[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / CodeGen / AggressiveAntiDepBreaker.cpp
blobf64b775a8b775b5534d5f4446a222082323ead15
1 //===- AggressiveAntiDepBreaker.cpp - Anti-dep breaker --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AggressiveAntiDepBreaker class, which
10 // implements register anti-dependence breaking during post-RA
11 // scheduling. It attempts to break all anti-dependencies within a
12 // block.
14 //===----------------------------------------------------------------------===//
16 #include "AggressiveAntiDepBreaker.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/RegisterClassInfo.h"
28 #include "llvm/CodeGen/ScheduleDAG.h"
29 #include "llvm/CodeGen/TargetInstrInfo.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/MC/MCRegisterInfo.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/MachineValueType.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <cassert>
39 #include <map>
40 #include <set>
41 #include <utility>
42 #include <vector>
44 using namespace llvm;
46 #define DEBUG_TYPE "post-RA-sched"
48 // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod
49 static cl::opt<int>
50 DebugDiv("agg-antidep-debugdiv",
51 cl::desc("Debug control for aggressive anti-dep breaker"),
52 cl::init(0), cl::Hidden);
54 static cl::opt<int>
55 DebugMod("agg-antidep-debugmod",
56 cl::desc("Debug control for aggressive anti-dep breaker"),
57 cl::init(0), cl::Hidden);
59 AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs,
60 MachineBasicBlock *BB)
61 : NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0),
62 GroupNodeIndices(TargetRegs, 0), KillIndices(TargetRegs, 0),
63 DefIndices(TargetRegs, 0) {
64 const unsigned BBSize = BB->size();
65 for (unsigned i = 0; i < NumTargetRegs; ++i) {
66 // Initialize all registers to be in their own group. Initially we
67 // assign the register to the same-indexed GroupNode.
68 GroupNodeIndices[i] = i;
69 // Initialize the indices to indicate that no registers are live.
70 KillIndices[i] = ~0u;
71 DefIndices[i] = BBSize;
75 unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) {
76 unsigned Node = GroupNodeIndices[Reg];
77 while (GroupNodes[Node] != Node)
78 Node = GroupNodes[Node];
80 return Node;
83 void AggressiveAntiDepState::GetGroupRegs(
84 unsigned Group,
85 std::vector<unsigned> &Regs,
86 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs)
88 for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) {
89 if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0))
90 Regs.push_back(Reg);
94 unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2) {
95 assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!");
96 assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!");
98 // find group for each register
99 unsigned Group1 = GetGroup(Reg1);
100 unsigned Group2 = GetGroup(Reg2);
102 // if either group is 0, then that must become the parent
103 unsigned Parent = (Group1 == 0) ? Group1 : Group2;
104 unsigned Other = (Parent == Group1) ? Group2 : Group1;
105 GroupNodes.at(Other) = Parent;
106 return Parent;
109 unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg) {
110 // Create a new GroupNode for Reg. Reg's existing GroupNode must
111 // stay as is because there could be other GroupNodes referring to
112 // it.
113 unsigned idx = GroupNodes.size();
114 GroupNodes.push_back(idx);
115 GroupNodeIndices[Reg] = idx;
116 return idx;
119 bool AggressiveAntiDepState::IsLive(unsigned Reg) {
120 // KillIndex must be defined and DefIndex not defined for a register
121 // to be live.
122 return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u));
125 AggressiveAntiDepBreaker::AggressiveAntiDepBreaker(
126 MachineFunction &MFi, const RegisterClassInfo &RCI,
127 TargetSubtargetInfo::RegClassVector &CriticalPathRCs)
128 : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
129 TII(MF.getSubtarget().getInstrInfo()),
130 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI) {
131 /* Collect a bitset of all registers that are only broken if they
132 are on the critical path. */
133 for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) {
134 BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]);
135 if (CriticalPathSet.none())
136 CriticalPathSet = CPSet;
137 else
138 CriticalPathSet |= CPSet;
141 LLVM_DEBUG(dbgs() << "AntiDep Critical-Path Registers:");
142 LLVM_DEBUG(for (unsigned r
143 : CriticalPathSet.set_bits()) dbgs()
144 << " " << printReg(r, TRI));
145 LLVM_DEBUG(dbgs() << '\n');
148 AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() {
149 delete State;
152 void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
153 assert(!State);
154 State = new AggressiveAntiDepState(TRI->getNumRegs(), BB);
156 bool IsReturnBlock = BB->isReturnBlock();
157 std::vector<unsigned> &KillIndices = State->GetKillIndices();
158 std::vector<unsigned> &DefIndices = State->GetDefIndices();
160 // Examine the live-in regs of all successors.
161 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
162 SE = BB->succ_end(); SI != SE; ++SI)
163 for (const auto &LI : (*SI)->liveins()) {
164 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
165 unsigned Reg = *AI;
166 State->UnionGroups(Reg, 0);
167 KillIndices[Reg] = BB->size();
168 DefIndices[Reg] = ~0u;
172 // Mark live-out callee-saved registers. In a return block this is
173 // all callee-saved registers. In non-return this is any
174 // callee-saved register that is not saved in the prolog.
175 const MachineFrameInfo &MFI = MF.getFrameInfo();
176 BitVector Pristine = MFI.getPristineRegs(MF);
177 for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I;
178 ++I) {
179 unsigned Reg = *I;
180 if (!IsReturnBlock && !Pristine.test(Reg))
181 continue;
182 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
183 unsigned AliasReg = *AI;
184 State->UnionGroups(AliasReg, 0);
185 KillIndices[AliasReg] = BB->size();
186 DefIndices[AliasReg] = ~0u;
191 void AggressiveAntiDepBreaker::FinishBlock() {
192 delete State;
193 State = nullptr;
196 void AggressiveAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
197 unsigned InsertPosIndex) {
198 assert(Count < InsertPosIndex && "Instruction index out of expected range!");
200 std::set<unsigned> PassthruRegs;
201 GetPassthruRegs(MI, PassthruRegs);
202 PrescanInstruction(MI, Count, PassthruRegs);
203 ScanInstruction(MI, Count);
205 LLVM_DEBUG(dbgs() << "Observe: ");
206 LLVM_DEBUG(MI.dump());
207 LLVM_DEBUG(dbgs() << "\tRegs:");
209 std::vector<unsigned> &DefIndices = State->GetDefIndices();
210 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
211 // If Reg is current live, then mark that it can't be renamed as
212 // we don't know the extent of its live-range anymore (now that it
213 // has been scheduled). If it is not live but was defined in the
214 // previous schedule region, then set its def index to the most
215 // conservative location (i.e. the beginning of the previous
216 // schedule region).
217 if (State->IsLive(Reg)) {
218 LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs()
219 << " " << printReg(Reg, TRI) << "=g" << State->GetGroup(Reg)
220 << "->g0(region live-out)");
221 State->UnionGroups(Reg, 0);
222 } else if ((DefIndices[Reg] < InsertPosIndex)
223 && (DefIndices[Reg] >= Count)) {
224 DefIndices[Reg] = Count;
227 LLVM_DEBUG(dbgs() << '\n');
230 bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr &MI,
231 MachineOperand &MO) {
232 if (!MO.isReg() || !MO.isImplicit())
233 return false;
235 Register Reg = MO.getReg();
236 if (Reg == 0)
237 return false;
239 MachineOperand *Op = nullptr;
240 if (MO.isDef())
241 Op = MI.findRegisterUseOperand(Reg, true);
242 else
243 Op = MI.findRegisterDefOperand(Reg);
245 return(Op && Op->isImplicit());
248 void AggressiveAntiDepBreaker::GetPassthruRegs(
249 MachineInstr &MI, std::set<unsigned> &PassthruRegs) {
250 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
251 MachineOperand &MO = MI.getOperand(i);
252 if (!MO.isReg()) continue;
253 if ((MO.isDef() && MI.isRegTiedToUseOperand(i)) ||
254 IsImplicitDefUse(MI, MO)) {
255 const Register Reg = MO.getReg();
256 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
257 SubRegs.isValid(); ++SubRegs)
258 PassthruRegs.insert(*SubRegs);
263 /// AntiDepEdges - Return in Edges the anti- and output- dependencies
264 /// in SU that we want to consider for breaking.
265 static void AntiDepEdges(const SUnit *SU, std::vector<const SDep *> &Edges) {
266 SmallSet<unsigned, 4> RegSet;
267 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
268 P != PE; ++P) {
269 if ((P->getKind() == SDep::Anti) || (P->getKind() == SDep::Output)) {
270 if (RegSet.insert(P->getReg()).second)
271 Edges.push_back(&*P);
276 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
277 /// critical path.
278 static const SUnit *CriticalPathStep(const SUnit *SU) {
279 const SDep *Next = nullptr;
280 unsigned NextDepth = 0;
281 // Find the predecessor edge with the greatest depth.
282 if (SU) {
283 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
284 P != PE; ++P) {
285 const SUnit *PredSU = P->getSUnit();
286 unsigned PredLatency = P->getLatency();
287 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
288 // In the case of a latency tie, prefer an anti-dependency edge over
289 // other types of edges.
290 if (NextDepth < PredTotalLatency ||
291 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
292 NextDepth = PredTotalLatency;
293 Next = &*P;
298 return (Next) ? Next->getSUnit() : nullptr;
301 void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx,
302 const char *tag,
303 const char *header,
304 const char *footer) {
305 std::vector<unsigned> &KillIndices = State->GetKillIndices();
306 std::vector<unsigned> &DefIndices = State->GetDefIndices();
307 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
308 RegRefs = State->GetRegRefs();
310 // FIXME: We must leave subregisters of live super registers as live, so that
311 // we don't clear out the register tracking information for subregisters of
312 // super registers we're still tracking (and with which we're unioning
313 // subregister definitions).
314 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
315 if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) {
316 LLVM_DEBUG(if (!header && footer) dbgs() << footer);
317 return;
320 if (!State->IsLive(Reg)) {
321 KillIndices[Reg] = KillIdx;
322 DefIndices[Reg] = ~0u;
323 RegRefs.erase(Reg);
324 State->LeaveGroup(Reg);
325 LLVM_DEBUG(if (header) {
326 dbgs() << header << printReg(Reg, TRI);
327 header = nullptr;
329 LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag);
330 // Repeat for subregisters. Note that we only do this if the superregister
331 // was not live because otherwise, regardless whether we have an explicit
332 // use of the subregister, the subregister's contents are needed for the
333 // uses of the superregister.
334 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
335 unsigned SubregReg = *SubRegs;
336 if (!State->IsLive(SubregReg)) {
337 KillIndices[SubregReg] = KillIdx;
338 DefIndices[SubregReg] = ~0u;
339 RegRefs.erase(SubregReg);
340 State->LeaveGroup(SubregReg);
341 LLVM_DEBUG(if (header) {
342 dbgs() << header << printReg(Reg, TRI);
343 header = nullptr;
345 LLVM_DEBUG(dbgs() << " " << printReg(SubregReg, TRI) << "->g"
346 << State->GetGroup(SubregReg) << tag);
351 LLVM_DEBUG(if (!header && footer) dbgs() << footer);
354 void AggressiveAntiDepBreaker::PrescanInstruction(
355 MachineInstr &MI, unsigned Count, std::set<unsigned> &PassthruRegs) {
356 std::vector<unsigned> &DefIndices = State->GetDefIndices();
357 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
358 RegRefs = State->GetRegRefs();
360 // Handle dead defs by simulating a last-use of the register just
361 // after the def. A dead def can occur because the def is truly
362 // dead, or because only a subregister is live at the def. If we
363 // don't do this the dead def will be incorrectly merged into the
364 // previous def.
365 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
366 MachineOperand &MO = MI.getOperand(i);
367 if (!MO.isReg() || !MO.isDef()) continue;
368 Register Reg = MO.getReg();
369 if (Reg == 0) continue;
371 HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n");
374 LLVM_DEBUG(dbgs() << "\tDef Groups:");
375 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
376 MachineOperand &MO = MI.getOperand(i);
377 if (!MO.isReg() || !MO.isDef()) continue;
378 Register Reg = MO.getReg();
379 if (Reg == 0) continue;
381 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g"
382 << State->GetGroup(Reg));
384 // If MI's defs have a special allocation requirement, don't allow
385 // any def registers to be changed. Also assume all registers
386 // defined in a call must not be changed (ABI). Inline assembly may
387 // reference either system calls or the register directly. Skip it until we
388 // can tell user specified registers from compiler-specified.
389 if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI) ||
390 MI.isInlineAsm()) {
391 LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
392 State->UnionGroups(Reg, 0);
395 // Any aliased that are live at this point are completely or
396 // partially defined here, so group those aliases with Reg.
397 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
398 unsigned AliasReg = *AI;
399 if (State->IsLive(AliasReg)) {
400 State->UnionGroups(Reg, AliasReg);
401 LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via "
402 << printReg(AliasReg, TRI) << ")");
406 // Note register reference...
407 const TargetRegisterClass *RC = nullptr;
408 if (i < MI.getDesc().getNumOperands())
409 RC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
410 AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
411 RegRefs.insert(std::make_pair(Reg, RR));
414 LLVM_DEBUG(dbgs() << '\n');
416 // Scan the register defs for this instruction and update
417 // live-ranges.
418 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
419 MachineOperand &MO = MI.getOperand(i);
420 if (!MO.isReg() || !MO.isDef()) continue;
421 Register Reg = MO.getReg();
422 if (Reg == 0) continue;
423 // Ignore KILLs and passthru registers for liveness...
424 if (MI.isKill() || (PassthruRegs.count(Reg) != 0))
425 continue;
427 // Update def for Reg and aliases.
428 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
429 // We need to be careful here not to define already-live super registers.
430 // If the super register is already live, then this definition is not
431 // a definition of the whole super register (just a partial insertion
432 // into it). Earlier subregister definitions (which we've not yet visited
433 // because we're iterating bottom-up) need to be linked to the same group
434 // as this definition.
435 if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI))
436 continue;
438 DefIndices[*AI] = Count;
443 void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr &MI,
444 unsigned Count) {
445 LLVM_DEBUG(dbgs() << "\tUse Groups:");
446 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
447 RegRefs = State->GetRegRefs();
449 // If MI's uses have special allocation requirement, don't allow
450 // any use registers to be changed. Also assume all registers
451 // used in a call must not be changed (ABI).
452 // Inline Assembly register uses also cannot be safely changed.
453 // FIXME: The issue with predicated instruction is more complex. We are being
454 // conservatively here because the kill markers cannot be trusted after
455 // if-conversion:
456 // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14]
457 // ...
458 // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395]
459 // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12]
460 // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8)
462 // The first R6 kill is not really a kill since it's killed by a predicated
463 // instruction which may not be executed. The second R6 def may or may not
464 // re-define R6 so it's not safe to change it since the last R6 use cannot be
465 // changed.
466 bool Special = MI.isCall() || MI.hasExtraSrcRegAllocReq() ||
467 TII->isPredicated(MI) || MI.isInlineAsm();
469 // Scan the register uses for this instruction and update
470 // live-ranges, groups and RegRefs.
471 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
472 MachineOperand &MO = MI.getOperand(i);
473 if (!MO.isReg() || !MO.isUse()) continue;
474 Register Reg = MO.getReg();
475 if (Reg == 0) continue;
477 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g"
478 << State->GetGroup(Reg));
480 // It wasn't previously live but now it is, this is a kill. Forget
481 // the previous live-range information and start a new live-range
482 // for the register.
483 HandleLastUse(Reg, Count, "(last-use)");
485 if (Special) {
486 LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
487 State->UnionGroups(Reg, 0);
490 // Note register reference...
491 const TargetRegisterClass *RC = nullptr;
492 if (i < MI.getDesc().getNumOperands())
493 RC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
494 AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
495 RegRefs.insert(std::make_pair(Reg, RR));
498 LLVM_DEBUG(dbgs() << '\n');
500 // Form a group of all defs and uses of a KILL instruction to ensure
501 // that all registers are renamed as a group.
502 if (MI.isKill()) {
503 LLVM_DEBUG(dbgs() << "\tKill Group:");
505 unsigned FirstReg = 0;
506 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
507 MachineOperand &MO = MI.getOperand(i);
508 if (!MO.isReg()) continue;
509 Register Reg = MO.getReg();
510 if (Reg == 0) continue;
512 if (FirstReg != 0) {
513 LLVM_DEBUG(dbgs() << "=" << printReg(Reg, TRI));
514 State->UnionGroups(FirstReg, Reg);
515 } else {
516 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
517 FirstReg = Reg;
521 LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n');
525 BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) {
526 BitVector BV(TRI->getNumRegs(), false);
527 bool first = true;
529 // Check all references that need rewriting for Reg. For each, use
530 // the corresponding register class to narrow the set of registers
531 // that are appropriate for renaming.
532 for (const auto &Q : make_range(State->GetRegRefs().equal_range(Reg))) {
533 const TargetRegisterClass *RC = Q.second.RC;
534 if (!RC) continue;
536 BitVector RCBV = TRI->getAllocatableSet(MF, RC);
537 if (first) {
538 BV |= RCBV;
539 first = false;
540 } else {
541 BV &= RCBV;
544 LLVM_DEBUG(dbgs() << " " << TRI->getRegClassName(RC));
547 return BV;
550 bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
551 unsigned AntiDepGroupIndex,
552 RenameOrderType& RenameOrder,
553 std::map<unsigned, unsigned> &RenameMap) {
554 std::vector<unsigned> &KillIndices = State->GetKillIndices();
555 std::vector<unsigned> &DefIndices = State->GetDefIndices();
556 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
557 RegRefs = State->GetRegRefs();
559 // Collect all referenced registers in the same group as
560 // AntiDepReg. These all need to be renamed together if we are to
561 // break the anti-dependence.
562 std::vector<unsigned> Regs;
563 State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs);
564 assert(!Regs.empty() && "Empty register group!");
565 if (Regs.empty())
566 return false;
568 // Find the "superest" register in the group. At the same time,
569 // collect the BitVector of registers that can be used to rename
570 // each register.
571 LLVM_DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex
572 << ":\n");
573 std::map<unsigned, BitVector> RenameRegisterMap;
574 unsigned SuperReg = 0;
575 for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
576 unsigned Reg = Regs[i];
577 if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg))
578 SuperReg = Reg;
580 // If Reg has any references, then collect possible rename regs
581 if (RegRefs.count(Reg) > 0) {
582 LLVM_DEBUG(dbgs() << "\t\t" << printReg(Reg, TRI) << ":");
584 BitVector &BV = RenameRegisterMap[Reg];
585 assert(BV.empty());
586 BV = GetRenameRegisters(Reg);
588 LLVM_DEBUG({
589 dbgs() << " ::";
590 for (unsigned r : BV.set_bits())
591 dbgs() << " " << printReg(r, TRI);
592 dbgs() << "\n";
597 // All group registers should be a subreg of SuperReg.
598 for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
599 unsigned Reg = Regs[i];
600 if (Reg == SuperReg) continue;
601 bool IsSub = TRI->isSubRegister(SuperReg, Reg);
602 // FIXME: remove this once PR18663 has been properly fixed. For now,
603 // return a conservative answer:
604 // assert(IsSub && "Expecting group subregister");
605 if (!IsSub)
606 return false;
609 #ifndef NDEBUG
610 // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod
611 if (DebugDiv > 0) {
612 static int renamecnt = 0;
613 if (renamecnt++ % DebugDiv != DebugMod)
614 return false;
616 dbgs() << "*** Performing rename " << printReg(SuperReg, TRI)
617 << " for debug ***\n";
619 #endif
621 // Check each possible rename register for SuperReg in round-robin
622 // order. If that register is available, and the corresponding
623 // registers are available for the other group subregisters, then we
624 // can use those registers to rename.
626 // FIXME: Using getMinimalPhysRegClass is very conservative. We should
627 // check every use of the register and find the largest register class
628 // that can be used in all of them.
629 const TargetRegisterClass *SuperRC =
630 TRI->getMinimalPhysRegClass(SuperReg, MVT::Other);
632 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(SuperRC);
633 if (Order.empty()) {
634 LLVM_DEBUG(dbgs() << "\tEmpty Super Regclass!!\n");
635 return false;
638 LLVM_DEBUG(dbgs() << "\tFind Registers:");
640 RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size()));
642 unsigned OrigR = RenameOrder[SuperRC];
643 unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR);
644 unsigned R = OrigR;
645 do {
646 if (R == 0) R = Order.size();
647 --R;
648 const unsigned NewSuperReg = Order[R];
649 // Don't consider non-allocatable registers
650 if (!MRI.isAllocatable(NewSuperReg)) continue;
651 // Don't replace a register with itself.
652 if (NewSuperReg == SuperReg) continue;
654 LLVM_DEBUG(dbgs() << " [" << printReg(NewSuperReg, TRI) << ':');
655 RenameMap.clear();
657 // For each referenced group register (which must be a SuperReg or
658 // a subregister of SuperReg), find the corresponding subregister
659 // of NewSuperReg and make sure it is free to be renamed.
660 for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
661 unsigned Reg = Regs[i];
662 unsigned NewReg = 0;
663 if (Reg == SuperReg) {
664 NewReg = NewSuperReg;
665 } else {
666 unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg);
667 if (NewSubRegIdx != 0)
668 NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx);
671 LLVM_DEBUG(dbgs() << " " << printReg(NewReg, TRI));
673 // Check if Reg can be renamed to NewReg.
674 if (!RenameRegisterMap[Reg].test(NewReg)) {
675 LLVM_DEBUG(dbgs() << "(no rename)");
676 goto next_super_reg;
679 // If NewReg is dead and NewReg's most recent def is not before
680 // Regs's kill, it's safe to replace Reg with NewReg. We
681 // must also check all aliases of NewReg, because we can't define a
682 // register when any sub or super is already live.
683 if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) {
684 LLVM_DEBUG(dbgs() << "(live)");
685 goto next_super_reg;
686 } else {
687 bool found = false;
688 for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) {
689 unsigned AliasReg = *AI;
690 if (State->IsLive(AliasReg) ||
691 (KillIndices[Reg] > DefIndices[AliasReg])) {
692 LLVM_DEBUG(dbgs()
693 << "(alias " << printReg(AliasReg, TRI) << " live)");
694 found = true;
695 break;
698 if (found)
699 goto next_super_reg;
702 // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also
703 // defines 'NewReg' via an early-clobber operand.
704 for (const auto &Q : make_range(RegRefs.equal_range(Reg))) {
705 MachineInstr *UseMI = Q.second.Operand->getParent();
706 int Idx = UseMI->findRegisterDefOperandIdx(NewReg, false, true, TRI);
707 if (Idx == -1)
708 continue;
710 if (UseMI->getOperand(Idx).isEarlyClobber()) {
711 LLVM_DEBUG(dbgs() << "(ec)");
712 goto next_super_reg;
716 // Also, we cannot rename 'Reg' to 'NewReg' if the instruction defining
717 // 'Reg' is an early-clobber define and that instruction also uses
718 // 'NewReg'.
719 for (const auto &Q : make_range(RegRefs.equal_range(Reg))) {
720 if (!Q.second.Operand->isDef() || !Q.second.Operand->isEarlyClobber())
721 continue;
723 MachineInstr *DefMI = Q.second.Operand->getParent();
724 if (DefMI->readsRegister(NewReg, TRI)) {
725 LLVM_DEBUG(dbgs() << "(ec)");
726 goto next_super_reg;
730 // Record that 'Reg' can be renamed to 'NewReg'.
731 RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg));
734 // If we fall-out here, then every register in the group can be
735 // renamed, as recorded in RenameMap.
736 RenameOrder.erase(SuperRC);
737 RenameOrder.insert(RenameOrderType::value_type(SuperRC, R));
738 LLVM_DEBUG(dbgs() << "]\n");
739 return true;
741 next_super_reg:
742 LLVM_DEBUG(dbgs() << ']');
743 } while (R != EndR);
745 LLVM_DEBUG(dbgs() << '\n');
747 // No registers are free and available!
748 return false;
751 /// BreakAntiDependencies - Identifiy anti-dependencies within the
752 /// ScheduleDAG and break them by renaming registers.
753 unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
754 const std::vector<SUnit> &SUnits,
755 MachineBasicBlock::iterator Begin,
756 MachineBasicBlock::iterator End,
757 unsigned InsertPosIndex,
758 DbgValueVector &DbgValues) {
759 std::vector<unsigned> &KillIndices = State->GetKillIndices();
760 std::vector<unsigned> &DefIndices = State->GetDefIndices();
761 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
762 RegRefs = State->GetRegRefs();
764 // The code below assumes that there is at least one instruction,
765 // so just duck out immediately if the block is empty.
766 if (SUnits.empty()) return 0;
768 // For each regclass the next register to use for renaming.
769 RenameOrderType RenameOrder;
771 // ...need a map from MI to SUnit.
772 std::map<MachineInstr *, const SUnit *> MISUnitMap;
773 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
774 const SUnit *SU = &SUnits[i];
775 MISUnitMap.insert(std::pair<MachineInstr *, const SUnit *>(SU->getInstr(),
776 SU));
779 // Track progress along the critical path through the SUnit graph as
780 // we walk the instructions. This is needed for regclasses that only
781 // break critical-path anti-dependencies.
782 const SUnit *CriticalPathSU = nullptr;
783 MachineInstr *CriticalPathMI = nullptr;
784 if (CriticalPathSet.any()) {
785 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
786 const SUnit *SU = &SUnits[i];
787 if (!CriticalPathSU ||
788 ((SU->getDepth() + SU->Latency) >
789 (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) {
790 CriticalPathSU = SU;
793 assert(CriticalPathSU && "Failed to find SUnit critical path");
794 CriticalPathMI = CriticalPathSU->getInstr();
797 #ifndef NDEBUG
798 LLVM_DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n");
799 LLVM_DEBUG(dbgs() << "Available regs:");
800 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
801 if (!State->IsLive(Reg))
802 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
804 LLVM_DEBUG(dbgs() << '\n');
805 #endif
807 BitVector RegAliases(TRI->getNumRegs());
809 // Attempt to break anti-dependence edges. Walk the instructions
810 // from the bottom up, tracking information about liveness as we go
811 // to help determine which registers are available.
812 unsigned Broken = 0;
813 unsigned Count = InsertPosIndex - 1;
814 for (MachineBasicBlock::iterator I = End, E = Begin;
815 I != E; --Count) {
816 MachineInstr &MI = *--I;
818 if (MI.isDebugInstr())
819 continue;
821 LLVM_DEBUG(dbgs() << "Anti: ");
822 LLVM_DEBUG(MI.dump());
824 std::set<unsigned> PassthruRegs;
825 GetPassthruRegs(MI, PassthruRegs);
827 // Process the defs in MI...
828 PrescanInstruction(MI, Count, PassthruRegs);
830 // The dependence edges that represent anti- and output-
831 // dependencies that are candidates for breaking.
832 std::vector<const SDep *> Edges;
833 const SUnit *PathSU = MISUnitMap[&MI];
834 AntiDepEdges(PathSU, Edges);
836 // If MI is not on the critical path, then we don't rename
837 // registers in the CriticalPathSet.
838 BitVector *ExcludeRegs = nullptr;
839 if (&MI == CriticalPathMI) {
840 CriticalPathSU = CriticalPathStep(CriticalPathSU);
841 CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr;
842 } else if (CriticalPathSet.any()) {
843 ExcludeRegs = &CriticalPathSet;
846 // Ignore KILL instructions (they form a group in ScanInstruction
847 // but don't cause any anti-dependence breaking themselves)
848 if (!MI.isKill()) {
849 // Attempt to break each anti-dependency...
850 for (unsigned i = 0, e = Edges.size(); i != e; ++i) {
851 const SDep *Edge = Edges[i];
852 SUnit *NextSU = Edge->getSUnit();
854 if ((Edge->getKind() != SDep::Anti) &&
855 (Edge->getKind() != SDep::Output)) continue;
857 unsigned AntiDepReg = Edge->getReg();
858 LLVM_DEBUG(dbgs() << "\tAntidep reg: " << printReg(AntiDepReg, TRI));
859 assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
861 if (!MRI.isAllocatable(AntiDepReg)) {
862 // Don't break anti-dependencies on non-allocatable registers.
863 LLVM_DEBUG(dbgs() << " (non-allocatable)\n");
864 continue;
865 } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) {
866 // Don't break anti-dependencies for critical path registers
867 // if not on the critical path
868 LLVM_DEBUG(dbgs() << " (not critical-path)\n");
869 continue;
870 } else if (PassthruRegs.count(AntiDepReg) != 0) {
871 // If the anti-dep register liveness "passes-thru", then
872 // don't try to change it. It will be changed along with
873 // the use if required to break an earlier antidep.
874 LLVM_DEBUG(dbgs() << " (passthru)\n");
875 continue;
876 } else {
877 // No anti-dep breaking for implicit deps
878 MachineOperand *AntiDepOp = MI.findRegisterDefOperand(AntiDepReg);
879 assert(AntiDepOp && "Can't find index for defined register operand");
880 if (!AntiDepOp || AntiDepOp->isImplicit()) {
881 LLVM_DEBUG(dbgs() << " (implicit)\n");
882 continue;
885 // If the SUnit has other dependencies on the SUnit that
886 // it anti-depends on, don't bother breaking the
887 // anti-dependency since those edges would prevent such
888 // units from being scheduled past each other
889 // regardless.
891 // Also, if there are dependencies on other SUnits with the
892 // same register as the anti-dependency, don't attempt to
893 // break it.
894 for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
895 PE = PathSU->Preds.end(); P != PE; ++P) {
896 if (P->getSUnit() == NextSU ?
897 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
898 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
899 AntiDepReg = 0;
900 break;
903 for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
904 PE = PathSU->Preds.end(); P != PE; ++P) {
905 if ((P->getSUnit() == NextSU) && (P->getKind() != SDep::Anti) &&
906 (P->getKind() != SDep::Output)) {
907 LLVM_DEBUG(dbgs() << " (real dependency)\n");
908 AntiDepReg = 0;
909 break;
910 } else if ((P->getSUnit() != NextSU) &&
911 (P->getKind() == SDep::Data) &&
912 (P->getReg() == AntiDepReg)) {
913 LLVM_DEBUG(dbgs() << " (other dependency)\n");
914 AntiDepReg = 0;
915 break;
919 if (AntiDepReg == 0) continue;
921 // If the definition of the anti-dependency register does not start
922 // a new live range, bail out. This can happen if the anti-dep
923 // register is a sub-register of another register whose live range
924 // spans over PathSU. In such case, PathSU defines only a part of
925 // the larger register.
926 RegAliases.reset();
927 for (MCRegAliasIterator AI(AntiDepReg, TRI, true); AI.isValid(); ++AI)
928 RegAliases.set(*AI);
929 for (SDep S : PathSU->Succs) {
930 SDep::Kind K = S.getKind();
931 if (K != SDep::Data && K != SDep::Output && K != SDep::Anti)
932 continue;
933 unsigned R = S.getReg();
934 if (!RegAliases[R])
935 continue;
936 if (R == AntiDepReg || TRI->isSubRegister(AntiDepReg, R))
937 continue;
938 AntiDepReg = 0;
939 break;
942 if (AntiDepReg == 0) continue;
945 assert(AntiDepReg != 0);
946 if (AntiDepReg == 0) continue;
948 // Determine AntiDepReg's register group.
949 const unsigned GroupIndex = State->GetGroup(AntiDepReg);
950 if (GroupIndex == 0) {
951 LLVM_DEBUG(dbgs() << " (zero group)\n");
952 continue;
955 LLVM_DEBUG(dbgs() << '\n');
957 // Look for a suitable register to use to break the anti-dependence.
958 std::map<unsigned, unsigned> RenameMap;
959 if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) {
960 LLVM_DEBUG(dbgs() << "\tBreaking anti-dependence edge on "
961 << printReg(AntiDepReg, TRI) << ":");
963 // Handle each group register...
964 for (std::map<unsigned, unsigned>::iterator
965 S = RenameMap.begin(), E = RenameMap.end(); S != E; ++S) {
966 unsigned CurrReg = S->first;
967 unsigned NewReg = S->second;
969 LLVM_DEBUG(dbgs() << " " << printReg(CurrReg, TRI) << "->"
970 << printReg(NewReg, TRI) << "("
971 << RegRefs.count(CurrReg) << " refs)");
973 // Update the references to the old register CurrReg to
974 // refer to the new register NewReg.
975 for (const auto &Q : make_range(RegRefs.equal_range(CurrReg))) {
976 Q.second.Operand->setReg(NewReg);
977 // If the SU for the instruction being updated has debug
978 // information related to the anti-dependency register, make
979 // sure to update that as well.
980 const SUnit *SU = MISUnitMap[Q.second.Operand->getParent()];
981 if (!SU) continue;
982 UpdateDbgValues(DbgValues, Q.second.Operand->getParent(),
983 AntiDepReg, NewReg);
986 // We just went back in time and modified history; the
987 // liveness information for CurrReg is now inconsistent. Set
988 // the state as if it were dead.
989 State->UnionGroups(NewReg, 0);
990 RegRefs.erase(NewReg);
991 DefIndices[NewReg] = DefIndices[CurrReg];
992 KillIndices[NewReg] = KillIndices[CurrReg];
994 State->UnionGroups(CurrReg, 0);
995 RegRefs.erase(CurrReg);
996 DefIndices[CurrReg] = KillIndices[CurrReg];
997 KillIndices[CurrReg] = ~0u;
998 assert(((KillIndices[CurrReg] == ~0u) !=
999 (DefIndices[CurrReg] == ~0u)) &&
1000 "Kill and Def maps aren't consistent for AntiDepReg!");
1003 ++Broken;
1004 LLVM_DEBUG(dbgs() << '\n');
1009 ScanInstruction(MI, Count);
1012 return Broken;