[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / CodeGen / AsmPrinter / AsmPrinter.cpp
blob73c53d6c4af5e60f9cf867ac36629e246ba24340
1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/TargetFrameLowering.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Comdat.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalIFunc.h"
71 #include "llvm/IR/GlobalIndirectSymbol.h"
72 #include "llvm/IR/GlobalObject.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Mangler.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/RemarkStreamer.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/MC/MCAsmInfo.h"
84 #include "llvm/MC/MCCodePadder.h"
85 #include "llvm/MC/MCContext.h"
86 #include "llvm/MC/MCDirectives.h"
87 #include "llvm/MC/MCDwarf.h"
88 #include "llvm/MC/MCExpr.h"
89 #include "llvm/MC/MCInst.h"
90 #include "llvm/MC/MCSection.h"
91 #include "llvm/MC/MCSectionCOFF.h"
92 #include "llvm/MC/MCSectionELF.h"
93 #include "llvm/MC/MCSectionMachO.h"
94 #include "llvm/MC/MCSectionXCOFF.h"
95 #include "llvm/MC/MCStreamer.h"
96 #include "llvm/MC/MCSubtargetInfo.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/MC/MCSymbolELF.h"
99 #include "llvm/MC/MCSymbolXCOFF.h"
100 #include "llvm/MC/MCTargetOptions.h"
101 #include "llvm/MC/MCValue.h"
102 #include "llvm/MC/SectionKind.h"
103 #include "llvm/Pass.h"
104 #include "llvm/Remarks/Remark.h"
105 #include "llvm/Remarks/RemarkFormat.h"
106 #include "llvm/Remarks/RemarkStringTable.h"
107 #include "llvm/Support/Casting.h"
108 #include "llvm/Support/CommandLine.h"
109 #include "llvm/Support/Compiler.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/Support/Format.h"
112 #include "llvm/Support/MathExtras.h"
113 #include "llvm/Support/Path.h"
114 #include "llvm/Support/TargetRegistry.h"
115 #include "llvm/Support/Timer.h"
116 #include "llvm/Support/raw_ostream.h"
117 #include "llvm/Target/TargetLoweringObjectFile.h"
118 #include "llvm/Target/TargetMachine.h"
119 #include "llvm/Target/TargetOptions.h"
120 #include <algorithm>
121 #include <cassert>
122 #include <cinttypes>
123 #include <cstdint>
124 #include <iterator>
125 #include <limits>
126 #include <memory>
127 #include <string>
128 #include <utility>
129 #include <vector>
131 using namespace llvm;
133 #define DEBUG_TYPE "asm-printer"
135 static const char *const DWARFGroupName = "dwarf";
136 static const char *const DWARFGroupDescription = "DWARF Emission";
137 static const char *const DbgTimerName = "emit";
138 static const char *const DbgTimerDescription = "Debug Info Emission";
139 static const char *const EHTimerName = "write_exception";
140 static const char *const EHTimerDescription = "DWARF Exception Writer";
141 static const char *const CFGuardName = "Control Flow Guard";
142 static const char *const CFGuardDescription = "Control Flow Guard Tables";
143 static const char *const CodeViewLineTablesGroupName = "linetables";
144 static const char *const CodeViewLineTablesGroupDescription =
145 "CodeView Line Tables";
147 STATISTIC(EmittedInsts, "Number of machine instrs printed");
149 static cl::opt<bool> EnableRemarksSection(
150 "remarks-section",
151 cl::desc("Emit a section containing remark diagnostics metadata"),
152 cl::init(false));
154 char AsmPrinter::ID = 0;
156 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
158 static gcp_map_type &getGCMap(void *&P) {
159 if (!P)
160 P = new gcp_map_type();
161 return *(gcp_map_type*)P;
164 /// getGVAlignment - Return the alignment to use for the specified global
165 /// value. This rounds up to the preferred alignment if possible and legal.
166 Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL,
167 Align InAlign) {
168 Align Alignment;
169 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
170 Alignment = Align(DL.getPreferredAlignment(GVar));
172 // If InAlign is specified, round it to it.
173 if (InAlign > Alignment)
174 Alignment = InAlign;
176 // If the GV has a specified alignment, take it into account.
177 const MaybeAlign GVAlign(GV->getAlignment());
178 if (!GVAlign)
179 return Alignment;
181 assert(GVAlign && "GVAlign must be set");
183 // If the GVAlign is larger than NumBits, or if we are required to obey
184 // NumBits because the GV has an assigned section, obey it.
185 if (*GVAlign > Alignment || GV->hasSection())
186 Alignment = *GVAlign;
187 return Alignment;
190 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
191 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
192 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
193 VerboseAsm = OutStreamer->isVerboseAsm();
196 AsmPrinter::~AsmPrinter() {
197 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
199 if (GCMetadataPrinters) {
200 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
202 delete &GCMap;
203 GCMetadataPrinters = nullptr;
207 bool AsmPrinter::isPositionIndependent() const {
208 return TM.isPositionIndependent();
211 /// getFunctionNumber - Return a unique ID for the current function.
212 unsigned AsmPrinter::getFunctionNumber() const {
213 return MF->getFunctionNumber();
216 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
217 return *TM.getObjFileLowering();
220 const DataLayout &AsmPrinter::getDataLayout() const {
221 return MMI->getModule()->getDataLayout();
224 // Do not use the cached DataLayout because some client use it without a Module
225 // (dsymutil, llvm-dwarfdump).
226 unsigned AsmPrinter::getPointerSize() const {
227 return TM.getPointerSize(0); // FIXME: Default address space
230 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
231 assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
232 return MF->getSubtarget<MCSubtargetInfo>();
235 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
236 S.EmitInstruction(Inst, getSubtargetInfo());
239 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
240 assert(DD && "Dwarf debug file is not defined.");
241 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
242 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
245 /// getCurrentSection() - Return the current section we are emitting to.
246 const MCSection *AsmPrinter::getCurrentSection() const {
247 return OutStreamer->getCurrentSectionOnly();
250 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
251 AU.setPreservesAll();
252 MachineFunctionPass::getAnalysisUsage(AU);
253 AU.addRequired<MachineModuleInfoWrapperPass>();
254 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
255 AU.addRequired<GCModuleInfo>();
258 bool AsmPrinter::doInitialization(Module &M) {
259 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
260 MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
262 // Initialize TargetLoweringObjectFile.
263 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
264 .Initialize(OutContext, TM);
266 const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
267 .getModuleMetadata(M);
269 OutStreamer->InitSections(false);
271 // Emit the version-min deployment target directive if needed.
273 // FIXME: If we end up with a collection of these sorts of Darwin-specific
274 // or ELF-specific things, it may make sense to have a platform helper class
275 // that will work with the target helper class. For now keep it here, as the
276 // alternative is duplicated code in each of the target asm printers that
277 // use the directive, where it would need the same conditionalization
278 // anyway.
279 const Triple &Target = TM.getTargetTriple();
280 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion());
282 // Allow the target to emit any magic that it wants at the start of the file.
283 EmitStartOfAsmFile(M);
285 // Very minimal debug info. It is ignored if we emit actual debug info. If we
286 // don't, this at least helps the user find where a global came from.
287 if (MAI->hasSingleParameterDotFile()) {
288 // .file "foo.c"
289 OutStreamer->EmitFileDirective(
290 llvm::sys::path::filename(M.getSourceFileName()));
293 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
294 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
295 for (auto &I : *MI)
296 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
297 MP->beginAssembly(M, *MI, *this);
299 // Emit module-level inline asm if it exists.
300 if (!M.getModuleInlineAsm().empty()) {
301 // We're at the module level. Construct MCSubtarget from the default CPU
302 // and target triple.
303 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
304 TM.getTargetTriple().str(), TM.getTargetCPU(),
305 TM.getTargetFeatureString()));
306 OutStreamer->AddComment("Start of file scope inline assembly");
307 OutStreamer->AddBlankLine();
308 EmitInlineAsm(M.getModuleInlineAsm()+"\n",
309 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
310 OutStreamer->AddComment("End of file scope inline assembly");
311 OutStreamer->AddBlankLine();
314 if (MAI->doesSupportDebugInformation()) {
315 bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
316 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
317 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
318 DbgTimerName, DbgTimerDescription,
319 CodeViewLineTablesGroupName,
320 CodeViewLineTablesGroupDescription);
322 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
323 DD = new DwarfDebug(this, &M);
324 DD->beginModule();
325 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
326 DbgTimerDescription, DWARFGroupName,
327 DWARFGroupDescription);
331 switch (MAI->getExceptionHandlingType()) {
332 case ExceptionHandling::SjLj:
333 case ExceptionHandling::DwarfCFI:
334 case ExceptionHandling::ARM:
335 isCFIMoveForDebugging = true;
336 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
337 break;
338 for (auto &F: M.getFunctionList()) {
339 // If the module contains any function with unwind data,
340 // .eh_frame has to be emitted.
341 // Ignore functions that won't get emitted.
342 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
343 isCFIMoveForDebugging = false;
344 break;
347 break;
348 default:
349 isCFIMoveForDebugging = false;
350 break;
353 EHStreamer *ES = nullptr;
354 switch (MAI->getExceptionHandlingType()) {
355 case ExceptionHandling::None:
356 break;
357 case ExceptionHandling::SjLj:
358 case ExceptionHandling::DwarfCFI:
359 ES = new DwarfCFIException(this);
360 break;
361 case ExceptionHandling::ARM:
362 ES = new ARMException(this);
363 break;
364 case ExceptionHandling::WinEH:
365 switch (MAI->getWinEHEncodingType()) {
366 default: llvm_unreachable("unsupported unwinding information encoding");
367 case WinEH::EncodingType::Invalid:
368 break;
369 case WinEH::EncodingType::X86:
370 case WinEH::EncodingType::Itanium:
371 ES = new WinException(this);
372 break;
374 break;
375 case ExceptionHandling::Wasm:
376 ES = new WasmException(this);
377 break;
379 if (ES)
380 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
381 EHTimerDescription, DWARFGroupName,
382 DWARFGroupDescription);
384 if (mdconst::extract_or_null<ConstantInt>(
385 MMI->getModule()->getModuleFlag("cfguardtable")))
386 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
387 CFGuardDescription, DWARFGroupName,
388 DWARFGroupDescription);
390 return false;
393 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
394 if (!MAI.hasWeakDefCanBeHiddenDirective())
395 return false;
397 return GV->canBeOmittedFromSymbolTable();
400 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
401 GlobalValue::LinkageTypes Linkage = GV->getLinkage();
402 switch (Linkage) {
403 case GlobalValue::CommonLinkage:
404 case GlobalValue::LinkOnceAnyLinkage:
405 case GlobalValue::LinkOnceODRLinkage:
406 case GlobalValue::WeakAnyLinkage:
407 case GlobalValue::WeakODRLinkage:
408 if (MAI->hasWeakDefDirective()) {
409 // .globl _foo
410 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
412 if (!canBeHidden(GV, *MAI))
413 // .weak_definition _foo
414 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
415 else
416 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
417 } else if (MAI->hasLinkOnceDirective()) {
418 // .globl _foo
419 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
420 //NOTE: linkonce is handled by the section the symbol was assigned to.
421 } else {
422 // .weak _foo
423 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
425 return;
426 case GlobalValue::ExternalLinkage:
427 // If external, declare as a global symbol: .globl _foo
428 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
429 return;
430 case GlobalValue::PrivateLinkage:
431 return;
432 case GlobalValue::InternalLinkage:
433 if (MAI->hasDotLGloblDirective())
434 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_LGlobal);
435 return;
436 case GlobalValue::AppendingLinkage:
437 case GlobalValue::AvailableExternallyLinkage:
438 case GlobalValue::ExternalWeakLinkage:
439 llvm_unreachable("Should never emit this");
441 llvm_unreachable("Unknown linkage type!");
444 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
445 const GlobalValue *GV) const {
446 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
449 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
450 return TM.getSymbol(GV);
453 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
454 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
455 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
456 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
457 "No emulated TLS variables in the common section");
459 // Never emit TLS variable xyz in emulated TLS model.
460 // The initialization value is in __emutls_t.xyz instead of xyz.
461 if (IsEmuTLSVar)
462 return;
464 if (GV->hasInitializer()) {
465 // Check to see if this is a special global used by LLVM, if so, emit it.
466 if (EmitSpecialLLVMGlobal(GV))
467 return;
469 // Skip the emission of global equivalents. The symbol can be emitted later
470 // on by emitGlobalGOTEquivs in case it turns out to be needed.
471 if (GlobalGOTEquivs.count(getSymbol(GV)))
472 return;
474 if (isVerbose()) {
475 // When printing the control variable __emutls_v.*,
476 // we don't need to print the original TLS variable name.
477 GV->printAsOperand(OutStreamer->GetCommentOS(),
478 /*PrintType=*/false, GV->getParent());
479 OutStreamer->GetCommentOS() << '\n';
483 MCSymbol *GVSym = getSymbol(GV);
484 MCSymbol *EmittedSym = GVSym;
486 // getOrCreateEmuTLSControlSym only creates the symbol with name and default
487 // attributes.
488 // GV's or GVSym's attributes will be used for the EmittedSym.
489 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
491 if (!GV->hasInitializer()) // External globals require no extra code.
492 return;
494 GVSym->redefineIfPossible();
495 if (GVSym->isDefined() || GVSym->isVariable())
496 report_fatal_error("symbol '" + Twine(GVSym->getName()) +
497 "' is already defined");
499 if (MAI->hasDotTypeDotSizeDirective())
500 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
502 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
504 const DataLayout &DL = GV->getParent()->getDataLayout();
505 uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
507 // If the alignment is specified, we *must* obey it. Overaligning a global
508 // with a specified alignment is a prompt way to break globals emitted to
509 // sections and expected to be contiguous (e.g. ObjC metadata).
510 const Align Alignment = getGVAlignment(GV, DL);
512 for (const HandlerInfo &HI : Handlers) {
513 NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
514 HI.TimerGroupName, HI.TimerGroupDescription,
515 TimePassesIsEnabled);
516 HI.Handler->setSymbolSize(GVSym, Size);
519 // Handle common symbols
520 if (GVKind.isCommon()) {
521 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
522 // .comm _foo, 42, 4
523 const bool SupportsAlignment =
524 getObjFileLowering().getCommDirectiveSupportsAlignment();
525 OutStreamer->EmitCommonSymbol(GVSym, Size,
526 SupportsAlignment ? Alignment.value() : 0);
527 return;
530 // Determine to which section this global should be emitted.
531 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
533 // If we have a bss global going to a section that supports the
534 // zerofill directive, do so here.
535 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
536 TheSection->isVirtualSection()) {
537 if (Size == 0)
538 Size = 1; // zerofill of 0 bytes is undefined.
539 EmitLinkage(GV, GVSym);
540 // .zerofill __DATA, __bss, _foo, 400, 5
541 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Alignment.value());
542 return;
545 // If this is a BSS local symbol and we are emitting in the BSS
546 // section use .lcomm/.comm directive.
547 if (GVKind.isBSSLocal() &&
548 getObjFileLowering().getBSSSection() == TheSection) {
549 if (Size == 0)
550 Size = 1; // .comm Foo, 0 is undefined, avoid it.
552 // Use .lcomm only if it supports user-specified alignment.
553 // Otherwise, while it would still be correct to use .lcomm in some
554 // cases (e.g. when Align == 1), the external assembler might enfore
555 // some -unknown- default alignment behavior, which could cause
556 // spurious differences between external and integrated assembler.
557 // Prefer to simply fall back to .local / .comm in this case.
558 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
559 // .lcomm _foo, 42
560 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Alignment.value());
561 return;
564 // .local _foo
565 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
566 // .comm _foo, 42, 4
567 const bool SupportsAlignment =
568 getObjFileLowering().getCommDirectiveSupportsAlignment();
569 OutStreamer->EmitCommonSymbol(GVSym, Size,
570 SupportsAlignment ? Alignment.value() : 0);
571 return;
574 // Handle thread local data for mach-o which requires us to output an
575 // additional structure of data and mangle the original symbol so that we
576 // can reference it later.
578 // TODO: This should become an "emit thread local global" method on TLOF.
579 // All of this macho specific stuff should be sunk down into TLOFMachO and
580 // stuff like "TLSExtraDataSection" should no longer be part of the parent
581 // TLOF class. This will also make it more obvious that stuff like
582 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
583 // specific code.
584 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
585 // Emit the .tbss symbol
586 MCSymbol *MangSym =
587 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
589 if (GVKind.isThreadBSS()) {
590 TheSection = getObjFileLowering().getTLSBSSSection();
591 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
592 } else if (GVKind.isThreadData()) {
593 OutStreamer->SwitchSection(TheSection);
595 EmitAlignment(Alignment, GV);
596 OutStreamer->EmitLabel(MangSym);
598 EmitGlobalConstant(GV->getParent()->getDataLayout(),
599 GV->getInitializer());
602 OutStreamer->AddBlankLine();
604 // Emit the variable struct for the runtime.
605 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
607 OutStreamer->SwitchSection(TLVSect);
608 // Emit the linkage here.
609 EmitLinkage(GV, GVSym);
610 OutStreamer->EmitLabel(GVSym);
612 // Three pointers in size:
613 // - __tlv_bootstrap - used to make sure support exists
614 // - spare pointer, used when mapped by the runtime
615 // - pointer to mangled symbol above with initializer
616 unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
617 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
618 PtrSize);
619 OutStreamer->EmitIntValue(0, PtrSize);
620 OutStreamer->EmitSymbolValue(MangSym, PtrSize);
622 OutStreamer->AddBlankLine();
623 return;
626 MCSymbol *EmittedInitSym = GVSym;
628 OutStreamer->SwitchSection(TheSection);
630 EmitLinkage(GV, EmittedInitSym);
631 EmitAlignment(Alignment, GV);
633 OutStreamer->EmitLabel(EmittedInitSym);
635 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
637 if (MAI->hasDotTypeDotSizeDirective())
638 // .size foo, 42
639 OutStreamer->emitELFSize(EmittedInitSym,
640 MCConstantExpr::create(Size, OutContext));
642 OutStreamer->AddBlankLine();
645 /// Emit the directive and value for debug thread local expression
647 /// \p Value - The value to emit.
648 /// \p Size - The size of the integer (in bytes) to emit.
649 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
650 OutStreamer->EmitValue(Value, Size);
653 /// EmitFunctionHeader - This method emits the header for the current
654 /// function.
655 void AsmPrinter::EmitFunctionHeader() {
656 const Function &F = MF->getFunction();
658 if (isVerbose())
659 OutStreamer->GetCommentOS()
660 << "-- Begin function "
661 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
663 // Print out constants referenced by the function
664 EmitConstantPool();
666 // Print the 'header' of function.
667 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
668 EmitVisibility(CurrentFnSym, F.getVisibility());
670 if (MAI->needsFunctionDescriptors() &&
671 F.getLinkage() != GlobalValue::InternalLinkage)
672 EmitLinkage(&F, CurrentFnDescSym);
674 EmitLinkage(&F, CurrentFnSym);
675 if (MAI->hasFunctionAlignment())
676 EmitAlignment(MF->getAlignment(), &F);
678 if (MAI->hasDotTypeDotSizeDirective())
679 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
681 if (F.hasFnAttribute(Attribute::Cold))
682 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold);
684 if (isVerbose()) {
685 F.printAsOperand(OutStreamer->GetCommentOS(),
686 /*PrintType=*/false, F.getParent());
687 OutStreamer->GetCommentOS() << '\n';
690 // Emit the prefix data.
691 if (F.hasPrefixData()) {
692 if (MAI->hasSubsectionsViaSymbols()) {
693 // Preserving prefix data on platforms which use subsections-via-symbols
694 // is a bit tricky. Here we introduce a symbol for the prefix data
695 // and use the .alt_entry attribute to mark the function's real entry point
696 // as an alternative entry point to the prefix-data symbol.
697 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
698 OutStreamer->EmitLabel(PrefixSym);
700 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
702 // Emit an .alt_entry directive for the actual function symbol.
703 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
704 } else {
705 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
709 // Emit the function descriptor. This is a virtual function to allow targets
710 // to emit their specific function descriptor.
711 if (MAI->needsFunctionDescriptors())
712 EmitFunctionDescriptor();
714 // Emit the CurrentFnSym. This is a virtual function to allow targets to do
715 // their wild and crazy things as required.
716 EmitFunctionEntryLabel();
718 // If the function had address-taken blocks that got deleted, then we have
719 // references to the dangling symbols. Emit them at the start of the function
720 // so that we don't get references to undefined symbols.
721 std::vector<MCSymbol*> DeadBlockSyms;
722 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
723 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
724 OutStreamer->AddComment("Address taken block that was later removed");
725 OutStreamer->EmitLabel(DeadBlockSyms[i]);
728 if (CurrentFnBegin) {
729 if (MAI->useAssignmentForEHBegin()) {
730 MCSymbol *CurPos = OutContext.createTempSymbol();
731 OutStreamer->EmitLabel(CurPos);
732 OutStreamer->EmitAssignment(CurrentFnBegin,
733 MCSymbolRefExpr::create(CurPos, OutContext));
734 } else {
735 OutStreamer->EmitLabel(CurrentFnBegin);
739 // Emit pre-function debug and/or EH information.
740 for (const HandlerInfo &HI : Handlers) {
741 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
742 HI.TimerGroupDescription, TimePassesIsEnabled);
743 HI.Handler->beginFunction(MF);
746 // Emit the prologue data.
747 if (F.hasPrologueData())
748 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
751 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
752 /// function. This can be overridden by targets as required to do custom stuff.
753 void AsmPrinter::EmitFunctionEntryLabel() {
754 CurrentFnSym->redefineIfPossible();
756 // The function label could have already been emitted if two symbols end up
757 // conflicting due to asm renaming. Detect this and emit an error.
758 if (CurrentFnSym->isVariable())
759 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
760 "' is a protected alias");
761 if (CurrentFnSym->isDefined())
762 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
763 "' label emitted multiple times to assembly file");
765 return OutStreamer->EmitLabel(CurrentFnSym);
768 /// emitComments - Pretty-print comments for instructions.
769 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
770 const MachineFunction *MF = MI.getMF();
771 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
773 // Check for spills and reloads
775 // We assume a single instruction only has a spill or reload, not
776 // both.
777 Optional<unsigned> Size;
778 if ((Size = MI.getRestoreSize(TII))) {
779 CommentOS << *Size << "-byte Reload\n";
780 } else if ((Size = MI.getFoldedRestoreSize(TII))) {
781 if (*Size)
782 CommentOS << *Size << "-byte Folded Reload\n";
783 } else if ((Size = MI.getSpillSize(TII))) {
784 CommentOS << *Size << "-byte Spill\n";
785 } else if ((Size = MI.getFoldedSpillSize(TII))) {
786 if (*Size)
787 CommentOS << *Size << "-byte Folded Spill\n";
790 // Check for spill-induced copies
791 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
792 CommentOS << " Reload Reuse\n";
795 /// emitImplicitDef - This method emits the specified machine instruction
796 /// that is an implicit def.
797 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
798 Register RegNo = MI->getOperand(0).getReg();
800 SmallString<128> Str;
801 raw_svector_ostream OS(Str);
802 OS << "implicit-def: "
803 << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
805 OutStreamer->AddComment(OS.str());
806 OutStreamer->AddBlankLine();
809 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
810 std::string Str;
811 raw_string_ostream OS(Str);
812 OS << "kill:";
813 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
814 const MachineOperand &Op = MI->getOperand(i);
815 assert(Op.isReg() && "KILL instruction must have only register operands");
816 OS << ' ' << (Op.isDef() ? "def " : "killed ")
817 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
819 AP.OutStreamer->AddComment(OS.str());
820 AP.OutStreamer->AddBlankLine();
823 /// emitDebugValueComment - This method handles the target-independent form
824 /// of DBG_VALUE, returning true if it was able to do so. A false return
825 /// means the target will need to handle MI in EmitInstruction.
826 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
827 // This code handles only the 4-operand target-independent form.
828 if (MI->getNumOperands() != 4)
829 return false;
831 SmallString<128> Str;
832 raw_svector_ostream OS(Str);
833 OS << "DEBUG_VALUE: ";
835 const DILocalVariable *V = MI->getDebugVariable();
836 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
837 StringRef Name = SP->getName();
838 if (!Name.empty())
839 OS << Name << ":";
841 OS << V->getName();
842 OS << " <- ";
844 // The second operand is only an offset if it's an immediate.
845 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
846 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
847 const DIExpression *Expr = MI->getDebugExpression();
848 if (Expr->getNumElements()) {
849 OS << '[';
850 bool NeedSep = false;
851 for (auto Op : Expr->expr_ops()) {
852 if (NeedSep)
853 OS << ", ";
854 else
855 NeedSep = true;
856 OS << dwarf::OperationEncodingString(Op.getOp());
857 for (unsigned I = 0; I < Op.getNumArgs(); ++I)
858 OS << ' ' << Op.getArg(I);
860 OS << "] ";
863 // Register or immediate value. Register 0 means undef.
864 if (MI->getOperand(0).isFPImm()) {
865 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
866 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
867 OS << (double)APF.convertToFloat();
868 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
869 OS << APF.convertToDouble();
870 } else {
871 // There is no good way to print long double. Convert a copy to
872 // double. Ah well, it's only a comment.
873 bool ignored;
874 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
875 &ignored);
876 OS << "(long double) " << APF.convertToDouble();
878 } else if (MI->getOperand(0).isImm()) {
879 OS << MI->getOperand(0).getImm();
880 } else if (MI->getOperand(0).isCImm()) {
881 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
882 } else {
883 unsigned Reg;
884 if (MI->getOperand(0).isReg()) {
885 Reg = MI->getOperand(0).getReg();
886 } else {
887 assert(MI->getOperand(0).isFI() && "Unknown operand type");
888 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
889 Offset += TFI->getFrameIndexReference(*AP.MF,
890 MI->getOperand(0).getIndex(), Reg);
891 MemLoc = true;
893 if (Reg == 0) {
894 // Suppress offset, it is not meaningful here.
895 OS << "undef";
896 // NOTE: Want this comment at start of line, don't emit with AddComment.
897 AP.OutStreamer->emitRawComment(OS.str());
898 return true;
900 if (MemLoc)
901 OS << '[';
902 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
905 if (MemLoc)
906 OS << '+' << Offset << ']';
908 // NOTE: Want this comment at start of line, don't emit with AddComment.
909 AP.OutStreamer->emitRawComment(OS.str());
910 return true;
913 /// This method handles the target-independent form of DBG_LABEL, returning
914 /// true if it was able to do so. A false return means the target will need
915 /// to handle MI in EmitInstruction.
916 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
917 if (MI->getNumOperands() != 1)
918 return false;
920 SmallString<128> Str;
921 raw_svector_ostream OS(Str);
922 OS << "DEBUG_LABEL: ";
924 const DILabel *V = MI->getDebugLabel();
925 if (auto *SP = dyn_cast<DISubprogram>(
926 V->getScope()->getNonLexicalBlockFileScope())) {
927 StringRef Name = SP->getName();
928 if (!Name.empty())
929 OS << Name << ":";
931 OS << V->getName();
933 // NOTE: Want this comment at start of line, don't emit with AddComment.
934 AP.OutStreamer->emitRawComment(OS.str());
935 return true;
938 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
939 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
940 MF->getFunction().needsUnwindTableEntry())
941 return CFI_M_EH;
943 if (MMI->hasDebugInfo())
944 return CFI_M_Debug;
946 return CFI_M_None;
949 bool AsmPrinter::needsSEHMoves() {
950 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
953 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
954 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
955 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
956 ExceptionHandlingType != ExceptionHandling::ARM)
957 return;
959 if (needsCFIMoves() == CFI_M_None)
960 return;
962 // If there is no "real" instruction following this CFI instruction, skip
963 // emitting it; it would be beyond the end of the function's FDE range.
964 auto *MBB = MI.getParent();
965 auto I = std::next(MI.getIterator());
966 while (I != MBB->end() && I->isTransient())
967 ++I;
968 if (I == MBB->instr_end() &&
969 MBB->getReverseIterator() == MBB->getParent()->rbegin())
970 return;
972 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
973 unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
974 const MCCFIInstruction &CFI = Instrs[CFIIndex];
975 emitCFIInstruction(CFI);
978 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
979 // The operands are the MCSymbol and the frame offset of the allocation.
980 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
981 int FrameOffset = MI.getOperand(1).getImm();
983 // Emit a symbol assignment.
984 OutStreamer->EmitAssignment(FrameAllocSym,
985 MCConstantExpr::create(FrameOffset, OutContext));
988 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
989 if (!MF.getTarget().Options.EmitStackSizeSection)
990 return;
992 MCSection *StackSizeSection =
993 getObjFileLowering().getStackSizesSection(*getCurrentSection());
994 if (!StackSizeSection)
995 return;
997 const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
998 // Don't emit functions with dynamic stack allocations.
999 if (FrameInfo.hasVarSizedObjects())
1000 return;
1002 OutStreamer->PushSection();
1003 OutStreamer->SwitchSection(StackSizeSection);
1005 const MCSymbol *FunctionSymbol = getFunctionBegin();
1006 uint64_t StackSize = FrameInfo.getStackSize();
1007 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1008 OutStreamer->EmitULEB128IntValue(StackSize);
1010 OutStreamer->PopSection();
1013 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1014 MachineModuleInfo *MMI) {
1015 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1016 return true;
1018 // We might emit an EH table that uses function begin and end labels even if
1019 // we don't have any landingpads.
1020 if (!MF.getFunction().hasPersonalityFn())
1021 return false;
1022 return !isNoOpWithoutInvoke(
1023 classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1026 /// EmitFunctionBody - This method emits the body and trailer for a
1027 /// function.
1028 void AsmPrinter::EmitFunctionBody() {
1029 EmitFunctionHeader();
1031 // Emit target-specific gunk before the function body.
1032 EmitFunctionBodyStart();
1034 bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1036 if (isVerbose()) {
1037 // Get MachineDominatorTree or compute it on the fly if it's unavailable
1038 MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1039 if (!MDT) {
1040 OwnedMDT = std::make_unique<MachineDominatorTree>();
1041 OwnedMDT->getBase().recalculate(*MF);
1042 MDT = OwnedMDT.get();
1045 // Get MachineLoopInfo or compute it on the fly if it's unavailable
1046 MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1047 if (!MLI) {
1048 OwnedMLI = std::make_unique<MachineLoopInfo>();
1049 OwnedMLI->getBase().analyze(MDT->getBase());
1050 MLI = OwnedMLI.get();
1054 // Print out code for the function.
1055 bool HasAnyRealCode = false;
1056 int NumInstsInFunction = 0;
1057 for (auto &MBB : *MF) {
1058 // Print a label for the basic block.
1059 EmitBasicBlockStart(MBB);
1060 for (auto &MI : MBB) {
1061 // Print the assembly for the instruction.
1062 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1063 !MI.isDebugInstr()) {
1064 HasAnyRealCode = true;
1065 ++NumInstsInFunction;
1068 // If there is a pre-instruction symbol, emit a label for it here. If the
1069 // instruction was duplicated and the label has already been emitted,
1070 // don't re-emit the same label.
1071 // FIXME: Consider strengthening that to an assertion.
1072 if (MCSymbol *S = MI.getPreInstrSymbol())
1073 if (S->isUndefined())
1074 OutStreamer->EmitLabel(S);
1076 if (ShouldPrintDebugScopes) {
1077 for (const HandlerInfo &HI : Handlers) {
1078 NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1079 HI.TimerGroupName, HI.TimerGroupDescription,
1080 TimePassesIsEnabled);
1081 HI.Handler->beginInstruction(&MI);
1085 if (isVerbose())
1086 emitComments(MI, OutStreamer->GetCommentOS());
1088 switch (MI.getOpcode()) {
1089 case TargetOpcode::CFI_INSTRUCTION:
1090 emitCFIInstruction(MI);
1091 break;
1092 case TargetOpcode::LOCAL_ESCAPE:
1093 emitFrameAlloc(MI);
1094 break;
1095 case TargetOpcode::ANNOTATION_LABEL:
1096 case TargetOpcode::EH_LABEL:
1097 case TargetOpcode::GC_LABEL:
1098 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1099 break;
1100 case TargetOpcode::INLINEASM:
1101 case TargetOpcode::INLINEASM_BR:
1102 EmitInlineAsm(&MI);
1103 break;
1104 case TargetOpcode::DBG_VALUE:
1105 if (isVerbose()) {
1106 if (!emitDebugValueComment(&MI, *this))
1107 EmitInstruction(&MI);
1109 break;
1110 case TargetOpcode::DBG_LABEL:
1111 if (isVerbose()) {
1112 if (!emitDebugLabelComment(&MI, *this))
1113 EmitInstruction(&MI);
1115 break;
1116 case TargetOpcode::IMPLICIT_DEF:
1117 if (isVerbose()) emitImplicitDef(&MI);
1118 break;
1119 case TargetOpcode::KILL:
1120 if (isVerbose()) emitKill(&MI, *this);
1121 break;
1122 default:
1123 EmitInstruction(&MI);
1124 break;
1127 // If there is a post-instruction symbol, emit a label for it here. If
1128 // the instruction was duplicated and the label has already been emitted,
1129 // don't re-emit the same label.
1130 // FIXME: Consider strengthening that to an assertion.
1131 if (MCSymbol *S = MI.getPostInstrSymbol())
1132 if (S->isUndefined())
1133 OutStreamer->EmitLabel(S);
1135 if (ShouldPrintDebugScopes) {
1136 for (const HandlerInfo &HI : Handlers) {
1137 NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1138 HI.TimerGroupName, HI.TimerGroupDescription,
1139 TimePassesIsEnabled);
1140 HI.Handler->endInstruction();
1145 EmitBasicBlockEnd(MBB);
1148 EmittedInsts += NumInstsInFunction;
1149 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1150 MF->getFunction().getSubprogram(),
1151 &MF->front());
1152 R << ore::NV("NumInstructions", NumInstsInFunction)
1153 << " instructions in function";
1154 ORE->emit(R);
1156 // If the function is empty and the object file uses .subsections_via_symbols,
1157 // then we need to emit *something* to the function body to prevent the
1158 // labels from collapsing together. Just emit a noop.
1159 // Similarly, don't emit empty functions on Windows either. It can lead to
1160 // duplicate entries (two functions with the same RVA) in the Guard CF Table
1161 // after linking, causing the kernel not to load the binary:
1162 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1163 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1164 const Triple &TT = TM.getTargetTriple();
1165 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1166 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1167 MCInst Noop;
1168 MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1170 // Targets can opt-out of emitting the noop here by leaving the opcode
1171 // unspecified.
1172 if (Noop.getOpcode()) {
1173 OutStreamer->AddComment("avoids zero-length function");
1174 OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1178 const Function &F = MF->getFunction();
1179 for (const auto &BB : F) {
1180 if (!BB.hasAddressTaken())
1181 continue;
1182 MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1183 if (Sym->isDefined())
1184 continue;
1185 OutStreamer->AddComment("Address of block that was removed by CodeGen");
1186 OutStreamer->EmitLabel(Sym);
1189 // Emit target-specific gunk after the function body.
1190 EmitFunctionBodyEnd();
1192 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1193 MAI->hasDotTypeDotSizeDirective()) {
1194 // Create a symbol for the end of function.
1195 CurrentFnEnd = createTempSymbol("func_end");
1196 OutStreamer->EmitLabel(CurrentFnEnd);
1199 // If the target wants a .size directive for the size of the function, emit
1200 // it.
1201 if (MAI->hasDotTypeDotSizeDirective()) {
1202 // We can get the size as difference between the function label and the
1203 // temp label.
1204 const MCExpr *SizeExp = MCBinaryExpr::createSub(
1205 MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1206 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1207 OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1210 for (const HandlerInfo &HI : Handlers) {
1211 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1212 HI.TimerGroupDescription, TimePassesIsEnabled);
1213 HI.Handler->markFunctionEnd();
1216 // Print out jump tables referenced by the function.
1217 EmitJumpTableInfo();
1219 // Emit post-function debug and/or EH information.
1220 for (const HandlerInfo &HI : Handlers) {
1221 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1222 HI.TimerGroupDescription, TimePassesIsEnabled);
1223 HI.Handler->endFunction(MF);
1226 // Emit section containing stack size metadata.
1227 emitStackSizeSection(*MF);
1229 if (isVerbose())
1230 OutStreamer->GetCommentOS() << "-- End function\n";
1232 OutStreamer->AddBlankLine();
1235 /// Compute the number of Global Variables that uses a Constant.
1236 static unsigned getNumGlobalVariableUses(const Constant *C) {
1237 if (!C)
1238 return 0;
1240 if (isa<GlobalVariable>(C))
1241 return 1;
1243 unsigned NumUses = 0;
1244 for (auto *CU : C->users())
1245 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1247 return NumUses;
1250 /// Only consider global GOT equivalents if at least one user is a
1251 /// cstexpr inside an initializer of another global variables. Also, don't
1252 /// handle cstexpr inside instructions. During global variable emission,
1253 /// candidates are skipped and are emitted later in case at least one cstexpr
1254 /// isn't replaced by a PC relative GOT entry access.
1255 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1256 unsigned &NumGOTEquivUsers) {
1257 // Global GOT equivalents are unnamed private globals with a constant
1258 // pointer initializer to another global symbol. They must point to a
1259 // GlobalVariable or Function, i.e., as GlobalValue.
1260 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1261 !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1262 !isa<GlobalValue>(GV->getOperand(0)))
1263 return false;
1265 // To be a got equivalent, at least one of its users need to be a constant
1266 // expression used by another global variable.
1267 for (auto *U : GV->users())
1268 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1270 return NumGOTEquivUsers > 0;
1273 /// Unnamed constant global variables solely contaning a pointer to
1274 /// another globals variable is equivalent to a GOT table entry; it contains the
1275 /// the address of another symbol. Optimize it and replace accesses to these
1276 /// "GOT equivalents" by using the GOT entry for the final global instead.
1277 /// Compute GOT equivalent candidates among all global variables to avoid
1278 /// emitting them if possible later on, after it use is replaced by a GOT entry
1279 /// access.
1280 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1281 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1282 return;
1284 for (const auto &G : M.globals()) {
1285 unsigned NumGOTEquivUsers = 0;
1286 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1287 continue;
1289 const MCSymbol *GOTEquivSym = getSymbol(&G);
1290 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1294 /// Constant expressions using GOT equivalent globals may not be eligible
1295 /// for PC relative GOT entry conversion, in such cases we need to emit such
1296 /// globals we previously omitted in EmitGlobalVariable.
1297 void AsmPrinter::emitGlobalGOTEquivs() {
1298 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1299 return;
1301 SmallVector<const GlobalVariable *, 8> FailedCandidates;
1302 for (auto &I : GlobalGOTEquivs) {
1303 const GlobalVariable *GV = I.second.first;
1304 unsigned Cnt = I.second.second;
1305 if (Cnt)
1306 FailedCandidates.push_back(GV);
1308 GlobalGOTEquivs.clear();
1310 for (auto *GV : FailedCandidates)
1311 EmitGlobalVariable(GV);
1314 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1315 const GlobalIndirectSymbol& GIS) {
1316 MCSymbol *Name = getSymbol(&GIS);
1318 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1319 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1320 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1321 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1322 else
1323 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1325 bool IsFunction = GIS.getValueType()->isFunctionTy();
1327 // Treat bitcasts of functions as functions also. This is important at least
1328 // on WebAssembly where object and function addresses can't alias each other.
1329 if (!IsFunction)
1330 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1331 if (CE->getOpcode() == Instruction::BitCast)
1332 IsFunction =
1333 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1335 // Set the symbol type to function if the alias has a function type.
1336 // This affects codegen when the aliasee is not a function.
1337 if (IsFunction)
1338 OutStreamer->EmitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1339 ? MCSA_ELF_TypeIndFunction
1340 : MCSA_ELF_TypeFunction);
1342 EmitVisibility(Name, GIS.getVisibility());
1344 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1346 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1347 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1349 // Emit the directives as assignments aka .set:
1350 OutStreamer->EmitAssignment(Name, Expr);
1352 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1353 // If the aliasee does not correspond to a symbol in the output, i.e. the
1354 // alias is not of an object or the aliased object is private, then set the
1355 // size of the alias symbol from the type of the alias. We don't do this in
1356 // other situations as the alias and aliasee having differing types but same
1357 // size may be intentional.
1358 const GlobalObject *BaseObject = GA->getBaseObject();
1359 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1360 (!BaseObject || BaseObject->hasPrivateLinkage())) {
1361 const DataLayout &DL = M.getDataLayout();
1362 uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1363 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1368 void AsmPrinter::emitRemarksSection(Module &M) {
1369 RemarkStreamer *RS = M.getContext().getRemarkStreamer();
1370 if (!RS)
1371 return;
1372 remarks::RemarkSerializer &RemarkSerializer = RS->getSerializer();
1374 Optional<SmallString<128>> Filename;
1375 if (Optional<StringRef> FilenameRef = RS->getFilename()) {
1376 Filename = *FilenameRef;
1377 sys::fs::make_absolute(*Filename);
1378 assert(!Filename->empty() && "The filename can't be empty.");
1381 std::string Buf;
1382 raw_string_ostream OS(Buf);
1383 std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1384 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1385 : RemarkSerializer.metaSerializer(OS);
1386 MetaSerializer->emit();
1388 // Switch to the right section: .remarks/__remarks.
1389 MCSection *RemarksSection =
1390 OutContext.getObjectFileInfo()->getRemarksSection();
1391 OutStreamer->SwitchSection(RemarksSection);
1393 OutStreamer->EmitBinaryData(OS.str());
1396 bool AsmPrinter::doFinalization(Module &M) {
1397 // Set the MachineFunction to nullptr so that we can catch attempted
1398 // accesses to MF specific features at the module level and so that
1399 // we can conditionalize accesses based on whether or not it is nullptr.
1400 MF = nullptr;
1402 // Gather all GOT equivalent globals in the module. We really need two
1403 // passes over the globals: one to compute and another to avoid its emission
1404 // in EmitGlobalVariable, otherwise we would not be able to handle cases
1405 // where the got equivalent shows up before its use.
1406 computeGlobalGOTEquivs(M);
1408 // Emit global variables.
1409 for (const auto &G : M.globals())
1410 EmitGlobalVariable(&G);
1412 // Emit remaining GOT equivalent globals.
1413 emitGlobalGOTEquivs();
1415 // Emit visibility info for declarations
1416 for (const Function &F : M) {
1417 if (!F.isDeclarationForLinker())
1418 continue;
1419 GlobalValue::VisibilityTypes V = F.getVisibility();
1420 if (V == GlobalValue::DefaultVisibility)
1421 continue;
1423 MCSymbol *Name = getSymbol(&F);
1424 EmitVisibility(Name, V, false);
1427 // Emit the remarks section contents.
1428 // FIXME: Figure out when is the safest time to emit this section. It should
1429 // not come after debug info.
1430 if (EnableRemarksSection)
1431 emitRemarksSection(M);
1433 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1435 TLOF.emitModuleMetadata(*OutStreamer, M);
1437 if (TM.getTargetTriple().isOSBinFormatELF()) {
1438 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1440 // Output stubs for external and common global variables.
1441 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1442 if (!Stubs.empty()) {
1443 OutStreamer->SwitchSection(TLOF.getDataSection());
1444 const DataLayout &DL = M.getDataLayout();
1446 EmitAlignment(Align(DL.getPointerSize()));
1447 for (const auto &Stub : Stubs) {
1448 OutStreamer->EmitLabel(Stub.first);
1449 OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1450 DL.getPointerSize());
1455 if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1456 MachineModuleInfoCOFF &MMICOFF =
1457 MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1459 // Output stubs for external and common global variables.
1460 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1461 if (!Stubs.empty()) {
1462 const DataLayout &DL = M.getDataLayout();
1464 for (const auto &Stub : Stubs) {
1465 SmallString<256> SectionName = StringRef(".rdata$");
1466 SectionName += Stub.first->getName();
1467 OutStreamer->SwitchSection(OutContext.getCOFFSection(
1468 SectionName,
1469 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1470 COFF::IMAGE_SCN_LNK_COMDAT,
1471 SectionKind::getReadOnly(), Stub.first->getName(),
1472 COFF::IMAGE_COMDAT_SELECT_ANY));
1473 EmitAlignment(Align(DL.getPointerSize()));
1474 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1475 OutStreamer->EmitLabel(Stub.first);
1476 OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1477 DL.getPointerSize());
1482 // Finalize debug and EH information.
1483 for (const HandlerInfo &HI : Handlers) {
1484 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1485 HI.TimerGroupDescription, TimePassesIsEnabled);
1486 HI.Handler->endModule();
1488 Handlers.clear();
1489 DD = nullptr;
1491 // If the target wants to know about weak references, print them all.
1492 if (MAI->getWeakRefDirective()) {
1493 // FIXME: This is not lazy, it would be nice to only print weak references
1494 // to stuff that is actually used. Note that doing so would require targets
1495 // to notice uses in operands (due to constant exprs etc). This should
1496 // happen with the MC stuff eventually.
1498 // Print out module-level global objects here.
1499 for (const auto &GO : M.global_objects()) {
1500 if (!GO.hasExternalWeakLinkage())
1501 continue;
1502 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1506 OutStreamer->AddBlankLine();
1508 // Print aliases in topological order, that is, for each alias a = b,
1509 // b must be printed before a.
1510 // This is because on some targets (e.g. PowerPC) linker expects aliases in
1511 // such an order to generate correct TOC information.
1512 SmallVector<const GlobalAlias *, 16> AliasStack;
1513 SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1514 for (const auto &Alias : M.aliases()) {
1515 for (const GlobalAlias *Cur = &Alias; Cur;
1516 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1517 if (!AliasVisited.insert(Cur).second)
1518 break;
1519 AliasStack.push_back(Cur);
1521 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1522 emitGlobalIndirectSymbol(M, *AncestorAlias);
1523 AliasStack.clear();
1525 for (const auto &IFunc : M.ifuncs())
1526 emitGlobalIndirectSymbol(M, IFunc);
1528 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1529 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1530 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1531 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1532 MP->finishAssembly(M, *MI, *this);
1534 // Emit llvm.ident metadata in an '.ident' directive.
1535 EmitModuleIdents(M);
1537 // Emit bytes for llvm.commandline metadata.
1538 EmitModuleCommandLines(M);
1540 // Emit __morestack address if needed for indirect calls.
1541 if (MMI->usesMorestackAddr()) {
1542 unsigned Align = 1;
1543 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1544 getDataLayout(), SectionKind::getReadOnly(),
1545 /*C=*/nullptr, Align);
1546 OutStreamer->SwitchSection(ReadOnlySection);
1548 MCSymbol *AddrSymbol =
1549 OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1550 OutStreamer->EmitLabel(AddrSymbol);
1552 unsigned PtrSize = MAI->getCodePointerSize();
1553 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1554 PtrSize);
1557 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1558 // split-stack is used.
1559 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1560 OutStreamer->SwitchSection(
1561 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1562 if (MMI->hasNosplitStack())
1563 OutStreamer->SwitchSection(
1564 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1567 // If we don't have any trampolines, then we don't require stack memory
1568 // to be executable. Some targets have a directive to declare this.
1569 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1570 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1571 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1572 OutStreamer->SwitchSection(S);
1574 if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1575 // Emit /EXPORT: flags for each exported global as necessary.
1576 const auto &TLOF = getObjFileLowering();
1577 std::string Flags;
1579 for (const GlobalValue &GV : M.global_values()) {
1580 raw_string_ostream OS(Flags);
1581 TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1582 OS.flush();
1583 if (!Flags.empty()) {
1584 OutStreamer->SwitchSection(TLOF.getDrectveSection());
1585 OutStreamer->EmitBytes(Flags);
1587 Flags.clear();
1590 // Emit /INCLUDE: flags for each used global as necessary.
1591 if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1592 assert(LU->hasInitializer() &&
1593 "expected llvm.used to have an initializer");
1594 assert(isa<ArrayType>(LU->getValueType()) &&
1595 "expected llvm.used to be an array type");
1596 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1597 for (const Value *Op : A->operands()) {
1598 const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1599 // Global symbols with internal or private linkage are not visible to
1600 // the linker, and thus would cause an error when the linker tried to
1601 // preserve the symbol due to the `/include:` directive.
1602 if (GV->hasLocalLinkage())
1603 continue;
1605 raw_string_ostream OS(Flags);
1606 TLOF.emitLinkerFlagsForUsed(OS, GV);
1607 OS.flush();
1609 if (!Flags.empty()) {
1610 OutStreamer->SwitchSection(TLOF.getDrectveSection());
1611 OutStreamer->EmitBytes(Flags);
1613 Flags.clear();
1619 if (TM.Options.EmitAddrsig) {
1620 // Emit address-significance attributes for all globals.
1621 OutStreamer->EmitAddrsig();
1622 for (const GlobalValue &GV : M.global_values())
1623 if (!GV.use_empty() && !GV.isThreadLocal() &&
1624 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1625 !GV.hasAtLeastLocalUnnamedAddr())
1626 OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1629 // Emit symbol partition specifications (ELF only).
1630 if (TM.getTargetTriple().isOSBinFormatELF()) {
1631 unsigned UniqueID = 0;
1632 for (const GlobalValue &GV : M.global_values()) {
1633 if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1634 GV.getVisibility() != GlobalValue::DefaultVisibility)
1635 continue;
1637 OutStreamer->SwitchSection(OutContext.getELFSection(
1638 ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID));
1639 OutStreamer->EmitBytes(GV.getPartition());
1640 OutStreamer->EmitZeros(1);
1641 OutStreamer->EmitValue(
1642 MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1643 MAI->getCodePointerSize());
1647 // Allow the target to emit any magic that it wants at the end of the file,
1648 // after everything else has gone out.
1649 EmitEndOfAsmFile(M);
1651 MMI = nullptr;
1653 OutStreamer->Finish();
1654 OutStreamer->reset();
1655 OwnedMLI.reset();
1656 OwnedMDT.reset();
1658 return false;
1661 MCSymbol *AsmPrinter::getCurExceptionSym() {
1662 if (!CurExceptionSym)
1663 CurExceptionSym = createTempSymbol("exception");
1664 return CurExceptionSym;
1667 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1668 this->MF = &MF;
1670 // Get the function symbol.
1671 if (MAI->needsFunctionDescriptors()) {
1672 assert(TM.getTargetTriple().isOSAIX() && "Function descriptor is only"
1673 " supported on AIX.");
1674 assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1675 " initalized first.");
1677 // Get the function entry point symbol.
1678 CurrentFnSym =
1679 OutContext.getOrCreateSymbol("." + CurrentFnDescSym->getName());
1681 const Function &F = MF.getFunction();
1682 MCSectionXCOFF *FnEntryPointSec =
1683 cast<MCSectionXCOFF>(getObjFileLowering().SectionForGlobal(&F, TM));
1684 // Set the containing csect.
1685 cast<MCSymbolXCOFF>(CurrentFnSym)->setContainingCsect(FnEntryPointSec);
1686 } else {
1687 CurrentFnSym = getSymbol(&MF.getFunction());
1690 CurrentFnSymForSize = CurrentFnSym;
1691 CurrentFnBegin = nullptr;
1692 CurExceptionSym = nullptr;
1693 bool NeedsLocalForSize = MAI->needsLocalForSize();
1694 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1695 MF.getTarget().Options.EmitStackSizeSection) {
1696 CurrentFnBegin = createTempSymbol("func_begin");
1697 if (NeedsLocalForSize)
1698 CurrentFnSymForSize = CurrentFnBegin;
1701 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1704 namespace {
1706 // Keep track the alignment, constpool entries per Section.
1707 struct SectionCPs {
1708 MCSection *S;
1709 unsigned Alignment;
1710 SmallVector<unsigned, 4> CPEs;
1712 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1715 } // end anonymous namespace
1717 /// EmitConstantPool - Print to the current output stream assembly
1718 /// representations of the constants in the constant pool MCP. This is
1719 /// used to print out constants which have been "spilled to memory" by
1720 /// the code generator.
1721 void AsmPrinter::EmitConstantPool() {
1722 const MachineConstantPool *MCP = MF->getConstantPool();
1723 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1724 if (CP.empty()) return;
1726 // Calculate sections for constant pool entries. We collect entries to go into
1727 // the same section together to reduce amount of section switch statements.
1728 SmallVector<SectionCPs, 4> CPSections;
1729 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1730 const MachineConstantPoolEntry &CPE = CP[i];
1731 unsigned Align = CPE.getAlignment();
1733 SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1735 const Constant *C = nullptr;
1736 if (!CPE.isMachineConstantPoolEntry())
1737 C = CPE.Val.ConstVal;
1739 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1740 Kind, C, Align);
1742 // The number of sections are small, just do a linear search from the
1743 // last section to the first.
1744 bool Found = false;
1745 unsigned SecIdx = CPSections.size();
1746 while (SecIdx != 0) {
1747 if (CPSections[--SecIdx].S == S) {
1748 Found = true;
1749 break;
1752 if (!Found) {
1753 SecIdx = CPSections.size();
1754 CPSections.push_back(SectionCPs(S, Align));
1757 if (Align > CPSections[SecIdx].Alignment)
1758 CPSections[SecIdx].Alignment = Align;
1759 CPSections[SecIdx].CPEs.push_back(i);
1762 // Now print stuff into the calculated sections.
1763 const MCSection *CurSection = nullptr;
1764 unsigned Offset = 0;
1765 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1766 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1767 unsigned CPI = CPSections[i].CPEs[j];
1768 MCSymbol *Sym = GetCPISymbol(CPI);
1769 if (!Sym->isUndefined())
1770 continue;
1772 if (CurSection != CPSections[i].S) {
1773 OutStreamer->SwitchSection(CPSections[i].S);
1774 EmitAlignment(Align(CPSections[i].Alignment));
1775 CurSection = CPSections[i].S;
1776 Offset = 0;
1779 MachineConstantPoolEntry CPE = CP[CPI];
1781 // Emit inter-object padding for alignment.
1782 unsigned AlignMask = CPE.getAlignment() - 1;
1783 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1784 OutStreamer->EmitZeros(NewOffset - Offset);
1786 Type *Ty = CPE.getType();
1787 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1789 OutStreamer->EmitLabel(Sym);
1790 if (CPE.isMachineConstantPoolEntry())
1791 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1792 else
1793 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1798 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1799 /// by the current function to the current output stream.
1800 void AsmPrinter::EmitJumpTableInfo() {
1801 const DataLayout &DL = MF->getDataLayout();
1802 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1803 if (!MJTI) return;
1804 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1805 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1806 if (JT.empty()) return;
1808 // Pick the directive to use to print the jump table entries, and switch to
1809 // the appropriate section.
1810 const Function &F = MF->getFunction();
1811 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1812 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1813 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1815 if (JTInDiffSection) {
1816 // Drop it in the readonly section.
1817 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1818 OutStreamer->SwitchSection(ReadOnlySection);
1821 EmitAlignment(Align(MJTI->getEntryAlignment(DL)));
1823 // Jump tables in code sections are marked with a data_region directive
1824 // where that's supported.
1825 if (!JTInDiffSection)
1826 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1828 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1829 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1831 // If this jump table was deleted, ignore it.
1832 if (JTBBs.empty()) continue;
1834 // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1835 /// emit a .set directive for each unique entry.
1836 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1837 MAI->doesSetDirectiveSuppressReloc()) {
1838 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1839 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1840 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1841 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1842 const MachineBasicBlock *MBB = JTBBs[ii];
1843 if (!EmittedSets.insert(MBB).second)
1844 continue;
1846 // .set LJTSet, LBB32-base
1847 const MCExpr *LHS =
1848 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1849 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1850 MCBinaryExpr::createSub(LHS, Base,
1851 OutContext));
1855 // On some targets (e.g. Darwin) we want to emit two consecutive labels
1856 // before each jump table. The first label is never referenced, but tells
1857 // the assembler and linker the extents of the jump table object. The
1858 // second label is actually referenced by the code.
1859 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1860 // FIXME: This doesn't have to have any specific name, just any randomly
1861 // named and numbered 'l' label would work. Simplify GetJTISymbol.
1862 OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1864 OutStreamer->EmitLabel(GetJTISymbol(JTI));
1866 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1867 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1869 if (!JTInDiffSection)
1870 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1873 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1874 /// current stream.
1875 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1876 const MachineBasicBlock *MBB,
1877 unsigned UID) const {
1878 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1879 const MCExpr *Value = nullptr;
1880 switch (MJTI->getEntryKind()) {
1881 case MachineJumpTableInfo::EK_Inline:
1882 llvm_unreachable("Cannot emit EK_Inline jump table entry");
1883 case MachineJumpTableInfo::EK_Custom32:
1884 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1885 MJTI, MBB, UID, OutContext);
1886 break;
1887 case MachineJumpTableInfo::EK_BlockAddress:
1888 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1889 // .word LBB123
1890 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1891 break;
1892 case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1893 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1894 // with a relocation as gp-relative, e.g.:
1895 // .gprel32 LBB123
1896 MCSymbol *MBBSym = MBB->getSymbol();
1897 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1898 return;
1901 case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1902 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1903 // with a relocation as gp-relative, e.g.:
1904 // .gpdword LBB123
1905 MCSymbol *MBBSym = MBB->getSymbol();
1906 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1907 return;
1910 case MachineJumpTableInfo::EK_LabelDifference32: {
1911 // Each entry is the address of the block minus the address of the jump
1912 // table. This is used for PIC jump tables where gprel32 is not supported.
1913 // e.g.:
1914 // .word LBB123 - LJTI1_2
1915 // If the .set directive avoids relocations, this is emitted as:
1916 // .set L4_5_set_123, LBB123 - LJTI1_2
1917 // .word L4_5_set_123
1918 if (MAI->doesSetDirectiveSuppressReloc()) {
1919 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1920 OutContext);
1921 break;
1923 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1924 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1925 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1926 Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1927 break;
1931 assert(Value && "Unknown entry kind!");
1933 unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1934 OutStreamer->EmitValue(Value, EntrySize);
1937 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1938 /// special global used by LLVM. If so, emit it and return true, otherwise
1939 /// do nothing and return false.
1940 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1941 if (GV->getName() == "llvm.used") {
1942 if (MAI->hasNoDeadStrip()) // No need to emit this at all.
1943 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1944 return true;
1947 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
1948 if (GV->getSection() == "llvm.metadata" ||
1949 GV->hasAvailableExternallyLinkage())
1950 return true;
1952 if (!GV->hasAppendingLinkage()) return false;
1954 assert(GV->hasInitializer() && "Not a special LLVM global!");
1956 if (GV->getName() == "llvm.global_ctors") {
1957 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1958 /* isCtor */ true);
1960 return true;
1963 if (GV->getName() == "llvm.global_dtors") {
1964 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1965 /* isCtor */ false);
1967 return true;
1970 report_fatal_error("unknown special variable");
1973 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1974 /// global in the specified llvm.used list.
1975 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1976 // Should be an array of 'i8*'.
1977 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1978 const GlobalValue *GV =
1979 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1980 if (GV)
1981 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1985 namespace {
1987 struct Structor {
1988 int Priority = 0;
1989 Constant *Func = nullptr;
1990 GlobalValue *ComdatKey = nullptr;
1992 Structor() = default;
1995 } // end anonymous namespace
1997 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1998 /// priority.
1999 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
2000 bool isCtor) {
2001 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the
2002 // init priority.
2003 if (!isa<ConstantArray>(List)) return;
2005 // Sanity check the structors list.
2006 const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
2007 if (!InitList) return; // Not an array!
2008 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
2009 if (!ETy || ETy->getNumElements() != 3 ||
2010 !isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
2011 !isa<PointerType>(ETy->getTypeAtIndex(1U)) ||
2012 !isa<PointerType>(ETy->getTypeAtIndex(2U)))
2013 return; // Not (int, ptr, ptr).
2015 // Gather the structors in a form that's convenient for sorting by priority.
2016 SmallVector<Structor, 8> Structors;
2017 for (Value *O : InitList->operands()) {
2018 ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
2019 if (!CS) continue; // Malformed.
2020 if (CS->getOperand(1)->isNullValue())
2021 break; // Found a null terminator, skip the rest.
2022 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2023 if (!Priority) continue; // Malformed.
2024 Structors.push_back(Structor());
2025 Structor &S = Structors.back();
2026 S.Priority = Priority->getLimitedValue(65535);
2027 S.Func = CS->getOperand(1);
2028 if (!CS->getOperand(2)->isNullValue())
2029 S.ComdatKey =
2030 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2033 // Emit the function pointers in the target-specific order
2034 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2035 return L.Priority < R.Priority;
2037 const Align Align = DL.getPointerPrefAlignment();
2038 for (Structor &S : Structors) {
2039 const TargetLoweringObjectFile &Obj = getObjFileLowering();
2040 const MCSymbol *KeySym = nullptr;
2041 if (GlobalValue *GV = S.ComdatKey) {
2042 if (GV->isDeclarationForLinker())
2043 // If the associated variable is not defined in this module
2044 // (it might be available_externally, or have been an
2045 // available_externally definition that was dropped by the
2046 // EliminateAvailableExternally pass), some other TU
2047 // will provide its dynamic initializer.
2048 continue;
2050 KeySym = getSymbol(GV);
2052 MCSection *OutputSection =
2053 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2054 : Obj.getStaticDtorSection(S.Priority, KeySym));
2055 OutStreamer->SwitchSection(OutputSection);
2056 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2057 EmitAlignment(Align);
2058 EmitXXStructor(DL, S.Func);
2062 void AsmPrinter::EmitModuleIdents(Module &M) {
2063 if (!MAI->hasIdentDirective())
2064 return;
2066 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2067 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2068 const MDNode *N = NMD->getOperand(i);
2069 assert(N->getNumOperands() == 1 &&
2070 "llvm.ident metadata entry can have only one operand");
2071 const MDString *S = cast<MDString>(N->getOperand(0));
2072 OutStreamer->EmitIdent(S->getString());
2077 void AsmPrinter::EmitModuleCommandLines(Module &M) {
2078 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2079 if (!CommandLine)
2080 return;
2082 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2083 if (!NMD || !NMD->getNumOperands())
2084 return;
2086 OutStreamer->PushSection();
2087 OutStreamer->SwitchSection(CommandLine);
2088 OutStreamer->EmitZeros(1);
2089 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2090 const MDNode *N = NMD->getOperand(i);
2091 assert(N->getNumOperands() == 1 &&
2092 "llvm.commandline metadata entry can have only one operand");
2093 const MDString *S = cast<MDString>(N->getOperand(0));
2094 OutStreamer->EmitBytes(S->getString());
2095 OutStreamer->EmitZeros(1);
2097 OutStreamer->PopSection();
2100 //===--------------------------------------------------------------------===//
2101 // Emission and print routines
2104 /// Emit a byte directive and value.
2106 void AsmPrinter::emitInt8(int Value) const {
2107 OutStreamer->EmitIntValue(Value, 1);
2110 /// Emit a short directive and value.
2111 void AsmPrinter::emitInt16(int Value) const {
2112 OutStreamer->EmitIntValue(Value, 2);
2115 /// Emit a long directive and value.
2116 void AsmPrinter::emitInt32(int Value) const {
2117 OutStreamer->EmitIntValue(Value, 4);
2120 /// Emit a long long directive and value.
2121 void AsmPrinter::emitInt64(uint64_t Value) const {
2122 OutStreamer->EmitIntValue(Value, 8);
2125 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2126 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2127 /// .set if it avoids relocations.
2128 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2129 unsigned Size) const {
2130 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2133 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2134 /// where the size in bytes of the directive is specified by Size and Label
2135 /// specifies the label. This implicitly uses .set if it is available.
2136 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2137 unsigned Size,
2138 bool IsSectionRelative) const {
2139 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2140 OutStreamer->EmitCOFFSecRel32(Label, Offset);
2141 if (Size > 4)
2142 OutStreamer->EmitZeros(Size - 4);
2143 return;
2146 // Emit Label+Offset (or just Label if Offset is zero)
2147 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2148 if (Offset)
2149 Expr = MCBinaryExpr::createAdd(
2150 Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2152 OutStreamer->EmitValue(Expr, Size);
2155 //===----------------------------------------------------------------------===//
2157 // EmitAlignment - Emit an alignment directive to the specified power of
2158 // two boundary. If a global value is specified, and if that global has
2159 // an explicit alignment requested, it will override the alignment request
2160 // if required for correctness.
2161 void AsmPrinter::EmitAlignment(Align Alignment, const GlobalObject *GV) const {
2162 if (GV)
2163 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2165 if (Alignment == Align::None())
2166 return; // 1-byte aligned: no need to emit alignment.
2168 if (getCurrentSection()->getKind().isText())
2169 OutStreamer->EmitCodeAlignment(Alignment.value());
2170 else
2171 OutStreamer->EmitValueToAlignment(Alignment.value());
2174 //===----------------------------------------------------------------------===//
2175 // Constant emission.
2176 //===----------------------------------------------------------------------===//
2178 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2179 MCContext &Ctx = OutContext;
2181 if (CV->isNullValue() || isa<UndefValue>(CV))
2182 return MCConstantExpr::create(0, Ctx);
2184 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2185 return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2187 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2188 return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2190 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2191 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2193 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2194 if (!CE) {
2195 llvm_unreachable("Unknown constant value to lower!");
2198 switch (CE->getOpcode()) {
2199 default:
2200 // If the code isn't optimized, there may be outstanding folding
2201 // opportunities. Attempt to fold the expression using DataLayout as a
2202 // last resort before giving up.
2203 if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2204 if (C != CE)
2205 return lowerConstant(C);
2207 // Otherwise report the problem to the user.
2209 std::string S;
2210 raw_string_ostream OS(S);
2211 OS << "Unsupported expression in static initializer: ";
2212 CE->printAsOperand(OS, /*PrintType=*/false,
2213 !MF ? nullptr : MF->getFunction().getParent());
2214 report_fatal_error(OS.str());
2216 case Instruction::GetElementPtr: {
2217 // Generate a symbolic expression for the byte address
2218 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2219 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2221 const MCExpr *Base = lowerConstant(CE->getOperand(0));
2222 if (!OffsetAI)
2223 return Base;
2225 int64_t Offset = OffsetAI.getSExtValue();
2226 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2227 Ctx);
2230 case Instruction::Trunc:
2231 // We emit the value and depend on the assembler to truncate the generated
2232 // expression properly. This is important for differences between
2233 // blockaddress labels. Since the two labels are in the same function, it
2234 // is reasonable to treat their delta as a 32-bit value.
2235 LLVM_FALLTHROUGH;
2236 case Instruction::BitCast:
2237 return lowerConstant(CE->getOperand(0));
2239 case Instruction::IntToPtr: {
2240 const DataLayout &DL = getDataLayout();
2242 // Handle casts to pointers by changing them into casts to the appropriate
2243 // integer type. This promotes constant folding and simplifies this code.
2244 Constant *Op = CE->getOperand(0);
2245 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2246 false/*ZExt*/);
2247 return lowerConstant(Op);
2250 case Instruction::PtrToInt: {
2251 const DataLayout &DL = getDataLayout();
2253 // Support only foldable casts to/from pointers that can be eliminated by
2254 // changing the pointer to the appropriately sized integer type.
2255 Constant *Op = CE->getOperand(0);
2256 Type *Ty = CE->getType();
2258 const MCExpr *OpExpr = lowerConstant(Op);
2260 // We can emit the pointer value into this slot if the slot is an
2261 // integer slot equal to the size of the pointer.
2263 // If the pointer is larger than the resultant integer, then
2264 // as with Trunc just depend on the assembler to truncate it.
2265 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType()))
2266 return OpExpr;
2268 // Otherwise the pointer is smaller than the resultant integer, mask off
2269 // the high bits so we are sure to get a proper truncation if the input is
2270 // a constant expr.
2271 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2272 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2273 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2276 case Instruction::Sub: {
2277 GlobalValue *LHSGV;
2278 APInt LHSOffset;
2279 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2280 getDataLayout())) {
2281 GlobalValue *RHSGV;
2282 APInt RHSOffset;
2283 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2284 getDataLayout())) {
2285 const MCExpr *RelocExpr =
2286 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2287 if (!RelocExpr)
2288 RelocExpr = MCBinaryExpr::createSub(
2289 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2290 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2291 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2292 if (Addend != 0)
2293 RelocExpr = MCBinaryExpr::createAdd(
2294 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2295 return RelocExpr;
2299 // else fallthrough
2300 LLVM_FALLTHROUGH;
2302 // The MC library also has a right-shift operator, but it isn't consistently
2303 // signed or unsigned between different targets.
2304 case Instruction::Add:
2305 case Instruction::Mul:
2306 case Instruction::SDiv:
2307 case Instruction::SRem:
2308 case Instruction::Shl:
2309 case Instruction::And:
2310 case Instruction::Or:
2311 case Instruction::Xor: {
2312 const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2313 const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2314 switch (CE->getOpcode()) {
2315 default: llvm_unreachable("Unknown binary operator constant cast expr");
2316 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2317 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2318 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2319 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2320 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2321 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2322 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2323 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2324 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2330 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2331 AsmPrinter &AP,
2332 const Constant *BaseCV = nullptr,
2333 uint64_t Offset = 0);
2335 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2336 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2338 /// isRepeatedByteSequence - Determine whether the given value is
2339 /// composed of a repeated sequence of identical bytes and return the
2340 /// byte value. If it is not a repeated sequence, return -1.
2341 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2342 StringRef Data = V->getRawDataValues();
2343 assert(!Data.empty() && "Empty aggregates should be CAZ node");
2344 char C = Data[0];
2345 for (unsigned i = 1, e = Data.size(); i != e; ++i)
2346 if (Data[i] != C) return -1;
2347 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2350 /// isRepeatedByteSequence - Determine whether the given value is
2351 /// composed of a repeated sequence of identical bytes and return the
2352 /// byte value. If it is not a repeated sequence, return -1.
2353 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2354 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2355 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2356 assert(Size % 8 == 0);
2358 // Extend the element to take zero padding into account.
2359 APInt Value = CI->getValue().zextOrSelf(Size);
2360 if (!Value.isSplat(8))
2361 return -1;
2363 return Value.zextOrTrunc(8).getZExtValue();
2365 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2366 // Make sure all array elements are sequences of the same repeated
2367 // byte.
2368 assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2369 Constant *Op0 = CA->getOperand(0);
2370 int Byte = isRepeatedByteSequence(Op0, DL);
2371 if (Byte == -1)
2372 return -1;
2374 // All array elements must be equal.
2375 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2376 if (CA->getOperand(i) != Op0)
2377 return -1;
2378 return Byte;
2381 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2382 return isRepeatedByteSequence(CDS);
2384 return -1;
2387 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2388 const ConstantDataSequential *CDS,
2389 AsmPrinter &AP) {
2390 // See if we can aggregate this into a .fill, if so, emit it as such.
2391 int Value = isRepeatedByteSequence(CDS, DL);
2392 if (Value != -1) {
2393 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2394 // Don't emit a 1-byte object as a .fill.
2395 if (Bytes > 1)
2396 return AP.OutStreamer->emitFill(Bytes, Value);
2399 // If this can be emitted with .ascii/.asciz, emit it as such.
2400 if (CDS->isString())
2401 return AP.OutStreamer->EmitBytes(CDS->getAsString());
2403 // Otherwise, emit the values in successive locations.
2404 unsigned ElementByteSize = CDS->getElementByteSize();
2405 if (isa<IntegerType>(CDS->getElementType())) {
2406 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2407 if (AP.isVerbose())
2408 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2409 CDS->getElementAsInteger(i));
2410 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2411 ElementByteSize);
2413 } else {
2414 Type *ET = CDS->getElementType();
2415 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2416 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2419 unsigned Size = DL.getTypeAllocSize(CDS->getType());
2420 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2421 CDS->getNumElements();
2422 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2423 if (unsigned Padding = Size - EmittedSize)
2424 AP.OutStreamer->EmitZeros(Padding);
2427 static void emitGlobalConstantArray(const DataLayout &DL,
2428 const ConstantArray *CA, AsmPrinter &AP,
2429 const Constant *BaseCV, uint64_t Offset) {
2430 // See if we can aggregate some values. Make sure it can be
2431 // represented as a series of bytes of the constant value.
2432 int Value = isRepeatedByteSequence(CA, DL);
2434 if (Value != -1) {
2435 uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2436 AP.OutStreamer->emitFill(Bytes, Value);
2438 else {
2439 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2440 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2441 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2446 static void emitGlobalConstantVector(const DataLayout &DL,
2447 const ConstantVector *CV, AsmPrinter &AP) {
2448 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2449 emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2451 unsigned Size = DL.getTypeAllocSize(CV->getType());
2452 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2453 CV->getType()->getNumElements();
2454 if (unsigned Padding = Size - EmittedSize)
2455 AP.OutStreamer->EmitZeros(Padding);
2458 static void emitGlobalConstantStruct(const DataLayout &DL,
2459 const ConstantStruct *CS, AsmPrinter &AP,
2460 const Constant *BaseCV, uint64_t Offset) {
2461 // Print the fields in successive locations. Pad to align if needed!
2462 unsigned Size = DL.getTypeAllocSize(CS->getType());
2463 const StructLayout *Layout = DL.getStructLayout(CS->getType());
2464 uint64_t SizeSoFar = 0;
2465 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2466 const Constant *Field = CS->getOperand(i);
2468 // Print the actual field value.
2469 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2471 // Check if padding is needed and insert one or more 0s.
2472 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2473 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2474 - Layout->getElementOffset(i)) - FieldSize;
2475 SizeSoFar += FieldSize + PadSize;
2477 // Insert padding - this may include padding to increase the size of the
2478 // current field up to the ABI size (if the struct is not packed) as well
2479 // as padding to ensure that the next field starts at the right offset.
2480 AP.OutStreamer->EmitZeros(PadSize);
2482 assert(SizeSoFar == Layout->getSizeInBytes() &&
2483 "Layout of constant struct may be incorrect!");
2486 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2487 assert(ET && "Unknown float type");
2488 APInt API = APF.bitcastToAPInt();
2490 // First print a comment with what we think the original floating-point value
2491 // should have been.
2492 if (AP.isVerbose()) {
2493 SmallString<8> StrVal;
2494 APF.toString(StrVal);
2495 ET->print(AP.OutStreamer->GetCommentOS());
2496 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2499 // Now iterate through the APInt chunks, emitting them in endian-correct
2500 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2501 // floats).
2502 unsigned NumBytes = API.getBitWidth() / 8;
2503 unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2504 const uint64_t *p = API.getRawData();
2506 // PPC's long double has odd notions of endianness compared to how LLVM
2507 // handles it: p[0] goes first for *big* endian on PPC.
2508 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2509 int Chunk = API.getNumWords() - 1;
2511 if (TrailingBytes)
2512 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2514 for (; Chunk >= 0; --Chunk)
2515 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2516 } else {
2517 unsigned Chunk;
2518 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2519 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2521 if (TrailingBytes)
2522 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2525 // Emit the tail padding for the long double.
2526 const DataLayout &DL = AP.getDataLayout();
2527 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2530 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2531 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2534 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2535 const DataLayout &DL = AP.getDataLayout();
2536 unsigned BitWidth = CI->getBitWidth();
2538 // Copy the value as we may massage the layout for constants whose bit width
2539 // is not a multiple of 64-bits.
2540 APInt Realigned(CI->getValue());
2541 uint64_t ExtraBits = 0;
2542 unsigned ExtraBitsSize = BitWidth & 63;
2544 if (ExtraBitsSize) {
2545 // The bit width of the data is not a multiple of 64-bits.
2546 // The extra bits are expected to be at the end of the chunk of the memory.
2547 // Little endian:
2548 // * Nothing to be done, just record the extra bits to emit.
2549 // Big endian:
2550 // * Record the extra bits to emit.
2551 // * Realign the raw data to emit the chunks of 64-bits.
2552 if (DL.isBigEndian()) {
2553 // Basically the structure of the raw data is a chunk of 64-bits cells:
2554 // 0 1 BitWidth / 64
2555 // [chunk1][chunk2] ... [chunkN].
2556 // The most significant chunk is chunkN and it should be emitted first.
2557 // However, due to the alignment issue chunkN contains useless bits.
2558 // Realign the chunks so that they contain only useless information:
2559 // ExtraBits 0 1 (BitWidth / 64) - 1
2560 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2561 ExtraBits = Realigned.getRawData()[0] &
2562 (((uint64_t)-1) >> (64 - ExtraBitsSize));
2563 Realigned.lshrInPlace(ExtraBitsSize);
2564 } else
2565 ExtraBits = Realigned.getRawData()[BitWidth / 64];
2568 // We don't expect assemblers to support integer data directives
2569 // for more than 64 bits, so we emit the data in at most 64-bit
2570 // quantities at a time.
2571 const uint64_t *RawData = Realigned.getRawData();
2572 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2573 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2574 AP.OutStreamer->EmitIntValue(Val, 8);
2577 if (ExtraBitsSize) {
2578 // Emit the extra bits after the 64-bits chunks.
2580 // Emit a directive that fills the expected size.
2581 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2582 Size -= (BitWidth / 64) * 8;
2583 assert(Size && Size * 8 >= ExtraBitsSize &&
2584 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2585 == ExtraBits && "Directive too small for extra bits.");
2586 AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2590 /// Transform a not absolute MCExpr containing a reference to a GOT
2591 /// equivalent global, by a target specific GOT pc relative access to the
2592 /// final symbol.
2593 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2594 const Constant *BaseCst,
2595 uint64_t Offset) {
2596 // The global @foo below illustrates a global that uses a got equivalent.
2598 // @bar = global i32 42
2599 // @gotequiv = private unnamed_addr constant i32* @bar
2600 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2601 // i64 ptrtoint (i32* @foo to i64))
2602 // to i32)
2604 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2605 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2606 // form:
2608 // foo = cstexpr, where
2609 // cstexpr := <gotequiv> - "." + <cst>
2610 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2612 // After canonicalization by evaluateAsRelocatable `ME` turns into:
2614 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2615 // gotpcrelcst := <offset from @foo base> + <cst>
2616 MCValue MV;
2617 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2618 return;
2619 const MCSymbolRefExpr *SymA = MV.getSymA();
2620 if (!SymA)
2621 return;
2623 // Check that GOT equivalent symbol is cached.
2624 const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2625 if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2626 return;
2628 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2629 if (!BaseGV)
2630 return;
2632 // Check for a valid base symbol
2633 const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2634 const MCSymbolRefExpr *SymB = MV.getSymB();
2636 if (!SymB || BaseSym != &SymB->getSymbol())
2637 return;
2639 // Make sure to match:
2641 // gotpcrelcst := <offset from @foo base> + <cst>
2643 // If gotpcrelcst is positive it means that we can safely fold the pc rel
2644 // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2645 // if the target knows how to encode it.
2646 int64_t GOTPCRelCst = Offset + MV.getConstant();
2647 if (GOTPCRelCst < 0)
2648 return;
2649 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2650 return;
2652 // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2654 // bar:
2655 // .long 42
2656 // gotequiv:
2657 // .quad bar
2658 // foo:
2659 // .long gotequiv - "." + <cst>
2661 // is replaced by the target specific equivalent to:
2663 // bar:
2664 // .long 42
2665 // foo:
2666 // .long bar@GOTPCREL+<gotpcrelcst>
2667 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2668 const GlobalVariable *GV = Result.first;
2669 int NumUses = (int)Result.second;
2670 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2671 const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2672 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2673 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2675 // Update GOT equivalent usage information
2676 --NumUses;
2677 if (NumUses >= 0)
2678 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2681 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2682 AsmPrinter &AP, const Constant *BaseCV,
2683 uint64_t Offset) {
2684 uint64_t Size = DL.getTypeAllocSize(CV->getType());
2686 // Globals with sub-elements such as combinations of arrays and structs
2687 // are handled recursively by emitGlobalConstantImpl. Keep track of the
2688 // constant symbol base and the current position with BaseCV and Offset.
2689 if (!BaseCV && CV->hasOneUse())
2690 BaseCV = dyn_cast<Constant>(CV->user_back());
2692 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2693 return AP.OutStreamer->EmitZeros(Size);
2695 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2696 switch (Size) {
2697 case 1:
2698 case 2:
2699 case 4:
2700 case 8:
2701 if (AP.isVerbose())
2702 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2703 CI->getZExtValue());
2704 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2705 return;
2706 default:
2707 emitGlobalConstantLargeInt(CI, AP);
2708 return;
2712 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2713 return emitGlobalConstantFP(CFP, AP);
2715 if (isa<ConstantPointerNull>(CV)) {
2716 AP.OutStreamer->EmitIntValue(0, Size);
2717 return;
2720 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2721 return emitGlobalConstantDataSequential(DL, CDS, AP);
2723 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2724 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2726 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2727 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2729 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2730 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2731 // vectors).
2732 if (CE->getOpcode() == Instruction::BitCast)
2733 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2735 if (Size > 8) {
2736 // If the constant expression's size is greater than 64-bits, then we have
2737 // to emit the value in chunks. Try to constant fold the value and emit it
2738 // that way.
2739 Constant *New = ConstantFoldConstant(CE, DL);
2740 if (New && New != CE)
2741 return emitGlobalConstantImpl(DL, New, AP);
2745 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2746 return emitGlobalConstantVector(DL, V, AP);
2748 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
2749 // thread the streamer with EmitValue.
2750 const MCExpr *ME = AP.lowerConstant(CV);
2752 // Since lowerConstant already folded and got rid of all IR pointer and
2753 // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2754 // directly.
2755 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2756 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2758 AP.OutStreamer->EmitValue(ME, Size);
2761 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2762 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2763 uint64_t Size = DL.getTypeAllocSize(CV->getType());
2764 if (Size)
2765 emitGlobalConstantImpl(DL, CV, *this);
2766 else if (MAI->hasSubsectionsViaSymbols()) {
2767 // If the global has zero size, emit a single byte so that two labels don't
2768 // look like they are at the same location.
2769 OutStreamer->EmitIntValue(0, 1);
2773 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2774 // Target doesn't support this yet!
2775 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2778 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2779 if (Offset > 0)
2780 OS << '+' << Offset;
2781 else if (Offset < 0)
2782 OS << Offset;
2785 //===----------------------------------------------------------------------===//
2786 // Symbol Lowering Routines.
2787 //===----------------------------------------------------------------------===//
2789 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2790 return OutContext.createTempSymbol(Name, true);
2793 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2794 return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2797 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2798 return MMI->getAddrLabelSymbol(BB);
2801 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2802 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2803 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2804 const MachineConstantPoolEntry &CPE =
2805 MF->getConstantPool()->getConstants()[CPID];
2806 if (!CPE.isMachineConstantPoolEntry()) {
2807 const DataLayout &DL = MF->getDataLayout();
2808 SectionKind Kind = CPE.getSectionKind(&DL);
2809 const Constant *C = CPE.Val.ConstVal;
2810 unsigned Align = CPE.Alignment;
2811 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2812 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2813 if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2814 if (Sym->isUndefined())
2815 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2816 return Sym;
2822 const DataLayout &DL = getDataLayout();
2823 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2824 "CPI" + Twine(getFunctionNumber()) + "_" +
2825 Twine(CPID));
2828 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2829 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2830 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2833 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2834 /// FIXME: privatize to AsmPrinter.
2835 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2836 const DataLayout &DL = getDataLayout();
2837 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2838 Twine(getFunctionNumber()) + "_" +
2839 Twine(UID) + "_set_" + Twine(MBBID));
2842 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2843 StringRef Suffix) const {
2844 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2847 /// Return the MCSymbol for the specified ExternalSymbol.
2848 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2849 SmallString<60> NameStr;
2850 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2851 return OutContext.getOrCreateSymbol(NameStr);
2854 /// PrintParentLoopComment - Print comments about parent loops of this one.
2855 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2856 unsigned FunctionNumber) {
2857 if (!Loop) return;
2858 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2859 OS.indent(Loop->getLoopDepth()*2)
2860 << "Parent Loop BB" << FunctionNumber << "_"
2861 << Loop->getHeader()->getNumber()
2862 << " Depth=" << Loop->getLoopDepth() << '\n';
2865 /// PrintChildLoopComment - Print comments about child loops within
2866 /// the loop for this basic block, with nesting.
2867 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2868 unsigned FunctionNumber) {
2869 // Add child loop information
2870 for (const MachineLoop *CL : *Loop) {
2871 OS.indent(CL->getLoopDepth()*2)
2872 << "Child Loop BB" << FunctionNumber << "_"
2873 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2874 << '\n';
2875 PrintChildLoopComment(OS, CL, FunctionNumber);
2879 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2880 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2881 const MachineLoopInfo *LI,
2882 const AsmPrinter &AP) {
2883 // Add loop depth information
2884 const MachineLoop *Loop = LI->getLoopFor(&MBB);
2885 if (!Loop) return;
2887 MachineBasicBlock *Header = Loop->getHeader();
2888 assert(Header && "No header for loop");
2890 // If this block is not a loop header, just print out what is the loop header
2891 // and return.
2892 if (Header != &MBB) {
2893 AP.OutStreamer->AddComment(" in Loop: Header=BB" +
2894 Twine(AP.getFunctionNumber())+"_" +
2895 Twine(Loop->getHeader()->getNumber())+
2896 " Depth="+Twine(Loop->getLoopDepth()));
2897 return;
2900 // Otherwise, it is a loop header. Print out information about child and
2901 // parent loops.
2902 raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2904 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2906 OS << "=>";
2907 OS.indent(Loop->getLoopDepth()*2-2);
2909 OS << "This ";
2910 if (Loop->empty())
2911 OS << "Inner ";
2912 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2914 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2917 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2918 MCCodePaddingContext &Context) const {
2919 assert(MF != nullptr && "Machine function must be valid");
2920 Context.IsPaddingActive = !MF->hasInlineAsm() &&
2921 !MF->getFunction().hasOptSize() &&
2922 TM.getOptLevel() != CodeGenOpt::None;
2923 Context.IsBasicBlockReachableViaFallthrough =
2924 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2925 MBB.pred_end();
2926 Context.IsBasicBlockReachableViaBranch =
2927 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2930 /// EmitBasicBlockStart - This method prints the label for the specified
2931 /// MachineBasicBlock, an alignment (if present) and a comment describing
2932 /// it if appropriate.
2933 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) {
2934 // End the previous funclet and start a new one.
2935 if (MBB.isEHFuncletEntry()) {
2936 for (const HandlerInfo &HI : Handlers) {
2937 HI.Handler->endFunclet();
2938 HI.Handler->beginFunclet(MBB);
2942 // Emit an alignment directive for this block, if needed.
2943 const Align Alignment = MBB.getAlignment();
2944 if (Alignment != Align::None())
2945 EmitAlignment(Alignment);
2946 MCCodePaddingContext Context;
2947 setupCodePaddingContext(MBB, Context);
2948 OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2950 // If the block has its address taken, emit any labels that were used to
2951 // reference the block. It is possible that there is more than one label
2952 // here, because multiple LLVM BB's may have been RAUW'd to this block after
2953 // the references were generated.
2954 if (MBB.hasAddressTaken()) {
2955 const BasicBlock *BB = MBB.getBasicBlock();
2956 if (isVerbose())
2957 OutStreamer->AddComment("Block address taken");
2959 // MBBs can have their address taken as part of CodeGen without having
2960 // their corresponding BB's address taken in IR
2961 if (BB->hasAddressTaken())
2962 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2963 OutStreamer->EmitLabel(Sym);
2966 // Print some verbose block comments.
2967 if (isVerbose()) {
2968 if (const BasicBlock *BB = MBB.getBasicBlock()) {
2969 if (BB->hasName()) {
2970 BB->printAsOperand(OutStreamer->GetCommentOS(),
2971 /*PrintType=*/false, BB->getModule());
2972 OutStreamer->GetCommentOS() << '\n';
2976 assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2977 emitBasicBlockLoopComments(MBB, MLI, *this);
2980 // Print the main label for the block.
2981 if (MBB.pred_empty() ||
2982 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() &&
2983 !MBB.hasLabelMustBeEmitted())) {
2984 if (isVerbose()) {
2985 // NOTE: Want this comment at start of line, don't emit with AddComment.
2986 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2987 false);
2989 } else {
2990 if (isVerbose() && MBB.hasLabelMustBeEmitted())
2991 OutStreamer->AddComment("Label of block must be emitted");
2992 OutStreamer->EmitLabel(MBB.getSymbol());
2996 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2997 MCCodePaddingContext Context;
2998 setupCodePaddingContext(MBB, Context);
2999 OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
3002 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
3003 bool IsDefinition) const {
3004 MCSymbolAttr Attr = MCSA_Invalid;
3006 switch (Visibility) {
3007 default: break;
3008 case GlobalValue::HiddenVisibility:
3009 if (IsDefinition)
3010 Attr = MAI->getHiddenVisibilityAttr();
3011 else
3012 Attr = MAI->getHiddenDeclarationVisibilityAttr();
3013 break;
3014 case GlobalValue::ProtectedVisibility:
3015 Attr = MAI->getProtectedVisibilityAttr();
3016 break;
3019 if (Attr != MCSA_Invalid)
3020 OutStreamer->EmitSymbolAttribute(Sym, Attr);
3023 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3024 /// exactly one predecessor and the control transfer mechanism between
3025 /// the predecessor and this block is a fall-through.
3026 bool AsmPrinter::
3027 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3028 // If this is a landing pad, it isn't a fall through. If it has no preds,
3029 // then nothing falls through to it.
3030 if (MBB->isEHPad() || MBB->pred_empty())
3031 return false;
3033 // If there isn't exactly one predecessor, it can't be a fall through.
3034 if (MBB->pred_size() > 1)
3035 return false;
3037 // The predecessor has to be immediately before this block.
3038 MachineBasicBlock *Pred = *MBB->pred_begin();
3039 if (!Pred->isLayoutSuccessor(MBB))
3040 return false;
3042 // If the block is completely empty, then it definitely does fall through.
3043 if (Pred->empty())
3044 return true;
3046 // Check the terminators in the previous blocks
3047 for (const auto &MI : Pred->terminators()) {
3048 // If it is not a simple branch, we are in a table somewhere.
3049 if (!MI.isBranch() || MI.isIndirectBranch())
3050 return false;
3052 // If we are the operands of one of the branches, this is not a fall
3053 // through. Note that targets with delay slots will usually bundle
3054 // terminators with the delay slot instruction.
3055 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3056 if (OP->isJTI())
3057 return false;
3058 if (OP->isMBB() && OP->getMBB() == MBB)
3059 return false;
3063 return true;
3066 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3067 if (!S.usesMetadata())
3068 return nullptr;
3070 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3071 gcp_map_type::iterator GCPI = GCMap.find(&S);
3072 if (GCPI != GCMap.end())
3073 return GCPI->second.get();
3075 auto Name = S.getName();
3077 for (GCMetadataPrinterRegistry::iterator
3078 I = GCMetadataPrinterRegistry::begin(),
3079 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
3080 if (Name == I->getName()) {
3081 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
3082 GMP->S = &S;
3083 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3084 return IterBool.first->second.get();
3087 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3090 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3091 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3092 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3093 bool NeedsDefault = false;
3094 if (MI->begin() == MI->end())
3095 // No GC strategy, use the default format.
3096 NeedsDefault = true;
3097 else
3098 for (auto &I : *MI) {
3099 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3100 if (MP->emitStackMaps(SM, *this))
3101 continue;
3102 // The strategy doesn't have printer or doesn't emit custom stack maps.
3103 // Use the default format.
3104 NeedsDefault = true;
3107 if (NeedsDefault)
3108 SM.serializeToStackMapSection();
3111 /// Pin vtable to this file.
3112 AsmPrinterHandler::~AsmPrinterHandler() = default;
3114 void AsmPrinterHandler::markFunctionEnd() {}
3116 // In the binary's "xray_instr_map" section, an array of these function entries
3117 // describes each instrumentation point. When XRay patches your code, the index
3118 // into this table will be given to your handler as a patch point identifier.
3119 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3120 const MCSymbol *CurrentFnSym) const {
3121 Out->EmitSymbolValue(Sled, Bytes);
3122 Out->EmitSymbolValue(CurrentFnSym, Bytes);
3123 auto Kind8 = static_cast<uint8_t>(Kind);
3124 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3125 Out->EmitBinaryData(
3126 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3127 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3128 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3129 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3130 Out->EmitZeros(Padding);
3133 void AsmPrinter::emitXRayTable() {
3134 if (Sleds.empty())
3135 return;
3137 auto PrevSection = OutStreamer->getCurrentSectionOnly();
3138 const Function &F = MF->getFunction();
3139 MCSection *InstMap = nullptr;
3140 MCSection *FnSledIndex = nullptr;
3141 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3142 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3143 assert(Associated != nullptr);
3144 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3145 std::string GroupName;
3146 if (F.hasComdat()) {
3147 Flags |= ELF::SHF_GROUP;
3148 GroupName = F.getComdat()->getName();
3151 auto UniqueID = ++XRayFnUniqueID;
3152 InstMap =
3153 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3154 GroupName, UniqueID, Associated);
3155 FnSledIndex =
3156 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3157 GroupName, UniqueID, Associated);
3158 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3159 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3160 SectionKind::getReadOnlyWithRel());
3161 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3162 SectionKind::getReadOnlyWithRel());
3163 } else {
3164 llvm_unreachable("Unsupported target");
3167 auto WordSizeBytes = MAI->getCodePointerSize();
3169 // Now we switch to the instrumentation map section. Because this is done
3170 // per-function, we are able to create an index entry that will represent the
3171 // range of sleds associated with a function.
3172 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3173 OutStreamer->SwitchSection(InstMap);
3174 OutStreamer->EmitLabel(SledsStart);
3175 for (const auto &Sled : Sleds)
3176 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3177 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3178 OutStreamer->EmitLabel(SledsEnd);
3180 // We then emit a single entry in the index per function. We use the symbols
3181 // that bound the instrumentation map as the range for a specific function.
3182 // Each entry here will be 2 * word size aligned, as we're writing down two
3183 // pointers. This should work for both 32-bit and 64-bit platforms.
3184 OutStreamer->SwitchSection(FnSledIndex);
3185 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3186 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3187 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3188 OutStreamer->SwitchSection(PrevSection);
3189 Sleds.clear();
3192 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3193 SledKind Kind, uint8_t Version) {
3194 const Function &F = MI.getMF()->getFunction();
3195 auto Attr = F.getFnAttribute("function-instrument");
3196 bool LogArgs = F.hasFnAttribute("xray-log-args");
3197 bool AlwaysInstrument =
3198 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3199 if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3200 Kind = SledKind::LOG_ARGS_ENTER;
3201 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3202 AlwaysInstrument, &F, Version});
3205 uint16_t AsmPrinter::getDwarfVersion() const {
3206 return OutStreamer->getContext().getDwarfVersion();
3209 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3210 OutStreamer->getContext().setDwarfVersion(Version);