[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Analysis / LoopUnrollAnalyzer.cpp
blob762623de41e964f4b428e6caa49e3b9de3b14c0f
1 //===- LoopUnrollAnalyzer.cpp - Unrolling Effect Estimation -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements UnrolledInstAnalyzer class. It's used for predicting
10 // potential effects that loop unrolling might have, such as enabling constant
11 // propagation and other optimizations.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
17 using namespace llvm;
19 /// Try to simplify instruction \param I using its SCEV expression.
20 ///
21 /// The idea is that some AddRec expressions become constants, which then
22 /// could trigger folding of other instructions. However, that only happens
23 /// for expressions whose start value is also constant, which isn't always the
24 /// case. In another common and important case the start value is just some
25 /// address (i.e. SCEVUnknown) - in this case we compute the offset and save
26 /// it along with the base address instead.
27 bool UnrolledInstAnalyzer::simplifyInstWithSCEV(Instruction *I) {
28 if (!SE.isSCEVable(I->getType()))
29 return false;
31 const SCEV *S = SE.getSCEV(I);
32 if (auto *SC = dyn_cast<SCEVConstant>(S)) {
33 SimplifiedValues[I] = SC->getValue();
34 return true;
37 auto *AR = dyn_cast<SCEVAddRecExpr>(S);
38 if (!AR || AR->getLoop() != L)
39 return false;
41 const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
42 // Check if the AddRec expression becomes a constant.
43 if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
44 SimplifiedValues[I] = SC->getValue();
45 return true;
48 // Check if the offset from the base address becomes a constant.
49 auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
50 if (!Base)
51 return false;
52 auto *Offset =
53 dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base));
54 if (!Offset)
55 return false;
56 SimplifiedAddress Address;
57 Address.Base = Base->getValue();
58 Address.Offset = Offset->getValue();
59 SimplifiedAddresses[I] = Address;
60 return false;
63 /// Try to simplify binary operator I.
64 ///
65 /// TODO: Probably it's worth to hoist the code for estimating the
66 /// simplifications effects to a separate class, since we have a very similar
67 /// code in InlineCost already.
68 bool UnrolledInstAnalyzer::visitBinaryOperator(BinaryOperator &I) {
69 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
70 if (!isa<Constant>(LHS))
71 if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
72 LHS = SimpleLHS;
73 if (!isa<Constant>(RHS))
74 if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
75 RHS = SimpleRHS;
77 Value *SimpleV = nullptr;
78 const DataLayout &DL = I.getModule()->getDataLayout();
79 if (auto FI = dyn_cast<FPMathOperator>(&I))
80 SimpleV =
81 SimplifyBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
82 else
83 SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
85 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
86 SimplifiedValues[&I] = C;
88 if (SimpleV)
89 return true;
90 return Base::visitBinaryOperator(I);
93 /// Try to fold load I.
94 bool UnrolledInstAnalyzer::visitLoad(LoadInst &I) {
95 Value *AddrOp = I.getPointerOperand();
97 auto AddressIt = SimplifiedAddresses.find(AddrOp);
98 if (AddressIt == SimplifiedAddresses.end())
99 return false;
100 ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset;
102 auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
103 // We're only interested in loads that can be completely folded to a
104 // constant.
105 if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant())
106 return false;
108 ConstantDataSequential *CDS =
109 dyn_cast<ConstantDataSequential>(GV->getInitializer());
110 if (!CDS)
111 return false;
113 // We might have a vector load from an array. FIXME: for now we just bail
114 // out in this case, but we should be able to resolve and simplify such
115 // loads.
116 if (CDS->getElementType() != I.getType())
117 return false;
119 unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
120 if (SimplifiedAddrOp->getValue().getActiveBits() > 64)
121 return false;
122 int64_t SimplifiedAddrOpV = SimplifiedAddrOp->getSExtValue();
123 if (SimplifiedAddrOpV < 0) {
124 // FIXME: For now we conservatively ignore out of bound accesses, but
125 // we're allowed to perform the optimization in this case.
126 return false;
128 uint64_t Index = static_cast<uint64_t>(SimplifiedAddrOpV) / ElemSize;
129 if (Index >= CDS->getNumElements()) {
130 // FIXME: For now we conservatively ignore out of bound accesses, but
131 // we're allowed to perform the optimization in this case.
132 return false;
135 Constant *CV = CDS->getElementAsConstant(Index);
136 assert(CV && "Constant expected.");
137 SimplifiedValues[&I] = CV;
139 return true;
142 /// Try to simplify cast instruction.
143 bool UnrolledInstAnalyzer::visitCastInst(CastInst &I) {
144 // Propagate constants through casts.
145 Constant *COp = dyn_cast<Constant>(I.getOperand(0));
146 if (!COp)
147 COp = SimplifiedValues.lookup(I.getOperand(0));
149 // If we know a simplified value for this operand and cast is valid, save the
150 // result to SimplifiedValues.
151 // The cast can be invalid, because SimplifiedValues contains results of SCEV
152 // analysis, which operates on integers (and, e.g., might convert i8* null to
153 // i32 0).
154 if (COp && CastInst::castIsValid(I.getOpcode(), COp, I.getType())) {
155 if (Constant *C =
156 ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
157 SimplifiedValues[&I] = C;
158 return true;
162 return Base::visitCastInst(I);
165 /// Try to simplify cmp instruction.
166 bool UnrolledInstAnalyzer::visitCmpInst(CmpInst &I) {
167 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
169 // First try to handle simplified comparisons.
170 if (!isa<Constant>(LHS))
171 if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
172 LHS = SimpleLHS;
173 if (!isa<Constant>(RHS))
174 if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
175 RHS = SimpleRHS;
177 if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) {
178 auto SimplifiedLHS = SimplifiedAddresses.find(LHS);
179 if (SimplifiedLHS != SimplifiedAddresses.end()) {
180 auto SimplifiedRHS = SimplifiedAddresses.find(RHS);
181 if (SimplifiedRHS != SimplifiedAddresses.end()) {
182 SimplifiedAddress &LHSAddr = SimplifiedLHS->second;
183 SimplifiedAddress &RHSAddr = SimplifiedRHS->second;
184 if (LHSAddr.Base == RHSAddr.Base) {
185 LHS = LHSAddr.Offset;
186 RHS = RHSAddr.Offset;
192 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
193 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
194 if (CLHS->getType() == CRHS->getType()) {
195 if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
196 SimplifiedValues[&I] = C;
197 return true;
203 return Base::visitCmpInst(I);
206 bool UnrolledInstAnalyzer::visitPHINode(PHINode &PN) {
207 // Run base visitor first. This way we can gather some useful for later
208 // analysis information.
209 if (Base::visitPHINode(PN))
210 return true;
212 // The loop induction PHI nodes are definitionally free.
213 return PN.getParent() == L->getHeader();