[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / CodeGen / AsmPrinter / DwarfDebug.cpp
blobc505e77e5acd8749329e897869cab789b5e1d179
1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
11 //===----------------------------------------------------------------------===//
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DebugLocEntry.h"
17 #include "DebugLocStream.h"
18 #include "DwarfCompileUnit.h"
19 #include "DwarfExpression.h"
20 #include "DwarfFile.h"
21 #include "DwarfUnit.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseSet.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/CodeGen/AccelTable.h"
34 #include "llvm/CodeGen/AsmPrinter.h"
35 #include "llvm/CodeGen/DIE.h"
36 #include "llvm/CodeGen/LexicalScopes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalVariable.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/MC/MCAsmInfo.h"
55 #include "llvm/MC/MCContext.h"
56 #include "llvm/MC/MCDwarf.h"
57 #include "llvm/MC/MCSection.h"
58 #include "llvm/MC/MCStreamer.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/MC/MCTargetOptions.h"
61 #include "llvm/MC/MachineLocation.h"
62 #include "llvm/MC/SectionKind.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MD5.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Target/TargetLoweringObjectFile.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/Target/TargetOptions.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <string>
81 #include <utility>
82 #include <vector>
84 using namespace llvm;
86 #define DEBUG_TYPE "dwarfdebug"
88 STATISTIC(NumCSParams, "Number of dbg call site params created");
90 static cl::opt<bool>
91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
92 cl::desc("Disable debug info printing"));
94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
95 "use-dwarf-ranges-base-address-specifier", cl::Hidden,
96 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
98 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
99 cl::Hidden,
100 cl::desc("Generate dwarf aranges"),
101 cl::init(false));
103 static cl::opt<bool>
104 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
105 cl::desc("Generate DWARF4 type units."),
106 cl::init(false));
108 static cl::opt<bool> SplitDwarfCrossCuReferences(
109 "split-dwarf-cross-cu-references", cl::Hidden,
110 cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
112 enum DefaultOnOff { Default, Enable, Disable };
114 static cl::opt<DefaultOnOff> UnknownLocations(
115 "use-unknown-locations", cl::Hidden,
116 cl::desc("Make an absence of debug location information explicit."),
117 cl::values(clEnumVal(Default, "At top of block or after label"),
118 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
119 cl::init(Default));
121 static cl::opt<AccelTableKind> AccelTables(
122 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
123 cl::values(clEnumValN(AccelTableKind::Default, "Default",
124 "Default for platform"),
125 clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
126 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
127 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
128 cl::init(AccelTableKind::Default));
130 static cl::opt<DefaultOnOff>
131 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
132 cl::desc("Use inlined strings rather than string section."),
133 cl::values(clEnumVal(Default, "Default for platform"),
134 clEnumVal(Enable, "Enabled"),
135 clEnumVal(Disable, "Disabled")),
136 cl::init(Default));
138 static cl::opt<bool>
139 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
140 cl::desc("Disable emission .debug_ranges section."),
141 cl::init(false));
143 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
144 "dwarf-sections-as-references", cl::Hidden,
145 cl::desc("Use sections+offset as references rather than labels."),
146 cl::values(clEnumVal(Default, "Default for platform"),
147 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
148 cl::init(Default));
150 enum LinkageNameOption {
151 DefaultLinkageNames,
152 AllLinkageNames,
153 AbstractLinkageNames
156 static cl::opt<LinkageNameOption>
157 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
158 cl::desc("Which DWARF linkage-name attributes to emit."),
159 cl::values(clEnumValN(DefaultLinkageNames, "Default",
160 "Default for platform"),
161 clEnumValN(AllLinkageNames, "All", "All"),
162 clEnumValN(AbstractLinkageNames, "Abstract",
163 "Abstract subprograms")),
164 cl::init(DefaultLinkageNames));
166 static const char *const DWARFGroupName = "dwarf";
167 static const char *const DWARFGroupDescription = "DWARF Emission";
168 static const char *const DbgTimerName = "writer";
169 static const char *const DbgTimerDescription = "DWARF Debug Writer";
170 static constexpr unsigned ULEB128PadSize = 4;
172 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
173 getActiveStreamer().EmitInt8(
174 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
175 : dwarf::OperationEncodingString(Op));
178 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
179 getActiveStreamer().EmitSLEB128(Value, Twine(Value));
182 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
183 getActiveStreamer().EmitULEB128(Value, Twine(Value));
186 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
187 getActiveStreamer().EmitInt8(Value, Twine(Value));
190 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
191 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
192 getActiveStreamer().EmitULEB128(Idx, Twine(Idx), ULEB128PadSize);
195 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
196 unsigned MachineReg) {
197 // This information is not available while emitting .debug_loc entries.
198 return false;
201 void DebugLocDwarfExpression::enableTemporaryBuffer() {
202 assert(!IsBuffering && "Already buffering?");
203 if (!TmpBuf)
204 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
205 IsBuffering = true;
208 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
210 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
211 return TmpBuf ? TmpBuf->Bytes.size() : 0;
214 void DebugLocDwarfExpression::commitTemporaryBuffer() {
215 if (!TmpBuf)
216 return;
217 for (auto Byte : enumerate(TmpBuf->Bytes)) {
218 const char *Comment = (Byte.index() < TmpBuf->Comments.size())
219 ? TmpBuf->Comments[Byte.index()].c_str()
220 : "";
221 OutBS.EmitInt8(Byte.value(), Comment);
223 TmpBuf->Bytes.clear();
224 TmpBuf->Comments.clear();
227 const DIType *DbgVariable::getType() const {
228 return getVariable()->getType();
231 /// Get .debug_loc entry for the instruction range starting at MI.
232 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
233 const DIExpression *Expr = MI->getDebugExpression();
234 assert(MI->getNumOperands() == 4);
235 if (MI->getOperand(0).isReg()) {
236 auto RegOp = MI->getOperand(0);
237 auto Op1 = MI->getOperand(1);
238 // If the second operand is an immediate, this is a
239 // register-indirect address.
240 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
241 MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
242 return DbgValueLoc(Expr, MLoc);
244 if (MI->getOperand(0).isImm())
245 return DbgValueLoc(Expr, MI->getOperand(0).getImm());
246 if (MI->getOperand(0).isFPImm())
247 return DbgValueLoc(Expr, MI->getOperand(0).getFPImm());
248 if (MI->getOperand(0).isCImm())
249 return DbgValueLoc(Expr, MI->getOperand(0).getCImm());
251 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
254 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
255 assert(FrameIndexExprs.empty() && "Already initialized?");
256 assert(!ValueLoc.get() && "Already initialized?");
258 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
259 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
260 "Wrong inlined-at");
262 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
263 if (auto *E = DbgValue->getDebugExpression())
264 if (E->getNumElements())
265 FrameIndexExprs.push_back({0, E});
268 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
269 if (FrameIndexExprs.size() == 1)
270 return FrameIndexExprs;
272 assert(llvm::all_of(FrameIndexExprs,
273 [](const FrameIndexExpr &A) {
274 return A.Expr->isFragment();
275 }) &&
276 "multiple FI expressions without DW_OP_LLVM_fragment");
277 llvm::sort(FrameIndexExprs,
278 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
279 return A.Expr->getFragmentInfo()->OffsetInBits <
280 B.Expr->getFragmentInfo()->OffsetInBits;
283 return FrameIndexExprs;
286 void DbgVariable::addMMIEntry(const DbgVariable &V) {
287 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
288 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
289 assert(V.getVariable() == getVariable() && "conflicting variable");
290 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
292 assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
293 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
295 // FIXME: This logic should not be necessary anymore, as we now have proper
296 // deduplication. However, without it, we currently run into the assertion
297 // below, which means that we are likely dealing with broken input, i.e. two
298 // non-fragment entries for the same variable at different frame indices.
299 if (FrameIndexExprs.size()) {
300 auto *Expr = FrameIndexExprs.back().Expr;
301 if (!Expr || !Expr->isFragment())
302 return;
305 for (const auto &FIE : V.FrameIndexExprs)
306 // Ignore duplicate entries.
307 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
308 return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
310 FrameIndexExprs.push_back(FIE);
312 assert((FrameIndexExprs.size() == 1 ||
313 llvm::all_of(FrameIndexExprs,
314 [](FrameIndexExpr &FIE) {
315 return FIE.Expr && FIE.Expr->isFragment();
316 })) &&
317 "conflicting locations for variable");
320 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
321 bool GenerateTypeUnits,
322 DebuggerKind Tuning,
323 const Triple &TT) {
324 // Honor an explicit request.
325 if (AccelTables != AccelTableKind::Default)
326 return AccelTables;
328 // Accelerator tables with type units are currently not supported.
329 if (GenerateTypeUnits)
330 return AccelTableKind::None;
332 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5
333 // always implies debug_names. For lower standard versions we use apple
334 // accelerator tables on apple platforms and debug_names elsewhere.
335 if (DwarfVersion >= 5)
336 return AccelTableKind::Dwarf;
337 if (Tuning == DebuggerKind::LLDB)
338 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
339 : AccelTableKind::Dwarf;
340 return AccelTableKind::None;
343 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
344 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
345 InfoHolder(A, "info_string", DIEValueAllocator),
346 SkeletonHolder(A, "skel_string", DIEValueAllocator),
347 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
348 const Triple &TT = Asm->TM.getTargetTriple();
350 // Make sure we know our "debugger tuning". The target option takes
351 // precedence; fall back to triple-based defaults.
352 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
353 DebuggerTuning = Asm->TM.Options.DebuggerTuning;
354 else if (IsDarwin)
355 DebuggerTuning = DebuggerKind::LLDB;
356 else if (TT.isPS4CPU())
357 DebuggerTuning = DebuggerKind::SCE;
358 else
359 DebuggerTuning = DebuggerKind::GDB;
361 if (DwarfInlinedStrings == Default)
362 UseInlineStrings = TT.isNVPTX();
363 else
364 UseInlineStrings = DwarfInlinedStrings == Enable;
366 UseLocSection = !TT.isNVPTX();
368 HasAppleExtensionAttributes = tuneForLLDB();
370 // Handle split DWARF.
371 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
373 // SCE defaults to linkage names only for abstract subprograms.
374 if (DwarfLinkageNames == DefaultLinkageNames)
375 UseAllLinkageNames = !tuneForSCE();
376 else
377 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
379 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
380 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
381 : MMI->getModule()->getDwarfVersion();
382 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
383 DwarfVersion =
384 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
386 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
388 // Use sections as references. Force for NVPTX.
389 if (DwarfSectionsAsReferences == Default)
390 UseSectionsAsReferences = TT.isNVPTX();
391 else
392 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
394 // Don't generate type units for unsupported object file formats.
395 GenerateTypeUnits =
396 A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits;
398 TheAccelTableKind = computeAccelTableKind(
399 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
401 // Work around a GDB bug. GDB doesn't support the standard opcode;
402 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
403 // is defined as of DWARF 3.
404 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
405 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
406 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
408 // GDB does not fully support the DWARF 4 representation for bitfields.
409 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
411 // The DWARF v5 string offsets table has - possibly shared - contributions
412 // from each compile and type unit each preceded by a header. The string
413 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
414 // a monolithic string offsets table without any header.
415 UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
417 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
420 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
421 DwarfDebug::~DwarfDebug() = default;
423 static bool isObjCClass(StringRef Name) {
424 return Name.startswith("+") || Name.startswith("-");
427 static bool hasObjCCategory(StringRef Name) {
428 if (!isObjCClass(Name))
429 return false;
431 return Name.find(") ") != StringRef::npos;
434 static void getObjCClassCategory(StringRef In, StringRef &Class,
435 StringRef &Category) {
436 if (!hasObjCCategory(In)) {
437 Class = In.slice(In.find('[') + 1, In.find(' '));
438 Category = "";
439 return;
442 Class = In.slice(In.find('[') + 1, In.find('('));
443 Category = In.slice(In.find('[') + 1, In.find(' '));
446 static StringRef getObjCMethodName(StringRef In) {
447 return In.slice(In.find(' ') + 1, In.find(']'));
450 // Add the various names to the Dwarf accelerator table names.
451 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
452 const DISubprogram *SP, DIE &Die) {
453 if (getAccelTableKind() != AccelTableKind::Apple &&
454 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
455 return;
457 if (!SP->isDefinition())
458 return;
460 if (SP->getName() != "")
461 addAccelName(CU, SP->getName(), Die);
463 // If the linkage name is different than the name, go ahead and output that as
464 // well into the name table. Only do that if we are going to actually emit
465 // that name.
466 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
467 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
468 addAccelName(CU, SP->getLinkageName(), Die);
470 // If this is an Objective-C selector name add it to the ObjC accelerator
471 // too.
472 if (isObjCClass(SP->getName())) {
473 StringRef Class, Category;
474 getObjCClassCategory(SP->getName(), Class, Category);
475 addAccelObjC(CU, Class, Die);
476 if (Category != "")
477 addAccelObjC(CU, Category, Die);
478 // Also add the base method name to the name table.
479 addAccelName(CU, getObjCMethodName(SP->getName()), Die);
483 /// Check whether we should create a DIE for the given Scope, return true
484 /// if we don't create a DIE (the corresponding DIE is null).
485 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
486 if (Scope->isAbstractScope())
487 return false;
489 // We don't create a DIE if there is no Range.
490 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
491 if (Ranges.empty())
492 return true;
494 if (Ranges.size() > 1)
495 return false;
497 // We don't create a DIE if we have a single Range and the end label
498 // is null.
499 return !getLabelAfterInsn(Ranges.front().second);
502 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
503 F(CU);
504 if (auto *SkelCU = CU.getSkeleton())
505 if (CU.getCUNode()->getSplitDebugInlining())
506 F(*SkelCU);
509 bool DwarfDebug::shareAcrossDWOCUs() const {
510 return SplitDwarfCrossCuReferences;
513 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
514 LexicalScope *Scope) {
515 assert(Scope && Scope->getScopeNode());
516 assert(Scope->isAbstractScope());
517 assert(!Scope->getInlinedAt());
519 auto *SP = cast<DISubprogram>(Scope->getScopeNode());
521 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
522 // was inlined from another compile unit.
523 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
524 // Avoid building the original CU if it won't be used
525 SrcCU.constructAbstractSubprogramScopeDIE(Scope);
526 else {
527 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
528 if (auto *SkelCU = CU.getSkeleton()) {
529 (shareAcrossDWOCUs() ? CU : SrcCU)
530 .constructAbstractSubprogramScopeDIE(Scope);
531 if (CU.getCUNode()->getSplitDebugInlining())
532 SkelCU->constructAbstractSubprogramScopeDIE(Scope);
533 } else
534 CU.constructAbstractSubprogramScopeDIE(Scope);
538 /// Try to interpret values loaded into registers that forward parameters
539 /// for \p CallMI. Store parameters with interpreted value into \p Params.
540 static void collectCallSiteParameters(const MachineInstr *CallMI,
541 ParamSet &Params) {
542 auto *MF = CallMI->getMF();
543 auto CalleesMap = MF->getCallSitesInfo();
544 auto CallFwdRegsInfo = CalleesMap.find(CallMI);
546 // There is no information for the call instruction.
547 if (CallFwdRegsInfo == CalleesMap.end())
548 return;
550 auto *MBB = CallMI->getParent();
551 const auto &TRI = MF->getSubtarget().getRegisterInfo();
552 const auto &TII = MF->getSubtarget().getInstrInfo();
553 const auto &TLI = MF->getSubtarget().getTargetLowering();
555 // Skip the call instruction.
556 auto I = std::next(CallMI->getReverseIterator());
558 DenseSet<unsigned> ForwardedRegWorklist;
559 // Add all the forwarding registers into the ForwardedRegWorklist.
560 for (auto ArgReg : CallFwdRegsInfo->second) {
561 bool InsertedReg = ForwardedRegWorklist.insert(ArgReg.Reg).second;
562 assert(InsertedReg && "Single register used to forward two arguments?");
563 (void)InsertedReg;
566 // We erase, from the ForwardedRegWorklist, those forwarding registers for
567 // which we successfully describe a loaded value (by using
568 // the describeLoadedValue()). For those remaining arguments in the working
569 // list, for which we do not describe a loaded value by
570 // the describeLoadedValue(), we try to generate an entry value expression
571 // for their call site value desctipion, if the call is within the entry MBB.
572 // The RegsForEntryValues maps a forwarding register into the register holding
573 // the entry value.
574 // TODO: Handle situations when call site parameter value can be described
575 // as the entry value within basic blocks other then the first one.
576 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
577 DenseMap<unsigned, unsigned> RegsForEntryValues;
579 // If the MI is an instruction defining one or more parameters' forwarding
580 // registers, add those defines. We can currently only describe forwarded
581 // registers that are explicitly defined, but keep track of implicit defines
582 // also to remove those registers from the work list.
583 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
584 SmallVectorImpl<unsigned> &Explicit,
585 SmallVectorImpl<unsigned> &Implicit) {
586 if (MI.isDebugInstr())
587 return;
589 for (const MachineOperand &MO : MI.operands()) {
590 if (MO.isReg() && MO.isDef() &&
591 Register::isPhysicalRegister(MO.getReg())) {
592 for (auto FwdReg : ForwardedRegWorklist) {
593 if (TRI->regsOverlap(FwdReg, MO.getReg())) {
594 if (MO.isImplicit())
595 Implicit.push_back(FwdReg);
596 else
597 Explicit.push_back(FwdReg);
598 break;
605 auto finishCallSiteParam = [&](DbgValueLoc DbgLocVal, unsigned Reg) {
606 unsigned FwdReg = Reg;
607 if (ShouldTryEmitEntryVals) {
608 auto EntryValReg = RegsForEntryValues.find(Reg);
609 if (EntryValReg != RegsForEntryValues.end())
610 FwdReg = EntryValReg->second;
613 DbgCallSiteParam CSParm(FwdReg, DbgLocVal);
614 Params.push_back(CSParm);
615 ++NumCSParams;
618 // Search for a loading value in forwaring registers.
619 for (; I != MBB->rend(); ++I) {
620 // If the next instruction is a call we can not interpret parameter's
621 // forwarding registers or we finished the interpretation of all parameters.
622 if (I->isCall())
623 return;
625 if (ForwardedRegWorklist.empty())
626 return;
628 SmallVector<unsigned, 4> ExplicitFwdRegDefs;
629 SmallVector<unsigned, 4> ImplicitFwdRegDefs;
630 getForwardingRegsDefinedByMI(*I, ExplicitFwdRegDefs, ImplicitFwdRegDefs);
631 if (ExplicitFwdRegDefs.empty() && ImplicitFwdRegDefs.empty())
632 continue;
634 // If the MI clobbers more then one forwarding register we must remove
635 // all of them from the working list.
636 for (auto Reg : concat<unsigned>(ExplicitFwdRegDefs, ImplicitFwdRegDefs))
637 ForwardedRegWorklist.erase(Reg);
639 // The describeLoadedValue() hook currently does not have any information
640 // about which register it should describe in case of multiple defines, so
641 // for now we only handle instructions where a forwarded register is (at
642 // least partially) defined by the instruction's single explicit define.
643 if (I->getNumExplicitDefs() != 1 || ExplicitFwdRegDefs.empty())
644 continue;
645 unsigned Reg = ExplicitFwdRegDefs[0];
647 if (auto ParamValue = TII->describeLoadedValue(*I)) {
648 if (ParamValue->first.isImm()) {
649 int64_t Val = ParamValue->first.getImm();
650 DbgValueLoc DbgLocVal(ParamValue->second, Val);
651 finishCallSiteParam(DbgLocVal, Reg);
652 } else if (ParamValue->first.isReg()) {
653 Register RegLoc = ParamValue->first.getReg();
654 unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
655 Register FP = TRI->getFrameRegister(*MF);
656 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
657 if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
658 DbgValueLoc DbgLocVal(ParamValue->second,
659 MachineLocation(RegLoc,
660 /*IsIndirect=*/IsSPorFP));
661 finishCallSiteParam(DbgLocVal, Reg);
662 } else if (ShouldTryEmitEntryVals) {
663 ForwardedRegWorklist.insert(RegLoc);
664 RegsForEntryValues[RegLoc] = Reg;
670 // Emit the call site parameter's value as an entry value.
671 if (ShouldTryEmitEntryVals) {
672 // Create an expression where the register's entry value is used.
673 DIExpression *EntryExpr = DIExpression::get(
674 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
675 for (auto RegEntry : ForwardedRegWorklist) {
676 unsigned FwdReg = RegEntry;
677 auto EntryValReg = RegsForEntryValues.find(RegEntry);
678 if (EntryValReg != RegsForEntryValues.end())
679 FwdReg = EntryValReg->second;
681 DbgValueLoc DbgLocVal(EntryExpr, MachineLocation(RegEntry));
682 DbgCallSiteParam CSParm(FwdReg, DbgLocVal);
683 Params.push_back(CSParm);
684 ++NumCSParams;
689 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
690 DwarfCompileUnit &CU, DIE &ScopeDIE,
691 const MachineFunction &MF) {
692 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
693 // the subprogram is required to have one.
694 if (!SP.areAllCallsDescribed() || !SP.isDefinition())
695 return;
697 // Use DW_AT_call_all_calls to express that call site entries are present
698 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
699 // because one of its requirements is not met: call site entries for
700 // optimized-out calls are elided.
701 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
703 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
704 assert(TII && "TargetInstrInfo not found: cannot label tail calls");
705 bool ApplyGNUExtensions = getDwarfVersion() == 4 && tuneForGDB();
707 // Emit call site entries for each call or tail call in the function.
708 for (const MachineBasicBlock &MBB : MF) {
709 for (const MachineInstr &MI : MBB.instrs()) {
710 // Skip instructions which aren't calls. Both calls and tail-calling jump
711 // instructions (e.g TAILJMPd64) are classified correctly here.
712 if (!MI.isCall())
713 continue;
715 // TODO: Add support for targets with delay slots (see: beginInstruction).
716 if (MI.hasDelaySlot())
717 return;
719 // If this is a direct call, find the callee's subprogram.
720 // In the case of an indirect call find the register that holds
721 // the callee.
722 const MachineOperand &CalleeOp = MI.getOperand(0);
723 if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
724 continue;
726 unsigned CallReg = 0;
727 const DISubprogram *CalleeSP = nullptr;
728 const Function *CalleeDecl = nullptr;
729 if (CalleeOp.isReg()) {
730 CallReg = CalleeOp.getReg();
731 if (!CallReg)
732 continue;
733 } else {
734 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
735 if (!CalleeDecl || !CalleeDecl->getSubprogram())
736 continue;
737 CalleeSP = CalleeDecl->getSubprogram();
740 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
742 bool IsTail = TII->isTailCall(MI);
744 // For tail calls, for non-gdb tuning, no return PC information is needed.
745 // For regular calls (and tail calls in GDB tuning), the return PC
746 // is needed to disambiguate paths in the call graph which could lead to
747 // some target function.
748 const MCExpr *PCOffset =
749 (IsTail && !tuneForGDB()) ? nullptr
750 : getFunctionLocalOffsetAfterInsn(&MI);
752 // Address of a call-like instruction for a normal call or a jump-like
753 // instruction for a tail call. This is needed for GDB + DWARF 4 tuning.
754 const MCSymbol *PCAddr =
755 ApplyGNUExtensions ? const_cast<MCSymbol*>(getLabelAfterInsn(&MI))
756 : nullptr;
758 assert((IsTail || PCOffset || PCAddr) &&
759 "Call without return PC information");
761 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
762 << (CalleeDecl ? CalleeDecl->getName()
763 : StringRef(MF.getSubtarget()
764 .getRegisterInfo()
765 ->getName(CallReg)))
766 << (IsTail ? " [IsTail]" : "") << "\n");
768 DIE &CallSiteDIE =
769 CU.constructCallSiteEntryDIE(ScopeDIE, CalleeSP, IsTail, PCAddr,
770 PCOffset, CallReg);
772 // GDB and LLDB support call site parameter debug info.
773 if (Asm->TM.Options.EnableDebugEntryValues &&
774 (tuneForGDB() || tuneForLLDB())) {
775 ParamSet Params;
776 // Try to interpret values of call site parameters.
777 collectCallSiteParameters(&MI, Params);
778 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
784 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
785 if (!U.hasDwarfPubSections())
786 return;
788 U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
791 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
792 DwarfCompileUnit &NewCU) {
793 DIE &Die = NewCU.getUnitDie();
794 StringRef FN = DIUnit->getFilename();
796 StringRef Producer = DIUnit->getProducer();
797 StringRef Flags = DIUnit->getFlags();
798 if (!Flags.empty() && !useAppleExtensionAttributes()) {
799 std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
800 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
801 } else
802 NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
804 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
805 DIUnit->getSourceLanguage());
806 NewCU.addString(Die, dwarf::DW_AT_name, FN);
808 // Add DW_str_offsets_base to the unit DIE, except for split units.
809 if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
810 NewCU.addStringOffsetsStart();
812 if (!useSplitDwarf()) {
813 NewCU.initStmtList();
815 // If we're using split dwarf the compilation dir is going to be in the
816 // skeleton CU and so we don't need to duplicate it here.
817 if (!CompilationDir.empty())
818 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
820 addGnuPubAttributes(NewCU, Die);
823 if (useAppleExtensionAttributes()) {
824 if (DIUnit->isOptimized())
825 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
827 StringRef Flags = DIUnit->getFlags();
828 if (!Flags.empty())
829 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
831 if (unsigned RVer = DIUnit->getRuntimeVersion())
832 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
833 dwarf::DW_FORM_data1, RVer);
836 if (DIUnit->getDWOId()) {
837 // This CU is either a clang module DWO or a skeleton CU.
838 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
839 DIUnit->getDWOId());
840 if (!DIUnit->getSplitDebugFilename().empty())
841 // This is a prefabricated skeleton CU.
842 NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name,
843 DIUnit->getSplitDebugFilename());
846 // Create new DwarfCompileUnit for the given metadata node with tag
847 // DW_TAG_compile_unit.
848 DwarfCompileUnit &
849 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
850 if (auto *CU = CUMap.lookup(DIUnit))
851 return *CU;
853 CompilationDir = DIUnit->getDirectory();
855 auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
856 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
857 DwarfCompileUnit &NewCU = *OwnedUnit;
858 InfoHolder.addUnit(std::move(OwnedUnit));
860 for (auto *IE : DIUnit->getImportedEntities())
861 NewCU.addImportedEntity(IE);
863 // LTO with assembly output shares a single line table amongst multiple CUs.
864 // To avoid the compilation directory being ambiguous, let the line table
865 // explicitly describe the directory of all files, never relying on the
866 // compilation directory.
867 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
868 Asm->OutStreamer->emitDwarfFile0Directive(
869 CompilationDir, DIUnit->getFilename(),
870 NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(),
871 NewCU.getUniqueID());
873 if (useSplitDwarf()) {
874 NewCU.setSkeleton(constructSkeletonCU(NewCU));
875 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
876 } else {
877 finishUnitAttributes(DIUnit, NewCU);
878 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
881 // Create DIEs for function declarations used for call site debug info.
882 for (auto Scope : DIUnit->getRetainedTypes())
883 if (auto *SP = dyn_cast_or_null<DISubprogram>(Scope))
884 NewCU.getOrCreateSubprogramDIE(SP);
886 CUMap.insert({DIUnit, &NewCU});
887 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
888 return NewCU;
891 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
892 const DIImportedEntity *N) {
893 if (isa<DILocalScope>(N->getScope()))
894 return;
895 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
896 D->addChild(TheCU.constructImportedEntityDIE(N));
899 /// Sort and unique GVEs by comparing their fragment offset.
900 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
901 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
902 llvm::sort(
903 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
904 // Sort order: first null exprs, then exprs without fragment
905 // info, then sort by fragment offset in bits.
906 // FIXME: Come up with a more comprehensive comparator so
907 // the sorting isn't non-deterministic, and so the following
908 // std::unique call works correctly.
909 if (!A.Expr || !B.Expr)
910 return !!B.Expr;
911 auto FragmentA = A.Expr->getFragmentInfo();
912 auto FragmentB = B.Expr->getFragmentInfo();
913 if (!FragmentA || !FragmentB)
914 return !!FragmentB;
915 return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
917 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
918 [](DwarfCompileUnit::GlobalExpr A,
919 DwarfCompileUnit::GlobalExpr B) {
920 return A.Expr == B.Expr;
922 GVEs.end());
923 return GVEs;
926 // Emit all Dwarf sections that should come prior to the content. Create
927 // global DIEs and emit initial debug info sections. This is invoked by
928 // the target AsmPrinter.
929 void DwarfDebug::beginModule() {
930 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName,
931 DWARFGroupDescription, TimePassesIsEnabled);
932 if (DisableDebugInfoPrinting) {
933 MMI->setDebugInfoAvailability(false);
934 return;
937 const Module *M = MMI->getModule();
939 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
940 M->debug_compile_units_end());
941 // Tell MMI whether we have debug info.
942 assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) &&
943 "DebugInfoAvailabilty initialized unexpectedly");
944 SingleCU = NumDebugCUs == 1;
945 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
946 GVMap;
947 for (const GlobalVariable &Global : M->globals()) {
948 SmallVector<DIGlobalVariableExpression *, 1> GVs;
949 Global.getDebugInfo(GVs);
950 for (auto *GVE : GVs)
951 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
954 // Create the symbol that designates the start of the unit's contribution
955 // to the string offsets table. In a split DWARF scenario, only the skeleton
956 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
957 if (useSegmentedStringOffsetsTable())
958 (useSplitDwarf() ? SkeletonHolder : InfoHolder)
959 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
962 // Create the symbols that designates the start of the DWARF v5 range list
963 // and locations list tables. They are located past the table headers.
964 if (getDwarfVersion() >= 5) {
965 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
966 Holder.setRnglistsTableBaseSym(
967 Asm->createTempSymbol("rnglists_table_base"));
969 if (useSplitDwarf())
970 InfoHolder.setRnglistsTableBaseSym(
971 Asm->createTempSymbol("rnglists_dwo_table_base"));
974 // Create the symbol that points to the first entry following the debug
975 // address table (.debug_addr) header.
976 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
978 for (DICompileUnit *CUNode : M->debug_compile_units()) {
979 // FIXME: Move local imported entities into a list attached to the
980 // subprogram, then this search won't be needed and a
981 // getImportedEntities().empty() test should go below with the rest.
982 bool HasNonLocalImportedEntities = llvm::any_of(
983 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
984 return !isa<DILocalScope>(IE->getScope());
987 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
988 CUNode->getRetainedTypes().empty() &&
989 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
990 continue;
992 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
994 // Global Variables.
995 for (auto *GVE : CUNode->getGlobalVariables()) {
996 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
997 // already know about the variable and it isn't adding a constant
998 // expression.
999 auto &GVMapEntry = GVMap[GVE->getVariable()];
1000 auto *Expr = GVE->getExpression();
1001 if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1002 GVMapEntry.push_back({nullptr, Expr});
1004 DenseSet<DIGlobalVariable *> Processed;
1005 for (auto *GVE : CUNode->getGlobalVariables()) {
1006 DIGlobalVariable *GV = GVE->getVariable();
1007 if (Processed.insert(GV).second)
1008 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1011 for (auto *Ty : CUNode->getEnumTypes()) {
1012 // The enum types array by design contains pointers to
1013 // MDNodes rather than DIRefs. Unique them here.
1014 CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1016 for (auto *Ty : CUNode->getRetainedTypes()) {
1017 // The retained types array by design contains pointers to
1018 // MDNodes rather than DIRefs. Unique them here.
1019 if (DIType *RT = dyn_cast<DIType>(Ty))
1020 // There is no point in force-emitting a forward declaration.
1021 CU.getOrCreateTypeDIE(RT);
1023 // Emit imported_modules last so that the relevant context is already
1024 // available.
1025 for (auto *IE : CUNode->getImportedEntities())
1026 constructAndAddImportedEntityDIE(CU, IE);
1030 void DwarfDebug::finishEntityDefinitions() {
1031 for (const auto &Entity : ConcreteEntities) {
1032 DIE *Die = Entity->getDIE();
1033 assert(Die);
1034 // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1035 // in the ConcreteEntities list, rather than looking it up again here.
1036 // DIE::getUnit isn't simple - it walks parent pointers, etc.
1037 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1038 assert(Unit);
1039 Unit->finishEntityDefinition(Entity.get());
1043 void DwarfDebug::finishSubprogramDefinitions() {
1044 for (const DISubprogram *SP : ProcessedSPNodes) {
1045 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1046 forBothCUs(
1047 getOrCreateDwarfCompileUnit(SP->getUnit()),
1048 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1052 void DwarfDebug::finalizeModuleInfo() {
1053 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1055 finishSubprogramDefinitions();
1057 finishEntityDefinitions();
1059 // Include the DWO file name in the hash if there's more than one CU.
1060 // This handles ThinLTO's situation where imported CUs may very easily be
1061 // duplicate with the same CU partially imported into another ThinLTO unit.
1062 StringRef DWOName;
1063 if (CUMap.size() > 1)
1064 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1066 // Handle anything that needs to be done on a per-unit basis after
1067 // all other generation.
1068 for (const auto &P : CUMap) {
1069 auto &TheCU = *P.second;
1070 if (TheCU.getCUNode()->isDebugDirectivesOnly())
1071 continue;
1072 // Emit DW_AT_containing_type attribute to connect types with their
1073 // vtable holding type.
1074 TheCU.constructContainingTypeDIEs();
1076 // Add CU specific attributes if we need to add any.
1077 // If we're splitting the dwarf out now that we've got the entire
1078 // CU then add the dwo id to it.
1079 auto *SkCU = TheCU.getSkeleton();
1080 if (useSplitDwarf() && !TheCU.getUnitDie().children().empty()) {
1081 finishUnitAttributes(TheCU.getCUNode(), TheCU);
1082 TheCU.addString(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_name,
1083 Asm->TM.Options.MCOptions.SplitDwarfFile);
1084 SkCU->addString(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_name,
1085 Asm->TM.Options.MCOptions.SplitDwarfFile);
1086 // Emit a unique identifier for this CU.
1087 uint64_t ID =
1088 DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie());
1089 if (getDwarfVersion() >= 5) {
1090 TheCU.setDWOId(ID);
1091 SkCU->setDWOId(ID);
1092 } else {
1093 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1094 dwarf::DW_FORM_data8, ID);
1095 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1096 dwarf::DW_FORM_data8, ID);
1099 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1100 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1101 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1102 Sym, Sym);
1104 } else if (SkCU) {
1105 finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1108 // If we have code split among multiple sections or non-contiguous
1109 // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1110 // remain in the .o file, otherwise add a DW_AT_low_pc.
1111 // FIXME: We should use ranges allow reordering of code ala
1112 // .subsections_via_symbols in mach-o. This would mean turning on
1113 // ranges for all subprogram DIEs for mach-o.
1114 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1116 if (unsigned NumRanges = TheCU.getRanges().size()) {
1117 if (NumRanges > 1 && useRangesSection())
1118 // A DW_AT_low_pc attribute may also be specified in combination with
1119 // DW_AT_ranges to specify the default base address for use in
1120 // location lists (see Section 2.6.2) and range lists (see Section
1121 // 2.17.3).
1122 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1123 else
1124 U.setBaseAddress(TheCU.getRanges().front().Begin);
1125 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1128 // We don't keep track of which addresses are used in which CU so this
1129 // is a bit pessimistic under LTO.
1130 if (!AddrPool.isEmpty() &&
1131 (getDwarfVersion() >= 5 ||
1132 (SkCU && !TheCU.getUnitDie().children().empty())))
1133 U.addAddrTableBase();
1135 if (getDwarfVersion() >= 5) {
1136 if (U.hasRangeLists())
1137 U.addRnglistsBase();
1139 if (!DebugLocs.getLists().empty() && !useSplitDwarf()) {
1140 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1141 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1142 DebugLocs.getSym(),
1143 TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1147 auto *CUNode = cast<DICompileUnit>(P.first);
1148 // If compile Unit has macros, emit "DW_AT_macro_info" attribute.
1149 if (CUNode->getMacros())
1150 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1151 U.getMacroLabelBegin(),
1152 TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1155 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1156 for (auto *CUNode : MMI->getModule()->debug_compile_units())
1157 if (CUNode->getDWOId())
1158 getOrCreateDwarfCompileUnit(CUNode);
1160 // Compute DIE offsets and sizes.
1161 InfoHolder.computeSizeAndOffsets();
1162 if (useSplitDwarf())
1163 SkeletonHolder.computeSizeAndOffsets();
1166 // Emit all Dwarf sections that should come after the content.
1167 void DwarfDebug::endModule() {
1168 assert(CurFn == nullptr);
1169 assert(CurMI == nullptr);
1171 for (const auto &P : CUMap) {
1172 auto &CU = *P.second;
1173 CU.createBaseTypeDIEs();
1176 // If we aren't actually generating debug info (check beginModule -
1177 // conditionalized on !DisableDebugInfoPrinting and the presence of the
1178 // llvm.dbg.cu metadata node)
1179 if (!MMI->hasDebugInfo())
1180 return;
1182 // Finalize the debug info for the module.
1183 finalizeModuleInfo();
1185 emitDebugStr();
1187 if (useSplitDwarf())
1188 emitDebugLocDWO();
1189 else
1190 // Emit info into a debug loc section.
1191 emitDebugLoc();
1193 // Corresponding abbreviations into a abbrev section.
1194 emitAbbreviations();
1196 // Emit all the DIEs into a debug info section.
1197 emitDebugInfo();
1199 // Emit info into a debug aranges section.
1200 if (GenerateARangeSection)
1201 emitDebugARanges();
1203 // Emit info into a debug ranges section.
1204 emitDebugRanges();
1206 // Emit info into a debug macinfo section.
1207 emitDebugMacinfo();
1209 if (useSplitDwarf()) {
1210 emitDebugStrDWO();
1211 emitDebugInfoDWO();
1212 emitDebugAbbrevDWO();
1213 emitDebugLineDWO();
1214 emitDebugRangesDWO();
1217 emitDebugAddr();
1219 // Emit info into the dwarf accelerator table sections.
1220 switch (getAccelTableKind()) {
1221 case AccelTableKind::Apple:
1222 emitAccelNames();
1223 emitAccelObjC();
1224 emitAccelNamespaces();
1225 emitAccelTypes();
1226 break;
1227 case AccelTableKind::Dwarf:
1228 emitAccelDebugNames();
1229 break;
1230 case AccelTableKind::None:
1231 break;
1232 case AccelTableKind::Default:
1233 llvm_unreachable("Default should have already been resolved.");
1236 // Emit the pubnames and pubtypes sections if requested.
1237 emitDebugPubSections();
1239 // clean up.
1240 // FIXME: AbstractVariables.clear();
1243 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1244 const DINode *Node,
1245 const MDNode *ScopeNode) {
1246 if (CU.getExistingAbstractEntity(Node))
1247 return;
1249 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1250 cast<DILocalScope>(ScopeNode)));
1253 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1254 const DINode *Node, const MDNode *ScopeNode) {
1255 if (CU.getExistingAbstractEntity(Node))
1256 return;
1258 if (LexicalScope *Scope =
1259 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1260 CU.createAbstractEntity(Node, Scope);
1263 // Collect variable information from side table maintained by MF.
1264 void DwarfDebug::collectVariableInfoFromMFTable(
1265 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1266 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1267 for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1268 if (!VI.Var)
1269 continue;
1270 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1271 "Expected inlined-at fields to agree");
1273 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1274 Processed.insert(Var);
1275 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1277 // If variable scope is not found then skip this variable.
1278 if (!Scope)
1279 continue;
1281 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1282 auto RegVar = std::make_unique<DbgVariable>(
1283 cast<DILocalVariable>(Var.first), Var.second);
1284 RegVar->initializeMMI(VI.Expr, VI.Slot);
1285 if (DbgVariable *DbgVar = MFVars.lookup(Var))
1286 DbgVar->addMMIEntry(*RegVar);
1287 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1288 MFVars.insert({Var, RegVar.get()});
1289 ConcreteEntities.push_back(std::move(RegVar));
1294 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1295 /// enclosing lexical scope. The check ensures there are no other instructions
1296 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1297 /// either open or otherwise rolls off the end of the scope.
1298 static bool validThroughout(LexicalScopes &LScopes,
1299 const MachineInstr *DbgValue,
1300 const MachineInstr *RangeEnd) {
1301 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1302 auto MBB = DbgValue->getParent();
1303 auto DL = DbgValue->getDebugLoc();
1304 auto *LScope = LScopes.findLexicalScope(DL);
1305 // Scope doesn't exist; this is a dead DBG_VALUE.
1306 if (!LScope)
1307 return false;
1308 auto &LSRange = LScope->getRanges();
1309 if (LSRange.size() == 0)
1310 return false;
1312 // Determine if the DBG_VALUE is valid at the beginning of its lexical block.
1313 const MachineInstr *LScopeBegin = LSRange.front().first;
1314 // Early exit if the lexical scope begins outside of the current block.
1315 if (LScopeBegin->getParent() != MBB)
1316 return false;
1317 MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1318 for (++Pred; Pred != MBB->rend(); ++Pred) {
1319 if (Pred->getFlag(MachineInstr::FrameSetup))
1320 break;
1321 auto PredDL = Pred->getDebugLoc();
1322 if (!PredDL || Pred->isMetaInstruction())
1323 continue;
1324 // Check whether the instruction preceding the DBG_VALUE is in the same
1325 // (sub)scope as the DBG_VALUE.
1326 if (DL->getScope() == PredDL->getScope())
1327 return false;
1328 auto *PredScope = LScopes.findLexicalScope(PredDL);
1329 if (!PredScope || LScope->dominates(PredScope))
1330 return false;
1333 // If the range of the DBG_VALUE is open-ended, report success.
1334 if (!RangeEnd)
1335 return true;
1337 // Fail if there are instructions belonging to our scope in another block.
1338 const MachineInstr *LScopeEnd = LSRange.back().second;
1339 if (LScopeEnd->getParent() != MBB)
1340 return false;
1342 // Single, constant DBG_VALUEs in the prologue are promoted to be live
1343 // throughout the function. This is a hack, presumably for DWARF v2 and not
1344 // necessarily correct. It would be much better to use a dbg.declare instead
1345 // if we know the constant is live throughout the scope.
1346 if (DbgValue->getOperand(0).isImm() && MBB->pred_empty())
1347 return true;
1349 return false;
1352 /// Build the location list for all DBG_VALUEs in the function that
1353 /// describe the same variable. The resulting DebugLocEntries will have
1354 /// strict monotonically increasing begin addresses and will never
1355 /// overlap. If the resulting list has only one entry that is valid
1356 /// throughout variable's scope return true.
1358 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1359 // different kinds of history map entries. One thing to be aware of is that if
1360 // a debug value is ended by another entry (rather than being valid until the
1361 // end of the function), that entry's instruction may or may not be included in
1362 // the range, depending on if the entry is a clobbering entry (it has an
1363 // instruction that clobbers one or more preceding locations), or if it is an
1364 // (overlapping) debug value entry. This distinction can be seen in the example
1365 // below. The first debug value is ended by the clobbering entry 2, and the
1366 // second and third debug values are ended by the overlapping debug value entry
1367 // 4.
1369 // Input:
1371 // History map entries [type, end index, mi]
1373 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1374 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1375 // 2 | | [Clobber, $reg0 = [...], -, -]
1376 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1377 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1379 // Output [start, end) [Value...]:
1381 // [0-1) [(reg0, fragment 0, 32)]
1382 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1383 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1384 // [4-) [(@g, fragment 0, 96)]
1385 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1386 const DbgValueHistoryMap::Entries &Entries) {
1387 using OpenRange =
1388 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1389 SmallVector<OpenRange, 4> OpenRanges;
1390 bool isSafeForSingleLocation = true;
1391 const MachineInstr *StartDebugMI = nullptr;
1392 const MachineInstr *EndMI = nullptr;
1394 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1395 const MachineInstr *Instr = EI->getInstr();
1397 // Remove all values that are no longer live.
1398 size_t Index = std::distance(EB, EI);
1399 auto Last =
1400 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1401 OpenRanges.erase(Last, OpenRanges.end());
1403 // If we are dealing with a clobbering entry, this iteration will result in
1404 // a location list entry starting after the clobbering instruction.
1405 const MCSymbol *StartLabel =
1406 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1407 assert(StartLabel &&
1408 "Forgot label before/after instruction starting a range!");
1410 const MCSymbol *EndLabel;
1411 if (std::next(EI) == Entries.end()) {
1412 EndLabel = Asm->getFunctionEnd();
1413 if (EI->isClobber())
1414 EndMI = EI->getInstr();
1416 else if (std::next(EI)->isClobber())
1417 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1418 else
1419 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1420 assert(EndLabel && "Forgot label after instruction ending a range!");
1422 if (EI->isDbgValue())
1423 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1425 // If this history map entry has a debug value, add that to the list of
1426 // open ranges and check if its location is valid for a single value
1427 // location.
1428 if (EI->isDbgValue()) {
1429 // Do not add undef debug values, as they are redundant information in
1430 // the location list entries. An undef debug results in an empty location
1431 // description. If there are any non-undef fragments then padding pieces
1432 // with empty location descriptions will automatically be inserted, and if
1433 // all fragments are undef then the whole location list entry is
1434 // redundant.
1435 if (!Instr->isUndefDebugValue()) {
1436 auto Value = getDebugLocValue(Instr);
1437 OpenRanges.emplace_back(EI->getEndIndex(), Value);
1439 // TODO: Add support for single value fragment locations.
1440 if (Instr->getDebugExpression()->isFragment())
1441 isSafeForSingleLocation = false;
1443 if (!StartDebugMI)
1444 StartDebugMI = Instr;
1445 } else {
1446 isSafeForSingleLocation = false;
1450 // Location list entries with empty location descriptions are redundant
1451 // information in DWARF, so do not emit those.
1452 if (OpenRanges.empty())
1453 continue;
1455 // Omit entries with empty ranges as they do not have any effect in DWARF.
1456 if (StartLabel == EndLabel) {
1457 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1458 continue;
1461 SmallVector<DbgValueLoc, 4> Values;
1462 for (auto &R : OpenRanges)
1463 Values.push_back(R.second);
1464 DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1466 // Attempt to coalesce the ranges of two otherwise identical
1467 // DebugLocEntries.
1468 auto CurEntry = DebugLoc.rbegin();
1469 LLVM_DEBUG({
1470 dbgs() << CurEntry->getValues().size() << " Values:\n";
1471 for (auto &Value : CurEntry->getValues())
1472 Value.dump();
1473 dbgs() << "-----\n";
1476 auto PrevEntry = std::next(CurEntry);
1477 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1478 DebugLoc.pop_back();
1481 return DebugLoc.size() == 1 && isSafeForSingleLocation &&
1482 validThroughout(LScopes, StartDebugMI, EndMI);
1485 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1486 LexicalScope &Scope,
1487 const DINode *Node,
1488 const DILocation *Location,
1489 const MCSymbol *Sym) {
1490 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1491 if (isa<const DILocalVariable>(Node)) {
1492 ConcreteEntities.push_back(
1493 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1494 Location));
1495 InfoHolder.addScopeVariable(&Scope,
1496 cast<DbgVariable>(ConcreteEntities.back().get()));
1497 } else if (isa<const DILabel>(Node)) {
1498 ConcreteEntities.push_back(
1499 std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1500 Location, Sym));
1501 InfoHolder.addScopeLabel(&Scope,
1502 cast<DbgLabel>(ConcreteEntities.back().get()));
1504 return ConcreteEntities.back().get();
1507 // Find variables for each lexical scope.
1508 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1509 const DISubprogram *SP,
1510 DenseSet<InlinedEntity> &Processed) {
1511 // Grab the variable info that was squirreled away in the MMI side-table.
1512 collectVariableInfoFromMFTable(TheCU, Processed);
1514 for (const auto &I : DbgValues) {
1515 InlinedEntity IV = I.first;
1516 if (Processed.count(IV))
1517 continue;
1519 // Instruction ranges, specifying where IV is accessible.
1520 const auto &HistoryMapEntries = I.second;
1521 if (HistoryMapEntries.empty())
1522 continue;
1524 LexicalScope *Scope = nullptr;
1525 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1526 if (const DILocation *IA = IV.second)
1527 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1528 else
1529 Scope = LScopes.findLexicalScope(LocalVar->getScope());
1530 // If variable scope is not found then skip this variable.
1531 if (!Scope)
1532 continue;
1534 Processed.insert(IV);
1535 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1536 *Scope, LocalVar, IV.second));
1538 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1539 assert(MInsn->isDebugValue() && "History must begin with debug value");
1541 // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1542 // If the history map contains a single debug value, there may be an
1543 // additional entry which clobbers the debug value.
1544 size_t HistSize = HistoryMapEntries.size();
1545 bool SingleValueWithClobber =
1546 HistSize == 2 && HistoryMapEntries[1].isClobber();
1547 if (HistSize == 1 || SingleValueWithClobber) {
1548 const auto *End =
1549 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1550 if (validThroughout(LScopes, MInsn, End)) {
1551 RegVar->initializeDbgValue(MInsn);
1552 continue;
1556 // Do not emit location lists if .debug_loc secton is disabled.
1557 if (!useLocSection())
1558 continue;
1560 // Handle multiple DBG_VALUE instructions describing one variable.
1561 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1563 // Build the location list for this variable.
1564 SmallVector<DebugLocEntry, 8> Entries;
1565 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1567 // Check whether buildLocationList managed to merge all locations to one
1568 // that is valid throughout the variable's scope. If so, produce single
1569 // value location.
1570 if (isValidSingleLocation) {
1571 RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1572 continue;
1575 // If the variable has a DIBasicType, extract it. Basic types cannot have
1576 // unique identifiers, so don't bother resolving the type with the
1577 // identifier map.
1578 const DIBasicType *BT = dyn_cast<DIBasicType>(
1579 static_cast<const Metadata *>(LocalVar->getType()));
1581 // Finalize the entry by lowering it into a DWARF bytestream.
1582 for (auto &Entry : Entries)
1583 Entry.finalize(*Asm, List, BT, TheCU);
1586 // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1587 // DWARF-related DbgLabel.
1588 for (const auto &I : DbgLabels) {
1589 InlinedEntity IL = I.first;
1590 const MachineInstr *MI = I.second;
1591 if (MI == nullptr)
1592 continue;
1594 LexicalScope *Scope = nullptr;
1595 const DILabel *Label = cast<DILabel>(IL.first);
1596 // The scope could have an extra lexical block file.
1597 const DILocalScope *LocalScope =
1598 Label->getScope()->getNonLexicalBlockFileScope();
1599 // Get inlined DILocation if it is inlined label.
1600 if (const DILocation *IA = IL.second)
1601 Scope = LScopes.findInlinedScope(LocalScope, IA);
1602 else
1603 Scope = LScopes.findLexicalScope(LocalScope);
1604 // If label scope is not found then skip this label.
1605 if (!Scope)
1606 continue;
1608 Processed.insert(IL);
1609 /// At this point, the temporary label is created.
1610 /// Save the temporary label to DbgLabel entity to get the
1611 /// actually address when generating Dwarf DIE.
1612 MCSymbol *Sym = getLabelBeforeInsn(MI);
1613 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1616 // Collect info for variables/labels that were optimized out.
1617 for (const DINode *DN : SP->getRetainedNodes()) {
1618 if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1619 continue;
1620 LexicalScope *Scope = nullptr;
1621 if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1622 Scope = LScopes.findLexicalScope(DV->getScope());
1623 } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1624 Scope = LScopes.findLexicalScope(DL->getScope());
1627 if (Scope)
1628 createConcreteEntity(TheCU, *Scope, DN, nullptr);
1632 // Process beginning of an instruction.
1633 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1634 DebugHandlerBase::beginInstruction(MI);
1635 assert(CurMI);
1637 const auto *SP = MI->getMF()->getFunction().getSubprogram();
1638 if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
1639 return;
1641 // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1642 // If the instruction is part of the function frame setup code, do not emit
1643 // any line record, as there is no correspondence with any user code.
1644 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1645 return;
1646 const DebugLoc &DL = MI->getDebugLoc();
1647 // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1648 // the last line number actually emitted, to see if it was line 0.
1649 unsigned LastAsmLine =
1650 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1652 // Request a label after the call in order to emit AT_return_pc information
1653 // in call site entries. TODO: Add support for targets with delay slots.
1654 if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot())
1655 requestLabelAfterInsn(MI);
1657 if (DL == PrevInstLoc) {
1658 // If we have an ongoing unspecified location, nothing to do here.
1659 if (!DL)
1660 return;
1661 // We have an explicit location, same as the previous location.
1662 // But we might be coming back to it after a line 0 record.
1663 if (LastAsmLine == 0 && DL.getLine() != 0) {
1664 // Reinstate the source location but not marked as a statement.
1665 const MDNode *Scope = DL.getScope();
1666 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1668 return;
1671 if (!DL) {
1672 // We have an unspecified location, which might want to be line 0.
1673 // If we have already emitted a line-0 record, don't repeat it.
1674 if (LastAsmLine == 0)
1675 return;
1676 // If user said Don't Do That, don't do that.
1677 if (UnknownLocations == Disable)
1678 return;
1679 // See if we have a reason to emit a line-0 record now.
1680 // Reasons to emit a line-0 record include:
1681 // - User asked for it (UnknownLocations).
1682 // - Instruction has a label, so it's referenced from somewhere else,
1683 // possibly debug information; we want it to have a source location.
1684 // - Instruction is at the top of a block; we don't want to inherit the
1685 // location from the physically previous (maybe unrelated) block.
1686 if (UnknownLocations == Enable || PrevLabel ||
1687 (PrevInstBB && PrevInstBB != MI->getParent())) {
1688 // Preserve the file and column numbers, if we can, to save space in
1689 // the encoded line table.
1690 // Do not update PrevInstLoc, it remembers the last non-0 line.
1691 const MDNode *Scope = nullptr;
1692 unsigned Column = 0;
1693 if (PrevInstLoc) {
1694 Scope = PrevInstLoc.getScope();
1695 Column = PrevInstLoc.getCol();
1697 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
1699 return;
1702 // We have an explicit location, different from the previous location.
1703 // Don't repeat a line-0 record, but otherwise emit the new location.
1704 // (The new location might be an explicit line 0, which we do emit.)
1705 if (DL.getLine() == 0 && LastAsmLine == 0)
1706 return;
1707 unsigned Flags = 0;
1708 if (DL == PrologEndLoc) {
1709 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
1710 PrologEndLoc = DebugLoc();
1712 // If the line changed, we call that a new statement; unless we went to
1713 // line 0 and came back, in which case it is not a new statement.
1714 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
1715 if (DL.getLine() && DL.getLine() != OldLine)
1716 Flags |= DWARF2_FLAG_IS_STMT;
1718 const MDNode *Scope = DL.getScope();
1719 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
1721 // If we're not at line 0, remember this location.
1722 if (DL.getLine())
1723 PrevInstLoc = DL;
1726 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
1727 // First known non-DBG_VALUE and non-frame setup location marks
1728 // the beginning of the function body.
1729 for (const auto &MBB : *MF)
1730 for (const auto &MI : MBB)
1731 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1732 MI.getDebugLoc())
1733 return MI.getDebugLoc();
1734 return DebugLoc();
1737 /// Register a source line with debug info. Returns the unique label that was
1738 /// emitted and which provides correspondence to the source line list.
1739 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
1740 const MDNode *S, unsigned Flags, unsigned CUID,
1741 uint16_t DwarfVersion,
1742 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
1743 StringRef Fn;
1744 unsigned FileNo = 1;
1745 unsigned Discriminator = 0;
1746 if (auto *Scope = cast_or_null<DIScope>(S)) {
1747 Fn = Scope->getFilename();
1748 if (Line != 0 && DwarfVersion >= 4)
1749 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
1750 Discriminator = LBF->getDiscriminator();
1752 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
1753 .getOrCreateSourceID(Scope->getFile());
1755 Asm.OutStreamer->EmitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
1756 Discriminator, Fn);
1759 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
1760 unsigned CUID) {
1761 // Get beginning of function.
1762 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
1763 // Ensure the compile unit is created if the function is called before
1764 // beginFunction().
1765 (void)getOrCreateDwarfCompileUnit(
1766 MF.getFunction().getSubprogram()->getUnit());
1767 // We'd like to list the prologue as "not statements" but GDB behaves
1768 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
1769 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
1770 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
1771 CUID, getDwarfVersion(), getUnits());
1772 return PrologEndLoc;
1774 return DebugLoc();
1777 // Gather pre-function debug information. Assumes being called immediately
1778 // after the function entry point has been emitted.
1779 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
1780 CurFn = MF;
1782 auto *SP = MF->getFunction().getSubprogram();
1783 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
1784 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
1785 return;
1787 SectionLabels.insert(std::make_pair(&Asm->getFunctionBegin()->getSection(),
1788 Asm->getFunctionBegin()));
1790 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
1792 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
1793 // belongs to so that we add to the correct per-cu line table in the
1794 // non-asm case.
1795 if (Asm->OutStreamer->hasRawTextSupport())
1796 // Use a single line table if we are generating assembly.
1797 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1798 else
1799 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
1801 // Record beginning of function.
1802 PrologEndLoc = emitInitialLocDirective(
1803 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
1806 void DwarfDebug::skippedNonDebugFunction() {
1807 // If we don't have a subprogram for this function then there will be a hole
1808 // in the range information. Keep note of this by setting the previously used
1809 // section to nullptr.
1810 PrevCU = nullptr;
1811 CurFn = nullptr;
1814 // Gather and emit post-function debug information.
1815 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
1816 const DISubprogram *SP = MF->getFunction().getSubprogram();
1818 assert(CurFn == MF &&
1819 "endFunction should be called with the same function as beginFunction");
1821 // Set DwarfDwarfCompileUnitID in MCContext to default value.
1822 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1824 LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
1825 assert(!FnScope || SP == FnScope->getScopeNode());
1826 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
1827 if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
1828 PrevLabel = nullptr;
1829 CurFn = nullptr;
1830 return;
1833 DenseSet<InlinedEntity> Processed;
1834 collectEntityInfo(TheCU, SP, Processed);
1836 // Add the range of this function to the list of ranges for the CU.
1837 TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()});
1839 // Under -gmlt, skip building the subprogram if there are no inlined
1840 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
1841 // is still needed as we need its source location.
1842 if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
1843 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
1844 LScopes.getAbstractScopesList().empty() && !IsDarwin) {
1845 assert(InfoHolder.getScopeVariables().empty());
1846 PrevLabel = nullptr;
1847 CurFn = nullptr;
1848 return;
1851 #ifndef NDEBUG
1852 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
1853 #endif
1854 // Construct abstract scopes.
1855 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
1856 auto *SP = cast<DISubprogram>(AScope->getScopeNode());
1857 for (const DINode *DN : SP->getRetainedNodes()) {
1858 if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1859 continue;
1861 const MDNode *Scope = nullptr;
1862 if (auto *DV = dyn_cast<DILocalVariable>(DN))
1863 Scope = DV->getScope();
1864 else if (auto *DL = dyn_cast<DILabel>(DN))
1865 Scope = DL->getScope();
1866 else
1867 llvm_unreachable("Unexpected DI type!");
1869 // Collect info for variables/labels that were optimized out.
1870 ensureAbstractEntityIsCreated(TheCU, DN, Scope);
1871 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
1872 && "ensureAbstractEntityIsCreated inserted abstract scopes");
1874 constructAbstractSubprogramScopeDIE(TheCU, AScope);
1877 ProcessedSPNodes.insert(SP);
1878 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
1879 if (auto *SkelCU = TheCU.getSkeleton())
1880 if (!LScopes.getAbstractScopesList().empty() &&
1881 TheCU.getCUNode()->getSplitDebugInlining())
1882 SkelCU->constructSubprogramScopeDIE(SP, FnScope);
1884 // Construct call site entries.
1885 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
1887 // Clear debug info
1888 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
1889 // DbgVariables except those that are also in AbstractVariables (since they
1890 // can be used cross-function)
1891 InfoHolder.getScopeVariables().clear();
1892 InfoHolder.getScopeLabels().clear();
1893 PrevLabel = nullptr;
1894 CurFn = nullptr;
1897 // Register a source line with debug info. Returns the unique label that was
1898 // emitted and which provides correspondence to the source line list.
1899 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
1900 unsigned Flags) {
1901 ::recordSourceLine(*Asm, Line, Col, S, Flags,
1902 Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
1903 getDwarfVersion(), getUnits());
1906 //===----------------------------------------------------------------------===//
1907 // Emit Methods
1908 //===----------------------------------------------------------------------===//
1910 // Emit the debug info section.
1911 void DwarfDebug::emitDebugInfo() {
1912 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1913 Holder.emitUnits(/* UseOffsets */ false);
1916 // Emit the abbreviation section.
1917 void DwarfDebug::emitAbbreviations() {
1918 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1920 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
1923 void DwarfDebug::emitStringOffsetsTableHeader() {
1924 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1925 Holder.getStringPool().emitStringOffsetsTableHeader(
1926 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
1927 Holder.getStringOffsetsStartSym());
1930 template <typename AccelTableT>
1931 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
1932 StringRef TableName) {
1933 Asm->OutStreamer->SwitchSection(Section);
1935 // Emit the full data.
1936 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
1939 void DwarfDebug::emitAccelDebugNames() {
1940 // Don't emit anything if we have no compilation units to index.
1941 if (getUnits().empty())
1942 return;
1944 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
1947 // Emit visible names into a hashed accelerator table section.
1948 void DwarfDebug::emitAccelNames() {
1949 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
1950 "Names");
1953 // Emit objective C classes and categories into a hashed accelerator table
1954 // section.
1955 void DwarfDebug::emitAccelObjC() {
1956 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
1957 "ObjC");
1960 // Emit namespace dies into a hashed accelerator table.
1961 void DwarfDebug::emitAccelNamespaces() {
1962 emitAccel(AccelNamespace,
1963 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
1964 "namespac");
1967 // Emit type dies into a hashed accelerator table.
1968 void DwarfDebug::emitAccelTypes() {
1969 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
1970 "types");
1973 // Public name handling.
1974 // The format for the various pubnames:
1976 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
1977 // for the DIE that is named.
1979 // gnu pubnames - offset/index value/name tuples where the offset is the offset
1980 // into the CU and the index value is computed according to the type of value
1981 // for the DIE that is named.
1983 // For type units the offset is the offset of the skeleton DIE. For split dwarf
1984 // it's the offset within the debug_info/debug_types dwo section, however, the
1985 // reference in the pubname header doesn't change.
1987 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
1988 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
1989 const DIE *Die) {
1990 // Entities that ended up only in a Type Unit reference the CU instead (since
1991 // the pub entry has offsets within the CU there's no real offset that can be
1992 // provided anyway). As it happens all such entities (namespaces and types,
1993 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
1994 // not to be true it would be necessary to persist this information from the
1995 // point at which the entry is added to the index data structure - since by
1996 // the time the index is built from that, the original type/namespace DIE in a
1997 // type unit has already been destroyed so it can't be queried for properties
1998 // like tag, etc.
1999 if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2000 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2001 dwarf::GIEL_EXTERNAL);
2002 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2004 // We could have a specification DIE that has our most of our knowledge,
2005 // look for that now.
2006 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2007 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2008 if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2009 Linkage = dwarf::GIEL_EXTERNAL;
2010 } else if (Die->findAttribute(dwarf::DW_AT_external))
2011 Linkage = dwarf::GIEL_EXTERNAL;
2013 switch (Die->getTag()) {
2014 case dwarf::DW_TAG_class_type:
2015 case dwarf::DW_TAG_structure_type:
2016 case dwarf::DW_TAG_union_type:
2017 case dwarf::DW_TAG_enumeration_type:
2018 return dwarf::PubIndexEntryDescriptor(
2019 dwarf::GIEK_TYPE,
2020 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2021 ? dwarf::GIEL_EXTERNAL
2022 : dwarf::GIEL_STATIC);
2023 case dwarf::DW_TAG_typedef:
2024 case dwarf::DW_TAG_base_type:
2025 case dwarf::DW_TAG_subrange_type:
2026 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2027 case dwarf::DW_TAG_namespace:
2028 return dwarf::GIEK_TYPE;
2029 case dwarf::DW_TAG_subprogram:
2030 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2031 case dwarf::DW_TAG_variable:
2032 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2033 case dwarf::DW_TAG_enumerator:
2034 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2035 dwarf::GIEL_STATIC);
2036 default:
2037 return dwarf::GIEK_NONE;
2041 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2042 /// pubtypes sections.
2043 void DwarfDebug::emitDebugPubSections() {
2044 for (const auto &NU : CUMap) {
2045 DwarfCompileUnit *TheU = NU.second;
2046 if (!TheU->hasDwarfPubSections())
2047 continue;
2049 bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2050 DICompileUnit::DebugNameTableKind::GNU;
2052 Asm->OutStreamer->SwitchSection(
2053 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2054 : Asm->getObjFileLowering().getDwarfPubNamesSection());
2055 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2057 Asm->OutStreamer->SwitchSection(
2058 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2059 : Asm->getObjFileLowering().getDwarfPubTypesSection());
2060 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2064 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2065 if (useSectionsAsReferences())
2066 Asm->EmitDwarfOffset(CU.getSection()->getBeginSymbol(),
2067 CU.getDebugSectionOffset());
2068 else
2069 Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2072 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2073 DwarfCompileUnit *TheU,
2074 const StringMap<const DIE *> &Globals) {
2075 if (auto *Skeleton = TheU->getSkeleton())
2076 TheU = Skeleton;
2078 // Emit the header.
2079 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info");
2080 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
2081 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
2082 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
2084 Asm->OutStreamer->EmitLabel(BeginLabel);
2086 Asm->OutStreamer->AddComment("DWARF Version");
2087 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2089 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2090 emitSectionReference(*TheU);
2092 Asm->OutStreamer->AddComment("Compilation Unit Length");
2093 Asm->emitInt32(TheU->getLength());
2095 // Emit the pubnames for this compilation unit.
2096 for (const auto &GI : Globals) {
2097 const char *Name = GI.getKeyData();
2098 const DIE *Entity = GI.second;
2100 Asm->OutStreamer->AddComment("DIE offset");
2101 Asm->emitInt32(Entity->getOffset());
2103 if (GnuStyle) {
2104 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2105 Asm->OutStreamer->AddComment(
2106 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2107 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2108 Asm->emitInt8(Desc.toBits());
2111 Asm->OutStreamer->AddComment("External Name");
2112 Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1));
2115 Asm->OutStreamer->AddComment("End Mark");
2116 Asm->emitInt32(0);
2117 Asm->OutStreamer->EmitLabel(EndLabel);
2120 /// Emit null-terminated strings into a debug str section.
2121 void DwarfDebug::emitDebugStr() {
2122 MCSection *StringOffsetsSection = nullptr;
2123 if (useSegmentedStringOffsetsTable()) {
2124 emitStringOffsetsTableHeader();
2125 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2127 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2128 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2129 StringOffsetsSection, /* UseRelativeOffsets = */ true);
2132 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2133 const DebugLocStream::Entry &Entry,
2134 const DwarfCompileUnit *CU) {
2135 auto &&Comments = DebugLocs.getComments(Entry);
2136 auto Comment = Comments.begin();
2137 auto End = Comments.end();
2139 // The expressions are inserted into a byte stream rather early (see
2140 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2141 // need to reference a base_type DIE the offset of that DIE is not yet known.
2142 // To deal with this we instead insert a placeholder early and then extract
2143 // it here and replace it with the real reference.
2144 unsigned PtrSize = Asm->MAI->getCodePointerSize();
2145 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2146 DebugLocs.getBytes(Entry).size()),
2147 Asm->getDataLayout().isLittleEndian(), PtrSize);
2148 DWARFExpression Expr(Data, getDwarfVersion(), PtrSize);
2150 using Encoding = DWARFExpression::Operation::Encoding;
2151 uint64_t Offset = 0;
2152 for (auto &Op : Expr) {
2153 assert(Op.getCode() != dwarf::DW_OP_const_type &&
2154 "3 operand ops not yet supported");
2155 Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2156 Offset++;
2157 for (unsigned I = 0; I < 2; ++I) {
2158 if (Op.getDescription().Op[I] == Encoding::SizeNA)
2159 continue;
2160 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2161 if (CU) {
2162 uint64_t Offset = CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2163 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2164 Asm->EmitULEB128(Offset, nullptr, ULEB128PadSize);
2165 } else {
2166 // Emit a reference to the 'generic type'.
2167 Asm->EmitULEB128(0, nullptr, ULEB128PadSize);
2169 // Make sure comments stay aligned.
2170 for (unsigned J = 0; J < ULEB128PadSize; ++J)
2171 if (Comment != End)
2172 Comment++;
2173 } else {
2174 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2175 Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2177 Offset = Op.getOperandEndOffset(I);
2179 assert(Offset == Op.getEndOffset());
2183 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2184 const DbgValueLoc &Value,
2185 DwarfExpression &DwarfExpr) {
2186 auto *DIExpr = Value.getExpression();
2187 DIExpressionCursor ExprCursor(DIExpr);
2188 DwarfExpr.addFragmentOffset(DIExpr);
2189 // Regular entry.
2190 if (Value.isInt()) {
2191 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2192 BT->getEncoding() == dwarf::DW_ATE_signed_char))
2193 DwarfExpr.addSignedConstant(Value.getInt());
2194 else
2195 DwarfExpr.addUnsignedConstant(Value.getInt());
2196 } else if (Value.isLocation()) {
2197 MachineLocation Location = Value.getLoc();
2198 if (Location.isIndirect())
2199 DwarfExpr.setMemoryLocationKind();
2200 DIExpressionCursor Cursor(DIExpr);
2202 if (DIExpr->isEntryValue()) {
2203 DwarfExpr.setEntryValueFlag();
2204 DwarfExpr.beginEntryValueExpression(Cursor);
2207 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2208 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2209 return;
2210 return DwarfExpr.addExpression(std::move(Cursor));
2211 } else if (Value.isConstantFP()) {
2212 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt();
2213 DwarfExpr.addUnsignedConstant(RawBytes);
2215 DwarfExpr.addExpression(std::move(ExprCursor));
2218 void DebugLocEntry::finalize(const AsmPrinter &AP,
2219 DebugLocStream::ListBuilder &List,
2220 const DIBasicType *BT,
2221 DwarfCompileUnit &TheCU) {
2222 assert(!Values.empty() &&
2223 "location list entries without values are redundant");
2224 assert(Begin != End && "unexpected location list entry with empty range");
2225 DebugLocStream::EntryBuilder Entry(List, Begin, End);
2226 BufferByteStreamer Streamer = Entry.getStreamer();
2227 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2228 const DbgValueLoc &Value = Values[0];
2229 if (Value.isFragment()) {
2230 // Emit all fragments that belong to the same variable and range.
2231 assert(llvm::all_of(Values, [](DbgValueLoc P) {
2232 return P.isFragment();
2233 }) && "all values are expected to be fragments");
2234 assert(std::is_sorted(Values.begin(), Values.end()) &&
2235 "fragments are expected to be sorted");
2237 for (auto Fragment : Values)
2238 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2240 } else {
2241 assert(Values.size() == 1 && "only fragments may have >1 value");
2242 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2244 DwarfExpr.finalize();
2247 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2248 const DwarfCompileUnit *CU) {
2249 // Emit the size.
2250 Asm->OutStreamer->AddComment("Loc expr size");
2251 if (getDwarfVersion() >= 5)
2252 Asm->EmitULEB128(DebugLocs.getBytes(Entry).size());
2253 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2254 Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2255 else {
2256 // The entry is too big to fit into 16 bit, drop it as there is nothing we
2257 // can do.
2258 Asm->emitInt16(0);
2259 return;
2261 // Emit the entry.
2262 APByteStreamer Streamer(*Asm);
2263 emitDebugLocEntry(Streamer, Entry, CU);
2266 // Emit the common part of the DWARF 5 range/locations list tables header.
2267 static void emitListsTableHeaderStart(AsmPrinter *Asm,
2268 MCSymbol *TableStart,
2269 MCSymbol *TableEnd) {
2270 // Build the table header, which starts with the length field.
2271 Asm->OutStreamer->AddComment("Length");
2272 Asm->EmitLabelDifference(TableEnd, TableStart, 4);
2273 Asm->OutStreamer->EmitLabel(TableStart);
2274 // Version number (DWARF v5 and later).
2275 Asm->OutStreamer->AddComment("Version");
2276 Asm->emitInt16(Asm->OutStreamer->getContext().getDwarfVersion());
2277 // Address size.
2278 Asm->OutStreamer->AddComment("Address size");
2279 Asm->emitInt8(Asm->MAI->getCodePointerSize());
2280 // Segment selector size.
2281 Asm->OutStreamer->AddComment("Segment selector size");
2282 Asm->emitInt8(0);
2285 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2286 // that designates the end of the table for the caller to emit when the table is
2287 // complete.
2288 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2289 const DwarfFile &Holder) {
2290 MCSymbol *TableStart = Asm->createTempSymbol("debug_rnglist_table_start");
2291 MCSymbol *TableEnd = Asm->createTempSymbol("debug_rnglist_table_end");
2292 emitListsTableHeaderStart(Asm, TableStart, TableEnd);
2294 Asm->OutStreamer->AddComment("Offset entry count");
2295 Asm->emitInt32(Holder.getRangeLists().size());
2296 Asm->OutStreamer->EmitLabel(Holder.getRnglistsTableBaseSym());
2298 for (const RangeSpanList &List : Holder.getRangeLists())
2299 Asm->EmitLabelDifference(List.getSym(), Holder.getRnglistsTableBaseSym(),
2302 return TableEnd;
2305 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2306 // designates the end of the table for the caller to emit when the table is
2307 // complete.
2308 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2309 const DwarfDebug &DD) {
2310 MCSymbol *TableStart = Asm->createTempSymbol("debug_loclist_table_start");
2311 MCSymbol *TableEnd = Asm->createTempSymbol("debug_loclist_table_end");
2312 emitListsTableHeaderStart(Asm, TableStart, TableEnd);
2314 const auto &DebugLocs = DD.getDebugLocs();
2316 // FIXME: Generate the offsets table and use DW_FORM_loclistx with the
2317 // DW_AT_loclists_base attribute. Until then set the number of offsets to 0.
2318 Asm->OutStreamer->AddComment("Offset entry count");
2319 Asm->emitInt32(0);
2320 Asm->OutStreamer->EmitLabel(DebugLocs.getSym());
2322 return TableEnd;
2325 template <typename Ranges, typename PayloadEmitter>
2326 static void emitRangeList(
2327 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2328 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2329 unsigned StartxLength, unsigned EndOfList,
2330 StringRef (*StringifyEnum)(unsigned),
2331 bool ShouldUseBaseAddress,
2332 PayloadEmitter EmitPayload) {
2334 auto Size = Asm->MAI->getCodePointerSize();
2335 bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2337 // Emit our symbol so we can find the beginning of the range.
2338 Asm->OutStreamer->EmitLabel(Sym);
2340 // Gather all the ranges that apply to the same section so they can share
2341 // a base address entry.
2342 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2344 for (const auto &Range : R)
2345 SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2347 const MCSymbol *CUBase = CU.getBaseAddress();
2348 bool BaseIsSet = false;
2349 for (const auto &P : SectionRanges) {
2350 auto *Base = CUBase;
2351 if (!Base && ShouldUseBaseAddress) {
2352 const MCSymbol *Begin = P.second.front()->Begin;
2353 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2354 if (!UseDwarf5) {
2355 Base = NewBase;
2356 BaseIsSet = true;
2357 Asm->OutStreamer->EmitIntValue(-1, Size);
2358 Asm->OutStreamer->AddComment(" base address");
2359 Asm->OutStreamer->EmitSymbolValue(Base, Size);
2360 } else if (NewBase != Begin || P.second.size() > 1) {
2361 // Only use a base address if
2362 // * the existing pool address doesn't match (NewBase != Begin)
2363 // * or, there's more than one entry to share the base address
2364 Base = NewBase;
2365 BaseIsSet = true;
2366 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2367 Asm->emitInt8(BaseAddressx);
2368 Asm->OutStreamer->AddComment(" base address index");
2369 Asm->EmitULEB128(DD.getAddressPool().getIndex(Base));
2371 } else if (BaseIsSet && !UseDwarf5) {
2372 BaseIsSet = false;
2373 assert(!Base);
2374 Asm->OutStreamer->EmitIntValue(-1, Size);
2375 Asm->OutStreamer->EmitIntValue(0, Size);
2378 for (const auto *RS : P.second) {
2379 const MCSymbol *Begin = RS->Begin;
2380 const MCSymbol *End = RS->End;
2381 assert(Begin && "Range without a begin symbol?");
2382 assert(End && "Range without an end symbol?");
2383 if (Base) {
2384 if (UseDwarf5) {
2385 // Emit offset_pair when we have a base.
2386 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2387 Asm->emitInt8(OffsetPair);
2388 Asm->OutStreamer->AddComment(" starting offset");
2389 Asm->EmitLabelDifferenceAsULEB128(Begin, Base);
2390 Asm->OutStreamer->AddComment(" ending offset");
2391 Asm->EmitLabelDifferenceAsULEB128(End, Base);
2392 } else {
2393 Asm->EmitLabelDifference(Begin, Base, Size);
2394 Asm->EmitLabelDifference(End, Base, Size);
2396 } else if (UseDwarf5) {
2397 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2398 Asm->emitInt8(StartxLength);
2399 Asm->OutStreamer->AddComment(" start index");
2400 Asm->EmitULEB128(DD.getAddressPool().getIndex(Begin));
2401 Asm->OutStreamer->AddComment(" length");
2402 Asm->EmitLabelDifferenceAsULEB128(End, Begin);
2403 } else {
2404 Asm->OutStreamer->EmitSymbolValue(Begin, Size);
2405 Asm->OutStreamer->EmitSymbolValue(End, Size);
2407 EmitPayload(*RS);
2411 if (UseDwarf5) {
2412 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2413 Asm->emitInt8(EndOfList);
2414 } else {
2415 // Terminate the list with two 0 values.
2416 Asm->OutStreamer->EmitIntValue(0, Size);
2417 Asm->OutStreamer->EmitIntValue(0, Size);
2421 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2422 emitRangeList(
2423 DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), *List.CU,
2424 dwarf::DW_LLE_base_addressx, dwarf::DW_LLE_offset_pair,
2425 dwarf::DW_LLE_startx_length, dwarf::DW_LLE_end_of_list,
2426 llvm::dwarf::LocListEncodingString,
2427 /* ShouldUseBaseAddress */ true,
2428 [&](const DebugLocStream::Entry &E) {
2429 DD.emitDebugLocEntryLocation(E, List.CU);
2433 // Emit locations into the .debug_loc/.debug_rnglists section.
2434 void DwarfDebug::emitDebugLoc() {
2435 if (DebugLocs.getLists().empty())
2436 return;
2438 MCSymbol *TableEnd = nullptr;
2439 if (getDwarfVersion() >= 5) {
2440 Asm->OutStreamer->SwitchSection(
2441 Asm->getObjFileLowering().getDwarfLoclistsSection());
2442 TableEnd = emitLoclistsTableHeader(Asm, *this);
2443 } else {
2444 Asm->OutStreamer->SwitchSection(
2445 Asm->getObjFileLowering().getDwarfLocSection());
2448 for (const auto &List : DebugLocs.getLists())
2449 emitLocList(*this, Asm, List);
2451 if (TableEnd)
2452 Asm->OutStreamer->EmitLabel(TableEnd);
2455 void DwarfDebug::emitDebugLocDWO() {
2456 for (const auto &List : DebugLocs.getLists()) {
2457 Asm->OutStreamer->SwitchSection(
2458 Asm->getObjFileLowering().getDwarfLocDWOSection());
2459 Asm->OutStreamer->EmitLabel(List.Label);
2460 for (const auto &Entry : DebugLocs.getEntries(List)) {
2461 // GDB only supports startx_length in pre-standard split-DWARF.
2462 // (in v5 standard loclists, it currently* /only/ supports base_address +
2463 // offset_pair, so the implementations can't really share much since they
2464 // need to use different representations)
2465 // * as of October 2018, at least
2466 // Ideally/in v5, this could use SectionLabels to reuse existing addresses
2467 // in the address pool to minimize object size/relocations.
2468 Asm->emitInt8(dwarf::DW_LLE_startx_length);
2469 unsigned idx = AddrPool.getIndex(Entry.Begin);
2470 Asm->EmitULEB128(idx);
2471 Asm->EmitLabelDifference(Entry.End, Entry.Begin, 4);
2473 emitDebugLocEntryLocation(Entry, List.CU);
2475 Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2479 struct ArangeSpan {
2480 const MCSymbol *Start, *End;
2483 // Emit a debug aranges section, containing a CU lookup for any
2484 // address we can tie back to a CU.
2485 void DwarfDebug::emitDebugARanges() {
2486 // Provides a unique id per text section.
2487 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2489 // Filter labels by section.
2490 for (const SymbolCU &SCU : ArangeLabels) {
2491 if (SCU.Sym->isInSection()) {
2492 // Make a note of this symbol and it's section.
2493 MCSection *Section = &SCU.Sym->getSection();
2494 if (!Section->getKind().isMetadata())
2495 SectionMap[Section].push_back(SCU);
2496 } else {
2497 // Some symbols (e.g. common/bss on mach-o) can have no section but still
2498 // appear in the output. This sucks as we rely on sections to build
2499 // arange spans. We can do it without, but it's icky.
2500 SectionMap[nullptr].push_back(SCU);
2504 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2506 for (auto &I : SectionMap) {
2507 MCSection *Section = I.first;
2508 SmallVector<SymbolCU, 8> &List = I.second;
2509 if (List.size() < 1)
2510 continue;
2512 // If we have no section (e.g. common), just write out
2513 // individual spans for each symbol.
2514 if (!Section) {
2515 for (const SymbolCU &Cur : List) {
2516 ArangeSpan Span;
2517 Span.Start = Cur.Sym;
2518 Span.End = nullptr;
2519 assert(Cur.CU);
2520 Spans[Cur.CU].push_back(Span);
2522 continue;
2525 // Sort the symbols by offset within the section.
2526 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2527 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2528 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2530 // Symbols with no order assigned should be placed at the end.
2531 // (e.g. section end labels)
2532 if (IA == 0)
2533 return false;
2534 if (IB == 0)
2535 return true;
2536 return IA < IB;
2539 // Insert a final terminator.
2540 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2542 // Build spans between each label.
2543 const MCSymbol *StartSym = List[0].Sym;
2544 for (size_t n = 1, e = List.size(); n < e; n++) {
2545 const SymbolCU &Prev = List[n - 1];
2546 const SymbolCU &Cur = List[n];
2548 // Try and build the longest span we can within the same CU.
2549 if (Cur.CU != Prev.CU) {
2550 ArangeSpan Span;
2551 Span.Start = StartSym;
2552 Span.End = Cur.Sym;
2553 assert(Prev.CU);
2554 Spans[Prev.CU].push_back(Span);
2555 StartSym = Cur.Sym;
2560 // Start the dwarf aranges section.
2561 Asm->OutStreamer->SwitchSection(
2562 Asm->getObjFileLowering().getDwarfARangesSection());
2564 unsigned PtrSize = Asm->MAI->getCodePointerSize();
2566 // Build a list of CUs used.
2567 std::vector<DwarfCompileUnit *> CUs;
2568 for (const auto &it : Spans) {
2569 DwarfCompileUnit *CU = it.first;
2570 CUs.push_back(CU);
2573 // Sort the CU list (again, to ensure consistent output order).
2574 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2575 return A->getUniqueID() < B->getUniqueID();
2578 // Emit an arange table for each CU we used.
2579 for (DwarfCompileUnit *CU : CUs) {
2580 std::vector<ArangeSpan> &List = Spans[CU];
2582 // Describe the skeleton CU's offset and length, not the dwo file's.
2583 if (auto *Skel = CU->getSkeleton())
2584 CU = Skel;
2586 // Emit size of content not including length itself.
2587 unsigned ContentSize =
2588 sizeof(int16_t) + // DWARF ARange version number
2589 sizeof(int32_t) + // Offset of CU in the .debug_info section
2590 sizeof(int8_t) + // Pointer Size (in bytes)
2591 sizeof(int8_t); // Segment Size (in bytes)
2593 unsigned TupleSize = PtrSize * 2;
2595 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2596 unsigned Padding =
2597 offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize));
2599 ContentSize += Padding;
2600 ContentSize += (List.size() + 1) * TupleSize;
2602 // For each compile unit, write the list of spans it covers.
2603 Asm->OutStreamer->AddComment("Length of ARange Set");
2604 Asm->emitInt32(ContentSize);
2605 Asm->OutStreamer->AddComment("DWARF Arange version number");
2606 Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2607 Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2608 emitSectionReference(*CU);
2609 Asm->OutStreamer->AddComment("Address Size (in bytes)");
2610 Asm->emitInt8(PtrSize);
2611 Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2612 Asm->emitInt8(0);
2614 Asm->OutStreamer->emitFill(Padding, 0xff);
2616 for (const ArangeSpan &Span : List) {
2617 Asm->EmitLabelReference(Span.Start, PtrSize);
2619 // Calculate the size as being from the span start to it's end.
2620 if (Span.End) {
2621 Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize);
2622 } else {
2623 // For symbols without an end marker (e.g. common), we
2624 // write a single arange entry containing just that one symbol.
2625 uint64_t Size = SymSize[Span.Start];
2626 if (Size == 0)
2627 Size = 1;
2629 Asm->OutStreamer->EmitIntValue(Size, PtrSize);
2633 Asm->OutStreamer->AddComment("ARange terminator");
2634 Asm->OutStreamer->EmitIntValue(0, PtrSize);
2635 Asm->OutStreamer->EmitIntValue(0, PtrSize);
2639 /// Emit a single range list. We handle both DWARF v5 and earlier.
2640 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2641 const RangeSpanList &List) {
2642 emitRangeList(DD, Asm, List.getSym(), List.getRanges(), List.getCU(),
2643 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
2644 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
2645 llvm::dwarf::RangeListEncodingString,
2646 List.getCU().getCUNode()->getRangesBaseAddress() ||
2647 DD.getDwarfVersion() >= 5,
2648 [](auto) {});
2651 static void emitDebugRangesImpl(DwarfDebug &DD, AsmPrinter *Asm,
2652 const DwarfFile &Holder, MCSymbol *TableEnd) {
2653 for (const RangeSpanList &List : Holder.getRangeLists())
2654 emitRangeList(DD, Asm, List);
2656 if (TableEnd)
2657 Asm->OutStreamer->EmitLabel(TableEnd);
2660 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
2661 /// .debug_rnglists section.
2662 void DwarfDebug::emitDebugRanges() {
2663 if (CUMap.empty())
2664 return;
2666 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2668 if (Holder.getRangeLists().empty())
2669 return;
2671 assert(useRangesSection());
2672 assert(llvm::none_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2673 return Pair.second->getCUNode()->isDebugDirectivesOnly();
2674 }));
2676 // Start the dwarf ranges section.
2677 MCSymbol *TableEnd = nullptr;
2678 if (getDwarfVersion() >= 5) {
2679 Asm->OutStreamer->SwitchSection(
2680 Asm->getObjFileLowering().getDwarfRnglistsSection());
2681 TableEnd = emitRnglistsTableHeader(Asm, Holder);
2682 } else
2683 Asm->OutStreamer->SwitchSection(
2684 Asm->getObjFileLowering().getDwarfRangesSection());
2686 emitDebugRangesImpl(*this, Asm, Holder, TableEnd);
2689 void DwarfDebug::emitDebugRangesDWO() {
2690 assert(useSplitDwarf());
2692 if (CUMap.empty())
2693 return;
2695 const auto &Holder = InfoHolder;
2697 if (Holder.getRangeLists().empty())
2698 return;
2700 assert(getDwarfVersion() >= 5);
2701 assert(useRangesSection());
2702 assert(llvm::none_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2703 return Pair.second->getCUNode()->isDebugDirectivesOnly();
2704 }));
2706 // Start the dwarf ranges section.
2707 Asm->OutStreamer->SwitchSection(
2708 Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
2709 MCSymbol *TableEnd = emitRnglistsTableHeader(Asm, Holder);
2711 emitDebugRangesImpl(*this, Asm, Holder, TableEnd);
2714 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
2715 for (auto *MN : Nodes) {
2716 if (auto *M = dyn_cast<DIMacro>(MN))
2717 emitMacro(*M);
2718 else if (auto *F = dyn_cast<DIMacroFile>(MN))
2719 emitMacroFile(*F, U);
2720 else
2721 llvm_unreachable("Unexpected DI type!");
2725 void DwarfDebug::emitMacro(DIMacro &M) {
2726 Asm->EmitULEB128(M.getMacinfoType());
2727 Asm->EmitULEB128(M.getLine());
2728 StringRef Name = M.getName();
2729 StringRef Value = M.getValue();
2730 Asm->OutStreamer->EmitBytes(Name);
2731 if (!Value.empty()) {
2732 // There should be one space between macro name and macro value.
2733 Asm->emitInt8(' ');
2734 Asm->OutStreamer->EmitBytes(Value);
2736 Asm->emitInt8('\0');
2739 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
2740 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
2741 Asm->EmitULEB128(dwarf::DW_MACINFO_start_file);
2742 Asm->EmitULEB128(F.getLine());
2743 Asm->EmitULEB128(U.getOrCreateSourceID(F.getFile()));
2744 handleMacroNodes(F.getElements(), U);
2745 Asm->EmitULEB128(dwarf::DW_MACINFO_end_file);
2748 /// Emit macros into a debug macinfo section.
2749 void DwarfDebug::emitDebugMacinfo() {
2750 if (CUMap.empty())
2751 return;
2753 if (llvm::all_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2754 return Pair.second->getCUNode()->isDebugDirectivesOnly();
2756 return;
2758 // Start the dwarf macinfo section.
2759 Asm->OutStreamer->SwitchSection(
2760 Asm->getObjFileLowering().getDwarfMacinfoSection());
2762 for (const auto &P : CUMap) {
2763 auto &TheCU = *P.second;
2764 if (TheCU.getCUNode()->isDebugDirectivesOnly())
2765 continue;
2766 auto *SkCU = TheCU.getSkeleton();
2767 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
2768 auto *CUNode = cast<DICompileUnit>(P.first);
2769 DIMacroNodeArray Macros = CUNode->getMacros();
2770 if (!Macros.empty()) {
2771 Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin());
2772 handleMacroNodes(Macros, U);
2775 Asm->OutStreamer->AddComment("End Of Macro List Mark");
2776 Asm->emitInt8(0);
2779 // DWARF5 Experimental Separate Dwarf emitters.
2781 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
2782 std::unique_ptr<DwarfCompileUnit> NewU) {
2784 if (!CompilationDir.empty())
2785 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
2787 addGnuPubAttributes(*NewU, Die);
2789 SkeletonHolder.addUnit(std::move(NewU));
2792 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
2794 auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
2795 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder);
2796 DwarfCompileUnit &NewCU = *OwnedUnit;
2797 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
2799 NewCU.initStmtList();
2801 if (useSegmentedStringOffsetsTable())
2802 NewCU.addStringOffsetsStart();
2804 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
2806 return NewCU;
2809 // Emit the .debug_info.dwo section for separated dwarf. This contains the
2810 // compile units that would normally be in debug_info.
2811 void DwarfDebug::emitDebugInfoDWO() {
2812 assert(useSplitDwarf() && "No split dwarf debug info?");
2813 // Don't emit relocations into the dwo file.
2814 InfoHolder.emitUnits(/* UseOffsets */ true);
2817 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
2818 // abbreviations for the .debug_info.dwo section.
2819 void DwarfDebug::emitDebugAbbrevDWO() {
2820 assert(useSplitDwarf() && "No split dwarf?");
2821 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
2824 void DwarfDebug::emitDebugLineDWO() {
2825 assert(useSplitDwarf() && "No split dwarf?");
2826 SplitTypeUnitFileTable.Emit(
2827 *Asm->OutStreamer, MCDwarfLineTableParams(),
2828 Asm->getObjFileLowering().getDwarfLineDWOSection());
2831 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
2832 assert(useSplitDwarf() && "No split dwarf?");
2833 InfoHolder.getStringPool().emitStringOffsetsTableHeader(
2834 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
2835 InfoHolder.getStringOffsetsStartSym());
2838 // Emit the .debug_str.dwo section for separated dwarf. This contains the
2839 // string section and is identical in format to traditional .debug_str
2840 // sections.
2841 void DwarfDebug::emitDebugStrDWO() {
2842 if (useSegmentedStringOffsetsTable())
2843 emitStringOffsetsTableHeaderDWO();
2844 assert(useSplitDwarf() && "No split dwarf?");
2845 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
2846 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
2847 OffSec, /* UseRelativeOffsets = */ false);
2850 // Emit address pool.
2851 void DwarfDebug::emitDebugAddr() {
2852 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
2855 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
2856 if (!useSplitDwarf())
2857 return nullptr;
2858 const DICompileUnit *DIUnit = CU.getCUNode();
2859 SplitTypeUnitFileTable.maybeSetRootFile(
2860 DIUnit->getDirectory(), DIUnit->getFilename(),
2861 CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
2862 return &SplitTypeUnitFileTable;
2865 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
2866 MD5 Hash;
2867 Hash.update(Identifier);
2868 // ... take the least significant 8 bytes and return those. Our MD5
2869 // implementation always returns its results in little endian, so we actually
2870 // need the "high" word.
2871 MD5::MD5Result Result;
2872 Hash.final(Result);
2873 return Result.high();
2876 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
2877 StringRef Identifier, DIE &RefDie,
2878 const DICompositeType *CTy) {
2879 // Fast path if we're building some type units and one has already used the
2880 // address pool we know we're going to throw away all this work anyway, so
2881 // don't bother building dependent types.
2882 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
2883 return;
2885 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
2886 if (!Ins.second) {
2887 CU.addDIETypeSignature(RefDie, Ins.first->second);
2888 return;
2891 bool TopLevelType = TypeUnitsUnderConstruction.empty();
2892 AddrPool.resetUsedFlag();
2894 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
2895 getDwoLineTable(CU));
2896 DwarfTypeUnit &NewTU = *OwnedUnit;
2897 DIE &UnitDie = NewTU.getUnitDie();
2898 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
2900 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
2901 CU.getLanguage());
2903 uint64_t Signature = makeTypeSignature(Identifier);
2904 NewTU.setTypeSignature(Signature);
2905 Ins.first->second = Signature;
2907 if (useSplitDwarf()) {
2908 MCSection *Section =
2909 getDwarfVersion() <= 4
2910 ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
2911 : Asm->getObjFileLowering().getDwarfInfoDWOSection();
2912 NewTU.setSection(Section);
2913 } else {
2914 MCSection *Section =
2915 getDwarfVersion() <= 4
2916 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
2917 : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
2918 NewTU.setSection(Section);
2919 // Non-split type units reuse the compile unit's line table.
2920 CU.applyStmtList(UnitDie);
2923 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
2924 // units.
2925 if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
2926 NewTU.addStringOffsetsStart();
2928 NewTU.setType(NewTU.createTypeDIE(CTy));
2930 if (TopLevelType) {
2931 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
2932 TypeUnitsUnderConstruction.clear();
2934 // Types referencing entries in the address table cannot be placed in type
2935 // units.
2936 if (AddrPool.hasBeenUsed()) {
2938 // Remove all the types built while building this type.
2939 // This is pessimistic as some of these types might not be dependent on
2940 // the type that used an address.
2941 for (const auto &TU : TypeUnitsToAdd)
2942 TypeSignatures.erase(TU.second);
2944 // Construct this type in the CU directly.
2945 // This is inefficient because all the dependent types will be rebuilt
2946 // from scratch, including building them in type units, discovering that
2947 // they depend on addresses, throwing them out and rebuilding them.
2948 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
2949 return;
2952 // If the type wasn't dependent on fission addresses, finish adding the type
2953 // and all its dependent types.
2954 for (auto &TU : TypeUnitsToAdd) {
2955 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
2956 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
2959 CU.addDIETypeSignature(RefDie, Signature);
2962 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
2963 : DD(DD),
2964 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) {
2965 DD->TypeUnitsUnderConstruction.clear();
2966 assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed());
2969 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
2970 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
2971 DD->AddrPool.resetUsedFlag();
2974 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
2975 return NonTypeUnitContext(this);
2978 // Add the Name along with its companion DIE to the appropriate accelerator
2979 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
2980 // AccelTableKind::Apple, we use the table we got as an argument). If
2981 // accelerator tables are disabled, this function does nothing.
2982 template <typename DataT>
2983 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
2984 AccelTable<DataT> &AppleAccel, StringRef Name,
2985 const DIE &Die) {
2986 if (getAccelTableKind() == AccelTableKind::None)
2987 return;
2989 if (getAccelTableKind() != AccelTableKind::Apple &&
2990 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
2991 return;
2993 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2994 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
2996 switch (getAccelTableKind()) {
2997 case AccelTableKind::Apple:
2998 AppleAccel.addName(Ref, Die);
2999 break;
3000 case AccelTableKind::Dwarf:
3001 AccelDebugNames.addName(Ref, Die);
3002 break;
3003 case AccelTableKind::Default:
3004 llvm_unreachable("Default should have already been resolved.");
3005 case AccelTableKind::None:
3006 llvm_unreachable("None handled above");
3010 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3011 const DIE &Die) {
3012 addAccelNameImpl(CU, AccelNames, Name, Die);
3015 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3016 const DIE &Die) {
3017 // ObjC names go only into the Apple accelerator tables.
3018 if (getAccelTableKind() == AccelTableKind::Apple)
3019 addAccelNameImpl(CU, AccelObjC, Name, Die);
3022 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3023 const DIE &Die) {
3024 addAccelNameImpl(CU, AccelNamespace, Name, Die);
3027 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3028 const DIE &Die, char Flags) {
3029 addAccelNameImpl(CU, AccelTypes, Name, Die);
3032 uint16_t DwarfDebug::getDwarfVersion() const {
3033 return Asm->OutStreamer->getContext().getDwarfVersion();
3036 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3037 return SectionLabels.find(S)->second;