[InstCombine] Signed saturation patterns
[llvm-core.git] / include / llvm / MC / MCInstrAnalysis.h
blob898ca47b13b8c84ad8e286d8efaa3a58185cd855
1 //===- llvm/MC/MCInstrAnalysis.h - InstrDesc target hooks -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MCInstrAnalysis class which the MCTargetDescs can
10 // derive from to give additional information to MC.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_MC_MCINSTRANALYSIS_H
15 #define LLVM_MC_MCINSTRANALYSIS_H
17 #include "llvm/MC/MCInst.h"
18 #include "llvm/MC/MCInstrDesc.h"
19 #include "llvm/MC/MCInstrInfo.h"
20 #include <cstdint>
22 namespace llvm {
24 class MCRegisterInfo;
25 class Triple;
27 class MCInstrAnalysis {
28 protected:
29 friend class Target;
31 const MCInstrInfo *Info;
33 public:
34 MCInstrAnalysis(const MCInstrInfo *Info) : Info(Info) {}
35 virtual ~MCInstrAnalysis() = default;
37 virtual bool isBranch(const MCInst &Inst) const {
38 return Info->get(Inst.getOpcode()).isBranch();
41 virtual bool isConditionalBranch(const MCInst &Inst) const {
42 return Info->get(Inst.getOpcode()).isConditionalBranch();
45 virtual bool isUnconditionalBranch(const MCInst &Inst) const {
46 return Info->get(Inst.getOpcode()).isUnconditionalBranch();
49 virtual bool isIndirectBranch(const MCInst &Inst) const {
50 return Info->get(Inst.getOpcode()).isIndirectBranch();
53 virtual bool isCall(const MCInst &Inst) const {
54 return Info->get(Inst.getOpcode()).isCall();
57 virtual bool isReturn(const MCInst &Inst) const {
58 return Info->get(Inst.getOpcode()).isReturn();
61 virtual bool isTerminator(const MCInst &Inst) const {
62 return Info->get(Inst.getOpcode()).isTerminator();
65 /// Returns true if at least one of the register writes performed by
66 /// \param Inst implicitly clears the upper portion of all super-registers.
67 ///
68 /// Example: on X86-64, a write to EAX implicitly clears the upper half of
69 /// RAX. Also (still on x86) an XMM write perfomed by an AVX 128-bit
70 /// instruction implicitly clears the upper portion of the correspondent
71 /// YMM register.
72 ///
73 /// This method also updates an APInt which is used as mask of register
74 /// writes. There is one bit for every explicit/implicit write performed by
75 /// the instruction. If a write implicitly clears its super-registers, then
76 /// the corresponding bit is set (vic. the corresponding bit is cleared).
77 ///
78 /// The first bits in the APint are related to explicit writes. The remaining
79 /// bits are related to implicit writes. The sequence of writes follows the
80 /// machine operand sequence. For implicit writes, the sequence is defined by
81 /// the MCInstrDesc.
82 ///
83 /// The assumption is that the bit-width of the APInt is correctly set by
84 /// the caller. The default implementation conservatively assumes that none of
85 /// the writes clears the upper portion of a super-register.
86 virtual bool clearsSuperRegisters(const MCRegisterInfo &MRI,
87 const MCInst &Inst,
88 APInt &Writes) const;
90 /// Returns true if MI is a dependency breaking zero-idiom for the given
91 /// subtarget.
92 ///
93 /// Mask is used to identify input operands that have their dependency
94 /// broken. Each bit of the mask is associated with a specific input operand.
95 /// Bits associated with explicit input operands are laid out first in the
96 /// mask; implicit operands come after explicit operands.
97 ///
98 /// Dependencies are broken only for operands that have their corresponding bit
99 /// set. Operands that have their bit cleared, or that don't have a
100 /// corresponding bit in the mask don't have their dependency broken. Note
101 /// that Mask may not be big enough to describe all operands. The assumption
102 /// for operands that don't have a correspondent bit in the mask is that those
103 /// are still data dependent.
104 ///
105 /// The only exception to the rule is for when Mask has all zeroes.
106 /// A zero mask means: dependencies are broken for all explicit register
107 /// operands.
108 virtual bool isZeroIdiom(const MCInst &MI, APInt &Mask,
109 unsigned CPUID) const {
110 return false;
113 /// Returns true if MI is a dependency breaking instruction for the
114 /// subtarget associated with CPUID .
116 /// The value computed by a dependency breaking instruction is not dependent
117 /// on the inputs. An example of dependency breaking instruction on X86 is
118 /// `XOR %eax, %eax`.
120 /// If MI is a dependency breaking instruction for subtarget CPUID, then Mask
121 /// can be inspected to identify independent operands.
123 /// Essentially, each bit of the mask corresponds to an input operand.
124 /// Explicit operands are laid out first in the mask; implicit operands follow
125 /// explicit operands. Bits are set for operands that are independent.
127 /// Note that the number of bits in Mask may not be equivalent to the sum of
128 /// explicit and implicit operands in MI. Operands that don't have a
129 /// corresponding bit in Mask are assumed "not independente".
131 /// The only exception is for when Mask is all zeroes. That means: explicit
132 /// input operands of MI are independent.
133 virtual bool isDependencyBreaking(const MCInst &MI, APInt &Mask,
134 unsigned CPUID) const {
135 return isZeroIdiom(MI, Mask, CPUID);
138 /// Returns true if MI is a candidate for move elimination.
140 /// Different subtargets may apply different constraints to optimizable
141 /// register moves. For example, on most X86 subtargets, a candidate for move
142 /// elimination cannot specify the same register for both source and
143 /// destination.
144 virtual bool isOptimizableRegisterMove(const MCInst &MI,
145 unsigned CPUID) const {
146 return false;
149 /// Given a branch instruction try to get the address the branch
150 /// targets. Return true on success, and the address in Target.
151 virtual bool
152 evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
153 uint64_t &Target) const;
155 /// Given an instruction tries to get the address of a memory operand. Returns
156 /// the address on success.
157 virtual Optional<uint64_t> evaluateMemoryOperandAddress(const MCInst &Inst,
158 uint64_t Addr,
159 uint64_t Size) const;
161 /// Returns (PLT virtual address, GOT virtual address) pairs for PLT entries.
162 virtual std::vector<std::pair<uint64_t, uint64_t>>
163 findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
164 uint64_t GotPltSectionVA, const Triple &TargetTriple) const {
165 return {};
169 } // end namespace llvm
171 #endif // LLVM_MC_MCINSTRANALYSIS_H