1 //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Loops should be simplified before this analysis.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/Support/BlockFrequency.h"
22 #include "llvm/Support/BranchProbability.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ScaledNumber.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
39 using namespace llvm::bfi_detail
;
41 #define DEBUG_TYPE "block-freq"
43 ScaledNumber
<uint64_t> BlockMass::toScaled() const {
45 return ScaledNumber
<uint64_t>(1, 0);
46 return ScaledNumber
<uint64_t>(getMass() + 1, -64);
49 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
50 LLVM_DUMP_METHOD
void BlockMass::dump() const { print(dbgs()); }
53 static char getHexDigit(int N
) {
60 raw_ostream
&BlockMass::print(raw_ostream
&OS
) const {
61 for (int Digits
= 0; Digits
< 16; ++Digits
)
62 OS
<< getHexDigit(Mass
>> (60 - Digits
* 4) & 0xf);
68 using BlockNode
= BlockFrequencyInfoImplBase::BlockNode
;
69 using Distribution
= BlockFrequencyInfoImplBase::Distribution
;
70 using WeightList
= BlockFrequencyInfoImplBase::Distribution::WeightList
;
71 using Scaled64
= BlockFrequencyInfoImplBase::Scaled64
;
72 using LoopData
= BlockFrequencyInfoImplBase::LoopData
;
73 using Weight
= BlockFrequencyInfoImplBase::Weight
;
74 using FrequencyData
= BlockFrequencyInfoImplBase::FrequencyData
;
76 /// Dithering mass distributer.
78 /// This class splits up a single mass into portions by weight, dithering to
79 /// spread out error. No mass is lost. The dithering precision depends on the
80 /// precision of the product of \a BlockMass and \a BranchProbability.
82 /// The distribution algorithm follows.
84 /// 1. Initialize by saving the sum of the weights in \a RemWeight and the
85 /// mass to distribute in \a RemMass.
87 /// 2. For each portion:
89 /// 1. Construct a branch probability, P, as the portion's weight divided
90 /// by the current value of \a RemWeight.
91 /// 2. Calculate the portion's mass as \a RemMass times P.
92 /// 3. Update \a RemWeight and \a RemMass at each portion by subtracting
93 /// the current portion's weight and mass.
94 struct DitheringDistributer
{
98 DitheringDistributer(Distribution
&Dist
, const BlockMass
&Mass
);
100 BlockMass
takeMass(uint32_t Weight
);
103 } // end anonymous namespace
105 DitheringDistributer::DitheringDistributer(Distribution
&Dist
,
106 const BlockMass
&Mass
) {
108 RemWeight
= Dist
.Total
;
112 BlockMass
DitheringDistributer::takeMass(uint32_t Weight
) {
113 assert(Weight
&& "invalid weight");
114 assert(Weight
<= RemWeight
);
115 BlockMass Mass
= RemMass
* BranchProbability(Weight
, RemWeight
);
117 // Decrement totals (dither).
123 void Distribution::add(const BlockNode
&Node
, uint64_t Amount
,
124 Weight::DistType Type
) {
125 assert(Amount
&& "invalid weight of 0");
126 uint64_t NewTotal
= Total
+ Amount
;
128 // Check for overflow. It should be impossible to overflow twice.
129 bool IsOverflow
= NewTotal
< Total
;
130 assert(!(DidOverflow
&& IsOverflow
) && "unexpected repeated overflow");
131 DidOverflow
|= IsOverflow
;
137 Weights
.push_back(Weight(Type
, Node
, Amount
));
140 static void combineWeight(Weight
&W
, const Weight
&OtherW
) {
141 assert(OtherW
.TargetNode
.isValid());
146 assert(W
.Type
== OtherW
.Type
);
147 assert(W
.TargetNode
== OtherW
.TargetNode
);
148 assert(OtherW
.Amount
&& "Expected non-zero weight");
149 if (W
.Amount
> W
.Amount
+ OtherW
.Amount
)
150 // Saturate on overflow.
151 W
.Amount
= UINT64_MAX
;
153 W
.Amount
+= OtherW
.Amount
;
156 static void combineWeightsBySorting(WeightList
&Weights
) {
157 // Sort so edges to the same node are adjacent.
158 llvm::sort(Weights
, [](const Weight
&L
, const Weight
&R
) {
159 return L
.TargetNode
< R
.TargetNode
;
162 // Combine adjacent edges.
163 WeightList::iterator O
= Weights
.begin();
164 for (WeightList::const_iterator I
= O
, L
= O
, E
= Weights
.end(); I
!= E
;
168 // Find the adjacent weights to the same node.
169 for (++L
; L
!= E
&& I
->TargetNode
== L
->TargetNode
; ++L
)
170 combineWeight(*O
, *L
);
173 // Erase extra entries.
174 Weights
.erase(O
, Weights
.end());
177 static void combineWeightsByHashing(WeightList
&Weights
) {
178 // Collect weights into a DenseMap.
179 using HashTable
= DenseMap
<BlockNode::IndexType
, Weight
>;
181 HashTable
Combined(NextPowerOf2(2 * Weights
.size()));
182 for (const Weight
&W
: Weights
)
183 combineWeight(Combined
[W
.TargetNode
.Index
], W
);
185 // Check whether anything changed.
186 if (Weights
.size() == Combined
.size())
189 // Fill in the new weights.
191 Weights
.reserve(Combined
.size());
192 for (const auto &I
: Combined
)
193 Weights
.push_back(I
.second
);
196 static void combineWeights(WeightList
&Weights
) {
197 // Use a hash table for many successors to keep this linear.
198 if (Weights
.size() > 128) {
199 combineWeightsByHashing(Weights
);
203 combineWeightsBySorting(Weights
);
206 static uint64_t shiftRightAndRound(uint64_t N
, int Shift
) {
211 return (N
>> Shift
) + (UINT64_C(1) & N
>> (Shift
- 1));
214 void Distribution::normalize() {
215 // Early exit for termination nodes.
219 // Only bother if there are multiple successors.
220 if (Weights
.size() > 1)
221 combineWeights(Weights
);
223 // Early exit when combined into a single successor.
224 if (Weights
.size() == 1) {
226 Weights
.front().Amount
= 1;
230 // Determine how much to shift right so that the total fits into 32-bits.
232 // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1
233 // for each weight can cause a 32-bit overflow.
237 else if (Total
> UINT32_MAX
)
238 Shift
= 33 - countLeadingZeros(Total
);
240 // Early exit if nothing needs to be scaled.
242 // If we didn't overflow then combineWeights() shouldn't have changed the
243 // sum of the weights, but let's double-check.
244 assert(Total
== std::accumulate(Weights
.begin(), Weights
.end(), UINT64_C(0),
245 [](uint64_t Sum
, const Weight
&W
) {
246 return Sum
+ W
.Amount
;
248 "Expected total to be correct");
252 // Recompute the total through accumulation (rather than shifting it) so that
253 // it's accurate after shifting and any changes combineWeights() made above.
256 // Sum the weights to each node and shift right if necessary.
257 for (Weight
&W
: Weights
) {
258 // Scale down below UINT32_MAX. Since Shift is larger than necessary, we
259 // can round here without concern about overflow.
260 assert(W
.TargetNode
.isValid());
261 W
.Amount
= std::max(UINT64_C(1), shiftRightAndRound(W
.Amount
, Shift
));
262 assert(W
.Amount
<= UINT32_MAX
);
267 assert(Total
<= UINT32_MAX
);
270 void BlockFrequencyInfoImplBase::clear() {
271 // Swap with a default-constructed std::vector, since std::vector<>::clear()
272 // does not actually clear heap storage.
273 std::vector
<FrequencyData
>().swap(Freqs
);
274 IsIrrLoopHeader
.clear();
275 std::vector
<WorkingData
>().swap(Working
);
279 /// Clear all memory not needed downstream.
281 /// Releases all memory not used downstream. In particular, saves Freqs.
282 static void cleanup(BlockFrequencyInfoImplBase
&BFI
) {
283 std::vector
<FrequencyData
> SavedFreqs(std::move(BFI
.Freqs
));
284 SparseBitVector
<> SavedIsIrrLoopHeader(std::move(BFI
.IsIrrLoopHeader
));
286 BFI
.Freqs
= std::move(SavedFreqs
);
287 BFI
.IsIrrLoopHeader
= std::move(SavedIsIrrLoopHeader
);
290 bool BlockFrequencyInfoImplBase::addToDist(Distribution
&Dist
,
291 const LoopData
*OuterLoop
,
292 const BlockNode
&Pred
,
293 const BlockNode
&Succ
,
298 auto isLoopHeader
= [&OuterLoop
](const BlockNode
&Node
) {
299 return OuterLoop
&& OuterLoop
->isHeader(Node
);
302 BlockNode Resolved
= Working
[Succ
.Index
].getResolvedNode();
305 auto debugSuccessor
= [&](const char *Type
) {
307 << " [" << Type
<< "] weight = " << Weight
;
308 if (!isLoopHeader(Resolved
))
309 dbgs() << ", succ = " << getBlockName(Succ
);
310 if (Resolved
!= Succ
)
311 dbgs() << ", resolved = " << getBlockName(Resolved
);
314 (void)debugSuccessor
;
317 if (isLoopHeader(Resolved
)) {
318 LLVM_DEBUG(debugSuccessor("backedge"));
319 Dist
.addBackedge(Resolved
, Weight
);
323 if (Working
[Resolved
.Index
].getContainingLoop() != OuterLoop
) {
324 LLVM_DEBUG(debugSuccessor(" exit "));
325 Dist
.addExit(Resolved
, Weight
);
329 if (Resolved
< Pred
) {
330 if (!isLoopHeader(Pred
)) {
331 // If OuterLoop is an irreducible loop, we can't actually handle this.
332 assert((!OuterLoop
|| !OuterLoop
->isIrreducible()) &&
333 "unhandled irreducible control flow");
335 // Irreducible backedge. Abort.
336 LLVM_DEBUG(debugSuccessor("abort!!!"));
340 // If "Pred" is a loop header, then this isn't really a backedge; rather,
341 // OuterLoop must be irreducible. These false backedges can come only from
342 // secondary loop headers.
343 assert(OuterLoop
&& OuterLoop
->isIrreducible() && !isLoopHeader(Resolved
) &&
344 "unhandled irreducible control flow");
347 LLVM_DEBUG(debugSuccessor(" local "));
348 Dist
.addLocal(Resolved
, Weight
);
352 bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
353 const LoopData
*OuterLoop
, LoopData
&Loop
, Distribution
&Dist
) {
354 // Copy the exit map into Dist.
355 for (const auto &I
: Loop
.Exits
)
356 if (!addToDist(Dist
, OuterLoop
, Loop
.getHeader(), I
.first
,
358 // Irreducible backedge.
364 /// Compute the loop scale for a loop.
365 void BlockFrequencyInfoImplBase::computeLoopScale(LoopData
&Loop
) {
366 // Compute loop scale.
367 LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop
) << "\n");
369 // Infinite loops need special handling. If we give the back edge an infinite
370 // mass, they may saturate all the other scales in the function down to 1,
371 // making all the other region temperatures look exactly the same. Choose an
372 // arbitrary scale to avoid these issues.
374 // FIXME: An alternate way would be to select a symbolic scale which is later
375 // replaced to be the maximum of all computed scales plus 1. This would
376 // appropriately describe the loop as having a large scale, without skewing
377 // the final frequency computation.
378 const Scaled64
InfiniteLoopScale(1, 12);
380 // LoopScale == 1 / ExitMass
381 // ExitMass == HeadMass - BackedgeMass
382 BlockMass TotalBackedgeMass
;
383 for (auto &Mass
: Loop
.BackedgeMass
)
384 TotalBackedgeMass
+= Mass
;
385 BlockMass ExitMass
= BlockMass::getFull() - TotalBackedgeMass
;
387 // Block scale stores the inverse of the scale. If this is an infinite loop,
388 // its exit mass will be zero. In this case, use an arbitrary scale for the
391 ExitMass
.isEmpty() ? InfiniteLoopScale
: ExitMass
.toScaled().inverse();
393 LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass
<< " ("
394 << BlockMass::getFull() << " - " << TotalBackedgeMass
396 << " - scale = " << Loop
.Scale
<< "\n");
399 /// Package up a loop.
400 void BlockFrequencyInfoImplBase::packageLoop(LoopData
&Loop
) {
401 LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop
) << "\n");
403 // Clear the subloop exits to prevent quadratic memory usage.
404 for (const BlockNode
&M
: Loop
.Nodes
) {
405 if (auto *Loop
= Working
[M
.Index
].getPackagedLoop())
407 LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M
.Index
) << "\n");
409 Loop
.IsPackaged
= true;
413 static void debugAssign(const BlockFrequencyInfoImplBase
&BFI
,
414 const DitheringDistributer
&D
, const BlockNode
&T
,
415 const BlockMass
&M
, const char *Desc
) {
416 dbgs() << " => assign " << M
<< " (" << D
.RemMass
<< ")";
418 dbgs() << " [" << Desc
<< "]";
420 dbgs() << " to " << BFI
.getBlockName(T
);
425 void BlockFrequencyInfoImplBase::distributeMass(const BlockNode
&Source
,
427 Distribution
&Dist
) {
428 BlockMass Mass
= Working
[Source
.Index
].getMass();
429 LLVM_DEBUG(dbgs() << " => mass: " << Mass
<< "\n");
431 // Distribute mass to successors as laid out in Dist.
432 DitheringDistributer
D(Dist
, Mass
);
434 for (const Weight
&W
: Dist
.Weights
) {
435 // Check for a local edge (non-backedge and non-exit).
436 BlockMass Taken
= D
.takeMass(W
.Amount
);
437 if (W
.Type
== Weight::Local
) {
438 Working
[W
.TargetNode
.Index
].getMass() += Taken
;
439 LLVM_DEBUG(debugAssign(*this, D
, W
.TargetNode
, Taken
, nullptr));
443 // Backedges and exits only make sense if we're processing a loop.
444 assert(OuterLoop
&& "backedge or exit outside of loop");
446 // Check for a backedge.
447 if (W
.Type
== Weight::Backedge
) {
448 OuterLoop
->BackedgeMass
[OuterLoop
->getHeaderIndex(W
.TargetNode
)] += Taken
;
449 LLVM_DEBUG(debugAssign(*this, D
, W
.TargetNode
, Taken
, "back"));
453 // This must be an exit.
454 assert(W
.Type
== Weight::Exit
);
455 OuterLoop
->Exits
.push_back(std::make_pair(W
.TargetNode
, Taken
));
456 LLVM_DEBUG(debugAssign(*this, D
, W
.TargetNode
, Taken
, "exit"));
460 static void convertFloatingToInteger(BlockFrequencyInfoImplBase
&BFI
,
461 const Scaled64
&Min
, const Scaled64
&Max
) {
462 // Scale the Factor to a size that creates integers. Ideally, integers would
463 // be scaled so that Max == UINT64_MAX so that they can be best
464 // differentiated. However, in the presence of large frequency values, small
465 // frequencies are scaled down to 1, making it impossible to differentiate
466 // small, unequal numbers. When the spread between Min and Max frequencies
467 // fits well within MaxBits, we make the scale be at least 8.
468 const unsigned MaxBits
= 64;
469 const unsigned SpreadBits
= (Max
/ Min
).lg();
470 Scaled64 ScalingFactor
;
471 if (SpreadBits
<= MaxBits
- 3) {
472 // If the values are small enough, make the scaling factor at least 8 to
473 // allow distinguishing small values.
474 ScalingFactor
= Min
.inverse();
477 // If the values need more than MaxBits to be represented, saturate small
478 // frequency values down to 1 by using a scaling factor that benefits large
480 ScalingFactor
= Scaled64(1, MaxBits
) / Max
;
483 // Translate the floats to integers.
484 LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min
<< ", max = " << Max
485 << ", factor = " << ScalingFactor
<< "\n");
486 for (size_t Index
= 0; Index
< BFI
.Freqs
.size(); ++Index
) {
487 Scaled64 Scaled
= BFI
.Freqs
[Index
].Scaled
* ScalingFactor
;
488 BFI
.Freqs
[Index
].Integer
= std::max(UINT64_C(1), Scaled
.toInt
<uint64_t>());
489 LLVM_DEBUG(dbgs() << " - " << BFI
.getBlockName(Index
) << ": float = "
490 << BFI
.Freqs
[Index
].Scaled
<< ", scaled = " << Scaled
491 << ", int = " << BFI
.Freqs
[Index
].Integer
<< "\n");
495 /// Unwrap a loop package.
497 /// Visits all the members of a loop, adjusting their BlockData according to
498 /// the loop's pseudo-node.
499 static void unwrapLoop(BlockFrequencyInfoImplBase
&BFI
, LoopData
&Loop
) {
500 LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI
.getLoopName(Loop
)
501 << ": mass = " << Loop
.Mass
<< ", scale = " << Loop
.Scale
503 Loop
.Scale
*= Loop
.Mass
.toScaled();
504 Loop
.IsPackaged
= false;
505 LLVM_DEBUG(dbgs() << " => combined-scale = " << Loop
.Scale
<< "\n");
507 // Propagate the head scale through the loop. Since members are visited in
508 // RPO, the head scale will be updated by the loop scale first, and then the
509 // final head scale will be used for updated the rest of the members.
510 for (const BlockNode
&N
: Loop
.Nodes
) {
511 const auto &Working
= BFI
.Working
[N
.Index
];
512 Scaled64
&F
= Working
.isAPackage() ? Working
.getPackagedLoop()->Scale
513 : BFI
.Freqs
[N
.Index
].Scaled
;
514 Scaled64 New
= Loop
.Scale
* F
;
515 LLVM_DEBUG(dbgs() << " - " << BFI
.getBlockName(N
) << ": " << F
<< " => "
521 void BlockFrequencyInfoImplBase::unwrapLoops() {
522 // Set initial frequencies from loop-local masses.
523 for (size_t Index
= 0; Index
< Working
.size(); ++Index
)
524 Freqs
[Index
].Scaled
= Working
[Index
].Mass
.toScaled();
526 for (LoopData
&Loop
: Loops
)
527 unwrapLoop(*this, Loop
);
530 void BlockFrequencyInfoImplBase::finalizeMetrics() {
531 // Unwrap loop packages in reverse post-order, tracking min and max
533 auto Min
= Scaled64::getLargest();
534 auto Max
= Scaled64::getZero();
535 for (size_t Index
= 0; Index
< Working
.size(); ++Index
) {
536 // Update min/max scale.
537 Min
= std::min(Min
, Freqs
[Index
].Scaled
);
538 Max
= std::max(Max
, Freqs
[Index
].Scaled
);
541 // Convert to integers.
542 convertFloatingToInteger(*this, Min
, Max
);
544 // Clean up data structures.
547 // Print out the final stats.
552 BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode
&Node
) const {
555 return Freqs
[Node
.Index
].Integer
;
559 BlockFrequencyInfoImplBase::getBlockProfileCount(const Function
&F
,
560 const BlockNode
&Node
,
561 bool AllowSynthetic
) const {
562 return getProfileCountFromFreq(F
, getBlockFreq(Node
).getFrequency(),
567 BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function
&F
,
569 bool AllowSynthetic
) const {
570 auto EntryCount
= F
.getEntryCount(AllowSynthetic
);
573 // Use 128 bit APInt to do the arithmetic to avoid overflow.
574 APInt
BlockCount(128, EntryCount
.getCount());
575 APInt
BlockFreq(128, Freq
);
576 APInt
EntryFreq(128, getEntryFreq());
577 BlockCount
*= BlockFreq
;
578 // Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned
579 // lshr by 1 gives EntryFreq/2.
580 BlockCount
= (BlockCount
+ EntryFreq
.lshr(1)).udiv(EntryFreq
);
581 return BlockCount
.getLimitedValue();
585 BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode
&Node
) {
588 return IsIrrLoopHeader
.test(Node
.Index
);
592 BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode
&Node
) const {
594 return Scaled64::getZero();
595 return Freqs
[Node
.Index
].Scaled
;
598 void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode
&Node
,
600 assert(Node
.isValid() && "Expected valid node");
601 assert(Node
.Index
< Freqs
.size() && "Expected legal index");
602 Freqs
[Node
.Index
].Integer
= Freq
;
606 BlockFrequencyInfoImplBase::getBlockName(const BlockNode
&Node
) const {
611 BlockFrequencyInfoImplBase::getLoopName(const LoopData
&Loop
) const {
612 return getBlockName(Loop
.getHeader()) + (Loop
.isIrreducible() ? "**" : "*");
616 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream
&OS
,
617 const BlockNode
&Node
) const {
618 return OS
<< getFloatingBlockFreq(Node
);
622 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream
&OS
,
623 const BlockFrequency
&Freq
) const {
624 Scaled64
Block(Freq
.getFrequency(), 0);
625 Scaled64
Entry(getEntryFreq(), 0);
627 return OS
<< Block
/ Entry
;
630 void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData
&OuterLoop
) {
631 Start
= OuterLoop
.getHeader();
632 Nodes
.reserve(OuterLoop
.Nodes
.size());
633 for (auto N
: OuterLoop
.Nodes
)
638 void IrreducibleGraph::addNodesInFunction() {
640 for (uint32_t Index
= 0; Index
< BFI
.Working
.size(); ++Index
)
641 if (!BFI
.Working
[Index
].isPackaged())
646 void IrreducibleGraph::indexNodes() {
647 for (auto &I
: Nodes
)
648 Lookup
[I
.Node
.Index
] = &I
;
651 void IrreducibleGraph::addEdge(IrrNode
&Irr
, const BlockNode
&Succ
,
652 const BFIBase::LoopData
*OuterLoop
) {
653 if (OuterLoop
&& OuterLoop
->isHeader(Succ
))
655 auto L
= Lookup
.find(Succ
.Index
);
656 if (L
== Lookup
.end())
658 IrrNode
&SuccIrr
= *L
->second
;
659 Irr
.Edges
.push_back(&SuccIrr
);
660 SuccIrr
.Edges
.push_front(&Irr
);
666 template <> struct GraphTraits
<IrreducibleGraph
> {
667 using GraphT
= bfi_detail::IrreducibleGraph
;
668 using NodeRef
= const GraphT::IrrNode
*;
669 using ChildIteratorType
= GraphT::IrrNode::iterator
;
671 static NodeRef
getEntryNode(const GraphT
&G
) { return G
.StartIrr
; }
672 static ChildIteratorType
child_begin(NodeRef N
) { return N
->succ_begin(); }
673 static ChildIteratorType
child_end(NodeRef N
) { return N
->succ_end(); }
676 } // end namespace llvm
678 /// Find extra irreducible headers.
680 /// Find entry blocks and other blocks with backedges, which exist when \c G
681 /// contains irreducible sub-SCCs.
682 static void findIrreducibleHeaders(
683 const BlockFrequencyInfoImplBase
&BFI
,
684 const IrreducibleGraph
&G
,
685 const std::vector
<const IrreducibleGraph::IrrNode
*> &SCC
,
686 LoopData::NodeList
&Headers
, LoopData::NodeList
&Others
) {
687 // Map from nodes in the SCC to whether it's an entry block.
688 SmallDenseMap
<const IrreducibleGraph::IrrNode
*, bool, 8> InSCC
;
690 // InSCC also acts the set of nodes in the graph. Seed it.
691 for (const auto *I
: SCC
)
694 for (auto I
= InSCC
.begin(), E
= InSCC
.end(); I
!= E
; ++I
) {
695 auto &Irr
= *I
->first
;
696 for (const auto *P
: make_range(Irr
.pred_begin(), Irr
.pred_end())) {
700 // This is an entry block.
702 Headers
.push_back(Irr
.Node
);
703 LLVM_DEBUG(dbgs() << " => entry = " << BFI
.getBlockName(Irr
.Node
)
708 assert(Headers
.size() >= 2 &&
709 "Expected irreducible CFG; -loop-info is likely invalid");
710 if (Headers
.size() == InSCC
.size()) {
711 // Every block is a header.
716 // Look for extra headers from irreducible sub-SCCs.
717 for (const auto &I
: InSCC
) {
718 // Entry blocks are already headers.
722 auto &Irr
= *I
.first
;
723 for (const auto *P
: make_range(Irr
.pred_begin(), Irr
.pred_end())) {
724 // Skip forward edges.
725 if (P
->Node
< Irr
.Node
)
728 // Skip predecessors from entry blocks. These can have inverted
733 // Store the extra header.
734 Headers
.push_back(Irr
.Node
);
735 LLVM_DEBUG(dbgs() << " => extra = " << BFI
.getBlockName(Irr
.Node
)
739 if (Headers
.back() == Irr
.Node
)
740 // Added this as a header.
743 // This is not a header.
744 Others
.push_back(Irr
.Node
);
745 LLVM_DEBUG(dbgs() << " => other = " << BFI
.getBlockName(Irr
.Node
) << "\n");
751 static void createIrreducibleLoop(
752 BlockFrequencyInfoImplBase
&BFI
, const IrreducibleGraph
&G
,
753 LoopData
*OuterLoop
, std::list
<LoopData
>::iterator Insert
,
754 const std::vector
<const IrreducibleGraph::IrrNode
*> &SCC
) {
755 // Translate the SCC into RPO.
756 LLVM_DEBUG(dbgs() << " - found-scc\n");
758 LoopData::NodeList Headers
;
759 LoopData::NodeList Others
;
760 findIrreducibleHeaders(BFI
, G
, SCC
, Headers
, Others
);
762 auto Loop
= BFI
.Loops
.emplace(Insert
, OuterLoop
, Headers
.begin(),
763 Headers
.end(), Others
.begin(), Others
.end());
765 // Update loop hierarchy.
766 for (const auto &N
: Loop
->Nodes
)
767 if (BFI
.Working
[N
.Index
].isLoopHeader())
768 BFI
.Working
[N
.Index
].Loop
->Parent
= &*Loop
;
770 BFI
.Working
[N
.Index
].Loop
= &*Loop
;
773 iterator_range
<std::list
<LoopData
>::iterator
>
774 BlockFrequencyInfoImplBase::analyzeIrreducible(
775 const IrreducibleGraph
&G
, LoopData
*OuterLoop
,
776 std::list
<LoopData
>::iterator Insert
) {
777 assert((OuterLoop
== nullptr) == (Insert
== Loops
.begin()));
778 auto Prev
= OuterLoop
? std::prev(Insert
) : Loops
.end();
780 for (auto I
= scc_begin(G
); !I
.isAtEnd(); ++I
) {
784 // Translate the SCC into RPO.
785 createIrreducibleLoop(*this, G
, OuterLoop
, Insert
, *I
);
789 return make_range(std::next(Prev
), Insert
);
790 return make_range(Loops
.begin(), Insert
);
794 BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData
&OuterLoop
) {
795 OuterLoop
.Exits
.clear();
796 for (auto &Mass
: OuterLoop
.BackedgeMass
)
797 Mass
= BlockMass::getEmpty();
798 auto O
= OuterLoop
.Nodes
.begin() + 1;
799 for (auto I
= O
, E
= OuterLoop
.Nodes
.end(); I
!= E
; ++I
)
800 if (!Working
[I
->Index
].isPackaged())
802 OuterLoop
.Nodes
.erase(O
, OuterLoop
.Nodes
.end());
805 void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData
&Loop
) {
806 assert(Loop
.isIrreducible() && "this only makes sense on irreducible loops");
808 // Since the loop has more than one header block, the mass flowing back into
809 // each header will be different. Adjust the mass in each header loop to
810 // reflect the masses flowing through back edges.
812 // To do this, we distribute the initial mass using the backedge masses
813 // as weights for the distribution.
814 BlockMass LoopMass
= BlockMass::getFull();
817 LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n");
818 for (uint32_t H
= 0; H
< Loop
.NumHeaders
; ++H
) {
819 auto &HeaderNode
= Loop
.Nodes
[H
];
820 auto &BackedgeMass
= Loop
.BackedgeMass
[Loop
.getHeaderIndex(HeaderNode
)];
821 LLVM_DEBUG(dbgs() << " - Add back edge mass for node "
822 << getBlockName(HeaderNode
) << ": " << BackedgeMass
824 if (BackedgeMass
.getMass() > 0)
825 Dist
.addLocal(HeaderNode
, BackedgeMass
.getMass());
827 LLVM_DEBUG(dbgs() << " Nothing added. Back edge mass is zero\n");
830 DitheringDistributer
D(Dist
, LoopMass
);
832 LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass
833 << " to headers using above weights\n");
834 for (const Weight
&W
: Dist
.Weights
) {
835 BlockMass Taken
= D
.takeMass(W
.Amount
);
836 assert(W
.Type
== Weight::Local
&& "all weights should be local");
837 Working
[W
.TargetNode
.Index
].getMass() = Taken
;
838 LLVM_DEBUG(debugAssign(*this, D
, W
.TargetNode
, Taken
, nullptr));
842 void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution
&Dist
) {
843 BlockMass LoopMass
= BlockMass::getFull();
844 DitheringDistributer
D(Dist
, LoopMass
);
845 for (const Weight
&W
: Dist
.Weights
) {
846 BlockMass Taken
= D
.takeMass(W
.Amount
);
847 assert(W
.Type
== Weight::Local
&& "all weights should be local");
848 Working
[W
.TargetNode
.Index
].getMass() = Taken
;
849 LLVM_DEBUG(debugAssign(*this, D
, W
.TargetNode
, Taken
, nullptr));