1 //===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file defines the MallocAllocator and BumpPtrAllocator interfaces. Both
11 /// of these conform to an LLVM "Allocator" concept which consists of an
12 /// Allocate method accepting a size and alignment, and a Deallocate accepting
13 /// a pointer and size. Further, the LLVM "Allocator" concept has overloads of
14 /// Allocate and Deallocate for setting size and alignment based on the final
15 /// type. These overloads are typically provided by a base class template \c
18 //===----------------------------------------------------------------------===//
20 #ifndef LLVM_SUPPORT_ALLOCATOR_H
21 #define LLVM_SUPPORT_ALLOCATOR_H
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/Alignment.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/MemAlloc.h"
36 #include <type_traits>
41 /// CRTP base class providing obvious overloads for the core \c
42 /// Allocate() methods of LLVM-style allocators.
44 /// This base class both documents the full public interface exposed by all
45 /// LLVM-style allocators, and redirects all of the overloads to a single core
46 /// set of methods which the derived class must define.
47 template <typename DerivedT
> class AllocatorBase
{
49 /// Allocate \a Size bytes of \a Alignment aligned memory. This method
50 /// must be implemented by \c DerivedT.
51 void *Allocate(size_t Size
, size_t Alignment
) {
53 static_assert(static_cast<void *(AllocatorBase::*)(size_t, size_t)>(
54 &AllocatorBase::Allocate
) !=
55 static_cast<void *(DerivedT::*)(size_t, size_t)>(
57 "Class derives from AllocatorBase without implementing the "
58 "core Allocate(size_t, size_t) overload!");
60 return static_cast<DerivedT
*>(this)->Allocate(Size
, Alignment
);
63 /// Deallocate \a Ptr to \a Size bytes of memory allocated by this
65 void Deallocate(const void *Ptr
, size_t Size
) {
67 static_assert(static_cast<void (AllocatorBase::*)(const void *, size_t)>(
68 &AllocatorBase::Deallocate
) !=
69 static_cast<void (DerivedT::*)(const void *, size_t)>(
70 &DerivedT::Deallocate
),
71 "Class derives from AllocatorBase without implementing the "
72 "core Deallocate(void *) overload!");
74 return static_cast<DerivedT
*>(this)->Deallocate(Ptr
, Size
);
77 // The rest of these methods are helpers that redirect to one of the above
80 /// Allocate space for a sequence of objects without constructing them.
81 template <typename T
> T
*Allocate(size_t Num
= 1) {
82 return static_cast<T
*>(Allocate(Num
* sizeof(T
), alignof(T
)));
85 /// Deallocate space for a sequence of objects without constructing them.
87 typename
std::enable_if
<
88 !std::is_same
<typename
std::remove_cv
<T
>::type
, void>::value
, void>::type
89 Deallocate(T
*Ptr
, size_t Num
= 1) {
90 Deallocate(static_cast<const void *>(Ptr
), Num
* sizeof(T
));
94 class MallocAllocator
: public AllocatorBase
<MallocAllocator
> {
98 LLVM_ATTRIBUTE_RETURNS_NONNULL
void *Allocate(size_t Size
,
99 size_t /*Alignment*/) {
100 return safe_malloc(Size
);
103 // Pull in base class overloads.
104 using AllocatorBase
<MallocAllocator
>::Allocate
;
106 void Deallocate(const void *Ptr
, size_t /*Size*/) {
107 free(const_cast<void *>(Ptr
));
110 // Pull in base class overloads.
111 using AllocatorBase
<MallocAllocator
>::Deallocate
;
113 void PrintStats() const {}
118 // We call out to an external function to actually print the message as the
119 // printing code uses Allocator.h in its implementation.
120 void printBumpPtrAllocatorStats(unsigned NumSlabs
, size_t BytesAllocated
,
123 } // end namespace detail
125 /// Allocate memory in an ever growing pool, as if by bump-pointer.
127 /// This isn't strictly a bump-pointer allocator as it uses backing slabs of
128 /// memory rather than relying on a boundless contiguous heap. However, it has
129 /// bump-pointer semantics in that it is a monotonically growing pool of memory
130 /// where every allocation is found by merely allocating the next N bytes in
131 /// the slab, or the next N bytes in the next slab.
133 /// Note that this also has a threshold for forcing allocations above a certain
134 /// size into their own slab.
136 /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
137 /// object, which wraps malloc, to allocate memory, but it can be changed to
138 /// use a custom allocator.
139 template <typename AllocatorT
= MallocAllocator
, size_t SlabSize
= 4096,
140 size_t SizeThreshold
= SlabSize
>
141 class BumpPtrAllocatorImpl
142 : public AllocatorBase
<
143 BumpPtrAllocatorImpl
<AllocatorT
, SlabSize
, SizeThreshold
>> {
145 static_assert(SizeThreshold
<= SlabSize
,
146 "The SizeThreshold must be at most the SlabSize to ensure "
147 "that objects larger than a slab go into their own memory "
150 BumpPtrAllocatorImpl() = default;
152 template <typename T
>
153 BumpPtrAllocatorImpl(T
&&Allocator
)
154 : Allocator(std::forward
<T
&&>(Allocator
)) {}
156 // Manually implement a move constructor as we must clear the old allocator's
157 // slabs as a matter of correctness.
158 BumpPtrAllocatorImpl(BumpPtrAllocatorImpl
&&Old
)
159 : CurPtr(Old
.CurPtr
), End(Old
.End
), Slabs(std::move(Old
.Slabs
)),
160 CustomSizedSlabs(std::move(Old
.CustomSizedSlabs
)),
161 BytesAllocated(Old
.BytesAllocated
), RedZoneSize(Old
.RedZoneSize
),
162 Allocator(std::move(Old
.Allocator
)) {
163 Old
.CurPtr
= Old
.End
= nullptr;
164 Old
.BytesAllocated
= 0;
166 Old
.CustomSizedSlabs
.clear();
169 ~BumpPtrAllocatorImpl() {
170 DeallocateSlabs(Slabs
.begin(), Slabs
.end());
171 DeallocateCustomSizedSlabs();
174 BumpPtrAllocatorImpl
&operator=(BumpPtrAllocatorImpl
&&RHS
) {
175 DeallocateSlabs(Slabs
.begin(), Slabs
.end());
176 DeallocateCustomSizedSlabs();
180 BytesAllocated
= RHS
.BytesAllocated
;
181 RedZoneSize
= RHS
.RedZoneSize
;
182 Slabs
= std::move(RHS
.Slabs
);
183 CustomSizedSlabs
= std::move(RHS
.CustomSizedSlabs
);
184 Allocator
= std::move(RHS
.Allocator
);
186 RHS
.CurPtr
= RHS
.End
= nullptr;
187 RHS
.BytesAllocated
= 0;
189 RHS
.CustomSizedSlabs
.clear();
193 /// Deallocate all but the current slab and reset the current pointer
194 /// to the beginning of it, freeing all memory allocated so far.
196 // Deallocate all but the first slab, and deallocate all custom-sized slabs.
197 DeallocateCustomSizedSlabs();
198 CustomSizedSlabs
.clear();
205 CurPtr
= (char *)Slabs
.front();
206 End
= CurPtr
+ SlabSize
;
208 __asan_poison_memory_region(*Slabs
.begin(), computeSlabSize(0));
209 DeallocateSlabs(std::next(Slabs
.begin()), Slabs
.end());
210 Slabs
.erase(std::next(Slabs
.begin()), Slabs
.end());
213 /// Allocate space at the specified alignment.
214 LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS
void *
215 Allocate(size_t Size
, Align Alignment
) {
216 // Keep track of how many bytes we've allocated.
217 BytesAllocated
+= Size
;
219 size_t Adjustment
= offsetToAlignedAddr(CurPtr
, Alignment
);
220 assert(Adjustment
+ Size
>= Size
&& "Adjustment + Size must not overflow");
222 size_t SizeToAllocate
= Size
;
223 #if LLVM_ADDRESS_SANITIZER_BUILD
224 // Add trailing bytes as a "red zone" under ASan.
225 SizeToAllocate
+= RedZoneSize
;
228 // Check if we have enough space.
229 if (Adjustment
+ SizeToAllocate
<= size_t(End
- CurPtr
)) {
230 char *AlignedPtr
= CurPtr
+ Adjustment
;
231 CurPtr
= AlignedPtr
+ SizeToAllocate
;
232 // Update the allocation point of this memory block in MemorySanitizer.
233 // Without this, MemorySanitizer messages for values originated from here
234 // will point to the allocation of the entire slab.
235 __msan_allocated_memory(AlignedPtr
, Size
);
236 // Similarly, tell ASan about this space.
237 __asan_unpoison_memory_region(AlignedPtr
, Size
);
241 // If Size is really big, allocate a separate slab for it.
242 size_t PaddedSize
= SizeToAllocate
+ Alignment
.value() - 1;
243 if (PaddedSize
> SizeThreshold
) {
244 void *NewSlab
= Allocator
.Allocate(PaddedSize
, 0);
245 // We own the new slab and don't want anyone reading anyting other than
246 // pieces returned from this method. So poison the whole slab.
247 __asan_poison_memory_region(NewSlab
, PaddedSize
);
248 CustomSizedSlabs
.push_back(std::make_pair(NewSlab
, PaddedSize
));
250 uintptr_t AlignedAddr
= alignAddr(NewSlab
, Alignment
);
251 assert(AlignedAddr
+ Size
<= (uintptr_t)NewSlab
+ PaddedSize
);
252 char *AlignedPtr
= (char*)AlignedAddr
;
253 __msan_allocated_memory(AlignedPtr
, Size
);
254 __asan_unpoison_memory_region(AlignedPtr
, Size
);
258 // Otherwise, start a new slab and try again.
260 uintptr_t AlignedAddr
= alignAddr(CurPtr
, Alignment
);
261 assert(AlignedAddr
+ SizeToAllocate
<= (uintptr_t)End
&&
262 "Unable to allocate memory!");
263 char *AlignedPtr
= (char*)AlignedAddr
;
264 CurPtr
= AlignedPtr
+ SizeToAllocate
;
265 __msan_allocated_memory(AlignedPtr
, Size
);
266 __asan_unpoison_memory_region(AlignedPtr
, Size
);
270 inline LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS
void *
271 Allocate(size_t Size
, size_t Alignment
) {
272 assert(Alignment
> 0 && "0-byte alignnment is not allowed. Use 1 instead.");
273 return Allocate(Size
, Align(Alignment
));
276 // Pull in base class overloads.
277 using AllocatorBase
<BumpPtrAllocatorImpl
>::Allocate
;
279 // Bump pointer allocators are expected to never free their storage; and
280 // clients expect pointers to remain valid for non-dereferencing uses even
281 // after deallocation.
282 void Deallocate(const void *Ptr
, size_t Size
) {
283 __asan_poison_memory_region(Ptr
, Size
);
286 // Pull in base class overloads.
287 using AllocatorBase
<BumpPtrAllocatorImpl
>::Deallocate
;
289 size_t GetNumSlabs() const { return Slabs
.size() + CustomSizedSlabs
.size(); }
291 /// \return An index uniquely and reproducibly identifying
292 /// an input pointer \p Ptr in the given allocator.
293 /// The returned value is negative iff the object is inside a custom-size
295 /// Returns an empty optional if the pointer is not found in the allocator.
296 llvm::Optional
<int64_t> identifyObject(const void *Ptr
) {
297 const char *P
= static_cast<const char *>(Ptr
);
298 int64_t InSlabIdx
= 0;
299 for (size_t Idx
= 0, E
= Slabs
.size(); Idx
< E
; Idx
++) {
300 const char *S
= static_cast<const char *>(Slabs
[Idx
]);
301 if (P
>= S
&& P
< S
+ computeSlabSize(Idx
))
302 return InSlabIdx
+ static_cast<int64_t>(P
- S
);
303 InSlabIdx
+= static_cast<int64_t>(computeSlabSize(Idx
));
306 // Use negative index to denote custom sized slabs.
307 int64_t InCustomSizedSlabIdx
= -1;
308 for (size_t Idx
= 0, E
= CustomSizedSlabs
.size(); Idx
< E
; Idx
++) {
309 const char *S
= static_cast<const char *>(CustomSizedSlabs
[Idx
].first
);
310 size_t Size
= CustomSizedSlabs
[Idx
].second
;
311 if (P
>= S
&& P
< S
+ Size
)
312 return InCustomSizedSlabIdx
- static_cast<int64_t>(P
- S
);
313 InCustomSizedSlabIdx
-= static_cast<int64_t>(Size
);
318 /// A wrapper around identifyObject that additionally asserts that
319 /// the object is indeed within the allocator.
320 /// \return An index uniquely and reproducibly identifying
321 /// an input pointer \p Ptr in the given allocator.
322 int64_t identifyKnownObject(const void *Ptr
) {
323 Optional
<int64_t> Out
= identifyObject(Ptr
);
324 assert(Out
&& "Wrong allocator used");
328 /// A wrapper around identifyKnownObject. Accepts type information
329 /// about the object and produces a smaller identifier by relying on
330 /// the alignment information. Note that sub-classes may have different
331 /// alignment, so the most base class should be passed as template parameter
332 /// in order to obtain correct results. For that reason automatic template
333 /// parameter deduction is disabled.
334 /// \return An index uniquely and reproducibly identifying
335 /// an input pointer \p Ptr in the given allocator. This identifier is
336 /// different from the ones produced by identifyObject and
337 /// identifyAlignedObject.
338 template <typename T
>
339 int64_t identifyKnownAlignedObject(const void *Ptr
) {
340 int64_t Out
= identifyKnownObject(Ptr
);
341 assert(Out
% alignof(T
) == 0 && "Wrong alignment information");
342 return Out
/ alignof(T
);
345 size_t getTotalMemory() const {
346 size_t TotalMemory
= 0;
347 for (auto I
= Slabs
.begin(), E
= Slabs
.end(); I
!= E
; ++I
)
348 TotalMemory
+= computeSlabSize(std::distance(Slabs
.begin(), I
));
349 for (auto &PtrAndSize
: CustomSizedSlabs
)
350 TotalMemory
+= PtrAndSize
.second
;
354 size_t getBytesAllocated() const { return BytesAllocated
; }
356 void setRedZoneSize(size_t NewSize
) {
357 RedZoneSize
= NewSize
;
360 void PrintStats() const {
361 detail::printBumpPtrAllocatorStats(Slabs
.size(), BytesAllocated
,
366 /// The current pointer into the current slab.
368 /// This points to the next free byte in the slab.
369 char *CurPtr
= nullptr;
371 /// The end of the current slab.
374 /// The slabs allocated so far.
375 SmallVector
<void *, 4> Slabs
;
377 /// Custom-sized slabs allocated for too-large allocation requests.
378 SmallVector
<std::pair
<void *, size_t>, 0> CustomSizedSlabs
;
380 /// How many bytes we've allocated.
382 /// Used so that we can compute how much space was wasted.
383 size_t BytesAllocated
= 0;
385 /// The number of bytes to put between allocations when running under
387 size_t RedZoneSize
= 1;
389 /// The allocator instance we use to get slabs of memory.
390 AllocatorT Allocator
;
392 static size_t computeSlabSize(unsigned SlabIdx
) {
393 // Scale the actual allocated slab size based on the number of slabs
394 // allocated. Every 128 slabs allocated, we double the allocated size to
395 // reduce allocation frequency, but saturate at multiplying the slab size by
397 return SlabSize
* ((size_t)1 << std::min
<size_t>(30, SlabIdx
/ 128));
400 /// Allocate a new slab and move the bump pointers over into the new
401 /// slab, modifying CurPtr and End.
402 void StartNewSlab() {
403 size_t AllocatedSlabSize
= computeSlabSize(Slabs
.size());
405 void *NewSlab
= Allocator
.Allocate(AllocatedSlabSize
, 0);
406 // We own the new slab and don't want anyone reading anything other than
407 // pieces returned from this method. So poison the whole slab.
408 __asan_poison_memory_region(NewSlab
, AllocatedSlabSize
);
410 Slabs
.push_back(NewSlab
);
411 CurPtr
= (char *)(NewSlab
);
412 End
= ((char *)NewSlab
) + AllocatedSlabSize
;
415 /// Deallocate a sequence of slabs.
416 void DeallocateSlabs(SmallVectorImpl
<void *>::iterator I
,
417 SmallVectorImpl
<void *>::iterator E
) {
418 for (; I
!= E
; ++I
) {
419 size_t AllocatedSlabSize
=
420 computeSlabSize(std::distance(Slabs
.begin(), I
));
421 Allocator
.Deallocate(*I
, AllocatedSlabSize
);
425 /// Deallocate all memory for custom sized slabs.
426 void DeallocateCustomSizedSlabs() {
427 for (auto &PtrAndSize
: CustomSizedSlabs
) {
428 void *Ptr
= PtrAndSize
.first
;
429 size_t Size
= PtrAndSize
.second
;
430 Allocator
.Deallocate(Ptr
, Size
);
434 template <typename T
> friend class SpecificBumpPtrAllocator
;
437 /// The standard BumpPtrAllocator which just uses the default template
439 typedef BumpPtrAllocatorImpl
<> BumpPtrAllocator
;
441 /// A BumpPtrAllocator that allows only elements of a specific type to be
444 /// This allows calling the destructor in DestroyAll() and when the allocator is
446 template <typename T
> class SpecificBumpPtrAllocator
{
447 BumpPtrAllocator Allocator
;
450 SpecificBumpPtrAllocator() {
451 // Because SpecificBumpPtrAllocator walks the memory to call destructors,
452 // it can't have red zones between allocations.
453 Allocator
.setRedZoneSize(0);
455 SpecificBumpPtrAllocator(SpecificBumpPtrAllocator
&&Old
)
456 : Allocator(std::move(Old
.Allocator
)) {}
457 ~SpecificBumpPtrAllocator() { DestroyAll(); }
459 SpecificBumpPtrAllocator
&operator=(SpecificBumpPtrAllocator
&&RHS
) {
460 Allocator
= std::move(RHS
.Allocator
);
464 /// Call the destructor of each allocated object and deallocate all but the
465 /// current slab and reset the current pointer to the beginning of it, freeing
466 /// all memory allocated so far.
468 auto DestroyElements
= [](char *Begin
, char *End
) {
469 assert(Begin
== (char *)alignAddr(Begin
, Align::Of
<T
>()));
470 for (char *Ptr
= Begin
; Ptr
+ sizeof(T
) <= End
; Ptr
+= sizeof(T
))
471 reinterpret_cast<T
*>(Ptr
)->~T();
474 for (auto I
= Allocator
.Slabs
.begin(), E
= Allocator
.Slabs
.end(); I
!= E
;
476 size_t AllocatedSlabSize
= BumpPtrAllocator::computeSlabSize(
477 std::distance(Allocator
.Slabs
.begin(), I
));
478 char *Begin
= (char *)alignAddr(*I
, Align::Of
<T
>());
479 char *End
= *I
== Allocator
.Slabs
.back() ? Allocator
.CurPtr
480 : (char *)*I
+ AllocatedSlabSize
;
482 DestroyElements(Begin
, End
);
485 for (auto &PtrAndSize
: Allocator
.CustomSizedSlabs
) {
486 void *Ptr
= PtrAndSize
.first
;
487 size_t Size
= PtrAndSize
.second
;
488 DestroyElements((char *)alignAddr(Ptr
, Align::Of
<T
>()),
495 /// Allocate space for an array of objects without constructing them.
496 T
*Allocate(size_t num
= 1) { return Allocator
.Allocate
<T
>(num
); }
499 } // end namespace llvm
501 template <typename AllocatorT
, size_t SlabSize
, size_t SizeThreshold
>
502 void *operator new(size_t Size
,
503 llvm::BumpPtrAllocatorImpl
<AllocatorT
, SlabSize
,
504 SizeThreshold
> &Allocator
) {
514 return Allocator
.Allocate(
515 Size
, std::min((size_t)llvm::NextPowerOf2(Size
), offsetof(S
, x
)));
518 template <typename AllocatorT
, size_t SlabSize
, size_t SizeThreshold
>
519 void operator delete(
520 void *, llvm::BumpPtrAllocatorImpl
<AllocatorT
, SlabSize
, SizeThreshold
> &) {
523 #endif // LLVM_SUPPORT_ALLOCATOR_H