1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the AsmPrinter class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/TargetFrameLowering.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Comdat.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalIFunc.h"
71 #include "llvm/IR/GlobalIndirectSymbol.h"
72 #include "llvm/IR/GlobalObject.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Mangler.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/RemarkStreamer.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/MC/MCAsmInfo.h"
84 #include "llvm/MC/MCCodePadder.h"
85 #include "llvm/MC/MCContext.h"
86 #include "llvm/MC/MCDirectives.h"
87 #include "llvm/MC/MCDwarf.h"
88 #include "llvm/MC/MCExpr.h"
89 #include "llvm/MC/MCInst.h"
90 #include "llvm/MC/MCSection.h"
91 #include "llvm/MC/MCSectionCOFF.h"
92 #include "llvm/MC/MCSectionELF.h"
93 #include "llvm/MC/MCSectionMachO.h"
94 #include "llvm/MC/MCSectionXCOFF.h"
95 #include "llvm/MC/MCStreamer.h"
96 #include "llvm/MC/MCSubtargetInfo.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/MC/MCSymbolELF.h"
99 #include "llvm/MC/MCSymbolXCOFF.h"
100 #include "llvm/MC/MCTargetOptions.h"
101 #include "llvm/MC/MCValue.h"
102 #include "llvm/MC/SectionKind.h"
103 #include "llvm/Pass.h"
104 #include "llvm/Remarks/Remark.h"
105 #include "llvm/Remarks/RemarkFormat.h"
106 #include "llvm/Remarks/RemarkStringTable.h"
107 #include "llvm/Support/Casting.h"
108 #include "llvm/Support/CommandLine.h"
109 #include "llvm/Support/Compiler.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/Support/Format.h"
112 #include "llvm/Support/MathExtras.h"
113 #include "llvm/Support/Path.h"
114 #include "llvm/Support/TargetRegistry.h"
115 #include "llvm/Support/Timer.h"
116 #include "llvm/Support/raw_ostream.h"
117 #include "llvm/Target/TargetLoweringObjectFile.h"
118 #include "llvm/Target/TargetMachine.h"
119 #include "llvm/Target/TargetOptions.h"
131 using namespace llvm
;
133 #define DEBUG_TYPE "asm-printer"
135 static const char *const DWARFGroupName
= "dwarf";
136 static const char *const DWARFGroupDescription
= "DWARF Emission";
137 static const char *const DbgTimerName
= "emit";
138 static const char *const DbgTimerDescription
= "Debug Info Emission";
139 static const char *const EHTimerName
= "write_exception";
140 static const char *const EHTimerDescription
= "DWARF Exception Writer";
141 static const char *const CFGuardName
= "Control Flow Guard";
142 static const char *const CFGuardDescription
= "Control Flow Guard Tables";
143 static const char *const CodeViewLineTablesGroupName
= "linetables";
144 static const char *const CodeViewLineTablesGroupDescription
=
145 "CodeView Line Tables";
147 STATISTIC(EmittedInsts
, "Number of machine instrs printed");
149 static cl::opt
<bool> EnableRemarksSection(
151 cl::desc("Emit a section containing remark diagnostics metadata"),
154 char AsmPrinter::ID
= 0;
156 using gcp_map_type
= DenseMap
<GCStrategy
*, std::unique_ptr
<GCMetadataPrinter
>>;
158 static gcp_map_type
&getGCMap(void *&P
) {
160 P
= new gcp_map_type();
161 return *(gcp_map_type
*)P
;
164 /// getGVAlignment - Return the alignment to use for the specified global
165 /// value. This rounds up to the preferred alignment if possible and legal.
166 Align
AsmPrinter::getGVAlignment(const GlobalValue
*GV
, const DataLayout
&DL
,
169 if (const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
))
170 Alignment
= Align(DL
.getPreferredAlignment(GVar
));
172 // If InAlign is specified, round it to it.
173 if (InAlign
> Alignment
)
176 // If the GV has a specified alignment, take it into account.
177 const MaybeAlign
GVAlign(GV
->getAlignment());
181 assert(GVAlign
&& "GVAlign must be set");
183 // If the GVAlign is larger than NumBits, or if we are required to obey
184 // NumBits because the GV has an assigned section, obey it.
185 if (*GVAlign
> Alignment
|| GV
->hasSection())
186 Alignment
= *GVAlign
;
190 AsmPrinter::AsmPrinter(TargetMachine
&tm
, std::unique_ptr
<MCStreamer
> Streamer
)
191 : MachineFunctionPass(ID
), TM(tm
), MAI(tm
.getMCAsmInfo()),
192 OutContext(Streamer
->getContext()), OutStreamer(std::move(Streamer
)) {
193 VerboseAsm
= OutStreamer
->isVerboseAsm();
196 AsmPrinter::~AsmPrinter() {
197 assert(!DD
&& Handlers
.empty() && "Debug/EH info didn't get finalized");
199 if (GCMetadataPrinters
) {
200 gcp_map_type
&GCMap
= getGCMap(GCMetadataPrinters
);
203 GCMetadataPrinters
= nullptr;
207 bool AsmPrinter::isPositionIndependent() const {
208 return TM
.isPositionIndependent();
211 /// getFunctionNumber - Return a unique ID for the current function.
212 unsigned AsmPrinter::getFunctionNumber() const {
213 return MF
->getFunctionNumber();
216 const TargetLoweringObjectFile
&AsmPrinter::getObjFileLowering() const {
217 return *TM
.getObjFileLowering();
220 const DataLayout
&AsmPrinter::getDataLayout() const {
221 return MMI
->getModule()->getDataLayout();
224 // Do not use the cached DataLayout because some client use it without a Module
225 // (dsymutil, llvm-dwarfdump).
226 unsigned AsmPrinter::getPointerSize() const {
227 return TM
.getPointerSize(0); // FIXME: Default address space
230 const MCSubtargetInfo
&AsmPrinter::getSubtargetInfo() const {
231 assert(MF
&& "getSubtargetInfo requires a valid MachineFunction!");
232 return MF
->getSubtarget
<MCSubtargetInfo
>();
235 void AsmPrinter::EmitToStreamer(MCStreamer
&S
, const MCInst
&Inst
) {
236 S
.EmitInstruction(Inst
, getSubtargetInfo());
239 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction
&MF
) {
240 assert(DD
&& "Dwarf debug file is not defined.");
241 assert(OutStreamer
->hasRawTextSupport() && "Expected assembly output mode.");
242 (void)DD
->emitInitialLocDirective(MF
, /*CUID=*/0);
245 /// getCurrentSection() - Return the current section we are emitting to.
246 const MCSection
*AsmPrinter::getCurrentSection() const {
247 return OutStreamer
->getCurrentSectionOnly();
250 void AsmPrinter::getAnalysisUsage(AnalysisUsage
&AU
) const {
251 AU
.setPreservesAll();
252 MachineFunctionPass::getAnalysisUsage(AU
);
253 AU
.addRequired
<MachineModuleInfoWrapperPass
>();
254 AU
.addRequired
<MachineOptimizationRemarkEmitterPass
>();
255 AU
.addRequired
<GCModuleInfo
>();
258 bool AsmPrinter::doInitialization(Module
&M
) {
259 auto *MMIWP
= getAnalysisIfAvailable
<MachineModuleInfoWrapperPass
>();
260 MMI
= MMIWP
? &MMIWP
->getMMI() : nullptr;
262 // Initialize TargetLoweringObjectFile.
263 const_cast<TargetLoweringObjectFile
&>(getObjFileLowering())
264 .Initialize(OutContext
, TM
);
266 const_cast<TargetLoweringObjectFile
&>(getObjFileLowering())
267 .getModuleMetadata(M
);
269 OutStreamer
->InitSections(false);
271 // Emit the version-min deployment target directive if needed.
273 // FIXME: If we end up with a collection of these sorts of Darwin-specific
274 // or ELF-specific things, it may make sense to have a platform helper class
275 // that will work with the target helper class. For now keep it here, as the
276 // alternative is duplicated code in each of the target asm printers that
277 // use the directive, where it would need the same conditionalization
279 const Triple
&Target
= TM
.getTargetTriple();
280 OutStreamer
->EmitVersionForTarget(Target
, M
.getSDKVersion());
282 // Allow the target to emit any magic that it wants at the start of the file.
283 EmitStartOfAsmFile(M
);
285 // Very minimal debug info. It is ignored if we emit actual debug info. If we
286 // don't, this at least helps the user find where a global came from.
287 if (MAI
->hasSingleParameterDotFile()) {
289 OutStreamer
->EmitFileDirective(
290 llvm::sys::path::filename(M
.getSourceFileName()));
293 GCModuleInfo
*MI
= getAnalysisIfAvailable
<GCModuleInfo
>();
294 assert(MI
&& "AsmPrinter didn't require GCModuleInfo?");
296 if (GCMetadataPrinter
*MP
= GetOrCreateGCPrinter(*I
))
297 MP
->beginAssembly(M
, *MI
, *this);
299 // Emit module-level inline asm if it exists.
300 if (!M
.getModuleInlineAsm().empty()) {
301 // We're at the module level. Construct MCSubtarget from the default CPU
302 // and target triple.
303 std::unique_ptr
<MCSubtargetInfo
> STI(TM
.getTarget().createMCSubtargetInfo(
304 TM
.getTargetTriple().str(), TM
.getTargetCPU(),
305 TM
.getTargetFeatureString()));
306 OutStreamer
->AddComment("Start of file scope inline assembly");
307 OutStreamer
->AddBlankLine();
308 EmitInlineAsm(M
.getModuleInlineAsm()+"\n",
309 OutContext
.getSubtargetCopy(*STI
), TM
.Options
.MCOptions
);
310 OutStreamer
->AddComment("End of file scope inline assembly");
311 OutStreamer
->AddBlankLine();
314 if (MAI
->doesSupportDebugInformation()) {
315 bool EmitCodeView
= MMI
->getModule()->getCodeViewFlag();
316 if (EmitCodeView
&& TM
.getTargetTriple().isOSWindows()) {
317 Handlers
.emplace_back(std::make_unique
<CodeViewDebug
>(this),
318 DbgTimerName
, DbgTimerDescription
,
319 CodeViewLineTablesGroupName
,
320 CodeViewLineTablesGroupDescription
);
322 if (!EmitCodeView
|| MMI
->getModule()->getDwarfVersion()) {
323 DD
= new DwarfDebug(this, &M
);
325 Handlers
.emplace_back(std::unique_ptr
<DwarfDebug
>(DD
), DbgTimerName
,
326 DbgTimerDescription
, DWARFGroupName
,
327 DWARFGroupDescription
);
331 switch (MAI
->getExceptionHandlingType()) {
332 case ExceptionHandling::SjLj
:
333 case ExceptionHandling::DwarfCFI
:
334 case ExceptionHandling::ARM
:
335 isCFIMoveForDebugging
= true;
336 if (MAI
->getExceptionHandlingType() != ExceptionHandling::DwarfCFI
)
338 for (auto &F
: M
.getFunctionList()) {
339 // If the module contains any function with unwind data,
340 // .eh_frame has to be emitted.
341 // Ignore functions that won't get emitted.
342 if (!F
.isDeclarationForLinker() && F
.needsUnwindTableEntry()) {
343 isCFIMoveForDebugging
= false;
349 isCFIMoveForDebugging
= false;
353 EHStreamer
*ES
= nullptr;
354 switch (MAI
->getExceptionHandlingType()) {
355 case ExceptionHandling::None
:
357 case ExceptionHandling::SjLj
:
358 case ExceptionHandling::DwarfCFI
:
359 ES
= new DwarfCFIException(this);
361 case ExceptionHandling::ARM
:
362 ES
= new ARMException(this);
364 case ExceptionHandling::WinEH
:
365 switch (MAI
->getWinEHEncodingType()) {
366 default: llvm_unreachable("unsupported unwinding information encoding");
367 case WinEH::EncodingType::Invalid
:
369 case WinEH::EncodingType::X86
:
370 case WinEH::EncodingType::Itanium
:
371 ES
= new WinException(this);
375 case ExceptionHandling::Wasm
:
376 ES
= new WasmException(this);
380 Handlers
.emplace_back(std::unique_ptr
<EHStreamer
>(ES
), EHTimerName
,
381 EHTimerDescription
, DWARFGroupName
,
382 DWARFGroupDescription
);
384 if (mdconst::extract_or_null
<ConstantInt
>(
385 MMI
->getModule()->getModuleFlag("cfguardtable")))
386 Handlers
.emplace_back(std::make_unique
<WinCFGuard
>(this), CFGuardName
,
387 CFGuardDescription
, DWARFGroupName
,
388 DWARFGroupDescription
);
393 static bool canBeHidden(const GlobalValue
*GV
, const MCAsmInfo
&MAI
) {
394 if (!MAI
.hasWeakDefCanBeHiddenDirective())
397 return GV
->canBeOmittedFromSymbolTable();
400 void AsmPrinter::EmitLinkage(const GlobalValue
*GV
, MCSymbol
*GVSym
) const {
401 GlobalValue::LinkageTypes Linkage
= GV
->getLinkage();
403 case GlobalValue::CommonLinkage
:
404 case GlobalValue::LinkOnceAnyLinkage
:
405 case GlobalValue::LinkOnceODRLinkage
:
406 case GlobalValue::WeakAnyLinkage
:
407 case GlobalValue::WeakODRLinkage
:
408 if (MAI
->hasWeakDefDirective()) {
410 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_Global
);
412 if (!canBeHidden(GV
, *MAI
))
413 // .weak_definition _foo
414 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_WeakDefinition
);
416 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_WeakDefAutoPrivate
);
417 } else if (MAI
->hasLinkOnceDirective()) {
419 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_Global
);
420 //NOTE: linkonce is handled by the section the symbol was assigned to.
423 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_Weak
);
426 case GlobalValue::ExternalLinkage
:
427 // If external, declare as a global symbol: .globl _foo
428 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_Global
);
430 case GlobalValue::PrivateLinkage
:
432 case GlobalValue::InternalLinkage
:
433 if (MAI
->hasDotLGloblDirective())
434 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_LGlobal
);
436 case GlobalValue::AppendingLinkage
:
437 case GlobalValue::AvailableExternallyLinkage
:
438 case GlobalValue::ExternalWeakLinkage
:
439 llvm_unreachable("Should never emit this");
441 llvm_unreachable("Unknown linkage type!");
444 void AsmPrinter::getNameWithPrefix(SmallVectorImpl
<char> &Name
,
445 const GlobalValue
*GV
) const {
446 TM
.getNameWithPrefix(Name
, GV
, getObjFileLowering().getMangler());
449 MCSymbol
*AsmPrinter::getSymbol(const GlobalValue
*GV
) const {
450 return TM
.getSymbol(GV
);
453 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
454 void AsmPrinter::EmitGlobalVariable(const GlobalVariable
*GV
) {
455 bool IsEmuTLSVar
= TM
.useEmulatedTLS() && GV
->isThreadLocal();
456 assert(!(IsEmuTLSVar
&& GV
->hasCommonLinkage()) &&
457 "No emulated TLS variables in the common section");
459 // Never emit TLS variable xyz in emulated TLS model.
460 // The initialization value is in __emutls_t.xyz instead of xyz.
464 if (GV
->hasInitializer()) {
465 // Check to see if this is a special global used by LLVM, if so, emit it.
466 if (EmitSpecialLLVMGlobal(GV
))
469 // Skip the emission of global equivalents. The symbol can be emitted later
470 // on by emitGlobalGOTEquivs in case it turns out to be needed.
471 if (GlobalGOTEquivs
.count(getSymbol(GV
)))
475 // When printing the control variable __emutls_v.*,
476 // we don't need to print the original TLS variable name.
477 GV
->printAsOperand(OutStreamer
->GetCommentOS(),
478 /*PrintType=*/false, GV
->getParent());
479 OutStreamer
->GetCommentOS() << '\n';
483 MCSymbol
*GVSym
= getSymbol(GV
);
484 MCSymbol
*EmittedSym
= GVSym
;
486 // getOrCreateEmuTLSControlSym only creates the symbol with name and default
488 // GV's or GVSym's attributes will be used for the EmittedSym.
489 EmitVisibility(EmittedSym
, GV
->getVisibility(), !GV
->isDeclaration());
491 if (!GV
->hasInitializer()) // External globals require no extra code.
494 GVSym
->redefineIfPossible();
495 if (GVSym
->isDefined() || GVSym
->isVariable())
496 report_fatal_error("symbol '" + Twine(GVSym
->getName()) +
497 "' is already defined");
499 if (MAI
->hasDotTypeDotSizeDirective())
500 OutStreamer
->EmitSymbolAttribute(EmittedSym
, MCSA_ELF_TypeObject
);
502 SectionKind GVKind
= TargetLoweringObjectFile::getKindForGlobal(GV
, TM
);
504 const DataLayout
&DL
= GV
->getParent()->getDataLayout();
505 uint64_t Size
= DL
.getTypeAllocSize(GV
->getValueType());
507 // If the alignment is specified, we *must* obey it. Overaligning a global
508 // with a specified alignment is a prompt way to break globals emitted to
509 // sections and expected to be contiguous (e.g. ObjC metadata).
510 const Align Alignment
= getGVAlignment(GV
, DL
);
512 for (const HandlerInfo
&HI
: Handlers
) {
513 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
,
514 HI
.TimerGroupName
, HI
.TimerGroupDescription
,
515 TimePassesIsEnabled
);
516 HI
.Handler
->setSymbolSize(GVSym
, Size
);
519 // Handle common symbols
520 if (GVKind
.isCommon()) {
521 if (Size
== 0) Size
= 1; // .comm Foo, 0 is undefined, avoid it.
523 const bool SupportsAlignment
=
524 getObjFileLowering().getCommDirectiveSupportsAlignment();
525 OutStreamer
->EmitCommonSymbol(GVSym
, Size
,
526 SupportsAlignment
? Alignment
.value() : 0);
530 // Determine to which section this global should be emitted.
531 MCSection
*TheSection
= getObjFileLowering().SectionForGlobal(GV
, GVKind
, TM
);
533 // If we have a bss global going to a section that supports the
534 // zerofill directive, do so here.
535 if (GVKind
.isBSS() && MAI
->hasMachoZeroFillDirective() &&
536 TheSection
->isVirtualSection()) {
538 Size
= 1; // zerofill of 0 bytes is undefined.
539 EmitLinkage(GV
, GVSym
);
540 // .zerofill __DATA, __bss, _foo, 400, 5
541 OutStreamer
->EmitZerofill(TheSection
, GVSym
, Size
, Alignment
.value());
545 // If this is a BSS local symbol and we are emitting in the BSS
546 // section use .lcomm/.comm directive.
547 if (GVKind
.isBSSLocal() &&
548 getObjFileLowering().getBSSSection() == TheSection
) {
550 Size
= 1; // .comm Foo, 0 is undefined, avoid it.
552 // Use .lcomm only if it supports user-specified alignment.
553 // Otherwise, while it would still be correct to use .lcomm in some
554 // cases (e.g. when Align == 1), the external assembler might enfore
555 // some -unknown- default alignment behavior, which could cause
556 // spurious differences between external and integrated assembler.
557 // Prefer to simply fall back to .local / .comm in this case.
558 if (MAI
->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment
) {
560 OutStreamer
->EmitLocalCommonSymbol(GVSym
, Size
, Alignment
.value());
565 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_Local
);
567 const bool SupportsAlignment
=
568 getObjFileLowering().getCommDirectiveSupportsAlignment();
569 OutStreamer
->EmitCommonSymbol(GVSym
, Size
,
570 SupportsAlignment
? Alignment
.value() : 0);
574 // Handle thread local data for mach-o which requires us to output an
575 // additional structure of data and mangle the original symbol so that we
576 // can reference it later.
578 // TODO: This should become an "emit thread local global" method on TLOF.
579 // All of this macho specific stuff should be sunk down into TLOFMachO and
580 // stuff like "TLSExtraDataSection" should no longer be part of the parent
581 // TLOF class. This will also make it more obvious that stuff like
582 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
584 if (GVKind
.isThreadLocal() && MAI
->hasMachoTBSSDirective()) {
585 // Emit the .tbss symbol
587 OutContext
.getOrCreateSymbol(GVSym
->getName() + Twine("$tlv$init"));
589 if (GVKind
.isThreadBSS()) {
590 TheSection
= getObjFileLowering().getTLSBSSSection();
591 OutStreamer
->EmitTBSSSymbol(TheSection
, MangSym
, Size
, Alignment
.value());
592 } else if (GVKind
.isThreadData()) {
593 OutStreamer
->SwitchSection(TheSection
);
595 EmitAlignment(Alignment
, GV
);
596 OutStreamer
->EmitLabel(MangSym
);
598 EmitGlobalConstant(GV
->getParent()->getDataLayout(),
599 GV
->getInitializer());
602 OutStreamer
->AddBlankLine();
604 // Emit the variable struct for the runtime.
605 MCSection
*TLVSect
= getObjFileLowering().getTLSExtraDataSection();
607 OutStreamer
->SwitchSection(TLVSect
);
608 // Emit the linkage here.
609 EmitLinkage(GV
, GVSym
);
610 OutStreamer
->EmitLabel(GVSym
);
612 // Three pointers in size:
613 // - __tlv_bootstrap - used to make sure support exists
614 // - spare pointer, used when mapped by the runtime
615 // - pointer to mangled symbol above with initializer
616 unsigned PtrSize
= DL
.getPointerTypeSize(GV
->getType());
617 OutStreamer
->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
619 OutStreamer
->EmitIntValue(0, PtrSize
);
620 OutStreamer
->EmitSymbolValue(MangSym
, PtrSize
);
622 OutStreamer
->AddBlankLine();
626 MCSymbol
*EmittedInitSym
= GVSym
;
628 OutStreamer
->SwitchSection(TheSection
);
630 EmitLinkage(GV
, EmittedInitSym
);
631 EmitAlignment(Alignment
, GV
);
633 OutStreamer
->EmitLabel(EmittedInitSym
);
635 EmitGlobalConstant(GV
->getParent()->getDataLayout(), GV
->getInitializer());
637 if (MAI
->hasDotTypeDotSizeDirective())
639 OutStreamer
->emitELFSize(EmittedInitSym
,
640 MCConstantExpr::create(Size
, OutContext
));
642 OutStreamer
->AddBlankLine();
645 /// Emit the directive and value for debug thread local expression
647 /// \p Value - The value to emit.
648 /// \p Size - The size of the integer (in bytes) to emit.
649 void AsmPrinter::EmitDebugValue(const MCExpr
*Value
, unsigned Size
) const {
650 OutStreamer
->EmitValue(Value
, Size
);
653 /// EmitFunctionHeader - This method emits the header for the current
655 void AsmPrinter::EmitFunctionHeader() {
656 const Function
&F
= MF
->getFunction();
659 OutStreamer
->GetCommentOS()
660 << "-- Begin function "
661 << GlobalValue::dropLLVMManglingEscape(F
.getName()) << '\n';
663 // Print out constants referenced by the function
666 // Print the 'header' of function.
667 OutStreamer
->SwitchSection(getObjFileLowering().SectionForGlobal(&F
, TM
));
668 EmitVisibility(CurrentFnSym
, F
.getVisibility());
670 if (MAI
->needsFunctionDescriptors() &&
671 F
.getLinkage() != GlobalValue::InternalLinkage
)
672 EmitLinkage(&F
, CurrentFnDescSym
);
674 EmitLinkage(&F
, CurrentFnSym
);
675 if (MAI
->hasFunctionAlignment())
676 EmitAlignment(MF
->getAlignment(), &F
);
678 if (MAI
->hasDotTypeDotSizeDirective())
679 OutStreamer
->EmitSymbolAttribute(CurrentFnSym
, MCSA_ELF_TypeFunction
);
681 if (F
.hasFnAttribute(Attribute::Cold
))
682 OutStreamer
->EmitSymbolAttribute(CurrentFnSym
, MCSA_Cold
);
685 F
.printAsOperand(OutStreamer
->GetCommentOS(),
686 /*PrintType=*/false, F
.getParent());
687 OutStreamer
->GetCommentOS() << '\n';
690 // Emit the prefix data.
691 if (F
.hasPrefixData()) {
692 if (MAI
->hasSubsectionsViaSymbols()) {
693 // Preserving prefix data on platforms which use subsections-via-symbols
694 // is a bit tricky. Here we introduce a symbol for the prefix data
695 // and use the .alt_entry attribute to mark the function's real entry point
696 // as an alternative entry point to the prefix-data symbol.
697 MCSymbol
*PrefixSym
= OutContext
.createLinkerPrivateTempSymbol();
698 OutStreamer
->EmitLabel(PrefixSym
);
700 EmitGlobalConstant(F
.getParent()->getDataLayout(), F
.getPrefixData());
702 // Emit an .alt_entry directive for the actual function symbol.
703 OutStreamer
->EmitSymbolAttribute(CurrentFnSym
, MCSA_AltEntry
);
705 EmitGlobalConstant(F
.getParent()->getDataLayout(), F
.getPrefixData());
709 // Emit the function descriptor. This is a virtual function to allow targets
710 // to emit their specific function descriptor.
711 if (MAI
->needsFunctionDescriptors())
712 EmitFunctionDescriptor();
714 // Emit the CurrentFnSym. This is a virtual function to allow targets to do
715 // their wild and crazy things as required.
716 EmitFunctionEntryLabel();
718 // If the function had address-taken blocks that got deleted, then we have
719 // references to the dangling symbols. Emit them at the start of the function
720 // so that we don't get references to undefined symbols.
721 std::vector
<MCSymbol
*> DeadBlockSyms
;
722 MMI
->takeDeletedSymbolsForFunction(&F
, DeadBlockSyms
);
723 for (unsigned i
= 0, e
= DeadBlockSyms
.size(); i
!= e
; ++i
) {
724 OutStreamer
->AddComment("Address taken block that was later removed");
725 OutStreamer
->EmitLabel(DeadBlockSyms
[i
]);
728 if (CurrentFnBegin
) {
729 if (MAI
->useAssignmentForEHBegin()) {
730 MCSymbol
*CurPos
= OutContext
.createTempSymbol();
731 OutStreamer
->EmitLabel(CurPos
);
732 OutStreamer
->EmitAssignment(CurrentFnBegin
,
733 MCSymbolRefExpr::create(CurPos
, OutContext
));
735 OutStreamer
->EmitLabel(CurrentFnBegin
);
739 // Emit pre-function debug and/or EH information.
740 for (const HandlerInfo
&HI
: Handlers
) {
741 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
742 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
743 HI
.Handler
->beginFunction(MF
);
746 // Emit the prologue data.
747 if (F
.hasPrologueData())
748 EmitGlobalConstant(F
.getParent()->getDataLayout(), F
.getPrologueData());
751 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
752 /// function. This can be overridden by targets as required to do custom stuff.
753 void AsmPrinter::EmitFunctionEntryLabel() {
754 CurrentFnSym
->redefineIfPossible();
756 // The function label could have already been emitted if two symbols end up
757 // conflicting due to asm renaming. Detect this and emit an error.
758 if (CurrentFnSym
->isVariable())
759 report_fatal_error("'" + Twine(CurrentFnSym
->getName()) +
760 "' is a protected alias");
761 if (CurrentFnSym
->isDefined())
762 report_fatal_error("'" + Twine(CurrentFnSym
->getName()) +
763 "' label emitted multiple times to assembly file");
765 return OutStreamer
->EmitLabel(CurrentFnSym
);
768 /// emitComments - Pretty-print comments for instructions.
769 static void emitComments(const MachineInstr
&MI
, raw_ostream
&CommentOS
) {
770 const MachineFunction
*MF
= MI
.getMF();
771 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
773 // Check for spills and reloads
775 // We assume a single instruction only has a spill or reload, not
777 Optional
<unsigned> Size
;
778 if ((Size
= MI
.getRestoreSize(TII
))) {
779 CommentOS
<< *Size
<< "-byte Reload\n";
780 } else if ((Size
= MI
.getFoldedRestoreSize(TII
))) {
782 CommentOS
<< *Size
<< "-byte Folded Reload\n";
783 } else if ((Size
= MI
.getSpillSize(TII
))) {
784 CommentOS
<< *Size
<< "-byte Spill\n";
785 } else if ((Size
= MI
.getFoldedSpillSize(TII
))) {
787 CommentOS
<< *Size
<< "-byte Folded Spill\n";
790 // Check for spill-induced copies
791 if (MI
.getAsmPrinterFlag(MachineInstr::ReloadReuse
))
792 CommentOS
<< " Reload Reuse\n";
795 /// emitImplicitDef - This method emits the specified machine instruction
796 /// that is an implicit def.
797 void AsmPrinter::emitImplicitDef(const MachineInstr
*MI
) const {
798 Register RegNo
= MI
->getOperand(0).getReg();
800 SmallString
<128> Str
;
801 raw_svector_ostream
OS(Str
);
802 OS
<< "implicit-def: "
803 << printReg(RegNo
, MF
->getSubtarget().getRegisterInfo());
805 OutStreamer
->AddComment(OS
.str());
806 OutStreamer
->AddBlankLine();
809 static void emitKill(const MachineInstr
*MI
, AsmPrinter
&AP
) {
811 raw_string_ostream
OS(Str
);
813 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
814 const MachineOperand
&Op
= MI
->getOperand(i
);
815 assert(Op
.isReg() && "KILL instruction must have only register operands");
816 OS
<< ' ' << (Op
.isDef() ? "def " : "killed ")
817 << printReg(Op
.getReg(), AP
.MF
->getSubtarget().getRegisterInfo());
819 AP
.OutStreamer
->AddComment(OS
.str());
820 AP
.OutStreamer
->AddBlankLine();
823 /// emitDebugValueComment - This method handles the target-independent form
824 /// of DBG_VALUE, returning true if it was able to do so. A false return
825 /// means the target will need to handle MI in EmitInstruction.
826 static bool emitDebugValueComment(const MachineInstr
*MI
, AsmPrinter
&AP
) {
827 // This code handles only the 4-operand target-independent form.
828 if (MI
->getNumOperands() != 4)
831 SmallString
<128> Str
;
832 raw_svector_ostream
OS(Str
);
833 OS
<< "DEBUG_VALUE: ";
835 const DILocalVariable
*V
= MI
->getDebugVariable();
836 if (auto *SP
= dyn_cast
<DISubprogram
>(V
->getScope())) {
837 StringRef Name
= SP
->getName();
844 // The second operand is only an offset if it's an immediate.
845 bool MemLoc
= MI
->getOperand(0).isReg() && MI
->getOperand(1).isImm();
846 int64_t Offset
= MemLoc
? MI
->getOperand(1).getImm() : 0;
847 const DIExpression
*Expr
= MI
->getDebugExpression();
848 if (Expr
->getNumElements()) {
850 bool NeedSep
= false;
851 for (auto Op
: Expr
->expr_ops()) {
856 OS
<< dwarf::OperationEncodingString(Op
.getOp());
857 for (unsigned I
= 0; I
< Op
.getNumArgs(); ++I
)
858 OS
<< ' ' << Op
.getArg(I
);
863 // Register or immediate value. Register 0 means undef.
864 if (MI
->getOperand(0).isFPImm()) {
865 APFloat APF
= APFloat(MI
->getOperand(0).getFPImm()->getValueAPF());
866 if (MI
->getOperand(0).getFPImm()->getType()->isFloatTy()) {
867 OS
<< (double)APF
.convertToFloat();
868 } else if (MI
->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
869 OS
<< APF
.convertToDouble();
871 // There is no good way to print long double. Convert a copy to
872 // double. Ah well, it's only a comment.
874 APF
.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven
,
876 OS
<< "(long double) " << APF
.convertToDouble();
878 } else if (MI
->getOperand(0).isImm()) {
879 OS
<< MI
->getOperand(0).getImm();
880 } else if (MI
->getOperand(0).isCImm()) {
881 MI
->getOperand(0).getCImm()->getValue().print(OS
, false /*isSigned*/);
884 if (MI
->getOperand(0).isReg()) {
885 Reg
= MI
->getOperand(0).getReg();
887 assert(MI
->getOperand(0).isFI() && "Unknown operand type");
888 const TargetFrameLowering
*TFI
= AP
.MF
->getSubtarget().getFrameLowering();
889 Offset
+= TFI
->getFrameIndexReference(*AP
.MF
,
890 MI
->getOperand(0).getIndex(), Reg
);
894 // Suppress offset, it is not meaningful here.
896 // NOTE: Want this comment at start of line, don't emit with AddComment.
897 AP
.OutStreamer
->emitRawComment(OS
.str());
902 OS
<< printReg(Reg
, AP
.MF
->getSubtarget().getRegisterInfo());
906 OS
<< '+' << Offset
<< ']';
908 // NOTE: Want this comment at start of line, don't emit with AddComment.
909 AP
.OutStreamer
->emitRawComment(OS
.str());
913 /// This method handles the target-independent form of DBG_LABEL, returning
914 /// true if it was able to do so. A false return means the target will need
915 /// to handle MI in EmitInstruction.
916 static bool emitDebugLabelComment(const MachineInstr
*MI
, AsmPrinter
&AP
) {
917 if (MI
->getNumOperands() != 1)
920 SmallString
<128> Str
;
921 raw_svector_ostream
OS(Str
);
922 OS
<< "DEBUG_LABEL: ";
924 const DILabel
*V
= MI
->getDebugLabel();
925 if (auto *SP
= dyn_cast
<DISubprogram
>(
926 V
->getScope()->getNonLexicalBlockFileScope())) {
927 StringRef Name
= SP
->getName();
933 // NOTE: Want this comment at start of line, don't emit with AddComment.
934 AP
.OutStreamer
->emitRawComment(OS
.str());
938 AsmPrinter::CFIMoveType
AsmPrinter::needsCFIMoves() const {
939 if (MAI
->getExceptionHandlingType() == ExceptionHandling::DwarfCFI
&&
940 MF
->getFunction().needsUnwindTableEntry())
943 if (MMI
->hasDebugInfo())
949 bool AsmPrinter::needsSEHMoves() {
950 return MAI
->usesWindowsCFI() && MF
->getFunction().needsUnwindTableEntry();
953 void AsmPrinter::emitCFIInstruction(const MachineInstr
&MI
) {
954 ExceptionHandling ExceptionHandlingType
= MAI
->getExceptionHandlingType();
955 if (ExceptionHandlingType
!= ExceptionHandling::DwarfCFI
&&
956 ExceptionHandlingType
!= ExceptionHandling::ARM
)
959 if (needsCFIMoves() == CFI_M_None
)
962 // If there is no "real" instruction following this CFI instruction, skip
963 // emitting it; it would be beyond the end of the function's FDE range.
964 auto *MBB
= MI
.getParent();
965 auto I
= std::next(MI
.getIterator());
966 while (I
!= MBB
->end() && I
->isTransient())
968 if (I
== MBB
->instr_end() &&
969 MBB
->getReverseIterator() == MBB
->getParent()->rbegin())
972 const std::vector
<MCCFIInstruction
> &Instrs
= MF
->getFrameInstructions();
973 unsigned CFIIndex
= MI
.getOperand(0).getCFIIndex();
974 const MCCFIInstruction
&CFI
= Instrs
[CFIIndex
];
975 emitCFIInstruction(CFI
);
978 void AsmPrinter::emitFrameAlloc(const MachineInstr
&MI
) {
979 // The operands are the MCSymbol and the frame offset of the allocation.
980 MCSymbol
*FrameAllocSym
= MI
.getOperand(0).getMCSymbol();
981 int FrameOffset
= MI
.getOperand(1).getImm();
983 // Emit a symbol assignment.
984 OutStreamer
->EmitAssignment(FrameAllocSym
,
985 MCConstantExpr::create(FrameOffset
, OutContext
));
988 void AsmPrinter::emitStackSizeSection(const MachineFunction
&MF
) {
989 if (!MF
.getTarget().Options
.EmitStackSizeSection
)
992 MCSection
*StackSizeSection
=
993 getObjFileLowering().getStackSizesSection(*getCurrentSection());
994 if (!StackSizeSection
)
997 const MachineFrameInfo
&FrameInfo
= MF
.getFrameInfo();
998 // Don't emit functions with dynamic stack allocations.
999 if (FrameInfo
.hasVarSizedObjects())
1002 OutStreamer
->PushSection();
1003 OutStreamer
->SwitchSection(StackSizeSection
);
1005 const MCSymbol
*FunctionSymbol
= getFunctionBegin();
1006 uint64_t StackSize
= FrameInfo
.getStackSize();
1007 OutStreamer
->EmitSymbolValue(FunctionSymbol
, TM
.getProgramPointerSize());
1008 OutStreamer
->EmitULEB128IntValue(StackSize
);
1010 OutStreamer
->PopSection();
1013 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction
&MF
,
1014 MachineModuleInfo
*MMI
) {
1015 if (!MF
.getLandingPads().empty() || MF
.hasEHFunclets() || MMI
->hasDebugInfo())
1018 // We might emit an EH table that uses function begin and end labels even if
1019 // we don't have any landingpads.
1020 if (!MF
.getFunction().hasPersonalityFn())
1022 return !isNoOpWithoutInvoke(
1023 classifyEHPersonality(MF
.getFunction().getPersonalityFn()));
1026 /// EmitFunctionBody - This method emits the body and trailer for a
1028 void AsmPrinter::EmitFunctionBody() {
1029 EmitFunctionHeader();
1031 // Emit target-specific gunk before the function body.
1032 EmitFunctionBodyStart();
1034 bool ShouldPrintDebugScopes
= MMI
->hasDebugInfo();
1037 // Get MachineDominatorTree or compute it on the fly if it's unavailable
1038 MDT
= getAnalysisIfAvailable
<MachineDominatorTree
>();
1040 OwnedMDT
= std::make_unique
<MachineDominatorTree
>();
1041 OwnedMDT
->getBase().recalculate(*MF
);
1042 MDT
= OwnedMDT
.get();
1045 // Get MachineLoopInfo or compute it on the fly if it's unavailable
1046 MLI
= getAnalysisIfAvailable
<MachineLoopInfo
>();
1048 OwnedMLI
= std::make_unique
<MachineLoopInfo
>();
1049 OwnedMLI
->getBase().analyze(MDT
->getBase());
1050 MLI
= OwnedMLI
.get();
1054 // Print out code for the function.
1055 bool HasAnyRealCode
= false;
1056 int NumInstsInFunction
= 0;
1057 for (auto &MBB
: *MF
) {
1058 // Print a label for the basic block.
1059 EmitBasicBlockStart(MBB
);
1060 for (auto &MI
: MBB
) {
1061 // Print the assembly for the instruction.
1062 if (!MI
.isPosition() && !MI
.isImplicitDef() && !MI
.isKill() &&
1063 !MI
.isDebugInstr()) {
1064 HasAnyRealCode
= true;
1065 ++NumInstsInFunction
;
1068 // If there is a pre-instruction symbol, emit a label for it here. If the
1069 // instruction was duplicated and the label has already been emitted,
1070 // don't re-emit the same label.
1071 // FIXME: Consider strengthening that to an assertion.
1072 if (MCSymbol
*S
= MI
.getPreInstrSymbol())
1073 if (S
->isUndefined())
1074 OutStreamer
->EmitLabel(S
);
1076 if (ShouldPrintDebugScopes
) {
1077 for (const HandlerInfo
&HI
: Handlers
) {
1078 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
,
1079 HI
.TimerGroupName
, HI
.TimerGroupDescription
,
1080 TimePassesIsEnabled
);
1081 HI
.Handler
->beginInstruction(&MI
);
1086 emitComments(MI
, OutStreamer
->GetCommentOS());
1088 switch (MI
.getOpcode()) {
1089 case TargetOpcode::CFI_INSTRUCTION
:
1090 emitCFIInstruction(MI
);
1092 case TargetOpcode::LOCAL_ESCAPE
:
1095 case TargetOpcode::ANNOTATION_LABEL
:
1096 case TargetOpcode::EH_LABEL
:
1097 case TargetOpcode::GC_LABEL
:
1098 OutStreamer
->EmitLabel(MI
.getOperand(0).getMCSymbol());
1100 case TargetOpcode::INLINEASM
:
1101 case TargetOpcode::INLINEASM_BR
:
1104 case TargetOpcode::DBG_VALUE
:
1106 if (!emitDebugValueComment(&MI
, *this))
1107 EmitInstruction(&MI
);
1110 case TargetOpcode::DBG_LABEL
:
1112 if (!emitDebugLabelComment(&MI
, *this))
1113 EmitInstruction(&MI
);
1116 case TargetOpcode::IMPLICIT_DEF
:
1117 if (isVerbose()) emitImplicitDef(&MI
);
1119 case TargetOpcode::KILL
:
1120 if (isVerbose()) emitKill(&MI
, *this);
1123 EmitInstruction(&MI
);
1127 // If there is a post-instruction symbol, emit a label for it here. If
1128 // the instruction was duplicated and the label has already been emitted,
1129 // don't re-emit the same label.
1130 // FIXME: Consider strengthening that to an assertion.
1131 if (MCSymbol
*S
= MI
.getPostInstrSymbol())
1132 if (S
->isUndefined())
1133 OutStreamer
->EmitLabel(S
);
1135 if (ShouldPrintDebugScopes
) {
1136 for (const HandlerInfo
&HI
: Handlers
) {
1137 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
,
1138 HI
.TimerGroupName
, HI
.TimerGroupDescription
,
1139 TimePassesIsEnabled
);
1140 HI
.Handler
->endInstruction();
1145 EmitBasicBlockEnd(MBB
);
1148 EmittedInsts
+= NumInstsInFunction
;
1149 MachineOptimizationRemarkAnalysis
R(DEBUG_TYPE
, "InstructionCount",
1150 MF
->getFunction().getSubprogram(),
1152 R
<< ore::NV("NumInstructions", NumInstsInFunction
)
1153 << " instructions in function";
1156 // If the function is empty and the object file uses .subsections_via_symbols,
1157 // then we need to emit *something* to the function body to prevent the
1158 // labels from collapsing together. Just emit a noop.
1159 // Similarly, don't emit empty functions on Windows either. It can lead to
1160 // duplicate entries (two functions with the same RVA) in the Guard CF Table
1161 // after linking, causing the kernel not to load the binary:
1162 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1163 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1164 const Triple
&TT
= TM
.getTargetTriple();
1165 if (!HasAnyRealCode
&& (MAI
->hasSubsectionsViaSymbols() ||
1166 (TT
.isOSWindows() && TT
.isOSBinFormatCOFF()))) {
1168 MF
->getSubtarget().getInstrInfo()->getNoop(Noop
);
1170 // Targets can opt-out of emitting the noop here by leaving the opcode
1172 if (Noop
.getOpcode()) {
1173 OutStreamer
->AddComment("avoids zero-length function");
1174 OutStreamer
->EmitInstruction(Noop
, getSubtargetInfo());
1178 const Function
&F
= MF
->getFunction();
1179 for (const auto &BB
: F
) {
1180 if (!BB
.hasAddressTaken())
1182 MCSymbol
*Sym
= GetBlockAddressSymbol(&BB
);
1183 if (Sym
->isDefined())
1185 OutStreamer
->AddComment("Address of block that was removed by CodeGen");
1186 OutStreamer
->EmitLabel(Sym
);
1189 // Emit target-specific gunk after the function body.
1190 EmitFunctionBodyEnd();
1192 if (needFuncLabelsForEHOrDebugInfo(*MF
, MMI
) ||
1193 MAI
->hasDotTypeDotSizeDirective()) {
1194 // Create a symbol for the end of function.
1195 CurrentFnEnd
= createTempSymbol("func_end");
1196 OutStreamer
->EmitLabel(CurrentFnEnd
);
1199 // If the target wants a .size directive for the size of the function, emit
1201 if (MAI
->hasDotTypeDotSizeDirective()) {
1202 // We can get the size as difference between the function label and the
1204 const MCExpr
*SizeExp
= MCBinaryExpr::createSub(
1205 MCSymbolRefExpr::create(CurrentFnEnd
, OutContext
),
1206 MCSymbolRefExpr::create(CurrentFnSymForSize
, OutContext
), OutContext
);
1207 OutStreamer
->emitELFSize(CurrentFnSym
, SizeExp
);
1210 for (const HandlerInfo
&HI
: Handlers
) {
1211 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
1212 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
1213 HI
.Handler
->markFunctionEnd();
1216 // Print out jump tables referenced by the function.
1217 EmitJumpTableInfo();
1219 // Emit post-function debug and/or EH information.
1220 for (const HandlerInfo
&HI
: Handlers
) {
1221 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
1222 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
1223 HI
.Handler
->endFunction(MF
);
1226 // Emit section containing stack size metadata.
1227 emitStackSizeSection(*MF
);
1230 OutStreamer
->GetCommentOS() << "-- End function\n";
1232 OutStreamer
->AddBlankLine();
1235 /// Compute the number of Global Variables that uses a Constant.
1236 static unsigned getNumGlobalVariableUses(const Constant
*C
) {
1240 if (isa
<GlobalVariable
>(C
))
1243 unsigned NumUses
= 0;
1244 for (auto *CU
: C
->users())
1245 NumUses
+= getNumGlobalVariableUses(dyn_cast
<Constant
>(CU
));
1250 /// Only consider global GOT equivalents if at least one user is a
1251 /// cstexpr inside an initializer of another global variables. Also, don't
1252 /// handle cstexpr inside instructions. During global variable emission,
1253 /// candidates are skipped and are emitted later in case at least one cstexpr
1254 /// isn't replaced by a PC relative GOT entry access.
1255 static bool isGOTEquivalentCandidate(const GlobalVariable
*GV
,
1256 unsigned &NumGOTEquivUsers
) {
1257 // Global GOT equivalents are unnamed private globals with a constant
1258 // pointer initializer to another global symbol. They must point to a
1259 // GlobalVariable or Function, i.e., as GlobalValue.
1260 if (!GV
->hasGlobalUnnamedAddr() || !GV
->hasInitializer() ||
1261 !GV
->isConstant() || !GV
->isDiscardableIfUnused() ||
1262 !isa
<GlobalValue
>(GV
->getOperand(0)))
1265 // To be a got equivalent, at least one of its users need to be a constant
1266 // expression used by another global variable.
1267 for (auto *U
: GV
->users())
1268 NumGOTEquivUsers
+= getNumGlobalVariableUses(dyn_cast
<Constant
>(U
));
1270 return NumGOTEquivUsers
> 0;
1273 /// Unnamed constant global variables solely contaning a pointer to
1274 /// another globals variable is equivalent to a GOT table entry; it contains the
1275 /// the address of another symbol. Optimize it and replace accesses to these
1276 /// "GOT equivalents" by using the GOT entry for the final global instead.
1277 /// Compute GOT equivalent candidates among all global variables to avoid
1278 /// emitting them if possible later on, after it use is replaced by a GOT entry
1280 void AsmPrinter::computeGlobalGOTEquivs(Module
&M
) {
1281 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1284 for (const auto &G
: M
.globals()) {
1285 unsigned NumGOTEquivUsers
= 0;
1286 if (!isGOTEquivalentCandidate(&G
, NumGOTEquivUsers
))
1289 const MCSymbol
*GOTEquivSym
= getSymbol(&G
);
1290 GlobalGOTEquivs
[GOTEquivSym
] = std::make_pair(&G
, NumGOTEquivUsers
);
1294 /// Constant expressions using GOT equivalent globals may not be eligible
1295 /// for PC relative GOT entry conversion, in such cases we need to emit such
1296 /// globals we previously omitted in EmitGlobalVariable.
1297 void AsmPrinter::emitGlobalGOTEquivs() {
1298 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1301 SmallVector
<const GlobalVariable
*, 8> FailedCandidates
;
1302 for (auto &I
: GlobalGOTEquivs
) {
1303 const GlobalVariable
*GV
= I
.second
.first
;
1304 unsigned Cnt
= I
.second
.second
;
1306 FailedCandidates
.push_back(GV
);
1308 GlobalGOTEquivs
.clear();
1310 for (auto *GV
: FailedCandidates
)
1311 EmitGlobalVariable(GV
);
1314 void AsmPrinter::emitGlobalIndirectSymbol(Module
&M
,
1315 const GlobalIndirectSymbol
& GIS
) {
1316 MCSymbol
*Name
= getSymbol(&GIS
);
1318 if (GIS
.hasExternalLinkage() || !MAI
->getWeakRefDirective())
1319 OutStreamer
->EmitSymbolAttribute(Name
, MCSA_Global
);
1320 else if (GIS
.hasWeakLinkage() || GIS
.hasLinkOnceLinkage())
1321 OutStreamer
->EmitSymbolAttribute(Name
, MCSA_WeakReference
);
1323 assert(GIS
.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1325 bool IsFunction
= GIS
.getValueType()->isFunctionTy();
1327 // Treat bitcasts of functions as functions also. This is important at least
1328 // on WebAssembly where object and function addresses can't alias each other.
1330 if (auto *CE
= dyn_cast
<ConstantExpr
>(GIS
.getIndirectSymbol()))
1331 if (CE
->getOpcode() == Instruction::BitCast
)
1333 CE
->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1335 // Set the symbol type to function if the alias has a function type.
1336 // This affects codegen when the aliasee is not a function.
1338 OutStreamer
->EmitSymbolAttribute(Name
, isa
<GlobalIFunc
>(GIS
)
1339 ? MCSA_ELF_TypeIndFunction
1340 : MCSA_ELF_TypeFunction
);
1342 EmitVisibility(Name
, GIS
.getVisibility());
1344 const MCExpr
*Expr
= lowerConstant(GIS
.getIndirectSymbol());
1346 if (isa
<GlobalAlias
>(&GIS
) && MAI
->hasAltEntry() && isa
<MCBinaryExpr
>(Expr
))
1347 OutStreamer
->EmitSymbolAttribute(Name
, MCSA_AltEntry
);
1349 // Emit the directives as assignments aka .set:
1350 OutStreamer
->EmitAssignment(Name
, Expr
);
1352 if (auto *GA
= dyn_cast
<GlobalAlias
>(&GIS
)) {
1353 // If the aliasee does not correspond to a symbol in the output, i.e. the
1354 // alias is not of an object or the aliased object is private, then set the
1355 // size of the alias symbol from the type of the alias. We don't do this in
1356 // other situations as the alias and aliasee having differing types but same
1357 // size may be intentional.
1358 const GlobalObject
*BaseObject
= GA
->getBaseObject();
1359 if (MAI
->hasDotTypeDotSizeDirective() && GA
->getValueType()->isSized() &&
1360 (!BaseObject
|| BaseObject
->hasPrivateLinkage())) {
1361 const DataLayout
&DL
= M
.getDataLayout();
1362 uint64_t Size
= DL
.getTypeAllocSize(GA
->getValueType());
1363 OutStreamer
->emitELFSize(Name
, MCConstantExpr::create(Size
, OutContext
));
1368 void AsmPrinter::emitRemarksSection(Module
&M
) {
1369 RemarkStreamer
*RS
= M
.getContext().getRemarkStreamer();
1372 remarks::RemarkSerializer
&RemarkSerializer
= RS
->getSerializer();
1374 Optional
<SmallString
<128>> Filename
;
1375 if (Optional
<StringRef
> FilenameRef
= RS
->getFilename()) {
1376 Filename
= *FilenameRef
;
1377 sys::fs::make_absolute(*Filename
);
1378 assert(!Filename
->empty() && "The filename can't be empty.");
1382 raw_string_ostream
OS(Buf
);
1383 std::unique_ptr
<remarks::MetaSerializer
> MetaSerializer
=
1384 Filename
? RemarkSerializer
.metaSerializer(OS
, StringRef(*Filename
))
1385 : RemarkSerializer
.metaSerializer(OS
);
1386 MetaSerializer
->emit();
1388 // Switch to the right section: .remarks/__remarks.
1389 MCSection
*RemarksSection
=
1390 OutContext
.getObjectFileInfo()->getRemarksSection();
1391 OutStreamer
->SwitchSection(RemarksSection
);
1393 OutStreamer
->EmitBinaryData(OS
.str());
1396 bool AsmPrinter::doFinalization(Module
&M
) {
1397 // Set the MachineFunction to nullptr so that we can catch attempted
1398 // accesses to MF specific features at the module level and so that
1399 // we can conditionalize accesses based on whether or not it is nullptr.
1402 // Gather all GOT equivalent globals in the module. We really need two
1403 // passes over the globals: one to compute and another to avoid its emission
1404 // in EmitGlobalVariable, otherwise we would not be able to handle cases
1405 // where the got equivalent shows up before its use.
1406 computeGlobalGOTEquivs(M
);
1408 // Emit global variables.
1409 for (const auto &G
: M
.globals())
1410 EmitGlobalVariable(&G
);
1412 // Emit remaining GOT equivalent globals.
1413 emitGlobalGOTEquivs();
1415 // Emit visibility info for declarations
1416 for (const Function
&F
: M
) {
1417 if (!F
.isDeclarationForLinker())
1419 GlobalValue::VisibilityTypes V
= F
.getVisibility();
1420 if (V
== GlobalValue::DefaultVisibility
)
1423 MCSymbol
*Name
= getSymbol(&F
);
1424 EmitVisibility(Name
, V
, false);
1427 // Emit the remarks section contents.
1428 // FIXME: Figure out when is the safest time to emit this section. It should
1429 // not come after debug info.
1430 if (EnableRemarksSection
)
1431 emitRemarksSection(M
);
1433 const TargetLoweringObjectFile
&TLOF
= getObjFileLowering();
1435 TLOF
.emitModuleMetadata(*OutStreamer
, M
);
1437 if (TM
.getTargetTriple().isOSBinFormatELF()) {
1438 MachineModuleInfoELF
&MMIELF
= MMI
->getObjFileInfo
<MachineModuleInfoELF
>();
1440 // Output stubs for external and common global variables.
1441 MachineModuleInfoELF::SymbolListTy Stubs
= MMIELF
.GetGVStubList();
1442 if (!Stubs
.empty()) {
1443 OutStreamer
->SwitchSection(TLOF
.getDataSection());
1444 const DataLayout
&DL
= M
.getDataLayout();
1446 EmitAlignment(Align(DL
.getPointerSize()));
1447 for (const auto &Stub
: Stubs
) {
1448 OutStreamer
->EmitLabel(Stub
.first
);
1449 OutStreamer
->EmitSymbolValue(Stub
.second
.getPointer(),
1450 DL
.getPointerSize());
1455 if (TM
.getTargetTriple().isOSBinFormatCOFF()) {
1456 MachineModuleInfoCOFF
&MMICOFF
=
1457 MMI
->getObjFileInfo
<MachineModuleInfoCOFF
>();
1459 // Output stubs for external and common global variables.
1460 MachineModuleInfoCOFF::SymbolListTy Stubs
= MMICOFF
.GetGVStubList();
1461 if (!Stubs
.empty()) {
1462 const DataLayout
&DL
= M
.getDataLayout();
1464 for (const auto &Stub
: Stubs
) {
1465 SmallString
<256> SectionName
= StringRef(".rdata$");
1466 SectionName
+= Stub
.first
->getName();
1467 OutStreamer
->SwitchSection(OutContext
.getCOFFSection(
1469 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
| COFF::IMAGE_SCN_MEM_READ
|
1470 COFF::IMAGE_SCN_LNK_COMDAT
,
1471 SectionKind::getReadOnly(), Stub
.first
->getName(),
1472 COFF::IMAGE_COMDAT_SELECT_ANY
));
1473 EmitAlignment(Align(DL
.getPointerSize()));
1474 OutStreamer
->EmitSymbolAttribute(Stub
.first
, MCSA_Global
);
1475 OutStreamer
->EmitLabel(Stub
.first
);
1476 OutStreamer
->EmitSymbolValue(Stub
.second
.getPointer(),
1477 DL
.getPointerSize());
1482 // Finalize debug and EH information.
1483 for (const HandlerInfo
&HI
: Handlers
) {
1484 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
1485 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
1486 HI
.Handler
->endModule();
1491 // If the target wants to know about weak references, print them all.
1492 if (MAI
->getWeakRefDirective()) {
1493 // FIXME: This is not lazy, it would be nice to only print weak references
1494 // to stuff that is actually used. Note that doing so would require targets
1495 // to notice uses in operands (due to constant exprs etc). This should
1496 // happen with the MC stuff eventually.
1498 // Print out module-level global objects here.
1499 for (const auto &GO
: M
.global_objects()) {
1500 if (!GO
.hasExternalWeakLinkage())
1502 OutStreamer
->EmitSymbolAttribute(getSymbol(&GO
), MCSA_WeakReference
);
1506 OutStreamer
->AddBlankLine();
1508 // Print aliases in topological order, that is, for each alias a = b,
1509 // b must be printed before a.
1510 // This is because on some targets (e.g. PowerPC) linker expects aliases in
1511 // such an order to generate correct TOC information.
1512 SmallVector
<const GlobalAlias
*, 16> AliasStack
;
1513 SmallPtrSet
<const GlobalAlias
*, 16> AliasVisited
;
1514 for (const auto &Alias
: M
.aliases()) {
1515 for (const GlobalAlias
*Cur
= &Alias
; Cur
;
1516 Cur
= dyn_cast
<GlobalAlias
>(Cur
->getAliasee())) {
1517 if (!AliasVisited
.insert(Cur
).second
)
1519 AliasStack
.push_back(Cur
);
1521 for (const GlobalAlias
*AncestorAlias
: llvm::reverse(AliasStack
))
1522 emitGlobalIndirectSymbol(M
, *AncestorAlias
);
1525 for (const auto &IFunc
: M
.ifuncs())
1526 emitGlobalIndirectSymbol(M
, IFunc
);
1528 GCModuleInfo
*MI
= getAnalysisIfAvailable
<GCModuleInfo
>();
1529 assert(MI
&& "AsmPrinter didn't require GCModuleInfo?");
1530 for (GCModuleInfo::iterator I
= MI
->end(), E
= MI
->begin(); I
!= E
; )
1531 if (GCMetadataPrinter
*MP
= GetOrCreateGCPrinter(**--I
))
1532 MP
->finishAssembly(M
, *MI
, *this);
1534 // Emit llvm.ident metadata in an '.ident' directive.
1535 EmitModuleIdents(M
);
1537 // Emit bytes for llvm.commandline metadata.
1538 EmitModuleCommandLines(M
);
1540 // Emit __morestack address if needed for indirect calls.
1541 if (MMI
->usesMorestackAddr()) {
1543 MCSection
*ReadOnlySection
= getObjFileLowering().getSectionForConstant(
1544 getDataLayout(), SectionKind::getReadOnly(),
1545 /*C=*/nullptr, Align
);
1546 OutStreamer
->SwitchSection(ReadOnlySection
);
1548 MCSymbol
*AddrSymbol
=
1549 OutContext
.getOrCreateSymbol(StringRef("__morestack_addr"));
1550 OutStreamer
->EmitLabel(AddrSymbol
);
1552 unsigned PtrSize
= MAI
->getCodePointerSize();
1553 OutStreamer
->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1557 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1558 // split-stack is used.
1559 if (TM
.getTargetTriple().isOSBinFormatELF() && MMI
->hasSplitStack()) {
1560 OutStreamer
->SwitchSection(
1561 OutContext
.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS
, 0));
1562 if (MMI
->hasNosplitStack())
1563 OutStreamer
->SwitchSection(
1564 OutContext
.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS
, 0));
1567 // If we don't have any trampolines, then we don't require stack memory
1568 // to be executable. Some targets have a directive to declare this.
1569 Function
*InitTrampolineIntrinsic
= M
.getFunction("llvm.init.trampoline");
1570 if (!InitTrampolineIntrinsic
|| InitTrampolineIntrinsic
->use_empty())
1571 if (MCSection
*S
= MAI
->getNonexecutableStackSection(OutContext
))
1572 OutStreamer
->SwitchSection(S
);
1574 if (TM
.getTargetTriple().isOSBinFormatCOFF()) {
1575 // Emit /EXPORT: flags for each exported global as necessary.
1576 const auto &TLOF
= getObjFileLowering();
1579 for (const GlobalValue
&GV
: M
.global_values()) {
1580 raw_string_ostream
OS(Flags
);
1581 TLOF
.emitLinkerFlagsForGlobal(OS
, &GV
);
1583 if (!Flags
.empty()) {
1584 OutStreamer
->SwitchSection(TLOF
.getDrectveSection());
1585 OutStreamer
->EmitBytes(Flags
);
1590 // Emit /INCLUDE: flags for each used global as necessary.
1591 if (const auto *LU
= M
.getNamedGlobal("llvm.used")) {
1592 assert(LU
->hasInitializer() &&
1593 "expected llvm.used to have an initializer");
1594 assert(isa
<ArrayType
>(LU
->getValueType()) &&
1595 "expected llvm.used to be an array type");
1596 if (const auto *A
= cast
<ConstantArray
>(LU
->getInitializer())) {
1597 for (const Value
*Op
: A
->operands()) {
1598 const auto *GV
= cast
<GlobalValue
>(Op
->stripPointerCasts());
1599 // Global symbols with internal or private linkage are not visible to
1600 // the linker, and thus would cause an error when the linker tried to
1601 // preserve the symbol due to the `/include:` directive.
1602 if (GV
->hasLocalLinkage())
1605 raw_string_ostream
OS(Flags
);
1606 TLOF
.emitLinkerFlagsForUsed(OS
, GV
);
1609 if (!Flags
.empty()) {
1610 OutStreamer
->SwitchSection(TLOF
.getDrectveSection());
1611 OutStreamer
->EmitBytes(Flags
);
1619 if (TM
.Options
.EmitAddrsig
) {
1620 // Emit address-significance attributes for all globals.
1621 OutStreamer
->EmitAddrsig();
1622 for (const GlobalValue
&GV
: M
.global_values())
1623 if (!GV
.use_empty() && !GV
.isThreadLocal() &&
1624 !GV
.hasDLLImportStorageClass() && !GV
.getName().startswith("llvm.") &&
1625 !GV
.hasAtLeastLocalUnnamedAddr())
1626 OutStreamer
->EmitAddrsigSym(getSymbol(&GV
));
1629 // Emit symbol partition specifications (ELF only).
1630 if (TM
.getTargetTriple().isOSBinFormatELF()) {
1631 unsigned UniqueID
= 0;
1632 for (const GlobalValue
&GV
: M
.global_values()) {
1633 if (!GV
.hasPartition() || GV
.isDeclarationForLinker() ||
1634 GV
.getVisibility() != GlobalValue::DefaultVisibility
)
1637 OutStreamer
->SwitchSection(OutContext
.getELFSection(
1638 ".llvm_sympart", ELF::SHT_LLVM_SYMPART
, 0, 0, "", ++UniqueID
));
1639 OutStreamer
->EmitBytes(GV
.getPartition());
1640 OutStreamer
->EmitZeros(1);
1641 OutStreamer
->EmitValue(
1642 MCSymbolRefExpr::create(getSymbol(&GV
), OutContext
),
1643 MAI
->getCodePointerSize());
1647 // Allow the target to emit any magic that it wants at the end of the file,
1648 // after everything else has gone out.
1649 EmitEndOfAsmFile(M
);
1653 OutStreamer
->Finish();
1654 OutStreamer
->reset();
1661 MCSymbol
*AsmPrinter::getCurExceptionSym() {
1662 if (!CurExceptionSym
)
1663 CurExceptionSym
= createTempSymbol("exception");
1664 return CurExceptionSym
;
1667 void AsmPrinter::SetupMachineFunction(MachineFunction
&MF
) {
1670 // Get the function symbol.
1671 if (MAI
->needsFunctionDescriptors()) {
1672 assert(TM
.getTargetTriple().isOSAIX() && "Function descriptor is only"
1673 " supported on AIX.");
1674 assert(CurrentFnDescSym
&& "The function descriptor symbol needs to be"
1675 " initalized first.");
1677 // Get the function entry point symbol.
1679 OutContext
.getOrCreateSymbol("." + CurrentFnDescSym
->getName());
1681 const Function
&F
= MF
.getFunction();
1682 MCSectionXCOFF
*FnEntryPointSec
=
1683 cast
<MCSectionXCOFF
>(getObjFileLowering().SectionForGlobal(&F
, TM
));
1684 // Set the containing csect.
1685 cast
<MCSymbolXCOFF
>(CurrentFnSym
)->setContainingCsect(FnEntryPointSec
);
1687 CurrentFnSym
= getSymbol(&MF
.getFunction());
1690 CurrentFnSymForSize
= CurrentFnSym
;
1691 CurrentFnBegin
= nullptr;
1692 CurExceptionSym
= nullptr;
1693 bool NeedsLocalForSize
= MAI
->needsLocalForSize();
1694 if (needFuncLabelsForEHOrDebugInfo(MF
, MMI
) || NeedsLocalForSize
||
1695 MF
.getTarget().Options
.EmitStackSizeSection
) {
1696 CurrentFnBegin
= createTempSymbol("func_begin");
1697 if (NeedsLocalForSize
)
1698 CurrentFnSymForSize
= CurrentFnBegin
;
1701 ORE
= &getAnalysis
<MachineOptimizationRemarkEmitterPass
>().getORE();
1706 // Keep track the alignment, constpool entries per Section.
1710 SmallVector
<unsigned, 4> CPEs
;
1712 SectionCPs(MCSection
*s
, unsigned a
) : S(s
), Alignment(a
) {}
1715 } // end anonymous namespace
1717 /// EmitConstantPool - Print to the current output stream assembly
1718 /// representations of the constants in the constant pool MCP. This is
1719 /// used to print out constants which have been "spilled to memory" by
1720 /// the code generator.
1721 void AsmPrinter::EmitConstantPool() {
1722 const MachineConstantPool
*MCP
= MF
->getConstantPool();
1723 const std::vector
<MachineConstantPoolEntry
> &CP
= MCP
->getConstants();
1724 if (CP
.empty()) return;
1726 // Calculate sections for constant pool entries. We collect entries to go into
1727 // the same section together to reduce amount of section switch statements.
1728 SmallVector
<SectionCPs
, 4> CPSections
;
1729 for (unsigned i
= 0, e
= CP
.size(); i
!= e
; ++i
) {
1730 const MachineConstantPoolEntry
&CPE
= CP
[i
];
1731 unsigned Align
= CPE
.getAlignment();
1733 SectionKind Kind
= CPE
.getSectionKind(&getDataLayout());
1735 const Constant
*C
= nullptr;
1736 if (!CPE
.isMachineConstantPoolEntry())
1737 C
= CPE
.Val
.ConstVal
;
1739 MCSection
*S
= getObjFileLowering().getSectionForConstant(getDataLayout(),
1742 // The number of sections are small, just do a linear search from the
1743 // last section to the first.
1745 unsigned SecIdx
= CPSections
.size();
1746 while (SecIdx
!= 0) {
1747 if (CPSections
[--SecIdx
].S
== S
) {
1753 SecIdx
= CPSections
.size();
1754 CPSections
.push_back(SectionCPs(S
, Align
));
1757 if (Align
> CPSections
[SecIdx
].Alignment
)
1758 CPSections
[SecIdx
].Alignment
= Align
;
1759 CPSections
[SecIdx
].CPEs
.push_back(i
);
1762 // Now print stuff into the calculated sections.
1763 const MCSection
*CurSection
= nullptr;
1764 unsigned Offset
= 0;
1765 for (unsigned i
= 0, e
= CPSections
.size(); i
!= e
; ++i
) {
1766 for (unsigned j
= 0, ee
= CPSections
[i
].CPEs
.size(); j
!= ee
; ++j
) {
1767 unsigned CPI
= CPSections
[i
].CPEs
[j
];
1768 MCSymbol
*Sym
= GetCPISymbol(CPI
);
1769 if (!Sym
->isUndefined())
1772 if (CurSection
!= CPSections
[i
].S
) {
1773 OutStreamer
->SwitchSection(CPSections
[i
].S
);
1774 EmitAlignment(Align(CPSections
[i
].Alignment
));
1775 CurSection
= CPSections
[i
].S
;
1779 MachineConstantPoolEntry CPE
= CP
[CPI
];
1781 // Emit inter-object padding for alignment.
1782 unsigned AlignMask
= CPE
.getAlignment() - 1;
1783 unsigned NewOffset
= (Offset
+ AlignMask
) & ~AlignMask
;
1784 OutStreamer
->EmitZeros(NewOffset
- Offset
);
1786 Type
*Ty
= CPE
.getType();
1787 Offset
= NewOffset
+ getDataLayout().getTypeAllocSize(Ty
);
1789 OutStreamer
->EmitLabel(Sym
);
1790 if (CPE
.isMachineConstantPoolEntry())
1791 EmitMachineConstantPoolValue(CPE
.Val
.MachineCPVal
);
1793 EmitGlobalConstant(getDataLayout(), CPE
.Val
.ConstVal
);
1798 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1799 /// by the current function to the current output stream.
1800 void AsmPrinter::EmitJumpTableInfo() {
1801 const DataLayout
&DL
= MF
->getDataLayout();
1802 const MachineJumpTableInfo
*MJTI
= MF
->getJumpTableInfo();
1804 if (MJTI
->getEntryKind() == MachineJumpTableInfo::EK_Inline
) return;
1805 const std::vector
<MachineJumpTableEntry
> &JT
= MJTI
->getJumpTables();
1806 if (JT
.empty()) return;
1808 // Pick the directive to use to print the jump table entries, and switch to
1809 // the appropriate section.
1810 const Function
&F
= MF
->getFunction();
1811 const TargetLoweringObjectFile
&TLOF
= getObjFileLowering();
1812 bool JTInDiffSection
= !TLOF
.shouldPutJumpTableInFunctionSection(
1813 MJTI
->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32
,
1815 if (JTInDiffSection
) {
1816 // Drop it in the readonly section.
1817 MCSection
*ReadOnlySection
= TLOF
.getSectionForJumpTable(F
, TM
);
1818 OutStreamer
->SwitchSection(ReadOnlySection
);
1821 EmitAlignment(Align(MJTI
->getEntryAlignment(DL
)));
1823 // Jump tables in code sections are marked with a data_region directive
1824 // where that's supported.
1825 if (!JTInDiffSection
)
1826 OutStreamer
->EmitDataRegion(MCDR_DataRegionJT32
);
1828 for (unsigned JTI
= 0, e
= JT
.size(); JTI
!= e
; ++JTI
) {
1829 const std::vector
<MachineBasicBlock
*> &JTBBs
= JT
[JTI
].MBBs
;
1831 // If this jump table was deleted, ignore it.
1832 if (JTBBs
.empty()) continue;
1834 // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1835 /// emit a .set directive for each unique entry.
1836 if (MJTI
->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32
&&
1837 MAI
->doesSetDirectiveSuppressReloc()) {
1838 SmallPtrSet
<const MachineBasicBlock
*, 16> EmittedSets
;
1839 const TargetLowering
*TLI
= MF
->getSubtarget().getTargetLowering();
1840 const MCExpr
*Base
= TLI
->getPICJumpTableRelocBaseExpr(MF
,JTI
,OutContext
);
1841 for (unsigned ii
= 0, ee
= JTBBs
.size(); ii
!= ee
; ++ii
) {
1842 const MachineBasicBlock
*MBB
= JTBBs
[ii
];
1843 if (!EmittedSets
.insert(MBB
).second
)
1846 // .set LJTSet, LBB32-base
1848 MCSymbolRefExpr::create(MBB
->getSymbol(), OutContext
);
1849 OutStreamer
->EmitAssignment(GetJTSetSymbol(JTI
, MBB
->getNumber()),
1850 MCBinaryExpr::createSub(LHS
, Base
,
1855 // On some targets (e.g. Darwin) we want to emit two consecutive labels
1856 // before each jump table. The first label is never referenced, but tells
1857 // the assembler and linker the extents of the jump table object. The
1858 // second label is actually referenced by the code.
1859 if (JTInDiffSection
&& DL
.hasLinkerPrivateGlobalPrefix())
1860 // FIXME: This doesn't have to have any specific name, just any randomly
1861 // named and numbered 'l' label would work. Simplify GetJTISymbol.
1862 OutStreamer
->EmitLabel(GetJTISymbol(JTI
, true));
1864 OutStreamer
->EmitLabel(GetJTISymbol(JTI
));
1866 for (unsigned ii
= 0, ee
= JTBBs
.size(); ii
!= ee
; ++ii
)
1867 EmitJumpTableEntry(MJTI
, JTBBs
[ii
], JTI
);
1869 if (!JTInDiffSection
)
1870 OutStreamer
->EmitDataRegion(MCDR_DataRegionEnd
);
1873 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1875 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo
*MJTI
,
1876 const MachineBasicBlock
*MBB
,
1877 unsigned UID
) const {
1878 assert(MBB
&& MBB
->getNumber() >= 0 && "Invalid basic block");
1879 const MCExpr
*Value
= nullptr;
1880 switch (MJTI
->getEntryKind()) {
1881 case MachineJumpTableInfo::EK_Inline
:
1882 llvm_unreachable("Cannot emit EK_Inline jump table entry");
1883 case MachineJumpTableInfo::EK_Custom32
:
1884 Value
= MF
->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1885 MJTI
, MBB
, UID
, OutContext
);
1887 case MachineJumpTableInfo::EK_BlockAddress
:
1888 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1890 Value
= MCSymbolRefExpr::create(MBB
->getSymbol(), OutContext
);
1892 case MachineJumpTableInfo::EK_GPRel32BlockAddress
: {
1893 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1894 // with a relocation as gp-relative, e.g.:
1896 MCSymbol
*MBBSym
= MBB
->getSymbol();
1897 OutStreamer
->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym
, OutContext
));
1901 case MachineJumpTableInfo::EK_GPRel64BlockAddress
: {
1902 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1903 // with a relocation as gp-relative, e.g.:
1905 MCSymbol
*MBBSym
= MBB
->getSymbol();
1906 OutStreamer
->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym
, OutContext
));
1910 case MachineJumpTableInfo::EK_LabelDifference32
: {
1911 // Each entry is the address of the block minus the address of the jump
1912 // table. This is used for PIC jump tables where gprel32 is not supported.
1914 // .word LBB123 - LJTI1_2
1915 // If the .set directive avoids relocations, this is emitted as:
1916 // .set L4_5_set_123, LBB123 - LJTI1_2
1917 // .word L4_5_set_123
1918 if (MAI
->doesSetDirectiveSuppressReloc()) {
1919 Value
= MCSymbolRefExpr::create(GetJTSetSymbol(UID
, MBB
->getNumber()),
1923 Value
= MCSymbolRefExpr::create(MBB
->getSymbol(), OutContext
);
1924 const TargetLowering
*TLI
= MF
->getSubtarget().getTargetLowering();
1925 const MCExpr
*Base
= TLI
->getPICJumpTableRelocBaseExpr(MF
, UID
, OutContext
);
1926 Value
= MCBinaryExpr::createSub(Value
, Base
, OutContext
);
1931 assert(Value
&& "Unknown entry kind!");
1933 unsigned EntrySize
= MJTI
->getEntrySize(getDataLayout());
1934 OutStreamer
->EmitValue(Value
, EntrySize
);
1937 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1938 /// special global used by LLVM. If so, emit it and return true, otherwise
1939 /// do nothing and return false.
1940 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable
*GV
) {
1941 if (GV
->getName() == "llvm.used") {
1942 if (MAI
->hasNoDeadStrip()) // No need to emit this at all.
1943 EmitLLVMUsedList(cast
<ConstantArray
>(GV
->getInitializer()));
1947 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
1948 if (GV
->getSection() == "llvm.metadata" ||
1949 GV
->hasAvailableExternallyLinkage())
1952 if (!GV
->hasAppendingLinkage()) return false;
1954 assert(GV
->hasInitializer() && "Not a special LLVM global!");
1956 if (GV
->getName() == "llvm.global_ctors") {
1957 EmitXXStructorList(GV
->getParent()->getDataLayout(), GV
->getInitializer(),
1963 if (GV
->getName() == "llvm.global_dtors") {
1964 EmitXXStructorList(GV
->getParent()->getDataLayout(), GV
->getInitializer(),
1965 /* isCtor */ false);
1970 report_fatal_error("unknown special variable");
1973 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1974 /// global in the specified llvm.used list.
1975 void AsmPrinter::EmitLLVMUsedList(const ConstantArray
*InitList
) {
1976 // Should be an array of 'i8*'.
1977 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
) {
1978 const GlobalValue
*GV
=
1979 dyn_cast
<GlobalValue
>(InitList
->getOperand(i
)->stripPointerCasts());
1981 OutStreamer
->EmitSymbolAttribute(getSymbol(GV
), MCSA_NoDeadStrip
);
1989 Constant
*Func
= nullptr;
1990 GlobalValue
*ComdatKey
= nullptr;
1992 Structor() = default;
1995 } // end anonymous namespace
1997 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1999 void AsmPrinter::EmitXXStructorList(const DataLayout
&DL
, const Constant
*List
,
2001 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the
2003 if (!isa
<ConstantArray
>(List
)) return;
2005 // Sanity check the structors list.
2006 const ConstantArray
*InitList
= dyn_cast
<ConstantArray
>(List
);
2007 if (!InitList
) return; // Not an array!
2008 StructType
*ETy
= dyn_cast
<StructType
>(InitList
->getType()->getElementType());
2009 if (!ETy
|| ETy
->getNumElements() != 3 ||
2010 !isa
<IntegerType
>(ETy
->getTypeAtIndex(0U)) ||
2011 !isa
<PointerType
>(ETy
->getTypeAtIndex(1U)) ||
2012 !isa
<PointerType
>(ETy
->getTypeAtIndex(2U)))
2013 return; // Not (int, ptr, ptr).
2015 // Gather the structors in a form that's convenient for sorting by priority.
2016 SmallVector
<Structor
, 8> Structors
;
2017 for (Value
*O
: InitList
->operands()) {
2018 ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(O
);
2019 if (!CS
) continue; // Malformed.
2020 if (CS
->getOperand(1)->isNullValue())
2021 break; // Found a null terminator, skip the rest.
2022 ConstantInt
*Priority
= dyn_cast
<ConstantInt
>(CS
->getOperand(0));
2023 if (!Priority
) continue; // Malformed.
2024 Structors
.push_back(Structor());
2025 Structor
&S
= Structors
.back();
2026 S
.Priority
= Priority
->getLimitedValue(65535);
2027 S
.Func
= CS
->getOperand(1);
2028 if (!CS
->getOperand(2)->isNullValue())
2030 dyn_cast
<GlobalValue
>(CS
->getOperand(2)->stripPointerCasts());
2033 // Emit the function pointers in the target-specific order
2034 llvm::stable_sort(Structors
, [](const Structor
&L
, const Structor
&R
) {
2035 return L
.Priority
< R
.Priority
;
2037 const Align Align
= DL
.getPointerPrefAlignment();
2038 for (Structor
&S
: Structors
) {
2039 const TargetLoweringObjectFile
&Obj
= getObjFileLowering();
2040 const MCSymbol
*KeySym
= nullptr;
2041 if (GlobalValue
*GV
= S
.ComdatKey
) {
2042 if (GV
->isDeclarationForLinker())
2043 // If the associated variable is not defined in this module
2044 // (it might be available_externally, or have been an
2045 // available_externally definition that was dropped by the
2046 // EliminateAvailableExternally pass), some other TU
2047 // will provide its dynamic initializer.
2050 KeySym
= getSymbol(GV
);
2052 MCSection
*OutputSection
=
2053 (isCtor
? Obj
.getStaticCtorSection(S
.Priority
, KeySym
)
2054 : Obj
.getStaticDtorSection(S
.Priority
, KeySym
));
2055 OutStreamer
->SwitchSection(OutputSection
);
2056 if (OutStreamer
->getCurrentSection() != OutStreamer
->getPreviousSection())
2057 EmitAlignment(Align
);
2058 EmitXXStructor(DL
, S
.Func
);
2062 void AsmPrinter::EmitModuleIdents(Module
&M
) {
2063 if (!MAI
->hasIdentDirective())
2066 if (const NamedMDNode
*NMD
= M
.getNamedMetadata("llvm.ident")) {
2067 for (unsigned i
= 0, e
= NMD
->getNumOperands(); i
!= e
; ++i
) {
2068 const MDNode
*N
= NMD
->getOperand(i
);
2069 assert(N
->getNumOperands() == 1 &&
2070 "llvm.ident metadata entry can have only one operand");
2071 const MDString
*S
= cast
<MDString
>(N
->getOperand(0));
2072 OutStreamer
->EmitIdent(S
->getString());
2077 void AsmPrinter::EmitModuleCommandLines(Module
&M
) {
2078 MCSection
*CommandLine
= getObjFileLowering().getSectionForCommandLines();
2082 const NamedMDNode
*NMD
= M
.getNamedMetadata("llvm.commandline");
2083 if (!NMD
|| !NMD
->getNumOperands())
2086 OutStreamer
->PushSection();
2087 OutStreamer
->SwitchSection(CommandLine
);
2088 OutStreamer
->EmitZeros(1);
2089 for (unsigned i
= 0, e
= NMD
->getNumOperands(); i
!= e
; ++i
) {
2090 const MDNode
*N
= NMD
->getOperand(i
);
2091 assert(N
->getNumOperands() == 1 &&
2092 "llvm.commandline metadata entry can have only one operand");
2093 const MDString
*S
= cast
<MDString
>(N
->getOperand(0));
2094 OutStreamer
->EmitBytes(S
->getString());
2095 OutStreamer
->EmitZeros(1);
2097 OutStreamer
->PopSection();
2100 //===--------------------------------------------------------------------===//
2101 // Emission and print routines
2104 /// Emit a byte directive and value.
2106 void AsmPrinter::emitInt8(int Value
) const {
2107 OutStreamer
->EmitIntValue(Value
, 1);
2110 /// Emit a short directive and value.
2111 void AsmPrinter::emitInt16(int Value
) const {
2112 OutStreamer
->EmitIntValue(Value
, 2);
2115 /// Emit a long directive and value.
2116 void AsmPrinter::emitInt32(int Value
) const {
2117 OutStreamer
->EmitIntValue(Value
, 4);
2120 /// Emit a long long directive and value.
2121 void AsmPrinter::emitInt64(uint64_t Value
) const {
2122 OutStreamer
->EmitIntValue(Value
, 8);
2125 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2126 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2127 /// .set if it avoids relocations.
2128 void AsmPrinter::EmitLabelDifference(const MCSymbol
*Hi
, const MCSymbol
*Lo
,
2129 unsigned Size
) const {
2130 OutStreamer
->emitAbsoluteSymbolDiff(Hi
, Lo
, Size
);
2133 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2134 /// where the size in bytes of the directive is specified by Size and Label
2135 /// specifies the label. This implicitly uses .set if it is available.
2136 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol
*Label
, uint64_t Offset
,
2138 bool IsSectionRelative
) const {
2139 if (MAI
->needsDwarfSectionOffsetDirective() && IsSectionRelative
) {
2140 OutStreamer
->EmitCOFFSecRel32(Label
, Offset
);
2142 OutStreamer
->EmitZeros(Size
- 4);
2146 // Emit Label+Offset (or just Label if Offset is zero)
2147 const MCExpr
*Expr
= MCSymbolRefExpr::create(Label
, OutContext
);
2149 Expr
= MCBinaryExpr::createAdd(
2150 Expr
, MCConstantExpr::create(Offset
, OutContext
), OutContext
);
2152 OutStreamer
->EmitValue(Expr
, Size
);
2155 //===----------------------------------------------------------------------===//
2157 // EmitAlignment - Emit an alignment directive to the specified power of
2158 // two boundary. If a global value is specified, and if that global has
2159 // an explicit alignment requested, it will override the alignment request
2160 // if required for correctness.
2161 void AsmPrinter::EmitAlignment(Align Alignment
, const GlobalObject
*GV
) const {
2163 Alignment
= getGVAlignment(GV
, GV
->getParent()->getDataLayout(), Alignment
);
2165 if (Alignment
== Align::None())
2166 return; // 1-byte aligned: no need to emit alignment.
2168 if (getCurrentSection()->getKind().isText())
2169 OutStreamer
->EmitCodeAlignment(Alignment
.value());
2171 OutStreamer
->EmitValueToAlignment(Alignment
.value());
2174 //===----------------------------------------------------------------------===//
2175 // Constant emission.
2176 //===----------------------------------------------------------------------===//
2178 const MCExpr
*AsmPrinter::lowerConstant(const Constant
*CV
) {
2179 MCContext
&Ctx
= OutContext
;
2181 if (CV
->isNullValue() || isa
<UndefValue
>(CV
))
2182 return MCConstantExpr::create(0, Ctx
);
2184 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
))
2185 return MCConstantExpr::create(CI
->getZExtValue(), Ctx
);
2187 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CV
))
2188 return MCSymbolRefExpr::create(getSymbol(GV
), Ctx
);
2190 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(CV
))
2191 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA
), Ctx
);
2193 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
);
2195 llvm_unreachable("Unknown constant value to lower!");
2198 switch (CE
->getOpcode()) {
2200 // If the code isn't optimized, there may be outstanding folding
2201 // opportunities. Attempt to fold the expression using DataLayout as a
2202 // last resort before giving up.
2203 if (Constant
*C
= ConstantFoldConstant(CE
, getDataLayout()))
2205 return lowerConstant(C
);
2207 // Otherwise report the problem to the user.
2210 raw_string_ostream
OS(S
);
2211 OS
<< "Unsupported expression in static initializer: ";
2212 CE
->printAsOperand(OS
, /*PrintType=*/false,
2213 !MF
? nullptr : MF
->getFunction().getParent());
2214 report_fatal_error(OS
.str());
2216 case Instruction::GetElementPtr
: {
2217 // Generate a symbolic expression for the byte address
2218 APInt
OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE
->getType()), 0);
2219 cast
<GEPOperator
>(CE
)->accumulateConstantOffset(getDataLayout(), OffsetAI
);
2221 const MCExpr
*Base
= lowerConstant(CE
->getOperand(0));
2225 int64_t Offset
= OffsetAI
.getSExtValue();
2226 return MCBinaryExpr::createAdd(Base
, MCConstantExpr::create(Offset
, Ctx
),
2230 case Instruction::Trunc
:
2231 // We emit the value and depend on the assembler to truncate the generated
2232 // expression properly. This is important for differences between
2233 // blockaddress labels. Since the two labels are in the same function, it
2234 // is reasonable to treat their delta as a 32-bit value.
2236 case Instruction::BitCast
:
2237 return lowerConstant(CE
->getOperand(0));
2239 case Instruction::IntToPtr
: {
2240 const DataLayout
&DL
= getDataLayout();
2242 // Handle casts to pointers by changing them into casts to the appropriate
2243 // integer type. This promotes constant folding and simplifies this code.
2244 Constant
*Op
= CE
->getOperand(0);
2245 Op
= ConstantExpr::getIntegerCast(Op
, DL
.getIntPtrType(CV
->getType()),
2247 return lowerConstant(Op
);
2250 case Instruction::PtrToInt
: {
2251 const DataLayout
&DL
= getDataLayout();
2253 // Support only foldable casts to/from pointers that can be eliminated by
2254 // changing the pointer to the appropriately sized integer type.
2255 Constant
*Op
= CE
->getOperand(0);
2256 Type
*Ty
= CE
->getType();
2258 const MCExpr
*OpExpr
= lowerConstant(Op
);
2260 // We can emit the pointer value into this slot if the slot is an
2261 // integer slot equal to the size of the pointer.
2263 // If the pointer is larger than the resultant integer, then
2264 // as with Trunc just depend on the assembler to truncate it.
2265 if (DL
.getTypeAllocSize(Ty
) <= DL
.getTypeAllocSize(Op
->getType()))
2268 // Otherwise the pointer is smaller than the resultant integer, mask off
2269 // the high bits so we are sure to get a proper truncation if the input is
2271 unsigned InBits
= DL
.getTypeAllocSizeInBits(Op
->getType());
2272 const MCExpr
*MaskExpr
= MCConstantExpr::create(~0ULL >> (64-InBits
), Ctx
);
2273 return MCBinaryExpr::createAnd(OpExpr
, MaskExpr
, Ctx
);
2276 case Instruction::Sub
: {
2279 if (IsConstantOffsetFromGlobal(CE
->getOperand(0), LHSGV
, LHSOffset
,
2283 if (IsConstantOffsetFromGlobal(CE
->getOperand(1), RHSGV
, RHSOffset
,
2285 const MCExpr
*RelocExpr
=
2286 getObjFileLowering().lowerRelativeReference(LHSGV
, RHSGV
, TM
);
2288 RelocExpr
= MCBinaryExpr::createSub(
2289 MCSymbolRefExpr::create(getSymbol(LHSGV
), Ctx
),
2290 MCSymbolRefExpr::create(getSymbol(RHSGV
), Ctx
), Ctx
);
2291 int64_t Addend
= (LHSOffset
- RHSOffset
).getSExtValue();
2293 RelocExpr
= MCBinaryExpr::createAdd(
2294 RelocExpr
, MCConstantExpr::create(Addend
, Ctx
), Ctx
);
2302 // The MC library also has a right-shift operator, but it isn't consistently
2303 // signed or unsigned between different targets.
2304 case Instruction::Add
:
2305 case Instruction::Mul
:
2306 case Instruction::SDiv
:
2307 case Instruction::SRem
:
2308 case Instruction::Shl
:
2309 case Instruction::And
:
2310 case Instruction::Or
:
2311 case Instruction::Xor
: {
2312 const MCExpr
*LHS
= lowerConstant(CE
->getOperand(0));
2313 const MCExpr
*RHS
= lowerConstant(CE
->getOperand(1));
2314 switch (CE
->getOpcode()) {
2315 default: llvm_unreachable("Unknown binary operator constant cast expr");
2316 case Instruction::Add
: return MCBinaryExpr::createAdd(LHS
, RHS
, Ctx
);
2317 case Instruction::Sub
: return MCBinaryExpr::createSub(LHS
, RHS
, Ctx
);
2318 case Instruction::Mul
: return MCBinaryExpr::createMul(LHS
, RHS
, Ctx
);
2319 case Instruction::SDiv
: return MCBinaryExpr::createDiv(LHS
, RHS
, Ctx
);
2320 case Instruction::SRem
: return MCBinaryExpr::createMod(LHS
, RHS
, Ctx
);
2321 case Instruction::Shl
: return MCBinaryExpr::createShl(LHS
, RHS
, Ctx
);
2322 case Instruction::And
: return MCBinaryExpr::createAnd(LHS
, RHS
, Ctx
);
2323 case Instruction::Or
: return MCBinaryExpr::createOr (LHS
, RHS
, Ctx
);
2324 case Instruction::Xor
: return MCBinaryExpr::createXor(LHS
, RHS
, Ctx
);
2330 static void emitGlobalConstantImpl(const DataLayout
&DL
, const Constant
*C
,
2332 const Constant
*BaseCV
= nullptr,
2333 uint64_t Offset
= 0);
2335 static void emitGlobalConstantFP(const ConstantFP
*CFP
, AsmPrinter
&AP
);
2336 static void emitGlobalConstantFP(APFloat APF
, Type
*ET
, AsmPrinter
&AP
);
2338 /// isRepeatedByteSequence - Determine whether the given value is
2339 /// composed of a repeated sequence of identical bytes and return the
2340 /// byte value. If it is not a repeated sequence, return -1.
2341 static int isRepeatedByteSequence(const ConstantDataSequential
*V
) {
2342 StringRef Data
= V
->getRawDataValues();
2343 assert(!Data
.empty() && "Empty aggregates should be CAZ node");
2345 for (unsigned i
= 1, e
= Data
.size(); i
!= e
; ++i
)
2346 if (Data
[i
] != C
) return -1;
2347 return static_cast<uint8_t>(C
); // Ensure 255 is not returned as -1.
2350 /// isRepeatedByteSequence - Determine whether the given value is
2351 /// composed of a repeated sequence of identical bytes and return the
2352 /// byte value. If it is not a repeated sequence, return -1.
2353 static int isRepeatedByteSequence(const Value
*V
, const DataLayout
&DL
) {
2354 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
2355 uint64_t Size
= DL
.getTypeAllocSizeInBits(V
->getType());
2356 assert(Size
% 8 == 0);
2358 // Extend the element to take zero padding into account.
2359 APInt Value
= CI
->getValue().zextOrSelf(Size
);
2360 if (!Value
.isSplat(8))
2363 return Value
.zextOrTrunc(8).getZExtValue();
2365 if (const ConstantArray
*CA
= dyn_cast
<ConstantArray
>(V
)) {
2366 // Make sure all array elements are sequences of the same repeated
2368 assert(CA
->getNumOperands() != 0 && "Should be a CAZ");
2369 Constant
*Op0
= CA
->getOperand(0);
2370 int Byte
= isRepeatedByteSequence(Op0
, DL
);
2374 // All array elements must be equal.
2375 for (unsigned i
= 1, e
= CA
->getNumOperands(); i
!= e
; ++i
)
2376 if (CA
->getOperand(i
) != Op0
)
2381 if (const ConstantDataSequential
*CDS
= dyn_cast
<ConstantDataSequential
>(V
))
2382 return isRepeatedByteSequence(CDS
);
2387 static void emitGlobalConstantDataSequential(const DataLayout
&DL
,
2388 const ConstantDataSequential
*CDS
,
2390 // See if we can aggregate this into a .fill, if so, emit it as such.
2391 int Value
= isRepeatedByteSequence(CDS
, DL
);
2393 uint64_t Bytes
= DL
.getTypeAllocSize(CDS
->getType());
2394 // Don't emit a 1-byte object as a .fill.
2396 return AP
.OutStreamer
->emitFill(Bytes
, Value
);
2399 // If this can be emitted with .ascii/.asciz, emit it as such.
2400 if (CDS
->isString())
2401 return AP
.OutStreamer
->EmitBytes(CDS
->getAsString());
2403 // Otherwise, emit the values in successive locations.
2404 unsigned ElementByteSize
= CDS
->getElementByteSize();
2405 if (isa
<IntegerType
>(CDS
->getElementType())) {
2406 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
) {
2408 AP
.OutStreamer
->GetCommentOS() << format("0x%" PRIx64
"\n",
2409 CDS
->getElementAsInteger(i
));
2410 AP
.OutStreamer
->EmitIntValue(CDS
->getElementAsInteger(i
),
2414 Type
*ET
= CDS
->getElementType();
2415 for (unsigned I
= 0, E
= CDS
->getNumElements(); I
!= E
; ++I
)
2416 emitGlobalConstantFP(CDS
->getElementAsAPFloat(I
), ET
, AP
);
2419 unsigned Size
= DL
.getTypeAllocSize(CDS
->getType());
2420 unsigned EmittedSize
= DL
.getTypeAllocSize(CDS
->getType()->getElementType()) *
2421 CDS
->getNumElements();
2422 assert(EmittedSize
<= Size
&& "Size cannot be less than EmittedSize!");
2423 if (unsigned Padding
= Size
- EmittedSize
)
2424 AP
.OutStreamer
->EmitZeros(Padding
);
2427 static void emitGlobalConstantArray(const DataLayout
&DL
,
2428 const ConstantArray
*CA
, AsmPrinter
&AP
,
2429 const Constant
*BaseCV
, uint64_t Offset
) {
2430 // See if we can aggregate some values. Make sure it can be
2431 // represented as a series of bytes of the constant value.
2432 int Value
= isRepeatedByteSequence(CA
, DL
);
2435 uint64_t Bytes
= DL
.getTypeAllocSize(CA
->getType());
2436 AP
.OutStreamer
->emitFill(Bytes
, Value
);
2439 for (unsigned i
= 0, e
= CA
->getNumOperands(); i
!= e
; ++i
) {
2440 emitGlobalConstantImpl(DL
, CA
->getOperand(i
), AP
, BaseCV
, Offset
);
2441 Offset
+= DL
.getTypeAllocSize(CA
->getOperand(i
)->getType());
2446 static void emitGlobalConstantVector(const DataLayout
&DL
,
2447 const ConstantVector
*CV
, AsmPrinter
&AP
) {
2448 for (unsigned i
= 0, e
= CV
->getType()->getNumElements(); i
!= e
; ++i
)
2449 emitGlobalConstantImpl(DL
, CV
->getOperand(i
), AP
);
2451 unsigned Size
= DL
.getTypeAllocSize(CV
->getType());
2452 unsigned EmittedSize
= DL
.getTypeAllocSize(CV
->getType()->getElementType()) *
2453 CV
->getType()->getNumElements();
2454 if (unsigned Padding
= Size
- EmittedSize
)
2455 AP
.OutStreamer
->EmitZeros(Padding
);
2458 static void emitGlobalConstantStruct(const DataLayout
&DL
,
2459 const ConstantStruct
*CS
, AsmPrinter
&AP
,
2460 const Constant
*BaseCV
, uint64_t Offset
) {
2461 // Print the fields in successive locations. Pad to align if needed!
2462 unsigned Size
= DL
.getTypeAllocSize(CS
->getType());
2463 const StructLayout
*Layout
= DL
.getStructLayout(CS
->getType());
2464 uint64_t SizeSoFar
= 0;
2465 for (unsigned i
= 0, e
= CS
->getNumOperands(); i
!= e
; ++i
) {
2466 const Constant
*Field
= CS
->getOperand(i
);
2468 // Print the actual field value.
2469 emitGlobalConstantImpl(DL
, Field
, AP
, BaseCV
, Offset
+ SizeSoFar
);
2471 // Check if padding is needed and insert one or more 0s.
2472 uint64_t FieldSize
= DL
.getTypeAllocSize(Field
->getType());
2473 uint64_t PadSize
= ((i
== e
-1 ? Size
: Layout
->getElementOffset(i
+1))
2474 - Layout
->getElementOffset(i
)) - FieldSize
;
2475 SizeSoFar
+= FieldSize
+ PadSize
;
2477 // Insert padding - this may include padding to increase the size of the
2478 // current field up to the ABI size (if the struct is not packed) as well
2479 // as padding to ensure that the next field starts at the right offset.
2480 AP
.OutStreamer
->EmitZeros(PadSize
);
2482 assert(SizeSoFar
== Layout
->getSizeInBytes() &&
2483 "Layout of constant struct may be incorrect!");
2486 static void emitGlobalConstantFP(APFloat APF
, Type
*ET
, AsmPrinter
&AP
) {
2487 assert(ET
&& "Unknown float type");
2488 APInt API
= APF
.bitcastToAPInt();
2490 // First print a comment with what we think the original floating-point value
2491 // should have been.
2492 if (AP
.isVerbose()) {
2493 SmallString
<8> StrVal
;
2494 APF
.toString(StrVal
);
2495 ET
->print(AP
.OutStreamer
->GetCommentOS());
2496 AP
.OutStreamer
->GetCommentOS() << ' ' << StrVal
<< '\n';
2499 // Now iterate through the APInt chunks, emitting them in endian-correct
2500 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2502 unsigned NumBytes
= API
.getBitWidth() / 8;
2503 unsigned TrailingBytes
= NumBytes
% sizeof(uint64_t);
2504 const uint64_t *p
= API
.getRawData();
2506 // PPC's long double has odd notions of endianness compared to how LLVM
2507 // handles it: p[0] goes first for *big* endian on PPC.
2508 if (AP
.getDataLayout().isBigEndian() && !ET
->isPPC_FP128Ty()) {
2509 int Chunk
= API
.getNumWords() - 1;
2512 AP
.OutStreamer
->EmitIntValue(p
[Chunk
--], TrailingBytes
);
2514 for (; Chunk
>= 0; --Chunk
)
2515 AP
.OutStreamer
->EmitIntValue(p
[Chunk
], sizeof(uint64_t));
2518 for (Chunk
= 0; Chunk
< NumBytes
/ sizeof(uint64_t); ++Chunk
)
2519 AP
.OutStreamer
->EmitIntValue(p
[Chunk
], sizeof(uint64_t));
2522 AP
.OutStreamer
->EmitIntValue(p
[Chunk
], TrailingBytes
);
2525 // Emit the tail padding for the long double.
2526 const DataLayout
&DL
= AP
.getDataLayout();
2527 AP
.OutStreamer
->EmitZeros(DL
.getTypeAllocSize(ET
) - DL
.getTypeStoreSize(ET
));
2530 static void emitGlobalConstantFP(const ConstantFP
*CFP
, AsmPrinter
&AP
) {
2531 emitGlobalConstantFP(CFP
->getValueAPF(), CFP
->getType(), AP
);
2534 static void emitGlobalConstantLargeInt(const ConstantInt
*CI
, AsmPrinter
&AP
) {
2535 const DataLayout
&DL
= AP
.getDataLayout();
2536 unsigned BitWidth
= CI
->getBitWidth();
2538 // Copy the value as we may massage the layout for constants whose bit width
2539 // is not a multiple of 64-bits.
2540 APInt
Realigned(CI
->getValue());
2541 uint64_t ExtraBits
= 0;
2542 unsigned ExtraBitsSize
= BitWidth
& 63;
2544 if (ExtraBitsSize
) {
2545 // The bit width of the data is not a multiple of 64-bits.
2546 // The extra bits are expected to be at the end of the chunk of the memory.
2548 // * Nothing to be done, just record the extra bits to emit.
2550 // * Record the extra bits to emit.
2551 // * Realign the raw data to emit the chunks of 64-bits.
2552 if (DL
.isBigEndian()) {
2553 // Basically the structure of the raw data is a chunk of 64-bits cells:
2554 // 0 1 BitWidth / 64
2555 // [chunk1][chunk2] ... [chunkN].
2556 // The most significant chunk is chunkN and it should be emitted first.
2557 // However, due to the alignment issue chunkN contains useless bits.
2558 // Realign the chunks so that they contain only useless information:
2559 // ExtraBits 0 1 (BitWidth / 64) - 1
2560 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2561 ExtraBits
= Realigned
.getRawData()[0] &
2562 (((uint64_t)-1) >> (64 - ExtraBitsSize
));
2563 Realigned
.lshrInPlace(ExtraBitsSize
);
2565 ExtraBits
= Realigned
.getRawData()[BitWidth
/ 64];
2568 // We don't expect assemblers to support integer data directives
2569 // for more than 64 bits, so we emit the data in at most 64-bit
2570 // quantities at a time.
2571 const uint64_t *RawData
= Realigned
.getRawData();
2572 for (unsigned i
= 0, e
= BitWidth
/ 64; i
!= e
; ++i
) {
2573 uint64_t Val
= DL
.isBigEndian() ? RawData
[e
- i
- 1] : RawData
[i
];
2574 AP
.OutStreamer
->EmitIntValue(Val
, 8);
2577 if (ExtraBitsSize
) {
2578 // Emit the extra bits after the 64-bits chunks.
2580 // Emit a directive that fills the expected size.
2581 uint64_t Size
= AP
.getDataLayout().getTypeAllocSize(CI
->getType());
2582 Size
-= (BitWidth
/ 64) * 8;
2583 assert(Size
&& Size
* 8 >= ExtraBitsSize
&&
2584 (ExtraBits
& (((uint64_t)-1) >> (64 - ExtraBitsSize
)))
2585 == ExtraBits
&& "Directive too small for extra bits.");
2586 AP
.OutStreamer
->EmitIntValue(ExtraBits
, Size
);
2590 /// Transform a not absolute MCExpr containing a reference to a GOT
2591 /// equivalent global, by a target specific GOT pc relative access to the
2593 static void handleIndirectSymViaGOTPCRel(AsmPrinter
&AP
, const MCExpr
**ME
,
2594 const Constant
*BaseCst
,
2596 // The global @foo below illustrates a global that uses a got equivalent.
2598 // @bar = global i32 42
2599 // @gotequiv = private unnamed_addr constant i32* @bar
2600 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2601 // i64 ptrtoint (i32* @foo to i64))
2604 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2605 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2608 // foo = cstexpr, where
2609 // cstexpr := <gotequiv> - "." + <cst>
2610 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2612 // After canonicalization by evaluateAsRelocatable `ME` turns into:
2614 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2615 // gotpcrelcst := <offset from @foo base> + <cst>
2617 if (!(*ME
)->evaluateAsRelocatable(MV
, nullptr, nullptr) || MV
.isAbsolute())
2619 const MCSymbolRefExpr
*SymA
= MV
.getSymA();
2623 // Check that GOT equivalent symbol is cached.
2624 const MCSymbol
*GOTEquivSym
= &SymA
->getSymbol();
2625 if (!AP
.GlobalGOTEquivs
.count(GOTEquivSym
))
2628 const GlobalValue
*BaseGV
= dyn_cast_or_null
<GlobalValue
>(BaseCst
);
2632 // Check for a valid base symbol
2633 const MCSymbol
*BaseSym
= AP
.getSymbol(BaseGV
);
2634 const MCSymbolRefExpr
*SymB
= MV
.getSymB();
2636 if (!SymB
|| BaseSym
!= &SymB
->getSymbol())
2639 // Make sure to match:
2641 // gotpcrelcst := <offset from @foo base> + <cst>
2643 // If gotpcrelcst is positive it means that we can safely fold the pc rel
2644 // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2645 // if the target knows how to encode it.
2646 int64_t GOTPCRelCst
= Offset
+ MV
.getConstant();
2647 if (GOTPCRelCst
< 0)
2649 if (!AP
.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst
!= 0)
2652 // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2659 // .long gotequiv - "." + <cst>
2661 // is replaced by the target specific equivalent to:
2666 // .long bar@GOTPCREL+<gotpcrelcst>
2667 AsmPrinter::GOTEquivUsePair Result
= AP
.GlobalGOTEquivs
[GOTEquivSym
];
2668 const GlobalVariable
*GV
= Result
.first
;
2669 int NumUses
= (int)Result
.second
;
2670 const GlobalValue
*FinalGV
= dyn_cast
<GlobalValue
>(GV
->getOperand(0));
2671 const MCSymbol
*FinalSym
= AP
.getSymbol(FinalGV
);
2672 *ME
= AP
.getObjFileLowering().getIndirectSymViaGOTPCRel(
2673 FinalGV
, FinalSym
, MV
, Offset
, AP
.MMI
, *AP
.OutStreamer
);
2675 // Update GOT equivalent usage information
2678 AP
.GlobalGOTEquivs
[GOTEquivSym
] = std::make_pair(GV
, NumUses
);
2681 static void emitGlobalConstantImpl(const DataLayout
&DL
, const Constant
*CV
,
2682 AsmPrinter
&AP
, const Constant
*BaseCV
,
2684 uint64_t Size
= DL
.getTypeAllocSize(CV
->getType());
2686 // Globals with sub-elements such as combinations of arrays and structs
2687 // are handled recursively by emitGlobalConstantImpl. Keep track of the
2688 // constant symbol base and the current position with BaseCV and Offset.
2689 if (!BaseCV
&& CV
->hasOneUse())
2690 BaseCV
= dyn_cast
<Constant
>(CV
->user_back());
2692 if (isa
<ConstantAggregateZero
>(CV
) || isa
<UndefValue
>(CV
))
2693 return AP
.OutStreamer
->EmitZeros(Size
);
2695 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
2702 AP
.OutStreamer
->GetCommentOS() << format("0x%" PRIx64
"\n",
2703 CI
->getZExtValue());
2704 AP
.OutStreamer
->EmitIntValue(CI
->getZExtValue(), Size
);
2707 emitGlobalConstantLargeInt(CI
, AP
);
2712 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
))
2713 return emitGlobalConstantFP(CFP
, AP
);
2715 if (isa
<ConstantPointerNull
>(CV
)) {
2716 AP
.OutStreamer
->EmitIntValue(0, Size
);
2720 if (const ConstantDataSequential
*CDS
= dyn_cast
<ConstantDataSequential
>(CV
))
2721 return emitGlobalConstantDataSequential(DL
, CDS
, AP
);
2723 if (const ConstantArray
*CVA
= dyn_cast
<ConstantArray
>(CV
))
2724 return emitGlobalConstantArray(DL
, CVA
, AP
, BaseCV
, Offset
);
2726 if (const ConstantStruct
*CVS
= dyn_cast
<ConstantStruct
>(CV
))
2727 return emitGlobalConstantStruct(DL
, CVS
, AP
, BaseCV
, Offset
);
2729 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
2730 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2732 if (CE
->getOpcode() == Instruction::BitCast
)
2733 return emitGlobalConstantImpl(DL
, CE
->getOperand(0), AP
);
2736 // If the constant expression's size is greater than 64-bits, then we have
2737 // to emit the value in chunks. Try to constant fold the value and emit it
2739 Constant
*New
= ConstantFoldConstant(CE
, DL
);
2740 if (New
&& New
!= CE
)
2741 return emitGlobalConstantImpl(DL
, New
, AP
);
2745 if (const ConstantVector
*V
= dyn_cast
<ConstantVector
>(CV
))
2746 return emitGlobalConstantVector(DL
, V
, AP
);
2748 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
2749 // thread the streamer with EmitValue.
2750 const MCExpr
*ME
= AP
.lowerConstant(CV
);
2752 // Since lowerConstant already folded and got rid of all IR pointer and
2753 // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2755 if (AP
.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2756 handleIndirectSymViaGOTPCRel(AP
, &ME
, BaseCV
, Offset
);
2758 AP
.OutStreamer
->EmitValue(ME
, Size
);
2761 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2762 void AsmPrinter::EmitGlobalConstant(const DataLayout
&DL
, const Constant
*CV
) {
2763 uint64_t Size
= DL
.getTypeAllocSize(CV
->getType());
2765 emitGlobalConstantImpl(DL
, CV
, *this);
2766 else if (MAI
->hasSubsectionsViaSymbols()) {
2767 // If the global has zero size, emit a single byte so that two labels don't
2768 // look like they are at the same location.
2769 OutStreamer
->EmitIntValue(0, 1);
2773 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue
*MCPV
) {
2774 // Target doesn't support this yet!
2775 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2778 void AsmPrinter::printOffset(int64_t Offset
, raw_ostream
&OS
) const {
2780 OS
<< '+' << Offset
;
2781 else if (Offset
< 0)
2785 //===----------------------------------------------------------------------===//
2786 // Symbol Lowering Routines.
2787 //===----------------------------------------------------------------------===//
2789 MCSymbol
*AsmPrinter::createTempSymbol(const Twine
&Name
) const {
2790 return OutContext
.createTempSymbol(Name
, true);
2793 MCSymbol
*AsmPrinter::GetBlockAddressSymbol(const BlockAddress
*BA
) const {
2794 return MMI
->getAddrLabelSymbol(BA
->getBasicBlock());
2797 MCSymbol
*AsmPrinter::GetBlockAddressSymbol(const BasicBlock
*BB
) const {
2798 return MMI
->getAddrLabelSymbol(BB
);
2801 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2802 MCSymbol
*AsmPrinter::GetCPISymbol(unsigned CPID
) const {
2803 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2804 const MachineConstantPoolEntry
&CPE
=
2805 MF
->getConstantPool()->getConstants()[CPID
];
2806 if (!CPE
.isMachineConstantPoolEntry()) {
2807 const DataLayout
&DL
= MF
->getDataLayout();
2808 SectionKind Kind
= CPE
.getSectionKind(&DL
);
2809 const Constant
*C
= CPE
.Val
.ConstVal
;
2810 unsigned Align
= CPE
.Alignment
;
2811 if (const MCSectionCOFF
*S
= dyn_cast
<MCSectionCOFF
>(
2812 getObjFileLowering().getSectionForConstant(DL
, Kind
, C
, Align
))) {
2813 if (MCSymbol
*Sym
= S
->getCOMDATSymbol()) {
2814 if (Sym
->isUndefined())
2815 OutStreamer
->EmitSymbolAttribute(Sym
, MCSA_Global
);
2822 const DataLayout
&DL
= getDataLayout();
2823 return OutContext
.getOrCreateSymbol(Twine(DL
.getPrivateGlobalPrefix()) +
2824 "CPI" + Twine(getFunctionNumber()) + "_" +
2828 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2829 MCSymbol
*AsmPrinter::GetJTISymbol(unsigned JTID
, bool isLinkerPrivate
) const {
2830 return MF
->getJTISymbol(JTID
, OutContext
, isLinkerPrivate
);
2833 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2834 /// FIXME: privatize to AsmPrinter.
2835 MCSymbol
*AsmPrinter::GetJTSetSymbol(unsigned UID
, unsigned MBBID
) const {
2836 const DataLayout
&DL
= getDataLayout();
2837 return OutContext
.getOrCreateSymbol(Twine(DL
.getPrivateGlobalPrefix()) +
2838 Twine(getFunctionNumber()) + "_" +
2839 Twine(UID
) + "_set_" + Twine(MBBID
));
2842 MCSymbol
*AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue
*GV
,
2843 StringRef Suffix
) const {
2844 return getObjFileLowering().getSymbolWithGlobalValueBase(GV
, Suffix
, TM
);
2847 /// Return the MCSymbol for the specified ExternalSymbol.
2848 MCSymbol
*AsmPrinter::GetExternalSymbolSymbol(StringRef Sym
) const {
2849 SmallString
<60> NameStr
;
2850 Mangler::getNameWithPrefix(NameStr
, Sym
, getDataLayout());
2851 return OutContext
.getOrCreateSymbol(NameStr
);
2854 /// PrintParentLoopComment - Print comments about parent loops of this one.
2855 static void PrintParentLoopComment(raw_ostream
&OS
, const MachineLoop
*Loop
,
2856 unsigned FunctionNumber
) {
2858 PrintParentLoopComment(OS
, Loop
->getParentLoop(), FunctionNumber
);
2859 OS
.indent(Loop
->getLoopDepth()*2)
2860 << "Parent Loop BB" << FunctionNumber
<< "_"
2861 << Loop
->getHeader()->getNumber()
2862 << " Depth=" << Loop
->getLoopDepth() << '\n';
2865 /// PrintChildLoopComment - Print comments about child loops within
2866 /// the loop for this basic block, with nesting.
2867 static void PrintChildLoopComment(raw_ostream
&OS
, const MachineLoop
*Loop
,
2868 unsigned FunctionNumber
) {
2869 // Add child loop information
2870 for (const MachineLoop
*CL
: *Loop
) {
2871 OS
.indent(CL
->getLoopDepth()*2)
2872 << "Child Loop BB" << FunctionNumber
<< "_"
2873 << CL
->getHeader()->getNumber() << " Depth " << CL
->getLoopDepth()
2875 PrintChildLoopComment(OS
, CL
, FunctionNumber
);
2879 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2880 static void emitBasicBlockLoopComments(const MachineBasicBlock
&MBB
,
2881 const MachineLoopInfo
*LI
,
2882 const AsmPrinter
&AP
) {
2883 // Add loop depth information
2884 const MachineLoop
*Loop
= LI
->getLoopFor(&MBB
);
2887 MachineBasicBlock
*Header
= Loop
->getHeader();
2888 assert(Header
&& "No header for loop");
2890 // If this block is not a loop header, just print out what is the loop header
2892 if (Header
!= &MBB
) {
2893 AP
.OutStreamer
->AddComment(" in Loop: Header=BB" +
2894 Twine(AP
.getFunctionNumber())+"_" +
2895 Twine(Loop
->getHeader()->getNumber())+
2896 " Depth="+Twine(Loop
->getLoopDepth()));
2900 // Otherwise, it is a loop header. Print out information about child and
2902 raw_ostream
&OS
= AP
.OutStreamer
->GetCommentOS();
2904 PrintParentLoopComment(OS
, Loop
->getParentLoop(), AP
.getFunctionNumber());
2907 OS
.indent(Loop
->getLoopDepth()*2-2);
2912 OS
<< "Loop Header: Depth=" + Twine(Loop
->getLoopDepth()) << '\n';
2914 PrintChildLoopComment(OS
, Loop
, AP
.getFunctionNumber());
2917 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock
&MBB
,
2918 MCCodePaddingContext
&Context
) const {
2919 assert(MF
!= nullptr && "Machine function must be valid");
2920 Context
.IsPaddingActive
= !MF
->hasInlineAsm() &&
2921 !MF
->getFunction().hasOptSize() &&
2922 TM
.getOptLevel() != CodeGenOpt::None
;
2923 Context
.IsBasicBlockReachableViaFallthrough
=
2924 std::find(MBB
.pred_begin(), MBB
.pred_end(), MBB
.getPrevNode()) !=
2926 Context
.IsBasicBlockReachableViaBranch
=
2927 MBB
.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB
);
2930 /// EmitBasicBlockStart - This method prints the label for the specified
2931 /// MachineBasicBlock, an alignment (if present) and a comment describing
2932 /// it if appropriate.
2933 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock
&MBB
) {
2934 // End the previous funclet and start a new one.
2935 if (MBB
.isEHFuncletEntry()) {
2936 for (const HandlerInfo
&HI
: Handlers
) {
2937 HI
.Handler
->endFunclet();
2938 HI
.Handler
->beginFunclet(MBB
);
2942 // Emit an alignment directive for this block, if needed.
2943 const Align Alignment
= MBB
.getAlignment();
2944 if (Alignment
!= Align::None())
2945 EmitAlignment(Alignment
);
2946 MCCodePaddingContext Context
;
2947 setupCodePaddingContext(MBB
, Context
);
2948 OutStreamer
->EmitCodePaddingBasicBlockStart(Context
);
2950 // If the block has its address taken, emit any labels that were used to
2951 // reference the block. It is possible that there is more than one label
2952 // here, because multiple LLVM BB's may have been RAUW'd to this block after
2953 // the references were generated.
2954 if (MBB
.hasAddressTaken()) {
2955 const BasicBlock
*BB
= MBB
.getBasicBlock();
2957 OutStreamer
->AddComment("Block address taken");
2959 // MBBs can have their address taken as part of CodeGen without having
2960 // their corresponding BB's address taken in IR
2961 if (BB
->hasAddressTaken())
2962 for (MCSymbol
*Sym
: MMI
->getAddrLabelSymbolToEmit(BB
))
2963 OutStreamer
->EmitLabel(Sym
);
2966 // Print some verbose block comments.
2968 if (const BasicBlock
*BB
= MBB
.getBasicBlock()) {
2969 if (BB
->hasName()) {
2970 BB
->printAsOperand(OutStreamer
->GetCommentOS(),
2971 /*PrintType=*/false, BB
->getModule());
2972 OutStreamer
->GetCommentOS() << '\n';
2976 assert(MLI
!= nullptr && "MachineLoopInfo should has been computed");
2977 emitBasicBlockLoopComments(MBB
, MLI
, *this);
2980 // Print the main label for the block.
2981 if (MBB
.pred_empty() ||
2982 (isBlockOnlyReachableByFallthrough(&MBB
) && !MBB
.isEHFuncletEntry() &&
2983 !MBB
.hasLabelMustBeEmitted())) {
2985 // NOTE: Want this comment at start of line, don't emit with AddComment.
2986 OutStreamer
->emitRawComment(" %bb." + Twine(MBB
.getNumber()) + ":",
2990 if (isVerbose() && MBB
.hasLabelMustBeEmitted())
2991 OutStreamer
->AddComment("Label of block must be emitted");
2992 OutStreamer
->EmitLabel(MBB
.getSymbol());
2996 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock
&MBB
) {
2997 MCCodePaddingContext Context
;
2998 setupCodePaddingContext(MBB
, Context
);
2999 OutStreamer
->EmitCodePaddingBasicBlockEnd(Context
);
3002 void AsmPrinter::EmitVisibility(MCSymbol
*Sym
, unsigned Visibility
,
3003 bool IsDefinition
) const {
3004 MCSymbolAttr Attr
= MCSA_Invalid
;
3006 switch (Visibility
) {
3008 case GlobalValue::HiddenVisibility
:
3010 Attr
= MAI
->getHiddenVisibilityAttr();
3012 Attr
= MAI
->getHiddenDeclarationVisibilityAttr();
3014 case GlobalValue::ProtectedVisibility
:
3015 Attr
= MAI
->getProtectedVisibilityAttr();
3019 if (Attr
!= MCSA_Invalid
)
3020 OutStreamer
->EmitSymbolAttribute(Sym
, Attr
);
3023 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3024 /// exactly one predecessor and the control transfer mechanism between
3025 /// the predecessor and this block is a fall-through.
3027 isBlockOnlyReachableByFallthrough(const MachineBasicBlock
*MBB
) const {
3028 // If this is a landing pad, it isn't a fall through. If it has no preds,
3029 // then nothing falls through to it.
3030 if (MBB
->isEHPad() || MBB
->pred_empty())
3033 // If there isn't exactly one predecessor, it can't be a fall through.
3034 if (MBB
->pred_size() > 1)
3037 // The predecessor has to be immediately before this block.
3038 MachineBasicBlock
*Pred
= *MBB
->pred_begin();
3039 if (!Pred
->isLayoutSuccessor(MBB
))
3042 // If the block is completely empty, then it definitely does fall through.
3046 // Check the terminators in the previous blocks
3047 for (const auto &MI
: Pred
->terminators()) {
3048 // If it is not a simple branch, we are in a table somewhere.
3049 if (!MI
.isBranch() || MI
.isIndirectBranch())
3052 // If we are the operands of one of the branches, this is not a fall
3053 // through. Note that targets with delay slots will usually bundle
3054 // terminators with the delay slot instruction.
3055 for (ConstMIBundleOperands
OP(MI
); OP
.isValid(); ++OP
) {
3058 if (OP
->isMBB() && OP
->getMBB() == MBB
)
3066 GCMetadataPrinter
*AsmPrinter::GetOrCreateGCPrinter(GCStrategy
&S
) {
3067 if (!S
.usesMetadata())
3070 gcp_map_type
&GCMap
= getGCMap(GCMetadataPrinters
);
3071 gcp_map_type::iterator GCPI
= GCMap
.find(&S
);
3072 if (GCPI
!= GCMap
.end())
3073 return GCPI
->second
.get();
3075 auto Name
= S
.getName();
3077 for (GCMetadataPrinterRegistry::iterator
3078 I
= GCMetadataPrinterRegistry::begin(),
3079 E
= GCMetadataPrinterRegistry::end(); I
!= E
; ++I
)
3080 if (Name
== I
->getName()) {
3081 std::unique_ptr
<GCMetadataPrinter
> GMP
= I
->instantiate();
3083 auto IterBool
= GCMap
.insert(std::make_pair(&S
, std::move(GMP
)));
3084 return IterBool
.first
->second
.get();
3087 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name
));
3090 void AsmPrinter::emitStackMaps(StackMaps
&SM
) {
3091 GCModuleInfo
*MI
= getAnalysisIfAvailable
<GCModuleInfo
>();
3092 assert(MI
&& "AsmPrinter didn't require GCModuleInfo?");
3093 bool NeedsDefault
= false;
3094 if (MI
->begin() == MI
->end())
3095 // No GC strategy, use the default format.
3096 NeedsDefault
= true;
3098 for (auto &I
: *MI
) {
3099 if (GCMetadataPrinter
*MP
= GetOrCreateGCPrinter(*I
))
3100 if (MP
->emitStackMaps(SM
, *this))
3102 // The strategy doesn't have printer or doesn't emit custom stack maps.
3103 // Use the default format.
3104 NeedsDefault
= true;
3108 SM
.serializeToStackMapSection();
3111 /// Pin vtable to this file.
3112 AsmPrinterHandler::~AsmPrinterHandler() = default;
3114 void AsmPrinterHandler::markFunctionEnd() {}
3116 // In the binary's "xray_instr_map" section, an array of these function entries
3117 // describes each instrumentation point. When XRay patches your code, the index
3118 // into this table will be given to your handler as a patch point identifier.
3119 void AsmPrinter::XRayFunctionEntry::emit(int Bytes
, MCStreamer
*Out
,
3120 const MCSymbol
*CurrentFnSym
) const {
3121 Out
->EmitSymbolValue(Sled
, Bytes
);
3122 Out
->EmitSymbolValue(CurrentFnSym
, Bytes
);
3123 auto Kind8
= static_cast<uint8_t>(Kind
);
3124 Out
->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8
), 1));
3125 Out
->EmitBinaryData(
3126 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument
), 1));
3127 Out
->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version
), 1));
3128 auto Padding
= (4 * Bytes
) - ((2 * Bytes
) + 3);
3129 assert(Padding
>= 0 && "Instrumentation map entry > 4 * Word Size");
3130 Out
->EmitZeros(Padding
);
3133 void AsmPrinter::emitXRayTable() {
3137 auto PrevSection
= OutStreamer
->getCurrentSectionOnly();
3138 const Function
&F
= MF
->getFunction();
3139 MCSection
*InstMap
= nullptr;
3140 MCSection
*FnSledIndex
= nullptr;
3141 if (MF
->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3142 auto Associated
= dyn_cast
<MCSymbolELF
>(CurrentFnSym
);
3143 assert(Associated
!= nullptr);
3144 auto Flags
= ELF::SHF_WRITE
| ELF::SHF_ALLOC
| ELF::SHF_LINK_ORDER
;
3145 std::string GroupName
;
3146 if (F
.hasComdat()) {
3147 Flags
|= ELF::SHF_GROUP
;
3148 GroupName
= F
.getComdat()->getName();
3151 auto UniqueID
= ++XRayFnUniqueID
;
3153 OutContext
.getELFSection("xray_instr_map", ELF::SHT_PROGBITS
, Flags
, 0,
3154 GroupName
, UniqueID
, Associated
);
3156 OutContext
.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS
, Flags
, 0,
3157 GroupName
, UniqueID
, Associated
);
3158 } else if (MF
->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3159 InstMap
= OutContext
.getMachOSection("__DATA", "xray_instr_map", 0,
3160 SectionKind::getReadOnlyWithRel());
3161 FnSledIndex
= OutContext
.getMachOSection("__DATA", "xray_fn_idx", 0,
3162 SectionKind::getReadOnlyWithRel());
3164 llvm_unreachable("Unsupported target");
3167 auto WordSizeBytes
= MAI
->getCodePointerSize();
3169 // Now we switch to the instrumentation map section. Because this is done
3170 // per-function, we are able to create an index entry that will represent the
3171 // range of sleds associated with a function.
3172 MCSymbol
*SledsStart
= OutContext
.createTempSymbol("xray_sleds_start", true);
3173 OutStreamer
->SwitchSection(InstMap
);
3174 OutStreamer
->EmitLabel(SledsStart
);
3175 for (const auto &Sled
: Sleds
)
3176 Sled
.emit(WordSizeBytes
, OutStreamer
.get(), CurrentFnSym
);
3177 MCSymbol
*SledsEnd
= OutContext
.createTempSymbol("xray_sleds_end", true);
3178 OutStreamer
->EmitLabel(SledsEnd
);
3180 // We then emit a single entry in the index per function. We use the symbols
3181 // that bound the instrumentation map as the range for a specific function.
3182 // Each entry here will be 2 * word size aligned, as we're writing down two
3183 // pointers. This should work for both 32-bit and 64-bit platforms.
3184 OutStreamer
->SwitchSection(FnSledIndex
);
3185 OutStreamer
->EmitCodeAlignment(2 * WordSizeBytes
);
3186 OutStreamer
->EmitSymbolValue(SledsStart
, WordSizeBytes
, false);
3187 OutStreamer
->EmitSymbolValue(SledsEnd
, WordSizeBytes
, false);
3188 OutStreamer
->SwitchSection(PrevSection
);
3192 void AsmPrinter::recordSled(MCSymbol
*Sled
, const MachineInstr
&MI
,
3193 SledKind Kind
, uint8_t Version
) {
3194 const Function
&F
= MI
.getMF()->getFunction();
3195 auto Attr
= F
.getFnAttribute("function-instrument");
3196 bool LogArgs
= F
.hasFnAttribute("xray-log-args");
3197 bool AlwaysInstrument
=
3198 Attr
.isStringAttribute() && Attr
.getValueAsString() == "xray-always";
3199 if (Kind
== SledKind::FUNCTION_ENTER
&& LogArgs
)
3200 Kind
= SledKind::LOG_ARGS_ENTER
;
3201 Sleds
.emplace_back(XRayFunctionEntry
{Sled
, CurrentFnSym
, Kind
,
3202 AlwaysInstrument
, &F
, Version
});
3205 uint16_t AsmPrinter::getDwarfVersion() const {
3206 return OutStreamer
->getContext().getDwarfVersion();
3209 void AsmPrinter::setDwarfVersion(uint16_t Version
) {
3210 OutStreamer
->getContext().setDwarfVersion(Version
);