer type.
554 /// This is used to implement getelementptr.
555 int64_t getIndexedOffsetInType(Type
*ElemTy
, ArrayRef
<Value
*> Indices
) const;
557 /// Returns a StructLayout object, indicating the alignment of the
558 /// struct, its size, and the offsets of its fields.
560 /// Note that this information is lazily cached.
561 const StructLayout
*getStructLayout(StructType
*Ty
) const;
563 /// Returns the preferred alignment of the specified global.
565 /// This includes an explicitly requested alignment (if the global has one).
566 unsigned getPreferredAlignment(const GlobalVariable
*GV
) const;
568 /// Returns the preferred alignment of the specified global, returned
571 /// This includes an explicitly requested alignment (if the global has one).
572 unsigned getPreferredAlignmentLog(const GlobalVariable
*GV
) const;
575 inline DataLayout
*unwrap(LLVMTargetDataRef P
) {
576 return reinterpret_cast<DataLayout
*>(P
);
579 inline LLVMTargetDataRef
wrap(const DataLayout
*P
) {
580 return reinterpret_cast<LLVMTargetDataRef
>(const_cast<DataLayout
*>(P
));
583 /// Used to lazily calculate structure layout information for a target machine,
584 /// based on the DataLayout structure.
587 Align StructAlignment
;
588 unsigned IsPadded
: 1;
589 unsigned NumElements
: 31;
590 uint64_t MemberOffsets
[1]; // variable sized array!
593 uint64_t getSizeInBytes() const { return StructSize
; }
595 uint64_t getSizeInBits() const { return 8 * StructSize
; }
597 Align
getAlignment() const { return StructAlignment
; }
599 /// Returns whether the struct has padding or not between its fields.
600 /// NB: Padding in nested element is not taken into account.
601 bool hasPadding() const { return IsPadded
; }
603 /// Given a valid byte offset into the structure, returns the structure
604 /// index that contains it.
605 unsigned getElementContainingOffset(uint64_t Offset
) const;
607 uint64_t getElementOffset(unsigned Idx
) const {
608 assert(Idx
< NumElements
&& "Invalid element idx!");
609 return MemberOffsets
[Idx
];
612 uint64_t getElementOffsetInBits(unsigned Idx
) const {
613 return getElementOffset(Idx
) * 8;
617 friend class DataLayout
; // Only DataLayout can create this class
619 StructLayout(StructType
*ST
, const DataLayout
&DL
);
622 // The implementation of this method is provided inline as it is particularly
623 // well suited to constant folding when called on a specific Type subclass.
624 inline TypeSize
DataLayout::getTypeSizeInBits(Type
*Ty
) const {
625 assert(Ty
->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
626 switch (Ty
->getTypeID()) {
627 case Type::LabelTyID
:
628 return TypeSize::Fixed(getPointerSizeInBits(0));
629 case Type::PointerTyID
:
630 return TypeSize::Fixed(getPointerSizeInBits(Ty
->getPointerAddressSpace()));
631 case Type::ArrayTyID
: {
632 ArrayType
*ATy
= cast
<ArrayType
>(Ty
);
633 return ATy
->getNumElements() *
634 getTypeAllocSizeInBits(ATy
->getElementType());
636 case Type::StructTyID
:
637 // Get the layout annotation... which is lazily created on demand.
638 return TypeSize::Fixed(
639 getStructLayout(cast
<StructType
>(Ty
))->getSizeInBits());
640 case Type::IntegerTyID
:
641 return TypeSize::Fixed(Ty
->getIntegerBitWidth());
643 return TypeSize::Fixed(16);
644 case Type::FloatTyID
:
645 return TypeSize::Fixed(32);
646 case Type::DoubleTyID
:
647 case Type::X86_MMXTyID
:
648 return TypeSize::Fixed(64);
649 case Type::PPC_FP128TyID
:
650 case Type::FP128TyID
:
651 return TypeSize::Fixed(128);
652 // In memory objects this is always aligned to a higher boundary, but
653 // only 80 bits contain information.
654 case Type::X86_FP80TyID
:
655 return TypeSize::Fixed(80);
656 case Type::VectorTyID
: {
657 VectorType
*VTy
= cast
<VectorType
>(Ty
);
658 auto EltCnt
= VTy
->getElementCount();
659 uint64_t MinBits
= EltCnt
.Min
*
660 getTypeSizeInBits(VTy
->getElementType()).getFixedSize();
661 return TypeSize(MinBits
, EltCnt
.Scalable
);
664 llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
668 } // end namespace llvm
670 #endif // LLVM_IR_DATALAYOUT_H