[InstCombine] Signed saturation patterns
[llvm-core.git] / include / llvm / Transforms / Utils / SSAUpdaterImpl.h
blobee06893ca66021dfcefc5d8f351ea195e48c321c
1 //===- SSAUpdaterImpl.h - SSA Updater Implementation ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides a template that implements the core algorithm for the
10 // SSAUpdater and MachineSSAUpdater.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
15 #define LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Support/Allocator.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/raw_ostream.h"
23 #define DEBUG_TYPE "ssaupdater"
25 namespace llvm {
27 template<typename T> class SSAUpdaterTraits;
29 template<typename UpdaterT>
30 class SSAUpdaterImpl {
31 private:
32 UpdaterT *Updater;
34 using Traits = SSAUpdaterTraits<UpdaterT>;
35 using BlkT = typename Traits::BlkT;
36 using ValT = typename Traits::ValT;
37 using PhiT = typename Traits::PhiT;
39 /// BBInfo - Per-basic block information used internally by SSAUpdaterImpl.
40 /// The predecessors of each block are cached here since pred_iterator is
41 /// slow and we need to iterate over the blocks at least a few times.
42 class BBInfo {
43 public:
44 // Back-pointer to the corresponding block.
45 BlkT *BB;
47 // Value to use in this block.
48 ValT AvailableVal;
50 // Block that defines the available value.
51 BBInfo *DefBB;
53 // Postorder number.
54 int BlkNum = 0;
56 // Immediate dominator.
57 BBInfo *IDom = nullptr;
59 // Number of predecessor blocks.
60 unsigned NumPreds = 0;
62 // Array[NumPreds] of predecessor blocks.
63 BBInfo **Preds = nullptr;
65 // Marker for existing PHIs that match.
66 PhiT *PHITag = nullptr;
68 BBInfo(BlkT *ThisBB, ValT V)
69 : BB(ThisBB), AvailableVal(V), DefBB(V ? this : nullptr) {}
72 using AvailableValsTy = DenseMap<BlkT *, ValT>;
74 AvailableValsTy *AvailableVals;
76 SmallVectorImpl<PhiT *> *InsertedPHIs;
78 using BlockListTy = SmallVectorImpl<BBInfo *>;
79 using BBMapTy = DenseMap<BlkT *, BBInfo *>;
81 BBMapTy BBMap;
82 BumpPtrAllocator Allocator;
84 public:
85 explicit SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A,
86 SmallVectorImpl<PhiT *> *Ins) :
87 Updater(U), AvailableVals(A), InsertedPHIs(Ins) {}
89 /// GetValue - Check to see if AvailableVals has an entry for the specified
90 /// BB and if so, return it. If not, construct SSA form by first
91 /// calculating the required placement of PHIs and then inserting new PHIs
92 /// where needed.
93 ValT GetValue(BlkT *BB) {
94 SmallVector<BBInfo *, 100> BlockList;
95 BBInfo *PseudoEntry = BuildBlockList(BB, &BlockList);
97 // Special case: bail out if BB is unreachable.
98 if (BlockList.size() == 0) {
99 ValT V = Traits::GetUndefVal(BB, Updater);
100 (*AvailableVals)[BB] = V;
101 return V;
104 FindDominators(&BlockList, PseudoEntry);
105 FindPHIPlacement(&BlockList);
106 FindAvailableVals(&BlockList);
108 return BBMap[BB]->DefBB->AvailableVal;
111 /// BuildBlockList - Starting from the specified basic block, traverse back
112 /// through its predecessors until reaching blocks with known values.
113 /// Create BBInfo structures for the blocks and append them to the block
114 /// list.
115 BBInfo *BuildBlockList(BlkT *BB, BlockListTy *BlockList) {
116 SmallVector<BBInfo *, 10> RootList;
117 SmallVector<BBInfo *, 64> WorkList;
119 BBInfo *Info = new (Allocator) BBInfo(BB, 0);
120 BBMap[BB] = Info;
121 WorkList.push_back(Info);
123 // Search backward from BB, creating BBInfos along the way and stopping
124 // when reaching blocks that define the value. Record those defining
125 // blocks on the RootList.
126 SmallVector<BlkT *, 10> Preds;
127 while (!WorkList.empty()) {
128 Info = WorkList.pop_back_val();
129 Preds.clear();
130 Traits::FindPredecessorBlocks(Info->BB, &Preds);
131 Info->NumPreds = Preds.size();
132 if (Info->NumPreds == 0)
133 Info->Preds = nullptr;
134 else
135 Info->Preds = static_cast<BBInfo **>(Allocator.Allocate(
136 Info->NumPreds * sizeof(BBInfo *), alignof(BBInfo *)));
138 for (unsigned p = 0; p != Info->NumPreds; ++p) {
139 BlkT *Pred = Preds[p];
140 // Check if BBMap already has a BBInfo for the predecessor block.
141 typename BBMapTy::value_type &BBMapBucket =
142 BBMap.FindAndConstruct(Pred);
143 if (BBMapBucket.second) {
144 Info->Preds[p] = BBMapBucket.second;
145 continue;
148 // Create a new BBInfo for the predecessor.
149 ValT PredVal = AvailableVals->lookup(Pred);
150 BBInfo *PredInfo = new (Allocator) BBInfo(Pred, PredVal);
151 BBMapBucket.second = PredInfo;
152 Info->Preds[p] = PredInfo;
154 if (PredInfo->AvailableVal) {
155 RootList.push_back(PredInfo);
156 continue;
158 WorkList.push_back(PredInfo);
162 // Now that we know what blocks are backwards-reachable from the starting
163 // block, do a forward depth-first traversal to assign postorder numbers
164 // to those blocks.
165 BBInfo *PseudoEntry = new (Allocator) BBInfo(nullptr, 0);
166 unsigned BlkNum = 1;
168 // Initialize the worklist with the roots from the backward traversal.
169 while (!RootList.empty()) {
170 Info = RootList.pop_back_val();
171 Info->IDom = PseudoEntry;
172 Info->BlkNum = -1;
173 WorkList.push_back(Info);
176 while (!WorkList.empty()) {
177 Info = WorkList.back();
179 if (Info->BlkNum == -2) {
180 // All the successors have been handled; assign the postorder number.
181 Info->BlkNum = BlkNum++;
182 // If not a root, put it on the BlockList.
183 if (!Info->AvailableVal)
184 BlockList->push_back(Info);
185 WorkList.pop_back();
186 continue;
189 // Leave this entry on the worklist, but set its BlkNum to mark that its
190 // successors have been put on the worklist. When it returns to the top
191 // the list, after handling its successors, it will be assigned a
192 // number.
193 Info->BlkNum = -2;
195 // Add unvisited successors to the work list.
196 for (typename Traits::BlkSucc_iterator SI =
197 Traits::BlkSucc_begin(Info->BB),
198 E = Traits::BlkSucc_end(Info->BB); SI != E; ++SI) {
199 BBInfo *SuccInfo = BBMap[*SI];
200 if (!SuccInfo || SuccInfo->BlkNum)
201 continue;
202 SuccInfo->BlkNum = -1;
203 WorkList.push_back(SuccInfo);
206 PseudoEntry->BlkNum = BlkNum;
207 return PseudoEntry;
210 /// IntersectDominators - This is the dataflow lattice "meet" operation for
211 /// finding dominators. Given two basic blocks, it walks up the dominator
212 /// tree until it finds a common dominator of both. It uses the postorder
213 /// number of the blocks to determine how to do that.
214 BBInfo *IntersectDominators(BBInfo *Blk1, BBInfo *Blk2) {
215 while (Blk1 != Blk2) {
216 while (Blk1->BlkNum < Blk2->BlkNum) {
217 Blk1 = Blk1->IDom;
218 if (!Blk1)
219 return Blk2;
221 while (Blk2->BlkNum < Blk1->BlkNum) {
222 Blk2 = Blk2->IDom;
223 if (!Blk2)
224 return Blk1;
227 return Blk1;
230 /// FindDominators - Calculate the dominator tree for the subset of the CFG
231 /// corresponding to the basic blocks on the BlockList. This uses the
232 /// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey
233 /// and Kennedy, published in Software--Practice and Experience, 2001,
234 /// 4:1-10. Because the CFG subset does not include any edges leading into
235 /// blocks that define the value, the results are not the usual dominator
236 /// tree. The CFG subset has a single pseudo-entry node with edges to a set
237 /// of root nodes for blocks that define the value. The dominators for this
238 /// subset CFG are not the standard dominators but they are adequate for
239 /// placing PHIs within the subset CFG.
240 void FindDominators(BlockListTy *BlockList, BBInfo *PseudoEntry) {
241 bool Changed;
242 do {
243 Changed = false;
244 // Iterate over the list in reverse order, i.e., forward on CFG edges.
245 for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
246 E = BlockList->rend(); I != E; ++I) {
247 BBInfo *Info = *I;
248 BBInfo *NewIDom = nullptr;
250 // Iterate through the block's predecessors.
251 for (unsigned p = 0; p != Info->NumPreds; ++p) {
252 BBInfo *Pred = Info->Preds[p];
254 // Treat an unreachable predecessor as a definition with 'undef'.
255 if (Pred->BlkNum == 0) {
256 Pred->AvailableVal = Traits::GetUndefVal(Pred->BB, Updater);
257 (*AvailableVals)[Pred->BB] = Pred->AvailableVal;
258 Pred->DefBB = Pred;
259 Pred->BlkNum = PseudoEntry->BlkNum;
260 PseudoEntry->BlkNum++;
263 if (!NewIDom)
264 NewIDom = Pred;
265 else
266 NewIDom = IntersectDominators(NewIDom, Pred);
269 // Check if the IDom value has changed.
270 if (NewIDom && NewIDom != Info->IDom) {
271 Info->IDom = NewIDom;
272 Changed = true;
275 } while (Changed);
278 /// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
279 /// any blocks containing definitions of the value. If one is found, then
280 /// the successor of Pred is in the dominance frontier for the definition,
281 /// and this function returns true.
282 bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom) {
283 for (; Pred != IDom; Pred = Pred->IDom) {
284 if (Pred->DefBB == Pred)
285 return true;
287 return false;
290 /// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers
291 /// of the known definitions. Iteratively add PHIs in the dom frontiers
292 /// until nothing changes. Along the way, keep track of the nearest
293 /// dominating definitions for non-PHI blocks.
294 void FindPHIPlacement(BlockListTy *BlockList) {
295 bool Changed;
296 do {
297 Changed = false;
298 // Iterate over the list in reverse order, i.e., forward on CFG edges.
299 for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
300 E = BlockList->rend(); I != E; ++I) {
301 BBInfo *Info = *I;
303 // If this block already needs a PHI, there is nothing to do here.
304 if (Info->DefBB == Info)
305 continue;
307 // Default to use the same def as the immediate dominator.
308 BBInfo *NewDefBB = Info->IDom->DefBB;
309 for (unsigned p = 0; p != Info->NumPreds; ++p) {
310 if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
311 // Need a PHI here.
312 NewDefBB = Info;
313 break;
317 // Check if anything changed.
318 if (NewDefBB != Info->DefBB) {
319 Info->DefBB = NewDefBB;
320 Changed = true;
323 } while (Changed);
326 /// FindAvailableVal - If this block requires a PHI, first check if an
327 /// existing PHI matches the PHI placement and reaching definitions computed
328 /// earlier, and if not, create a new PHI. Visit all the block's
329 /// predecessors to calculate the available value for each one and fill in
330 /// the incoming values for a new PHI.
331 void FindAvailableVals(BlockListTy *BlockList) {
332 // Go through the worklist in forward order (i.e., backward through the CFG)
333 // and check if existing PHIs can be used. If not, create empty PHIs where
334 // they are needed.
335 for (typename BlockListTy::iterator I = BlockList->begin(),
336 E = BlockList->end(); I != E; ++I) {
337 BBInfo *Info = *I;
338 // Check if there needs to be a PHI in BB.
339 if (Info->DefBB != Info)
340 continue;
342 // Look for an existing PHI.
343 FindExistingPHI(Info->BB, BlockList);
344 if (Info->AvailableVal)
345 continue;
347 ValT PHI = Traits::CreateEmptyPHI(Info->BB, Info->NumPreds, Updater);
348 Info->AvailableVal = PHI;
349 (*AvailableVals)[Info->BB] = PHI;
352 // Now go back through the worklist in reverse order to fill in the
353 // arguments for any new PHIs added in the forward traversal.
354 for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
355 E = BlockList->rend(); I != E; ++I) {
356 BBInfo *Info = *I;
358 if (Info->DefBB != Info) {
359 // Record the available value to speed up subsequent uses of this
360 // SSAUpdater for the same value.
361 (*AvailableVals)[Info->BB] = Info->DefBB->AvailableVal;
362 continue;
365 // Check if this block contains a newly added PHI.
366 PhiT *PHI = Traits::ValueIsNewPHI(Info->AvailableVal, Updater);
367 if (!PHI)
368 continue;
370 // Iterate through the block's predecessors.
371 for (unsigned p = 0; p != Info->NumPreds; ++p) {
372 BBInfo *PredInfo = Info->Preds[p];
373 BlkT *Pred = PredInfo->BB;
374 // Skip to the nearest preceding definition.
375 if (PredInfo->DefBB != PredInfo)
376 PredInfo = PredInfo->DefBB;
377 Traits::AddPHIOperand(PHI, PredInfo->AvailableVal, Pred);
380 LLVM_DEBUG(dbgs() << " Inserted PHI: " << *PHI << "\n");
382 // If the client wants to know about all new instructions, tell it.
383 if (InsertedPHIs) InsertedPHIs->push_back(PHI);
387 /// FindExistingPHI - Look through the PHI nodes in a block to see if any of
388 /// them match what is needed.
389 void FindExistingPHI(BlkT *BB, BlockListTy *BlockList) {
390 for (auto &SomePHI : BB->phis()) {
391 if (CheckIfPHIMatches(&SomePHI)) {
392 RecordMatchingPHIs(BlockList);
393 break;
395 // Match failed: clear all the PHITag values.
396 for (typename BlockListTy::iterator I = BlockList->begin(),
397 E = BlockList->end(); I != E; ++I)
398 (*I)->PHITag = nullptr;
402 /// CheckIfPHIMatches - Check if a PHI node matches the placement and values
403 /// in the BBMap.
404 bool CheckIfPHIMatches(PhiT *PHI) {
405 SmallVector<PhiT *, 20> WorkList;
406 WorkList.push_back(PHI);
408 // Mark that the block containing this PHI has been visited.
409 BBMap[PHI->getParent()]->PHITag = PHI;
411 while (!WorkList.empty()) {
412 PHI = WorkList.pop_back_val();
414 // Iterate through the PHI's incoming values.
415 for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
416 E = Traits::PHI_end(PHI); I != E; ++I) {
417 ValT IncomingVal = I.getIncomingValue();
418 BBInfo *PredInfo = BBMap[I.getIncomingBlock()];
419 // Skip to the nearest preceding definition.
420 if (PredInfo->DefBB != PredInfo)
421 PredInfo = PredInfo->DefBB;
423 // Check if it matches the expected value.
424 if (PredInfo->AvailableVal) {
425 if (IncomingVal == PredInfo->AvailableVal)
426 continue;
427 return false;
430 // Check if the value is a PHI in the correct block.
431 PhiT *IncomingPHIVal = Traits::ValueIsPHI(IncomingVal, Updater);
432 if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
433 return false;
435 // If this block has already been visited, check if this PHI matches.
436 if (PredInfo->PHITag) {
437 if (IncomingPHIVal == PredInfo->PHITag)
438 continue;
439 return false;
441 PredInfo->PHITag = IncomingPHIVal;
443 WorkList.push_back(IncomingPHIVal);
446 return true;
449 /// RecordMatchingPHIs - For each PHI node that matches, record it in both
450 /// the BBMap and the AvailableVals mapping.
451 void RecordMatchingPHIs(BlockListTy *BlockList) {
452 for (typename BlockListTy::iterator I = BlockList->begin(),
453 E = BlockList->end(); I != E; ++I)
454 if (PhiT *PHI = (*I)->PHITag) {
455 BlkT *BB = PHI->getParent();
456 ValT PHIVal = Traits::GetPHIValue(PHI);
457 (*AvailableVals)[BB] = PHIVal;
458 BBMap[BB]->AvailableVal = PHIVal;
463 } // end namespace llvm
465 #undef DEBUG_TYPE // "ssaupdater"
467 #endif // LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H