[InstCombine] Signed saturation patterns
[llvm-core.git] / include / llvm / MC / MCInstrItineraries.h
blob485aa663272efe1edb9d9b72dc91dd6df6fa9e4b
1 //===- llvm/MC/MCInstrItineraries.h - Scheduling ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes the structures used for instruction
10 // itineraries, stages, and operand reads/writes. This is used by
11 // schedulers to determine instruction stages and latencies.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_MC_MCINSTRITINERARIES_H
16 #define LLVM_MC_MCINSTRITINERARIES_H
18 #include "llvm/MC/MCSchedule.h"
19 #include <algorithm>
21 namespace llvm {
23 //===----------------------------------------------------------------------===//
24 /// These values represent a non-pipelined step in
25 /// the execution of an instruction. Cycles represents the number of
26 /// discrete time slots needed to complete the stage. Units represent
27 /// the choice of functional units that can be used to complete the
28 /// stage. Eg. IntUnit1, IntUnit2. NextCycles indicates how many
29 /// cycles should elapse from the start of this stage to the start of
30 /// the next stage in the itinerary. A value of -1 indicates that the
31 /// next stage should start immediately after the current one.
32 /// For example:
33 ///
34 /// { 1, x, -1 }
35 /// indicates that the stage occupies FU x for 1 cycle and that
36 /// the next stage starts immediately after this one.
37 ///
38 /// { 2, x|y, 1 }
39 /// indicates that the stage occupies either FU x or FU y for 2
40 /// consecutive cycles and that the next stage starts one cycle
41 /// after this stage starts. That is, the stage requirements
42 /// overlap in time.
43 ///
44 /// { 1, x, 0 }
45 /// indicates that the stage occupies FU x for 1 cycle and that
46 /// the next stage starts in this same cycle. This can be used to
47 /// indicate that the instruction requires multiple stages at the
48 /// same time.
49 ///
50 /// FU reservation can be of two different kinds:
51 /// - FUs which instruction actually requires
52 /// - FUs which instruction just reserves. Reserved unit is not available for
53 /// execution of other instruction. However, several instructions can reserve
54 /// the same unit several times.
55 /// Such two types of units reservation is used to model instruction domain
56 /// change stalls, FUs using the same resource (e.g. same register file), etc.
58 struct InstrStage {
59 enum ReservationKinds {
60 Required = 0,
61 Reserved = 1
64 unsigned Cycles_; ///< Length of stage in machine cycles
65 unsigned Units_; ///< Choice of functional units
66 int NextCycles_; ///< Number of machine cycles to next stage
67 ReservationKinds Kind_; ///< Kind of the FU reservation
69 /// Returns the number of cycles the stage is occupied.
70 unsigned getCycles() const {
71 return Cycles_;
74 /// Returns the choice of FUs.
75 unsigned getUnits() const {
76 return Units_;
79 ReservationKinds getReservationKind() const {
80 return Kind_;
83 /// Returns the number of cycles from the start of this stage to the
84 /// start of the next stage in the itinerary
85 unsigned getNextCycles() const {
86 return (NextCycles_ >= 0) ? (unsigned)NextCycles_ : Cycles_;
90 //===----------------------------------------------------------------------===//
91 /// An itinerary represents the scheduling information for an instruction.
92 /// This includes a set of stages occupied by the instruction and the pipeline
93 /// cycle in which operands are read and written.
94 ///
95 struct InstrItinerary {
96 int16_t NumMicroOps; ///< # of micro-ops, -1 means it's variable
97 uint16_t FirstStage; ///< Index of first stage in itinerary
98 uint16_t LastStage; ///< Index of last + 1 stage in itinerary
99 uint16_t FirstOperandCycle; ///< Index of first operand rd/wr
100 uint16_t LastOperandCycle; ///< Index of last + 1 operand rd/wr
103 //===----------------------------------------------------------------------===//
104 /// Itinerary data supplied by a subtarget to be used by a target.
106 class InstrItineraryData {
107 public:
108 MCSchedModel SchedModel =
109 MCSchedModel::GetDefaultSchedModel(); ///< Basic machine properties.
110 const InstrStage *Stages = nullptr; ///< Array of stages selected
111 const unsigned *OperandCycles = nullptr; ///< Array of operand cycles selected
112 const unsigned *Forwardings = nullptr; ///< Array of pipeline forwarding paths
113 const InstrItinerary *Itineraries =
114 nullptr; ///< Array of itineraries selected
116 InstrItineraryData() = default;
117 InstrItineraryData(const MCSchedModel &SM, const InstrStage *S,
118 const unsigned *OS, const unsigned *F)
119 : SchedModel(SM), Stages(S), OperandCycles(OS), Forwardings(F),
120 Itineraries(SchedModel.InstrItineraries) {}
122 /// Returns true if there are no itineraries.
123 bool isEmpty() const { return Itineraries == nullptr; }
125 /// Returns true if the index is for the end marker itinerary.
126 bool isEndMarker(unsigned ItinClassIndx) const {
127 return ((Itineraries[ItinClassIndx].FirstStage == UINT16_MAX) &&
128 (Itineraries[ItinClassIndx].LastStage == UINT16_MAX));
131 /// Return the first stage of the itinerary.
132 const InstrStage *beginStage(unsigned ItinClassIndx) const {
133 unsigned StageIdx = Itineraries[ItinClassIndx].FirstStage;
134 return Stages + StageIdx;
137 /// Return the last+1 stage of the itinerary.
138 const InstrStage *endStage(unsigned ItinClassIndx) const {
139 unsigned StageIdx = Itineraries[ItinClassIndx].LastStage;
140 return Stages + StageIdx;
143 /// Return the total stage latency of the given class. The latency is
144 /// the maximum completion time for any stage in the itinerary. If no stages
145 /// exist, it defaults to one cycle.
146 unsigned getStageLatency(unsigned ItinClassIndx) const {
147 // If the target doesn't provide itinerary information, use a simple
148 // non-zero default value for all instructions.
149 if (isEmpty())
150 return 1;
152 // Calculate the maximum completion time for any stage.
153 unsigned Latency = 0, StartCycle = 0;
154 for (const InstrStage *IS = beginStage(ItinClassIndx),
155 *E = endStage(ItinClassIndx); IS != E; ++IS) {
156 Latency = std::max(Latency, StartCycle + IS->getCycles());
157 StartCycle += IS->getNextCycles();
159 return Latency;
162 /// Return the cycle for the given class and operand. Return -1 if no
163 /// cycle is specified for the operand.
164 int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const {
165 if (isEmpty())
166 return -1;
168 unsigned FirstIdx = Itineraries[ItinClassIndx].FirstOperandCycle;
169 unsigned LastIdx = Itineraries[ItinClassIndx].LastOperandCycle;
170 if ((FirstIdx + OperandIdx) >= LastIdx)
171 return -1;
173 return (int)OperandCycles[FirstIdx + OperandIdx];
176 /// Return true if there is a pipeline forwarding between instructions
177 /// of itinerary classes DefClass and UseClasses so that value produced by an
178 /// instruction of itinerary class DefClass, operand index DefIdx can be
179 /// bypassed when it's read by an instruction of itinerary class UseClass,
180 /// operand index UseIdx.
181 bool hasPipelineForwarding(unsigned DefClass, unsigned DefIdx,
182 unsigned UseClass, unsigned UseIdx) const {
183 unsigned FirstDefIdx = Itineraries[DefClass].FirstOperandCycle;
184 unsigned LastDefIdx = Itineraries[DefClass].LastOperandCycle;
185 if ((FirstDefIdx + DefIdx) >= LastDefIdx)
186 return false;
187 if (Forwardings[FirstDefIdx + DefIdx] == 0)
188 return false;
190 unsigned FirstUseIdx = Itineraries[UseClass].FirstOperandCycle;
191 unsigned LastUseIdx = Itineraries[UseClass].LastOperandCycle;
192 if ((FirstUseIdx + UseIdx) >= LastUseIdx)
193 return false;
195 return Forwardings[FirstDefIdx + DefIdx] ==
196 Forwardings[FirstUseIdx + UseIdx];
199 /// Compute and return the use operand latency of a given itinerary
200 /// class and operand index if the value is produced by an instruction of the
201 /// specified itinerary class and def operand index.
202 int getOperandLatency(unsigned DefClass, unsigned DefIdx,
203 unsigned UseClass, unsigned UseIdx) const {
204 if (isEmpty())
205 return -1;
207 int DefCycle = getOperandCycle(DefClass, DefIdx);
208 if (DefCycle == -1)
209 return -1;
211 int UseCycle = getOperandCycle(UseClass, UseIdx);
212 if (UseCycle == -1)
213 return -1;
215 UseCycle = DefCycle - UseCycle + 1;
216 if (UseCycle > 0 &&
217 hasPipelineForwarding(DefClass, DefIdx, UseClass, UseIdx))
218 // FIXME: This assumes one cycle benefit for every pipeline forwarding.
219 --UseCycle;
220 return UseCycle;
223 /// Return the number of micro-ops that the given class decodes to.
224 /// Return -1 for classes that require dynamic lookup via TargetInstrInfo.
225 int getNumMicroOps(unsigned ItinClassIndx) const {
226 if (isEmpty())
227 return 1;
228 return Itineraries[ItinClassIndx].NumMicroOps;
232 } // end namespace llvm
234 #endif // LLVM_MC_MCINSTRITINERARIES_H