[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Analysis / InlineCost.cpp
blob89811ec0e377a6f7001f1ba69ddaed993da874d3
1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inline cost analysis.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/InlineCost.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BlockFrequencyInfo.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/ProfileSummaryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/InstVisitor.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/PatternMatch.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
42 using namespace llvm;
44 #define DEBUG_TYPE "inline-cost"
46 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
48 static cl::opt<int> InlineThreshold(
49 "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
50 cl::desc("Control the amount of inlining to perform (default = 225)"));
52 static cl::opt<int> HintThreshold(
53 "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore,
54 cl::desc("Threshold for inlining functions with inline hint"));
56 static cl::opt<int>
57 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
58 cl::init(45), cl::ZeroOrMore,
59 cl::desc("Threshold for inlining cold callsites"));
61 // We introduce this threshold to help performance of instrumentation based
62 // PGO before we actually hook up inliner with analysis passes such as BPI and
63 // BFI.
64 static cl::opt<int> ColdThreshold(
65 "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore,
66 cl::desc("Threshold for inlining functions with cold attribute"));
68 static cl::opt<int>
69 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
70 cl::ZeroOrMore,
71 cl::desc("Threshold for hot callsites "));
73 static cl::opt<int> LocallyHotCallSiteThreshold(
74 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore,
75 cl::desc("Threshold for locally hot callsites "));
77 static cl::opt<int> ColdCallSiteRelFreq(
78 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
79 cl::desc("Maximum block frequency, expressed as a percentage of caller's "
80 "entry frequency, for a callsite to be cold in the absence of "
81 "profile information."));
83 static cl::opt<int> HotCallSiteRelFreq(
84 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore,
85 cl::desc("Minimum block frequency, expressed as a multiple of caller's "
86 "entry frequency, for a callsite to be hot in the absence of "
87 "profile information."));
89 static cl::opt<bool> OptComputeFullInlineCost(
90 "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore,
91 cl::desc("Compute the full inline cost of a call site even when the cost "
92 "exceeds the threshold."));
94 namespace {
96 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
97 typedef InstVisitor<CallAnalyzer, bool> Base;
98 friend class InstVisitor<CallAnalyzer, bool>;
100 /// The TargetTransformInfo available for this compilation.
101 const TargetTransformInfo &TTI;
103 /// Getter for the cache of @llvm.assume intrinsics.
104 std::function<AssumptionCache &(Function &)> &GetAssumptionCache;
106 /// Getter for BlockFrequencyInfo
107 Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI;
109 /// Profile summary information.
110 ProfileSummaryInfo *PSI;
112 /// The called function.
113 Function &F;
115 // Cache the DataLayout since we use it a lot.
116 const DataLayout &DL;
118 /// The OptimizationRemarkEmitter available for this compilation.
119 OptimizationRemarkEmitter *ORE;
121 /// The candidate callsite being analyzed. Please do not use this to do
122 /// analysis in the caller function; we want the inline cost query to be
123 /// easily cacheable. Instead, use the cover function paramHasAttr.
124 CallBase &CandidateCall;
126 /// Tunable parameters that control the analysis.
127 const InlineParams &Params;
129 /// Upper bound for the inlining cost. Bonuses are being applied to account
130 /// for speculative "expected profit" of the inlining decision.
131 int Threshold;
133 /// Inlining cost measured in abstract units, accounts for all the
134 /// instructions expected to be executed for a given function invocation.
135 /// Instructions that are statically proven to be dead based on call-site
136 /// arguments are not counted here.
137 int Cost = 0;
139 bool ComputeFullInlineCost;
141 bool IsCallerRecursive = false;
142 bool IsRecursiveCall = false;
143 bool ExposesReturnsTwice = false;
144 bool HasDynamicAlloca = false;
145 bool ContainsNoDuplicateCall = false;
146 bool HasReturn = false;
147 bool HasIndirectBr = false;
148 bool HasUninlineableIntrinsic = false;
149 bool InitsVargArgs = false;
151 /// Number of bytes allocated statically by the callee.
152 uint64_t AllocatedSize = 0;
153 unsigned NumInstructions = 0;
154 unsigned NumVectorInstructions = 0;
156 /// Bonus to be applied when percentage of vector instructions in callee is
157 /// high (see more details in updateThreshold).
158 int VectorBonus = 0;
159 /// Bonus to be applied when the callee has only one reachable basic block.
160 int SingleBBBonus = 0;
162 /// While we walk the potentially-inlined instructions, we build up and
163 /// maintain a mapping of simplified values specific to this callsite. The
164 /// idea is to propagate any special information we have about arguments to
165 /// this call through the inlinable section of the function, and account for
166 /// likely simplifications post-inlining. The most important aspect we track
167 /// is CFG altering simplifications -- when we prove a basic block dead, that
168 /// can cause dramatic shifts in the cost of inlining a function.
169 DenseMap<Value *, Constant *> SimplifiedValues;
171 /// Keep track of the values which map back (through function arguments) to
172 /// allocas on the caller stack which could be simplified through SROA.
173 DenseMap<Value *, Value *> SROAArgValues;
175 /// The mapping of caller Alloca values to their accumulated cost savings. If
176 /// we have to disable SROA for one of the allocas, this tells us how much
177 /// cost must be added.
178 DenseMap<Value *, int> SROAArgCosts;
180 /// Keep track of values which map to a pointer base and constant offset.
181 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;
183 /// Keep track of dead blocks due to the constant arguments.
184 SetVector<BasicBlock *> DeadBlocks;
186 /// The mapping of the blocks to their known unique successors due to the
187 /// constant arguments.
188 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;
190 /// Model the elimination of repeated loads that is expected to happen
191 /// whenever we simplify away the stores that would otherwise cause them to be
192 /// loads.
193 bool EnableLoadElimination;
194 SmallPtrSet<Value *, 16> LoadAddrSet;
195 int LoadEliminationCost = 0;
197 // Custom simplification helper routines.
198 bool isAllocaDerivedArg(Value *V);
199 bool lookupSROAArgAndCost(Value *V, Value *&Arg,
200 DenseMap<Value *, int>::iterator &CostIt);
201 void disableSROA(DenseMap<Value *, int>::iterator CostIt);
202 void disableSROA(Value *V);
203 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
204 void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
205 int InstructionCost);
206 void disableLoadElimination();
207 bool isGEPFree(GetElementPtrInst &GEP);
208 bool canFoldInboundsGEP(GetElementPtrInst &I);
209 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
210 bool simplifyCallSite(Function *F, CallBase &Call);
211 template <typename Callable>
212 bool simplifyInstruction(Instruction &I, Callable Evaluate);
213 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
215 /// Return true if the given argument to the function being considered for
216 /// inlining has the given attribute set either at the call site or the
217 /// function declaration. Primarily used to inspect call site specific
218 /// attributes since these can be more precise than the ones on the callee
219 /// itself.
220 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);
222 /// Return true if the given value is known non null within the callee if
223 /// inlined through this particular callsite.
224 bool isKnownNonNullInCallee(Value *V);
226 /// Update Threshold based on callsite properties such as callee
227 /// attributes and callee hotness for PGO builds. The Callee is explicitly
228 /// passed to support analyzing indirect calls whose target is inferred by
229 /// analysis.
230 void updateThreshold(CallBase &Call, Function &Callee);
232 /// Return true if size growth is allowed when inlining the callee at \p Call.
233 bool allowSizeGrowth(CallBase &Call);
235 /// Return true if \p Call is a cold callsite.
236 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI);
238 /// Return a higher threshold if \p Call is a hot callsite.
239 Optional<int> getHotCallSiteThreshold(CallBase &Call,
240 BlockFrequencyInfo *CallerBFI);
242 // Custom analysis routines.
243 InlineResult analyzeBlock(BasicBlock *BB,
244 SmallPtrSetImpl<const Value *> &EphValues);
246 /// Handle a capped 'int' increment for Cost.
247 void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) {
248 assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound");
249 Cost = (int)std::min(UpperBound, Cost + Inc);
252 // Disable several entry points to the visitor so we don't accidentally use
253 // them by declaring but not defining them here.
254 void visit(Module *);
255 void visit(Module &);
256 void visit(Function *);
257 void visit(Function &);
258 void visit(BasicBlock *);
259 void visit(BasicBlock &);
261 // Provide base case for our instruction visit.
262 bool visitInstruction(Instruction &I);
264 // Our visit overrides.
265 bool visitAlloca(AllocaInst &I);
266 bool visitPHI(PHINode &I);
267 bool visitGetElementPtr(GetElementPtrInst &I);
268 bool visitBitCast(BitCastInst &I);
269 bool visitPtrToInt(PtrToIntInst &I);
270 bool visitIntToPtr(IntToPtrInst &I);
271 bool visitCastInst(CastInst &I);
272 bool visitUnaryInstruction(UnaryInstruction &I);
273 bool visitCmpInst(CmpInst &I);
274 bool visitSub(BinaryOperator &I);
275 bool visitBinaryOperator(BinaryOperator &I);
276 bool visitFNeg(UnaryOperator &I);
277 bool visitLoad(LoadInst &I);
278 bool visitStore(StoreInst &I);
279 bool visitExtractValue(ExtractValueInst &I);
280 bool visitInsertValue(InsertValueInst &I);
281 bool visitCallBase(CallBase &Call);
282 bool visitReturnInst(ReturnInst &RI);
283 bool visitBranchInst(BranchInst &BI);
284 bool visitSelectInst(SelectInst &SI);
285 bool visitSwitchInst(SwitchInst &SI);
286 bool visitIndirectBrInst(IndirectBrInst &IBI);
287 bool visitResumeInst(ResumeInst &RI);
288 bool visitCleanupReturnInst(CleanupReturnInst &RI);
289 bool visitCatchReturnInst(CatchReturnInst &RI);
290 bool visitUnreachableInst(UnreachableInst &I);
292 public:
293 CallAnalyzer(const TargetTransformInfo &TTI,
294 std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
295 Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI,
296 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE,
297 Function &Callee, CallBase &Call, const InlineParams &Params)
298 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
299 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE),
300 CandidateCall(Call), Params(Params), Threshold(Params.DefaultThreshold),
301 ComputeFullInlineCost(OptComputeFullInlineCost ||
302 Params.ComputeFullInlineCost || ORE),
303 EnableLoadElimination(true) {}
305 InlineResult analyzeCall(CallBase &Call);
307 int getThreshold() { return Threshold; }
308 int getCost() { return Cost; }
310 // Keep a bunch of stats about the cost savings found so we can print them
311 // out when debugging.
312 unsigned NumConstantArgs = 0;
313 unsigned NumConstantOffsetPtrArgs = 0;
314 unsigned NumAllocaArgs = 0;
315 unsigned NumConstantPtrCmps = 0;
316 unsigned NumConstantPtrDiffs = 0;
317 unsigned NumInstructionsSimplified = 0;
318 unsigned SROACostSavings = 0;
319 unsigned SROACostSavingsLost = 0;
321 void dump();
324 } // namespace
326 /// Test whether the given value is an Alloca-derived function argument.
327 bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
328 return SROAArgValues.count(V);
331 /// Lookup the SROA-candidate argument and cost iterator which V maps to.
332 /// Returns false if V does not map to a SROA-candidate.
333 bool CallAnalyzer::lookupSROAArgAndCost(
334 Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
335 if (SROAArgValues.empty() || SROAArgCosts.empty())
336 return false;
338 DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
339 if (ArgIt == SROAArgValues.end())
340 return false;
342 Arg = ArgIt->second;
343 CostIt = SROAArgCosts.find(Arg);
344 return CostIt != SROAArgCosts.end();
347 /// Disable SROA for the candidate marked by this cost iterator.
349 /// This marks the candidate as no longer viable for SROA, and adds the cost
350 /// savings associated with it back into the inline cost measurement.
351 void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
352 // If we're no longer able to perform SROA we need to undo its cost savings
353 // and prevent subsequent analysis.
354 addCost(CostIt->second);
355 SROACostSavings -= CostIt->second;
356 SROACostSavingsLost += CostIt->second;
357 SROAArgCosts.erase(CostIt);
358 disableLoadElimination();
361 /// If 'V' maps to a SROA candidate, disable SROA for it.
362 void CallAnalyzer::disableSROA(Value *V) {
363 Value *SROAArg;
364 DenseMap<Value *, int>::iterator CostIt;
365 if (lookupSROAArgAndCost(V, SROAArg, CostIt))
366 disableSROA(CostIt);
369 /// Accumulate the given cost for a particular SROA candidate.
370 void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
371 int InstructionCost) {
372 CostIt->second += InstructionCost;
373 SROACostSavings += InstructionCost;
376 void CallAnalyzer::disableLoadElimination() {
377 if (EnableLoadElimination) {
378 addCost(LoadEliminationCost);
379 LoadEliminationCost = 0;
380 EnableLoadElimination = false;
384 /// Accumulate a constant GEP offset into an APInt if possible.
386 /// Returns false if unable to compute the offset for any reason. Respects any
387 /// simplified values known during the analysis of this callsite.
388 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
389 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
390 assert(IntPtrWidth == Offset.getBitWidth());
392 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
393 GTI != GTE; ++GTI) {
394 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
395 if (!OpC)
396 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
397 OpC = dyn_cast<ConstantInt>(SimpleOp);
398 if (!OpC)
399 return false;
400 if (OpC->isZero())
401 continue;
403 // Handle a struct index, which adds its field offset to the pointer.
404 if (StructType *STy = GTI.getStructTypeOrNull()) {
405 unsigned ElementIdx = OpC->getZExtValue();
406 const StructLayout *SL = DL.getStructLayout(STy);
407 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
408 continue;
411 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
412 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
414 return true;
417 /// Use TTI to check whether a GEP is free.
419 /// Respects any simplified values known during the analysis of this callsite.
420 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
421 SmallVector<Value *, 4> Operands;
422 Operands.push_back(GEP.getOperand(0));
423 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
424 if (Constant *SimpleOp = SimplifiedValues.lookup(*I))
425 Operands.push_back(SimpleOp);
426 else
427 Operands.push_back(*I);
428 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&GEP, Operands);
431 bool CallAnalyzer::visitAlloca(AllocaInst &I) {
432 // Check whether inlining will turn a dynamic alloca into a static
433 // alloca and handle that case.
434 if (I.isArrayAllocation()) {
435 Constant *Size = SimplifiedValues.lookup(I.getArraySize());
436 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
437 Type *Ty = I.getAllocatedType();
438 AllocatedSize = SaturatingMultiplyAdd(
439 AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getFixedSize(),
440 AllocatedSize);
441 return Base::visitAlloca(I);
445 // Accumulate the allocated size.
446 if (I.isStaticAlloca()) {
447 Type *Ty = I.getAllocatedType();
448 AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty).getFixedSize(),
449 AllocatedSize);
452 // We will happily inline static alloca instructions.
453 if (I.isStaticAlloca())
454 return Base::visitAlloca(I);
456 // FIXME: This is overly conservative. Dynamic allocas are inefficient for
457 // a variety of reasons, and so we would like to not inline them into
458 // functions which don't currently have a dynamic alloca. This simply
459 // disables inlining altogether in the presence of a dynamic alloca.
460 HasDynamicAlloca = true;
461 return false;
464 bool CallAnalyzer::visitPHI(PHINode &I) {
465 // FIXME: We need to propagate SROA *disabling* through phi nodes, even
466 // though we don't want to propagate it's bonuses. The idea is to disable
467 // SROA if it *might* be used in an inappropriate manner.
469 // Phi nodes are always zero-cost.
470 // FIXME: Pointer sizes may differ between different address spaces, so do we
471 // need to use correct address space in the call to getPointerSizeInBits here?
472 // Or could we skip the getPointerSizeInBits call completely? As far as I can
473 // see the ZeroOffset is used as a dummy value, so we can probably use any
474 // bit width for the ZeroOffset?
475 APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0));
476 bool CheckSROA = I.getType()->isPointerTy();
478 // Track the constant or pointer with constant offset we've seen so far.
479 Constant *FirstC = nullptr;
480 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
481 Value *FirstV = nullptr;
483 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
484 BasicBlock *Pred = I.getIncomingBlock(i);
485 // If the incoming block is dead, skip the incoming block.
486 if (DeadBlocks.count(Pred))
487 continue;
488 // If the parent block of phi is not the known successor of the incoming
489 // block, skip the incoming block.
490 BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
491 if (KnownSuccessor && KnownSuccessor != I.getParent())
492 continue;
494 Value *V = I.getIncomingValue(i);
495 // If the incoming value is this phi itself, skip the incoming value.
496 if (&I == V)
497 continue;
499 Constant *C = dyn_cast<Constant>(V);
500 if (!C)
501 C = SimplifiedValues.lookup(V);
503 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
504 if (!C && CheckSROA)
505 BaseAndOffset = ConstantOffsetPtrs.lookup(V);
507 if (!C && !BaseAndOffset.first)
508 // The incoming value is neither a constant nor a pointer with constant
509 // offset, exit early.
510 return true;
512 if (FirstC) {
513 if (FirstC == C)
514 // If we've seen a constant incoming value before and it is the same
515 // constant we see this time, continue checking the next incoming value.
516 continue;
517 // Otherwise early exit because we either see a different constant or saw
518 // a constant before but we have a pointer with constant offset this time.
519 return true;
522 if (FirstV) {
523 // The same logic as above, but check pointer with constant offset here.
524 if (FirstBaseAndOffset == BaseAndOffset)
525 continue;
526 return true;
529 if (C) {
530 // This is the 1st time we've seen a constant, record it.
531 FirstC = C;
532 continue;
535 // The remaining case is that this is the 1st time we've seen a pointer with
536 // constant offset, record it.
537 FirstV = V;
538 FirstBaseAndOffset = BaseAndOffset;
541 // Check if we can map phi to a constant.
542 if (FirstC) {
543 SimplifiedValues[&I] = FirstC;
544 return true;
547 // Check if we can map phi to a pointer with constant offset.
548 if (FirstBaseAndOffset.first) {
549 ConstantOffsetPtrs[&I] = FirstBaseAndOffset;
551 Value *SROAArg;
552 DenseMap<Value *, int>::iterator CostIt;
553 if (lookupSROAArgAndCost(FirstV, SROAArg, CostIt))
554 SROAArgValues[&I] = SROAArg;
557 return true;
560 /// Check we can fold GEPs of constant-offset call site argument pointers.
561 /// This requires target data and inbounds GEPs.
563 /// \return true if the specified GEP can be folded.
564 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
565 // Check if we have a base + offset for the pointer.
566 std::pair<Value *, APInt> BaseAndOffset =
567 ConstantOffsetPtrs.lookup(I.getPointerOperand());
568 if (!BaseAndOffset.first)
569 return false;
571 // Check if the offset of this GEP is constant, and if so accumulate it
572 // into Offset.
573 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
574 return false;
576 // Add the result as a new mapping to Base + Offset.
577 ConstantOffsetPtrs[&I] = BaseAndOffset;
579 return true;
582 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
583 Value *SROAArg;
584 DenseMap<Value *, int>::iterator CostIt;
585 bool SROACandidate =
586 lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt);
588 // Lambda to check whether a GEP's indices are all constant.
589 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
590 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
591 if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
592 return false;
593 return true;
596 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
597 if (SROACandidate)
598 SROAArgValues[&I] = SROAArg;
600 // Constant GEPs are modeled as free.
601 return true;
604 // Variable GEPs will require math and will disable SROA.
605 if (SROACandidate)
606 disableSROA(CostIt);
607 return isGEPFree(I);
610 /// Simplify \p I if its operands are constants and update SimplifiedValues.
611 /// \p Evaluate is a callable specific to instruction type that evaluates the
612 /// instruction when all the operands are constants.
613 template <typename Callable>
614 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) {
615 SmallVector<Constant *, 2> COps;
616 for (Value *Op : I.operands()) {
617 Constant *COp = dyn_cast<Constant>(Op);
618 if (!COp)
619 COp = SimplifiedValues.lookup(Op);
620 if (!COp)
621 return false;
622 COps.push_back(COp);
624 auto *C = Evaluate(COps);
625 if (!C)
626 return false;
627 SimplifiedValues[&I] = C;
628 return true;
631 bool CallAnalyzer::visitBitCast(BitCastInst &I) {
632 // Propagate constants through bitcasts.
633 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
634 return ConstantExpr::getBitCast(COps[0], I.getType());
636 return true;
638 // Track base/offsets through casts
639 std::pair<Value *, APInt> BaseAndOffset =
640 ConstantOffsetPtrs.lookup(I.getOperand(0));
641 // Casts don't change the offset, just wrap it up.
642 if (BaseAndOffset.first)
643 ConstantOffsetPtrs[&I] = BaseAndOffset;
645 // Also look for SROA candidates here.
646 Value *SROAArg;
647 DenseMap<Value *, int>::iterator CostIt;
648 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
649 SROAArgValues[&I] = SROAArg;
651 // Bitcasts are always zero cost.
652 return true;
655 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
656 // Propagate constants through ptrtoint.
657 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
658 return ConstantExpr::getPtrToInt(COps[0], I.getType());
660 return true;
662 // Track base/offset pairs when converted to a plain integer provided the
663 // integer is large enough to represent the pointer.
664 unsigned IntegerSize = I.getType()->getScalarSizeInBits();
665 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
666 if (IntegerSize >= DL.getPointerSizeInBits(AS)) {
667 std::pair<Value *, APInt> BaseAndOffset =
668 ConstantOffsetPtrs.lookup(I.getOperand(0));
669 if (BaseAndOffset.first)
670 ConstantOffsetPtrs[&I] = BaseAndOffset;
673 // This is really weird. Technically, ptrtoint will disable SROA. However,
674 // unless that ptrtoint is *used* somewhere in the live basic blocks after
675 // inlining, it will be nuked, and SROA should proceed. All of the uses which
676 // would block SROA would also block SROA if applied directly to a pointer,
677 // and so we can just add the integer in here. The only places where SROA is
678 // preserved either cannot fire on an integer, or won't in-and-of themselves
679 // disable SROA (ext) w/o some later use that we would see and disable.
680 Value *SROAArg;
681 DenseMap<Value *, int>::iterator CostIt;
682 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
683 SROAArgValues[&I] = SROAArg;
685 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
688 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
689 // Propagate constants through ptrtoint.
690 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
691 return ConstantExpr::getIntToPtr(COps[0], I.getType());
693 return true;
695 // Track base/offset pairs when round-tripped through a pointer without
696 // modifications provided the integer is not too large.
697 Value *Op = I.getOperand(0);
698 unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
699 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
700 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
701 if (BaseAndOffset.first)
702 ConstantOffsetPtrs[&I] = BaseAndOffset;
705 // "Propagate" SROA here in the same manner as we do for ptrtoint above.
706 Value *SROAArg;
707 DenseMap<Value *, int>::iterator CostIt;
708 if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
709 SROAArgValues[&I] = SROAArg;
711 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
714 bool CallAnalyzer::visitCastInst(CastInst &I) {
715 // Propagate constants through casts.
716 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
717 return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType());
719 return true;
721 // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
722 disableSROA(I.getOperand(0));
724 // If this is a floating-point cast, and the target says this operation
725 // is expensive, this may eventually become a library call. Treat the cost
726 // as such.
727 switch (I.getOpcode()) {
728 case Instruction::FPTrunc:
729 case Instruction::FPExt:
730 case Instruction::UIToFP:
731 case Instruction::SIToFP:
732 case Instruction::FPToUI:
733 case Instruction::FPToSI:
734 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
735 addCost(InlineConstants::CallPenalty);
736 break;
737 default:
738 break;
741 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
744 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
745 Value *Operand = I.getOperand(0);
746 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
747 return ConstantFoldInstOperands(&I, COps[0], DL);
749 return true;
751 // Disable any SROA on the argument to arbitrary unary instructions.
752 disableSROA(Operand);
754 return false;
757 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
758 return CandidateCall.paramHasAttr(A->getArgNo(), Attr);
761 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
762 // Does the *call site* have the NonNull attribute set on an argument? We
763 // use the attribute on the call site to memoize any analysis done in the
764 // caller. This will also trip if the callee function has a non-null
765 // parameter attribute, but that's a less interesting case because hopefully
766 // the callee would already have been simplified based on that.
767 if (Argument *A = dyn_cast<Argument>(V))
768 if (paramHasAttr(A, Attribute::NonNull))
769 return true;
771 // Is this an alloca in the caller? This is distinct from the attribute case
772 // above because attributes aren't updated within the inliner itself and we
773 // always want to catch the alloca derived case.
774 if (isAllocaDerivedArg(V))
775 // We can actually predict the result of comparisons between an
776 // alloca-derived value and null. Note that this fires regardless of
777 // SROA firing.
778 return true;
780 return false;
783 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) {
784 // If the normal destination of the invoke or the parent block of the call
785 // site is unreachable-terminated, there is little point in inlining this
786 // unless there is literally zero cost.
787 // FIXME: Note that it is possible that an unreachable-terminated block has a
788 // hot entry. For example, in below scenario inlining hot_call_X() may be
789 // beneficial :
790 // main() {
791 // hot_call_1();
792 // ...
793 // hot_call_N()
794 // exit(0);
795 // }
796 // For now, we are not handling this corner case here as it is rare in real
797 // code. In future, we should elaborate this based on BPI and BFI in more
798 // general threshold adjusting heuristics in updateThreshold().
799 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
800 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
801 return false;
802 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator()))
803 return false;
805 return true;
808 bool CallAnalyzer::isColdCallSite(CallBase &Call,
809 BlockFrequencyInfo *CallerBFI) {
810 // If global profile summary is available, then callsite's coldness is
811 // determined based on that.
812 if (PSI && PSI->hasProfileSummary())
813 return PSI->isColdCallSite(CallSite(&Call), CallerBFI);
815 // Otherwise we need BFI to be available.
816 if (!CallerBFI)
817 return false;
819 // Determine if the callsite is cold relative to caller's entry. We could
820 // potentially cache the computation of scaled entry frequency, but the added
821 // complexity is not worth it unless this scaling shows up high in the
822 // profiles.
823 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
824 auto CallSiteBB = Call.getParent();
825 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
826 auto CallerEntryFreq =
827 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock()));
828 return CallSiteFreq < CallerEntryFreq * ColdProb;
831 Optional<int>
832 CallAnalyzer::getHotCallSiteThreshold(CallBase &Call,
833 BlockFrequencyInfo *CallerBFI) {
835 // If global profile summary is available, then callsite's hotness is
836 // determined based on that.
837 if (PSI && PSI->hasProfileSummary() &&
838 PSI->isHotCallSite(CallSite(&Call), CallerBFI))
839 return Params.HotCallSiteThreshold;
841 // Otherwise we need BFI to be available and to have a locally hot callsite
842 // threshold.
843 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
844 return None;
846 // Determine if the callsite is hot relative to caller's entry. We could
847 // potentially cache the computation of scaled entry frequency, but the added
848 // complexity is not worth it unless this scaling shows up high in the
849 // profiles.
850 auto CallSiteBB = Call.getParent();
851 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency();
852 auto CallerEntryFreq = CallerBFI->getEntryFreq();
853 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq)
854 return Params.LocallyHotCallSiteThreshold;
856 // Otherwise treat it normally.
857 return None;
860 void CallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) {
861 // If no size growth is allowed for this inlining, set Threshold to 0.
862 if (!allowSizeGrowth(Call)) {
863 Threshold = 0;
864 return;
867 Function *Caller = Call.getCaller();
869 // return min(A, B) if B is valid.
870 auto MinIfValid = [](int A, Optional<int> B) {
871 return B ? std::min(A, B.getValue()) : A;
874 // return max(A, B) if B is valid.
875 auto MaxIfValid = [](int A, Optional<int> B) {
876 return B ? std::max(A, B.getValue()) : A;
879 // Various bonus percentages. These are multiplied by Threshold to get the
880 // bonus values.
881 // SingleBBBonus: This bonus is applied if the callee has a single reachable
882 // basic block at the given callsite context. This is speculatively applied
883 // and withdrawn if more than one basic block is seen.
885 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
886 // of the last call to a static function as inlining such functions is
887 // guaranteed to reduce code size.
889 // These bonus percentages may be set to 0 based on properties of the caller
890 // and the callsite.
891 int SingleBBBonusPercent = 50;
892 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
893 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus;
895 // Lambda to set all the above bonus and bonus percentages to 0.
896 auto DisallowAllBonuses = [&]() {
897 SingleBBBonusPercent = 0;
898 VectorBonusPercent = 0;
899 LastCallToStaticBonus = 0;
902 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
903 // and reduce the threshold if the caller has the necessary attribute.
904 if (Caller->hasMinSize()) {
905 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
906 // For minsize, we want to disable the single BB bonus and the vector
907 // bonuses, but not the last-call-to-static bonus. Inlining the last call to
908 // a static function will, at the minimum, eliminate the parameter setup and
909 // call/return instructions.
910 SingleBBBonusPercent = 0;
911 VectorBonusPercent = 0;
912 } else if (Caller->hasOptSize())
913 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);
915 // Adjust the threshold based on inlinehint attribute and profile based
916 // hotness information if the caller does not have MinSize attribute.
917 if (!Caller->hasMinSize()) {
918 if (Callee.hasFnAttribute(Attribute::InlineHint))
919 Threshold = MaxIfValid(Threshold, Params.HintThreshold);
921 // FIXME: After switching to the new passmanager, simplify the logic below
922 // by checking only the callsite hotness/coldness as we will reliably
923 // have local profile information.
925 // Callsite hotness and coldness can be determined if sample profile is
926 // used (which adds hotness metadata to calls) or if caller's
927 // BlockFrequencyInfo is available.
928 BlockFrequencyInfo *CallerBFI = GetBFI ? &((*GetBFI)(*Caller)) : nullptr;
929 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI);
930 if (!Caller->hasOptSize() && HotCallSiteThreshold) {
931 LLVM_DEBUG(dbgs() << "Hot callsite.\n");
932 // FIXME: This should update the threshold only if it exceeds the
933 // current threshold, but AutoFDO + ThinLTO currently relies on this
934 // behavior to prevent inlining of hot callsites during ThinLTO
935 // compile phase.
936 Threshold = HotCallSiteThreshold.getValue();
937 } else if (isColdCallSite(Call, CallerBFI)) {
938 LLVM_DEBUG(dbgs() << "Cold callsite.\n");
939 // Do not apply bonuses for a cold callsite including the
940 // LastCallToStatic bonus. While this bonus might result in code size
941 // reduction, it can cause the size of a non-cold caller to increase
942 // preventing it from being inlined.
943 DisallowAllBonuses();
944 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
945 } else if (PSI) {
946 // Use callee's global profile information only if we have no way of
947 // determining this via callsite information.
948 if (PSI->isFunctionEntryHot(&Callee)) {
949 LLVM_DEBUG(dbgs() << "Hot callee.\n");
950 // If callsite hotness can not be determined, we may still know
951 // that the callee is hot and treat it as a weaker hint for threshold
952 // increase.
953 Threshold = MaxIfValid(Threshold, Params.HintThreshold);
954 } else if (PSI->isFunctionEntryCold(&Callee)) {
955 LLVM_DEBUG(dbgs() << "Cold callee.\n");
956 // Do not apply bonuses for a cold callee including the
957 // LastCallToStatic bonus. While this bonus might result in code size
958 // reduction, it can cause the size of a non-cold caller to increase
959 // preventing it from being inlined.
960 DisallowAllBonuses();
961 Threshold = MinIfValid(Threshold, Params.ColdThreshold);
966 // Finally, take the target-specific inlining threshold multiplier into
967 // account.
968 Threshold *= TTI.getInliningThresholdMultiplier();
970 SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
971 VectorBonus = Threshold * VectorBonusPercent / 100;
973 bool OnlyOneCallAndLocalLinkage =
974 F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction();
975 // If there is only one call of the function, and it has internal linkage,
976 // the cost of inlining it drops dramatically. It may seem odd to update
977 // Cost in updateThreshold, but the bonus depends on the logic in this method.
978 if (OnlyOneCallAndLocalLinkage)
979 Cost -= LastCallToStaticBonus;
982 bool CallAnalyzer::visitCmpInst(CmpInst &I) {
983 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
984 // First try to handle simplified comparisons.
985 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
986 return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]);
988 return true;
990 if (I.getOpcode() == Instruction::FCmp)
991 return false;
993 // Otherwise look for a comparison between constant offset pointers with
994 // a common base.
995 Value *LHSBase, *RHSBase;
996 APInt LHSOffset, RHSOffset;
997 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
998 if (LHSBase) {
999 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
1000 if (RHSBase && LHSBase == RHSBase) {
1001 // We have common bases, fold the icmp to a constant based on the
1002 // offsets.
1003 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
1004 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
1005 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
1006 SimplifiedValues[&I] = C;
1007 ++NumConstantPtrCmps;
1008 return true;
1013 // If the comparison is an equality comparison with null, we can simplify it
1014 // if we know the value (argument) can't be null
1015 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) &&
1016 isKnownNonNullInCallee(I.getOperand(0))) {
1017 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
1018 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
1019 : ConstantInt::getFalse(I.getType());
1020 return true;
1022 // Finally check for SROA candidates in comparisons.
1023 Value *SROAArg;
1024 DenseMap<Value *, int>::iterator CostIt;
1025 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
1026 if (isa<ConstantPointerNull>(I.getOperand(1))) {
1027 accumulateSROACost(CostIt, InlineConstants::InstrCost);
1028 return true;
1031 disableSROA(CostIt);
1034 return false;
1037 bool CallAnalyzer::visitSub(BinaryOperator &I) {
1038 // Try to handle a special case: we can fold computing the difference of two
1039 // constant-related pointers.
1040 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1041 Value *LHSBase, *RHSBase;
1042 APInt LHSOffset, RHSOffset;
1043 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
1044 if (LHSBase) {
1045 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
1046 if (RHSBase && LHSBase == RHSBase) {
1047 // We have common bases, fold the subtract to a constant based on the
1048 // offsets.
1049 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
1050 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
1051 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
1052 SimplifiedValues[&I] = C;
1053 ++NumConstantPtrDiffs;
1054 return true;
1059 // Otherwise, fall back to the generic logic for simplifying and handling
1060 // instructions.
1061 return Base::visitSub(I);
1064 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
1065 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1066 Constant *CLHS = dyn_cast<Constant>(LHS);
1067 if (!CLHS)
1068 CLHS = SimplifiedValues.lookup(LHS);
1069 Constant *CRHS = dyn_cast<Constant>(RHS);
1070 if (!CRHS)
1071 CRHS = SimplifiedValues.lookup(RHS);
1073 Value *SimpleV = nullptr;
1074 if (auto FI = dyn_cast<FPMathOperator>(&I))
1075 SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS,
1076 CRHS ? CRHS : RHS, FI->getFastMathFlags(), DL);
1077 else
1078 SimpleV =
1079 SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);
1081 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
1082 SimplifiedValues[&I] = C;
1084 if (SimpleV)
1085 return true;
1087 // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
1088 disableSROA(LHS);
1089 disableSROA(RHS);
1091 // If the instruction is floating point, and the target says this operation
1092 // is expensive, this may eventually become a library call. Treat the cost
1093 // as such. Unless it's fneg which can be implemented with an xor.
1094 using namespace llvm::PatternMatch;
1095 if (I.getType()->isFloatingPointTy() &&
1096 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive &&
1097 !match(&I, m_FNeg(m_Value())))
1098 addCost(InlineConstants::CallPenalty);
1100 return false;
1103 bool CallAnalyzer::visitFNeg(UnaryOperator &I) {
1104 Value *Op = I.getOperand(0);
1105 Constant *COp = dyn_cast<Constant>(Op);
1106 if (!COp)
1107 COp = SimplifiedValues.lookup(Op);
1109 Value *SimpleV = SimplifyFNegInst(COp ? COp : Op,
1110 cast<FPMathOperator>(I).getFastMathFlags(),
1111 DL);
1113 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
1114 SimplifiedValues[&I] = C;
1116 if (SimpleV)
1117 return true;
1119 // Disable any SROA on arguments to arbitrary, unsimplified fneg.
1120 disableSROA(Op);
1122 return false;
1125 bool CallAnalyzer::visitLoad(LoadInst &I) {
1126 Value *SROAArg;
1127 DenseMap<Value *, int>::iterator CostIt;
1128 if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) {
1129 if (I.isSimple()) {
1130 accumulateSROACost(CostIt, InlineConstants::InstrCost);
1131 return true;
1134 disableSROA(CostIt);
1137 // If the data is already loaded from this address and hasn't been clobbered
1138 // by any stores or calls, this load is likely to be redundant and can be
1139 // eliminated.
1140 if (EnableLoadElimination &&
1141 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
1142 LoadEliminationCost += InlineConstants::InstrCost;
1143 return true;
1146 return false;
1149 bool CallAnalyzer::visitStore(StoreInst &I) {
1150 Value *SROAArg;
1151 DenseMap<Value *, int>::iterator CostIt;
1152 if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) {
1153 if (I.isSimple()) {
1154 accumulateSROACost(CostIt, InlineConstants::InstrCost);
1155 return true;
1158 disableSROA(CostIt);
1161 // The store can potentially clobber loads and prevent repeated loads from
1162 // being eliminated.
1163 // FIXME:
1164 // 1. We can probably keep an initial set of eliminatable loads substracted
1165 // from the cost even when we finally see a store. We just need to disable
1166 // *further* accumulation of elimination savings.
1167 // 2. We should probably at some point thread MemorySSA for the callee into
1168 // this and then use that to actually compute *really* precise savings.
1169 disableLoadElimination();
1170 return false;
1173 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
1174 // Constant folding for extract value is trivial.
1175 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1176 return ConstantExpr::getExtractValue(COps[0], I.getIndices());
1178 return true;
1180 // SROA can look through these but give them a cost.
1181 return false;
1184 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
1185 // Constant folding for insert value is trivial.
1186 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1187 return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0],
1188 /*InsertedValueOperand*/ COps[1],
1189 I.getIndices());
1191 return true;
1193 // SROA can look through these but give them a cost.
1194 return false;
1197 /// Try to simplify a call site.
1199 /// Takes a concrete function and callsite and tries to actually simplify it by
1200 /// analyzing the arguments and call itself with instsimplify. Returns true if
1201 /// it has simplified the callsite to some other entity (a constant), making it
1202 /// free.
1203 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) {
1204 // FIXME: Using the instsimplify logic directly for this is inefficient
1205 // because we have to continually rebuild the argument list even when no
1206 // simplifications can be performed. Until that is fixed with remapping
1207 // inside of instsimplify, directly constant fold calls here.
1208 if (!canConstantFoldCallTo(&Call, F))
1209 return false;
1211 // Try to re-map the arguments to constants.
1212 SmallVector<Constant *, 4> ConstantArgs;
1213 ConstantArgs.reserve(Call.arg_size());
1214 for (Value *I : Call.args()) {
1215 Constant *C = dyn_cast<Constant>(I);
1216 if (!C)
1217 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I));
1218 if (!C)
1219 return false; // This argument doesn't map to a constant.
1221 ConstantArgs.push_back(C);
1223 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) {
1224 SimplifiedValues[&Call] = C;
1225 return true;
1228 return false;
1231 bool CallAnalyzer::visitCallBase(CallBase &Call) {
1232 if (Call.hasFnAttr(Attribute::ReturnsTwice) &&
1233 !F.hasFnAttribute(Attribute::ReturnsTwice)) {
1234 // This aborts the entire analysis.
1235 ExposesReturnsTwice = true;
1236 return false;
1238 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate())
1239 ContainsNoDuplicateCall = true;
1241 if (Function *F = Call.getCalledFunction()) {
1242 // When we have a concrete function, first try to simplify it directly.
1243 if (simplifyCallSite(F, Call))
1244 return true;
1246 // Next check if it is an intrinsic we know about.
1247 // FIXME: Lift this into part of the InstVisitor.
1248 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) {
1249 switch (II->getIntrinsicID()) {
1250 default:
1251 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
1252 disableLoadElimination();
1253 return Base::visitCallBase(Call);
1255 case Intrinsic::load_relative:
1256 // This is normally lowered to 4 LLVM instructions.
1257 addCost(3 * InlineConstants::InstrCost);
1258 return false;
1260 case Intrinsic::memset:
1261 case Intrinsic::memcpy:
1262 case Intrinsic::memmove:
1263 disableLoadElimination();
1264 // SROA can usually chew through these intrinsics, but they aren't free.
1265 return false;
1266 case Intrinsic::icall_branch_funnel:
1267 case Intrinsic::localescape:
1268 HasUninlineableIntrinsic = true;
1269 return false;
1270 case Intrinsic::vastart:
1271 InitsVargArgs = true;
1272 return false;
1276 if (F == Call.getFunction()) {
1277 // This flag will fully abort the analysis, so don't bother with anything
1278 // else.
1279 IsRecursiveCall = true;
1280 return false;
1283 if (TTI.isLoweredToCall(F)) {
1284 // We account for the average 1 instruction per call argument setup
1285 // here.
1286 addCost(Call.arg_size() * InlineConstants::InstrCost);
1288 // Everything other than inline ASM will also have a significant cost
1289 // merely from making the call.
1290 if (!isa<InlineAsm>(Call.getCalledValue()))
1291 addCost(InlineConstants::CallPenalty);
1294 if (!Call.onlyReadsMemory())
1295 disableLoadElimination();
1296 return Base::visitCallBase(Call);
1299 // Otherwise we're in a very special case -- an indirect function call. See
1300 // if we can be particularly clever about this.
1301 Value *Callee = Call.getCalledValue();
1303 // First, pay the price of the argument setup. We account for the average
1304 // 1 instruction per call argument setup here.
1305 addCost(Call.arg_size() * InlineConstants::InstrCost);
1307 // Next, check if this happens to be an indirect function call to a known
1308 // function in this inline context. If not, we've done all we can.
1309 Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
1310 if (!F) {
1311 if (!Call.onlyReadsMemory())
1312 disableLoadElimination();
1313 return Base::visitCallBase(Call);
1316 // If we have a constant that we are calling as a function, we can peer
1317 // through it and see the function target. This happens not infrequently
1318 // during devirtualization and so we want to give it a hefty bonus for
1319 // inlining, but cap that bonus in the event that inlining wouldn't pan
1320 // out. Pretend to inline the function, with a custom threshold.
1321 auto IndirectCallParams = Params;
1322 IndirectCallParams.DefaultThreshold = InlineConstants::IndirectCallThreshold;
1323 CallAnalyzer CA(TTI, GetAssumptionCache, GetBFI, PSI, ORE, *F, Call,
1324 IndirectCallParams);
1325 if (CA.analyzeCall(Call)) {
1326 // We were able to inline the indirect call! Subtract the cost from the
1327 // threshold to get the bonus we want to apply, but don't go below zero.
1328 Cost -= std::max(0, CA.getThreshold() - CA.getCost());
1331 if (!F->onlyReadsMemory())
1332 disableLoadElimination();
1333 return Base::visitCallBase(Call);
1336 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
1337 // At least one return instruction will be free after inlining.
1338 bool Free = !HasReturn;
1339 HasReturn = true;
1340 return Free;
1343 bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
1344 // We model unconditional branches as essentially free -- they really
1345 // shouldn't exist at all, but handling them makes the behavior of the
1346 // inliner more regular and predictable. Interestingly, conditional branches
1347 // which will fold away are also free.
1348 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
1349 dyn_cast_or_null<ConstantInt>(
1350 SimplifiedValues.lookup(BI.getCondition()));
1353 bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
1354 bool CheckSROA = SI.getType()->isPointerTy();
1355 Value *TrueVal = SI.getTrueValue();
1356 Value *FalseVal = SI.getFalseValue();
1358 Constant *TrueC = dyn_cast<Constant>(TrueVal);
1359 if (!TrueC)
1360 TrueC = SimplifiedValues.lookup(TrueVal);
1361 Constant *FalseC = dyn_cast<Constant>(FalseVal);
1362 if (!FalseC)
1363 FalseC = SimplifiedValues.lookup(FalseVal);
1364 Constant *CondC =
1365 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));
1367 if (!CondC) {
1368 // Select C, X, X => X
1369 if (TrueC == FalseC && TrueC) {
1370 SimplifiedValues[&SI] = TrueC;
1371 return true;
1374 if (!CheckSROA)
1375 return Base::visitSelectInst(SI);
1377 std::pair<Value *, APInt> TrueBaseAndOffset =
1378 ConstantOffsetPtrs.lookup(TrueVal);
1379 std::pair<Value *, APInt> FalseBaseAndOffset =
1380 ConstantOffsetPtrs.lookup(FalseVal);
1381 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
1382 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;
1384 Value *SROAArg;
1385 DenseMap<Value *, int>::iterator CostIt;
1386 if (lookupSROAArgAndCost(TrueVal, SROAArg, CostIt))
1387 SROAArgValues[&SI] = SROAArg;
1388 return true;
1391 return Base::visitSelectInst(SI);
1394 // Select condition is a constant.
1395 Value *SelectedV = CondC->isAllOnesValue()
1396 ? TrueVal
1397 : (CondC->isNullValue()) ? FalseVal : nullptr;
1398 if (!SelectedV) {
1399 // Condition is a vector constant that is not all 1s or all 0s. If all
1400 // operands are constants, ConstantExpr::getSelect() can handle the cases
1401 // such as select vectors.
1402 if (TrueC && FalseC) {
1403 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) {
1404 SimplifiedValues[&SI] = C;
1405 return true;
1408 return Base::visitSelectInst(SI);
1411 // Condition is either all 1s or all 0s. SI can be simplified.
1412 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
1413 SimplifiedValues[&SI] = SelectedC;
1414 return true;
1417 if (!CheckSROA)
1418 return true;
1420 std::pair<Value *, APInt> BaseAndOffset =
1421 ConstantOffsetPtrs.lookup(SelectedV);
1422 if (BaseAndOffset.first) {
1423 ConstantOffsetPtrs[&SI] = BaseAndOffset;
1425 Value *SROAArg;
1426 DenseMap<Value *, int>::iterator CostIt;
1427 if (lookupSROAArgAndCost(SelectedV, SROAArg, CostIt))
1428 SROAArgValues[&SI] = SROAArg;
1431 return true;
1434 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
1435 // We model unconditional switches as free, see the comments on handling
1436 // branches.
1437 if (isa<ConstantInt>(SI.getCondition()))
1438 return true;
1439 if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
1440 if (isa<ConstantInt>(V))
1441 return true;
1443 // Assume the most general case where the switch is lowered into
1444 // either a jump table, bit test, or a balanced binary tree consisting of
1445 // case clusters without merging adjacent clusters with the same
1446 // destination. We do not consider the switches that are lowered with a mix
1447 // of jump table/bit test/binary search tree. The cost of the switch is
1448 // proportional to the size of the tree or the size of jump table range.
1450 // NB: We convert large switches which are just used to initialize large phi
1451 // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent
1452 // inlining those. It will prevent inlining in cases where the optimization
1453 // does not (yet) fire.
1455 // Maximum valid cost increased in this function.
1456 int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1;
1458 unsigned JumpTableSize = 0;
1459 unsigned NumCaseCluster =
1460 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize);
1462 // If suitable for a jump table, consider the cost for the table size and
1463 // branch to destination.
1464 if (JumpTableSize) {
1465 int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost +
1466 4 * InlineConstants::InstrCost;
1468 addCost(JTCost, (int64_t)CostUpperBound);
1469 return false;
1472 // Considering forming a binary search, we should find the number of nodes
1473 // which is same as the number of comparisons when lowered. For a given
1474 // number of clusters, n, we can define a recursive function, f(n), to find
1475 // the number of nodes in the tree. The recursion is :
1476 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
1477 // and f(n) = n, when n <= 3.
1478 // This will lead a binary tree where the leaf should be either f(2) or f(3)
1479 // when n > 3. So, the number of comparisons from leaves should be n, while
1480 // the number of non-leaf should be :
1481 // 2^(log2(n) - 1) - 1
1482 // = 2^log2(n) * 2^-1 - 1
1483 // = n / 2 - 1.
1484 // Considering comparisons from leaf and non-leaf nodes, we can estimate the
1485 // number of comparisons in a simple closed form :
1486 // n + n / 2 - 1 = n * 3 / 2 - 1
1487 if (NumCaseCluster <= 3) {
1488 // Suppose a comparison includes one compare and one conditional branch.
1489 addCost(NumCaseCluster * 2 * InlineConstants::InstrCost);
1490 return false;
1493 int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1;
1494 int64_t SwitchCost =
1495 ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost;
1497 addCost(SwitchCost, (int64_t)CostUpperBound);
1498 return false;
1501 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
1502 // We never want to inline functions that contain an indirectbr. This is
1503 // incorrect because all the blockaddress's (in static global initializers
1504 // for example) would be referring to the original function, and this
1505 // indirect jump would jump from the inlined copy of the function into the
1506 // original function which is extremely undefined behavior.
1507 // FIXME: This logic isn't really right; we can safely inline functions with
1508 // indirectbr's as long as no other function or global references the
1509 // blockaddress of a block within the current function.
1510 HasIndirectBr = true;
1511 return false;
1514 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
1515 // FIXME: It's not clear that a single instruction is an accurate model for
1516 // the inline cost of a resume instruction.
1517 return false;
1520 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
1521 // FIXME: It's not clear that a single instruction is an accurate model for
1522 // the inline cost of a cleanupret instruction.
1523 return false;
1526 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
1527 // FIXME: It's not clear that a single instruction is an accurate model for
1528 // the inline cost of a catchret instruction.
1529 return false;
1532 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
1533 // FIXME: It might be reasonably to discount the cost of instructions leading
1534 // to unreachable as they have the lowest possible impact on both runtime and
1535 // code size.
1536 return true; // No actual code is needed for unreachable.
1539 bool CallAnalyzer::visitInstruction(Instruction &I) {
1540 // Some instructions are free. All of the free intrinsics can also be
1541 // handled by SROA, etc.
1542 if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
1543 return true;
1545 // We found something we don't understand or can't handle. Mark any SROA-able
1546 // values in the operand list as no longer viable.
1547 for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
1548 disableSROA(*OI);
1550 return false;
1553 /// Analyze a basic block for its contribution to the inline cost.
1555 /// This method walks the analyzer over every instruction in the given basic
1556 /// block and accounts for their cost during inlining at this callsite. It
1557 /// aborts early if the threshold has been exceeded or an impossible to inline
1558 /// construct has been detected. It returns false if inlining is no longer
1559 /// viable, and true if inlining remains viable.
1560 InlineResult
1561 CallAnalyzer::analyzeBlock(BasicBlock *BB,
1562 SmallPtrSetImpl<const Value *> &EphValues) {
1563 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1564 // FIXME: Currently, the number of instructions in a function regardless of
1565 // our ability to simplify them during inline to constants or dead code,
1566 // are actually used by the vector bonus heuristic. As long as that's true,
1567 // we have to special case debug intrinsics here to prevent differences in
1568 // inlining due to debug symbols. Eventually, the number of unsimplified
1569 // instructions shouldn't factor into the cost computation, but until then,
1570 // hack around it here.
1571 if (isa<DbgInfoIntrinsic>(I))
1572 continue;
1574 // Skip ephemeral values.
1575 if (EphValues.count(&*I))
1576 continue;
1578 ++NumInstructions;
1579 if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
1580 ++NumVectorInstructions;
1582 // If the instruction simplified to a constant, there is no cost to this
1583 // instruction. Visit the instructions using our InstVisitor to account for
1584 // all of the per-instruction logic. The visit tree returns true if we
1585 // consumed the instruction in any way, and false if the instruction's base
1586 // cost should count against inlining.
1587 if (Base::visit(&*I))
1588 ++NumInstructionsSimplified;
1589 else
1590 addCost(InlineConstants::InstrCost);
1592 using namespace ore;
1593 // If the visit this instruction detected an uninlinable pattern, abort.
1594 InlineResult IR;
1595 if (IsRecursiveCall)
1596 IR = "recursive";
1597 else if (ExposesReturnsTwice)
1598 IR = "exposes returns twice";
1599 else if (HasDynamicAlloca)
1600 IR = "dynamic alloca";
1601 else if (HasIndirectBr)
1602 IR = "indirect branch";
1603 else if (HasUninlineableIntrinsic)
1604 IR = "uninlinable intrinsic";
1605 else if (InitsVargArgs)
1606 IR = "varargs";
1607 if (!IR) {
1608 if (ORE)
1609 ORE->emit([&]() {
1610 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
1611 &CandidateCall)
1612 << NV("Callee", &F) << " has uninlinable pattern ("
1613 << NV("InlineResult", IR.message)
1614 << ") and cost is not fully computed";
1616 return IR;
1619 // If the caller is a recursive function then we don't want to inline
1620 // functions which allocate a lot of stack space because it would increase
1621 // the caller stack usage dramatically.
1622 if (IsCallerRecursive &&
1623 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) {
1624 InlineResult IR = "recursive and allocates too much stack space";
1625 if (ORE)
1626 ORE->emit([&]() {
1627 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
1628 &CandidateCall)
1629 << NV("Callee", &F) << " is " << NV("InlineResult", IR.message)
1630 << ". Cost is not fully computed";
1632 return IR;
1635 // Check if we've passed the maximum possible threshold so we don't spin in
1636 // huge basic blocks that will never inline.
1637 if (Cost >= Threshold && !ComputeFullInlineCost)
1638 return false;
1641 return true;
1644 /// Compute the base pointer and cumulative constant offsets for V.
1646 /// This strips all constant offsets off of V, leaving it the base pointer, and
1647 /// accumulates the total constant offset applied in the returned constant. It
1648 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
1649 /// no constant offsets applied.
1650 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
1651 if (!V->getType()->isPointerTy())
1652 return nullptr;
1654 unsigned AS = V->getType()->getPointerAddressSpace();
1655 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
1656 APInt Offset = APInt::getNullValue(IntPtrWidth);
1658 // Even though we don't look through PHI nodes, we could be called on an
1659 // instruction in an unreachable block, which may be on a cycle.
1660 SmallPtrSet<Value *, 4> Visited;
1661 Visited.insert(V);
1662 do {
1663 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1664 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
1665 return nullptr;
1666 V = GEP->getPointerOperand();
1667 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1668 V = cast<Operator>(V)->getOperand(0);
1669 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1670 if (GA->isInterposable())
1671 break;
1672 V = GA->getAliasee();
1673 } else {
1674 break;
1676 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1677 } while (Visited.insert(V).second);
1679 Type *IntPtrTy = DL.getIntPtrType(V->getContext(), AS);
1680 return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
1683 /// Find dead blocks due to deleted CFG edges during inlining.
1685 /// If we know the successor of the current block, \p CurrBB, has to be \p
1686 /// NextBB, the other successors of \p CurrBB are dead if these successors have
1687 /// no live incoming CFG edges. If one block is found to be dead, we can
1688 /// continue growing the dead block list by checking the successors of the dead
1689 /// blocks to see if all their incoming edges are dead or not.
1690 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
1691 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
1692 // A CFG edge is dead if the predecessor is dead or the predecessor has a
1693 // known successor which is not the one under exam.
1694 return (DeadBlocks.count(Pred) ||
1695 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
1698 auto IsNewlyDead = [&](BasicBlock *BB) {
1699 // If all the edges to a block are dead, the block is also dead.
1700 return (!DeadBlocks.count(BB) &&
1701 llvm::all_of(predecessors(BB),
1702 [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
1705 for (BasicBlock *Succ : successors(CurrBB)) {
1706 if (Succ == NextBB || !IsNewlyDead(Succ))
1707 continue;
1708 SmallVector<BasicBlock *, 4> NewDead;
1709 NewDead.push_back(Succ);
1710 while (!NewDead.empty()) {
1711 BasicBlock *Dead = NewDead.pop_back_val();
1712 if (DeadBlocks.insert(Dead))
1713 // Continue growing the dead block lists.
1714 for (BasicBlock *S : successors(Dead))
1715 if (IsNewlyDead(S))
1716 NewDead.push_back(S);
1721 /// Analyze a call site for potential inlining.
1723 /// Returns true if inlining this call is viable, and false if it is not
1724 /// viable. It computes the cost and adjusts the threshold based on numerous
1725 /// factors and heuristics. If this method returns false but the computed cost
1726 /// is below the computed threshold, then inlining was forcibly disabled by
1727 /// some artifact of the routine.
1728 InlineResult CallAnalyzer::analyzeCall(CallBase &Call) {
1729 ++NumCallsAnalyzed;
1731 // Perform some tweaks to the cost and threshold based on the direct
1732 // callsite information.
1734 // We want to more aggressively inline vector-dense kernels, so up the
1735 // threshold, and we'll lower it if the % of vector instructions gets too
1736 // low. Note that these bonuses are some what arbitrary and evolved over time
1737 // by accident as much as because they are principled bonuses.
1739 // FIXME: It would be nice to remove all such bonuses. At least it would be
1740 // nice to base the bonus values on something more scientific.
1741 assert(NumInstructions == 0);
1742 assert(NumVectorInstructions == 0);
1744 // Update the threshold based on callsite properties
1745 updateThreshold(Call, F);
1747 // While Threshold depends on commandline options that can take negative
1748 // values, we want to enforce the invariant that the computed threshold and
1749 // bonuses are non-negative.
1750 assert(Threshold >= 0);
1751 assert(SingleBBBonus >= 0);
1752 assert(VectorBonus >= 0);
1754 // Speculatively apply all possible bonuses to Threshold. If cost exceeds
1755 // this Threshold any time, and cost cannot decrease, we can stop processing
1756 // the rest of the function body.
1757 Threshold += (SingleBBBonus + VectorBonus);
1759 // Give out bonuses for the callsite, as the instructions setting them up
1760 // will be gone after inlining.
1761 addCost(-getCallsiteCost(Call, DL));
1763 // If this function uses the coldcc calling convention, prefer not to inline
1764 // it.
1765 if (F.getCallingConv() == CallingConv::Cold)
1766 Cost += InlineConstants::ColdccPenalty;
1768 // Check if we're done. This can happen due to bonuses and penalties.
1769 if (Cost >= Threshold && !ComputeFullInlineCost)
1770 return "high cost";
1772 if (F.empty())
1773 return true;
1775 Function *Caller = Call.getFunction();
1776 // Check if the caller function is recursive itself.
1777 for (User *U : Caller->users()) {
1778 CallBase *Call = dyn_cast<CallBase>(U);
1779 if (Call && Call->getFunction() == Caller) {
1780 IsCallerRecursive = true;
1781 break;
1785 // Populate our simplified values by mapping from function arguments to call
1786 // arguments with known important simplifications.
1787 auto CAI = Call.arg_begin();
1788 for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
1789 FAI != FAE; ++FAI, ++CAI) {
1790 assert(CAI != Call.arg_end());
1791 if (Constant *C = dyn_cast<Constant>(CAI))
1792 SimplifiedValues[&*FAI] = C;
1794 Value *PtrArg = *CAI;
1795 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
1796 ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue());
1798 // We can SROA any pointer arguments derived from alloca instructions.
1799 if (isa<AllocaInst>(PtrArg)) {
1800 SROAArgValues[&*FAI] = PtrArg;
1801 SROAArgCosts[PtrArg] = 0;
1805 NumConstantArgs = SimplifiedValues.size();
1806 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
1807 NumAllocaArgs = SROAArgValues.size();
1809 // FIXME: If a caller has multiple calls to a callee, we end up recomputing
1810 // the ephemeral values multiple times (and they're completely determined by
1811 // the callee, so this is purely duplicate work).
1812 SmallPtrSet<const Value *, 32> EphValues;
1813 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);
1815 // The worklist of live basic blocks in the callee *after* inlining. We avoid
1816 // adding basic blocks of the callee which can be proven to be dead for this
1817 // particular call site in order to get more accurate cost estimates. This
1818 // requires a somewhat heavyweight iteration pattern: we need to walk the
1819 // basic blocks in a breadth-first order as we insert live successors. To
1820 // accomplish this, prioritizing for small iterations because we exit after
1821 // crossing our threshold, we use a small-size optimized SetVector.
1822 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
1823 SmallPtrSet<BasicBlock *, 16>>
1824 BBSetVector;
1825 BBSetVector BBWorklist;
1826 BBWorklist.insert(&F.getEntryBlock());
1827 bool SingleBB = true;
1828 // Note that we *must not* cache the size, this loop grows the worklist.
1829 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
1830 // Bail out the moment we cross the threshold. This means we'll under-count
1831 // the cost, but only when undercounting doesn't matter.
1832 if (Cost >= Threshold && !ComputeFullInlineCost)
1833 break;
1835 BasicBlock *BB = BBWorklist[Idx];
1836 if (BB->empty())
1837 continue;
1839 // Disallow inlining a blockaddress with uses other than strictly callbr.
1840 // A blockaddress only has defined behavior for an indirect branch in the
1841 // same function, and we do not currently support inlining indirect
1842 // branches. But, the inliner may not see an indirect branch that ends up
1843 // being dead code at a particular call site. If the blockaddress escapes
1844 // the function, e.g., via a global variable, inlining may lead to an
1845 // invalid cross-function reference.
1846 // FIXME: pr/39560: continue relaxing this overt restriction.
1847 if (BB->hasAddressTaken())
1848 for (User *U : BlockAddress::get(&*BB)->users())
1849 if (!isa<CallBrInst>(*U))
1850 return "blockaddress used outside of callbr";
1852 // Analyze the cost of this block. If we blow through the threshold, this
1853 // returns false, and we can bail on out.
1854 InlineResult IR = analyzeBlock(BB, EphValues);
1855 if (!IR)
1856 return IR;
1858 Instruction *TI = BB->getTerminator();
1860 // Add in the live successors by first checking whether we have terminator
1861 // that may be simplified based on the values simplified by this call.
1862 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1863 if (BI->isConditional()) {
1864 Value *Cond = BI->getCondition();
1865 if (ConstantInt *SimpleCond =
1866 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1867 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
1868 BBWorklist.insert(NextBB);
1869 KnownSuccessors[BB] = NextBB;
1870 findDeadBlocks(BB, NextBB);
1871 continue;
1874 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1875 Value *Cond = SI->getCondition();
1876 if (ConstantInt *SimpleCond =
1877 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1878 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
1879 BBWorklist.insert(NextBB);
1880 KnownSuccessors[BB] = NextBB;
1881 findDeadBlocks(BB, NextBB);
1882 continue;
1886 // If we're unable to select a particular successor, just count all of
1887 // them.
1888 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
1889 ++TIdx)
1890 BBWorklist.insert(TI->getSuccessor(TIdx));
1892 // If we had any successors at this point, than post-inlining is likely to
1893 // have them as well. Note that we assume any basic blocks which existed
1894 // due to branches or switches which folded above will also fold after
1895 // inlining.
1896 if (SingleBB && TI->getNumSuccessors() > 1) {
1897 // Take off the bonus we applied to the threshold.
1898 Threshold -= SingleBBBonus;
1899 SingleBB = false;
1903 bool OnlyOneCallAndLocalLinkage =
1904 F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction();
1905 // If this is a noduplicate call, we can still inline as long as
1906 // inlining this would cause the removal of the caller (so the instruction
1907 // is not actually duplicated, just moved).
1908 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
1909 return "noduplicate";
1911 // Loops generally act a lot like calls in that they act like barriers to
1912 // movement, require a certain amount of setup, etc. So when optimising for
1913 // size, we penalise any call sites that perform loops. We do this after all
1914 // other costs here, so will likely only be dealing with relatively small
1915 // functions (and hence DT and LI will hopefully be cheap).
1916 if (Caller->hasMinSize()) {
1917 DominatorTree DT(F);
1918 LoopInfo LI(DT);
1919 int NumLoops = 0;
1920 for (Loop *L : LI) {
1921 // Ignore loops that will not be executed
1922 if (DeadBlocks.count(L->getHeader()))
1923 continue;
1924 NumLoops++;
1926 addCost(NumLoops * InlineConstants::CallPenalty);
1929 // We applied the maximum possible vector bonus at the beginning. Now,
1930 // subtract the excess bonus, if any, from the Threshold before
1931 // comparing against Cost.
1932 if (NumVectorInstructions <= NumInstructions / 10)
1933 Threshold -= VectorBonus;
1934 else if (NumVectorInstructions <= NumInstructions / 2)
1935 Threshold -= VectorBonus/2;
1937 return Cost < std::max(1, Threshold);
1940 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1941 /// Dump stats about this call's analysis.
1942 LLVM_DUMP_METHOD void CallAnalyzer::dump() {
1943 #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n"
1944 DEBUG_PRINT_STAT(NumConstantArgs);
1945 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
1946 DEBUG_PRINT_STAT(NumAllocaArgs);
1947 DEBUG_PRINT_STAT(NumConstantPtrCmps);
1948 DEBUG_PRINT_STAT(NumConstantPtrDiffs);
1949 DEBUG_PRINT_STAT(NumInstructionsSimplified);
1950 DEBUG_PRINT_STAT(NumInstructions);
1951 DEBUG_PRINT_STAT(SROACostSavings);
1952 DEBUG_PRINT_STAT(SROACostSavingsLost);
1953 DEBUG_PRINT_STAT(LoadEliminationCost);
1954 DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
1955 DEBUG_PRINT_STAT(Cost);
1956 DEBUG_PRINT_STAT(Threshold);
1957 #undef DEBUG_PRINT_STAT
1959 #endif
1961 /// Test that there are no attribute conflicts between Caller and Callee
1962 /// that prevent inlining.
1963 static bool functionsHaveCompatibleAttributes(Function *Caller,
1964 Function *Callee,
1965 TargetTransformInfo &TTI) {
1966 return TTI.areInlineCompatible(Caller, Callee) &&
1967 AttributeFuncs::areInlineCompatible(*Caller, *Callee);
1970 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) {
1971 int Cost = 0;
1972 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) {
1973 if (Call.isByValArgument(I)) {
1974 // We approximate the number of loads and stores needed by dividing the
1975 // size of the byval type by the target's pointer size.
1976 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
1977 unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType());
1978 unsigned AS = PTy->getAddressSpace();
1979 unsigned PointerSize = DL.getPointerSizeInBits(AS);
1980 // Ceiling division.
1981 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
1983 // If it generates more than 8 stores it is likely to be expanded as an
1984 // inline memcpy so we take that as an upper bound. Otherwise we assume
1985 // one load and one store per word copied.
1986 // FIXME: The maxStoresPerMemcpy setting from the target should be used
1987 // here instead of a magic number of 8, but it's not available via
1988 // DataLayout.
1989 NumStores = std::min(NumStores, 8U);
1991 Cost += 2 * NumStores * InlineConstants::InstrCost;
1992 } else {
1993 // For non-byval arguments subtract off one instruction per call
1994 // argument.
1995 Cost += InlineConstants::InstrCost;
1998 // The call instruction also disappears after inlining.
1999 Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty;
2000 return Cost;
2003 InlineCost llvm::getInlineCost(
2004 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
2005 std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
2006 Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI,
2007 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2008 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI,
2009 GetAssumptionCache, GetBFI, PSI, ORE);
2012 InlineCost llvm::getInlineCost(
2013 CallBase &Call, Function *Callee, const InlineParams &Params,
2014 TargetTransformInfo &CalleeTTI,
2015 std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
2016 Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI,
2017 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2019 // Cannot inline indirect calls.
2020 if (!Callee)
2021 return llvm::InlineCost::getNever("indirect call");
2023 // Never inline calls with byval arguments that does not have the alloca
2024 // address space. Since byval arguments can be replaced with a copy to an
2025 // alloca, the inlined code would need to be adjusted to handle that the
2026 // argument is in the alloca address space (so it is a little bit complicated
2027 // to solve).
2028 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace();
2029 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I)
2030 if (Call.isByValArgument(I)) {
2031 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
2032 if (PTy->getAddressSpace() != AllocaAS)
2033 return llvm::InlineCost::getNever("byval arguments without alloca"
2034 " address space");
2037 // Calls to functions with always-inline attributes should be inlined
2038 // whenever possible.
2039 if (Call.hasFnAttr(Attribute::AlwaysInline)) {
2040 auto IsViable = isInlineViable(*Callee);
2041 if (IsViable)
2042 return llvm::InlineCost::getAlways("always inline attribute");
2043 return llvm::InlineCost::getNever(IsViable.message);
2046 // Never inline functions with conflicting attributes (unless callee has
2047 // always-inline attribute).
2048 Function *Caller = Call.getCaller();
2049 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI))
2050 return llvm::InlineCost::getNever("conflicting attributes");
2052 // Don't inline this call if the caller has the optnone attribute.
2053 if (Caller->hasOptNone())
2054 return llvm::InlineCost::getNever("optnone attribute");
2056 // Don't inline a function that treats null pointer as valid into a caller
2057 // that does not have this attribute.
2058 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
2059 return llvm::InlineCost::getNever("nullptr definitions incompatible");
2061 // Don't inline functions which can be interposed at link-time.
2062 if (Callee->isInterposable())
2063 return llvm::InlineCost::getNever("interposable");
2065 // Don't inline functions marked noinline.
2066 if (Callee->hasFnAttribute(Attribute::NoInline))
2067 return llvm::InlineCost::getNever("noinline function attribute");
2069 // Don't inline call sites marked noinline.
2070 if (Call.isNoInline())
2071 return llvm::InlineCost::getNever("noinline call site attribute");
2073 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName()
2074 << "... (caller:" << Caller->getName() << ")\n");
2076 CallAnalyzer CA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE, *Callee,
2077 Call, Params);
2078 InlineResult ShouldInline = CA.analyzeCall(Call);
2080 LLVM_DEBUG(CA.dump());
2082 // Check if there was a reason to force inlining or no inlining.
2083 if (!ShouldInline && CA.getCost() < CA.getThreshold())
2084 return InlineCost::getNever(ShouldInline.message);
2085 if (ShouldInline && CA.getCost() >= CA.getThreshold())
2086 return InlineCost::getAlways("empty function");
2088 return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
2091 InlineResult llvm::isInlineViable(Function &F) {
2092 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
2093 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2094 // Disallow inlining of functions which contain indirect branches.
2095 if (isa<IndirectBrInst>(BI->getTerminator()))
2096 return "contains indirect branches";
2098 // Disallow inlining of blockaddresses which are used by non-callbr
2099 // instructions.
2100 if (BI->hasAddressTaken())
2101 for (User *U : BlockAddress::get(&*BI)->users())
2102 if (!isa<CallBrInst>(*U))
2103 return "blockaddress used outside of callbr";
2105 for (auto &II : *BI) {
2106 CallBase *Call = dyn_cast<CallBase>(&II);
2107 if (!Call)
2108 continue;
2110 // Disallow recursive calls.
2111 if (&F == Call->getCalledFunction())
2112 return "recursive call";
2114 // Disallow calls which expose returns-twice to a function not previously
2115 // attributed as such.
2116 if (!ReturnsTwice && isa<CallInst>(Call) &&
2117 cast<CallInst>(Call)->canReturnTwice())
2118 return "exposes returns-twice attribute";
2120 if (Call->getCalledFunction())
2121 switch (Call->getCalledFunction()->getIntrinsicID()) {
2122 default:
2123 break;
2124 // Disallow inlining of @llvm.icall.branch.funnel because current
2125 // backend can't separate call targets from call arguments.
2126 case llvm::Intrinsic::icall_branch_funnel:
2127 return "disallowed inlining of @llvm.icall.branch.funnel";
2128 // Disallow inlining functions that call @llvm.localescape. Doing this
2129 // correctly would require major changes to the inliner.
2130 case llvm::Intrinsic::localescape:
2131 return "disallowed inlining of @llvm.localescape";
2132 // Disallow inlining of functions that initialize VarArgs with va_start.
2133 case llvm::Intrinsic::vastart:
2134 return "contains VarArgs initialized with va_start";
2139 return true;
2142 // APIs to create InlineParams based on command line flags and/or other
2143 // parameters.
2145 InlineParams llvm::getInlineParams(int Threshold) {
2146 InlineParams Params;
2148 // This field is the threshold to use for a callee by default. This is
2149 // derived from one or more of:
2150 // * optimization or size-optimization levels,
2151 // * a value passed to createFunctionInliningPass function, or
2152 // * the -inline-threshold flag.
2153 // If the -inline-threshold flag is explicitly specified, that is used
2154 // irrespective of anything else.
2155 if (InlineThreshold.getNumOccurrences() > 0)
2156 Params.DefaultThreshold = InlineThreshold;
2157 else
2158 Params.DefaultThreshold = Threshold;
2160 // Set the HintThreshold knob from the -inlinehint-threshold.
2161 Params.HintThreshold = HintThreshold;
2163 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
2164 Params.HotCallSiteThreshold = HotCallSiteThreshold;
2166 // If the -locally-hot-callsite-threshold is explicitly specified, use it to
2167 // populate LocallyHotCallSiteThreshold. Later, we populate
2168 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
2169 // we know that optimization level is O3 (in the getInlineParams variant that
2170 // takes the opt and size levels).
2171 // FIXME: Remove this check (and make the assignment unconditional) after
2172 // addressing size regression issues at O2.
2173 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
2174 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
2176 // Set the ColdCallSiteThreshold knob from the -inline-cold-callsite-threshold.
2177 Params.ColdCallSiteThreshold = ColdCallSiteThreshold;
2179 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
2180 // -inlinehint-threshold commandline option is not explicitly given. If that
2181 // option is present, then its value applies even for callees with size and
2182 // minsize attributes.
2183 // If the -inline-threshold is not specified, set the ColdThreshold from the
2184 // -inlinecold-threshold even if it is not explicitly passed. If
2185 // -inline-threshold is specified, then -inlinecold-threshold needs to be
2186 // explicitly specified to set the ColdThreshold knob
2187 if (InlineThreshold.getNumOccurrences() == 0) {
2188 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold;
2189 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold;
2190 Params.ColdThreshold = ColdThreshold;
2191 } else if (ColdThreshold.getNumOccurrences() > 0) {
2192 Params.ColdThreshold = ColdThreshold;
2194 return Params;
2197 InlineParams llvm::getInlineParams() {
2198 return getInlineParams(InlineThreshold);
2201 // Compute the default threshold for inlining based on the opt level and the
2202 // size opt level.
2203 static int computeThresholdFromOptLevels(unsigned OptLevel,
2204 unsigned SizeOptLevel) {
2205 if (OptLevel > 2)
2206 return InlineConstants::OptAggressiveThreshold;
2207 if (SizeOptLevel == 1) // -Os
2208 return InlineConstants::OptSizeThreshold;
2209 if (SizeOptLevel == 2) // -Oz
2210 return InlineConstants::OptMinSizeThreshold;
2211 return InlineThreshold;
2214 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
2215 auto Params =
2216 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
2217 // At O3, use the value of -locally-hot-callsite-threshold option to populate
2218 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
2219 // when it is specified explicitly.
2220 if (OptLevel > 2)
2221 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
2222 return Params;