1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains support for writing dwarf debug info into asm files.
11 //===----------------------------------------------------------------------===//
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
16 #include "DebugLocEntry.h"
17 #include "DebugLocStream.h"
18 #include "DwarfCompileUnit.h"
19 #include "DwarfExpression.h"
20 #include "DwarfFile.h"
21 #include "DwarfUnit.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseSet.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/CodeGen/AccelTable.h"
34 #include "llvm/CodeGen/AsmPrinter.h"
35 #include "llvm/CodeGen/DIE.h"
36 #include "llvm/CodeGen/LexicalScopes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalVariable.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/MC/MCAsmInfo.h"
55 #include "llvm/MC/MCContext.h"
56 #include "llvm/MC/MCDwarf.h"
57 #include "llvm/MC/MCSection.h"
58 #include "llvm/MC/MCStreamer.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/MC/MCTargetOptions.h"
61 #include "llvm/MC/MachineLocation.h"
62 #include "llvm/MC/SectionKind.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MD5.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Target/TargetLoweringObjectFile.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/Target/TargetOptions.h"
86 #define DEBUG_TYPE "dwarfdebug"
88 STATISTIC(NumCSParams
, "Number of dbg call site params created");
91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden
,
92 cl::desc("Disable debug info printing"));
94 static cl::opt
<bool> UseDwarfRangesBaseAddressSpecifier(
95 "use-dwarf-ranges-base-address-specifier", cl::Hidden
,
96 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
98 static cl::opt
<bool> GenerateARangeSection("generate-arange-section",
100 cl::desc("Generate dwarf aranges"),
104 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden
,
105 cl::desc("Generate DWARF4 type units."),
108 static cl::opt
<bool> SplitDwarfCrossCuReferences(
109 "split-dwarf-cross-cu-references", cl::Hidden
,
110 cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
112 enum DefaultOnOff
{ Default
, Enable
, Disable
};
114 static cl::opt
<DefaultOnOff
> UnknownLocations(
115 "use-unknown-locations", cl::Hidden
,
116 cl::desc("Make an absence of debug location information explicit."),
117 cl::values(clEnumVal(Default
, "At top of block or after label"),
118 clEnumVal(Enable
, "In all cases"), clEnumVal(Disable
, "Never")),
121 static cl::opt
<AccelTableKind
> AccelTables(
122 "accel-tables", cl::Hidden
, cl::desc("Output dwarf accelerator tables."),
123 cl::values(clEnumValN(AccelTableKind::Default
, "Default",
124 "Default for platform"),
125 clEnumValN(AccelTableKind::None
, "Disable", "Disabled."),
126 clEnumValN(AccelTableKind::Apple
, "Apple", "Apple"),
127 clEnumValN(AccelTableKind::Dwarf
, "Dwarf", "DWARF")),
128 cl::init(AccelTableKind::Default
));
130 static cl::opt
<DefaultOnOff
>
131 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden
,
132 cl::desc("Use inlined strings rather than string section."),
133 cl::values(clEnumVal(Default
, "Default for platform"),
134 clEnumVal(Enable
, "Enabled"),
135 clEnumVal(Disable
, "Disabled")),
139 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden
,
140 cl::desc("Disable emission .debug_ranges section."),
143 static cl::opt
<DefaultOnOff
> DwarfSectionsAsReferences(
144 "dwarf-sections-as-references", cl::Hidden
,
145 cl::desc("Use sections+offset as references rather than labels."),
146 cl::values(clEnumVal(Default
, "Default for platform"),
147 clEnumVal(Enable
, "Enabled"), clEnumVal(Disable
, "Disabled")),
150 enum LinkageNameOption
{
156 static cl::opt
<LinkageNameOption
>
157 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden
,
158 cl::desc("Which DWARF linkage-name attributes to emit."),
159 cl::values(clEnumValN(DefaultLinkageNames
, "Default",
160 "Default for platform"),
161 clEnumValN(AllLinkageNames
, "All", "All"),
162 clEnumValN(AbstractLinkageNames
, "Abstract",
163 "Abstract subprograms")),
164 cl::init(DefaultLinkageNames
));
166 static const char *const DWARFGroupName
= "dwarf";
167 static const char *const DWARFGroupDescription
= "DWARF Emission";
168 static const char *const DbgTimerName
= "writer";
169 static const char *const DbgTimerDescription
= "DWARF Debug Writer";
170 static constexpr unsigned ULEB128PadSize
= 4;
172 void DebugLocDwarfExpression::emitOp(uint8_t Op
, const char *Comment
) {
173 getActiveStreamer().EmitInt8(
174 Op
, Comment
? Twine(Comment
) + " " + dwarf::OperationEncodingString(Op
)
175 : dwarf::OperationEncodingString(Op
));
178 void DebugLocDwarfExpression::emitSigned(int64_t Value
) {
179 getActiveStreamer().EmitSLEB128(Value
, Twine(Value
));
182 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value
) {
183 getActiveStreamer().EmitULEB128(Value
, Twine(Value
));
186 void DebugLocDwarfExpression::emitData1(uint8_t Value
) {
187 getActiveStreamer().EmitInt8(Value
, Twine(Value
));
190 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx
) {
191 assert(Idx
< (1ULL << (ULEB128PadSize
* 7)) && "Idx wont fit");
192 getActiveStreamer().EmitULEB128(Idx
, Twine(Idx
), ULEB128PadSize
);
195 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo
&TRI
,
196 unsigned MachineReg
) {
197 // This information is not available while emitting .debug_loc entries.
201 void DebugLocDwarfExpression::enableTemporaryBuffer() {
202 assert(!IsBuffering
&& "Already buffering?");
204 TmpBuf
= std::make_unique
<TempBuffer
>(OutBS
.GenerateComments
);
208 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering
= false; }
210 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
211 return TmpBuf
? TmpBuf
->Bytes
.size() : 0;
214 void DebugLocDwarfExpression::commitTemporaryBuffer() {
217 for (auto Byte
: enumerate(TmpBuf
->Bytes
)) {
218 const char *Comment
= (Byte
.index() < TmpBuf
->Comments
.size())
219 ? TmpBuf
->Comments
[Byte
.index()].c_str()
221 OutBS
.EmitInt8(Byte
.value(), Comment
);
223 TmpBuf
->Bytes
.clear();
224 TmpBuf
->Comments
.clear();
227 const DIType
*DbgVariable::getType() const {
228 return getVariable()->getType();
231 /// Get .debug_loc entry for the instruction range starting at MI.
232 static DbgValueLoc
getDebugLocValue(const MachineInstr
*MI
) {
233 const DIExpression
*Expr
= MI
->getDebugExpression();
234 assert(MI
->getNumOperands() == 4);
235 if (MI
->getOperand(0).isReg()) {
236 auto RegOp
= MI
->getOperand(0);
237 auto Op1
= MI
->getOperand(1);
238 // If the second operand is an immediate, this is a
239 // register-indirect address.
240 assert((!Op1
.isImm() || (Op1
.getImm() == 0)) && "unexpected offset");
241 MachineLocation
MLoc(RegOp
.getReg(), Op1
.isImm());
242 return DbgValueLoc(Expr
, MLoc
);
244 if (MI
->getOperand(0).isImm())
245 return DbgValueLoc(Expr
, MI
->getOperand(0).getImm());
246 if (MI
->getOperand(0).isFPImm())
247 return DbgValueLoc(Expr
, MI
->getOperand(0).getFPImm());
248 if (MI
->getOperand(0).isCImm())
249 return DbgValueLoc(Expr
, MI
->getOperand(0).getCImm());
251 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
254 void DbgVariable::initializeDbgValue(const MachineInstr
*DbgValue
) {
255 assert(FrameIndexExprs
.empty() && "Already initialized?");
256 assert(!ValueLoc
.get() && "Already initialized?");
258 assert(getVariable() == DbgValue
->getDebugVariable() && "Wrong variable");
259 assert(getInlinedAt() == DbgValue
->getDebugLoc()->getInlinedAt() &&
262 ValueLoc
= std::make_unique
<DbgValueLoc
>(getDebugLocValue(DbgValue
));
263 if (auto *E
= DbgValue
->getDebugExpression())
264 if (E
->getNumElements())
265 FrameIndexExprs
.push_back({0, E
});
268 ArrayRef
<DbgVariable::FrameIndexExpr
> DbgVariable::getFrameIndexExprs() const {
269 if (FrameIndexExprs
.size() == 1)
270 return FrameIndexExprs
;
272 assert(llvm::all_of(FrameIndexExprs
,
273 [](const FrameIndexExpr
&A
) {
274 return A
.Expr
->isFragment();
276 "multiple FI expressions without DW_OP_LLVM_fragment");
277 llvm::sort(FrameIndexExprs
,
278 [](const FrameIndexExpr
&A
, const FrameIndexExpr
&B
) -> bool {
279 return A
.Expr
->getFragmentInfo()->OffsetInBits
<
280 B
.Expr
->getFragmentInfo()->OffsetInBits
;
283 return FrameIndexExprs
;
286 void DbgVariable::addMMIEntry(const DbgVariable
&V
) {
287 assert(DebugLocListIndex
== ~0U && !ValueLoc
.get() && "not an MMI entry");
288 assert(V
.DebugLocListIndex
== ~0U && !V
.ValueLoc
.get() && "not an MMI entry");
289 assert(V
.getVariable() == getVariable() && "conflicting variable");
290 assert(V
.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
292 assert(!FrameIndexExprs
.empty() && "Expected an MMI entry");
293 assert(!V
.FrameIndexExprs
.empty() && "Expected an MMI entry");
295 // FIXME: This logic should not be necessary anymore, as we now have proper
296 // deduplication. However, without it, we currently run into the assertion
297 // below, which means that we are likely dealing with broken input, i.e. two
298 // non-fragment entries for the same variable at different frame indices.
299 if (FrameIndexExprs
.size()) {
300 auto *Expr
= FrameIndexExprs
.back().Expr
;
301 if (!Expr
|| !Expr
->isFragment())
305 for (const auto &FIE
: V
.FrameIndexExprs
)
306 // Ignore duplicate entries.
307 if (llvm::none_of(FrameIndexExprs
, [&](const FrameIndexExpr
&Other
) {
308 return FIE
.FI
== Other
.FI
&& FIE
.Expr
== Other
.Expr
;
310 FrameIndexExprs
.push_back(FIE
);
312 assert((FrameIndexExprs
.size() == 1 ||
313 llvm::all_of(FrameIndexExprs
,
314 [](FrameIndexExpr
&FIE
) {
315 return FIE
.Expr
&& FIE
.Expr
->isFragment();
317 "conflicting locations for variable");
320 static AccelTableKind
computeAccelTableKind(unsigned DwarfVersion
,
321 bool GenerateTypeUnits
,
324 // Honor an explicit request.
325 if (AccelTables
!= AccelTableKind::Default
)
328 // Accelerator tables with type units are currently not supported.
329 if (GenerateTypeUnits
)
330 return AccelTableKind::None
;
332 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5
333 // always implies debug_names. For lower standard versions we use apple
334 // accelerator tables on apple platforms and debug_names elsewhere.
335 if (DwarfVersion
>= 5)
336 return AccelTableKind::Dwarf
;
337 if (Tuning
== DebuggerKind::LLDB
)
338 return TT
.isOSBinFormatMachO() ? AccelTableKind::Apple
339 : AccelTableKind::Dwarf
;
340 return AccelTableKind::None
;
343 DwarfDebug::DwarfDebug(AsmPrinter
*A
, Module
*M
)
344 : DebugHandlerBase(A
), DebugLocs(A
->OutStreamer
->isVerboseAsm()),
345 InfoHolder(A
, "info_string", DIEValueAllocator
),
346 SkeletonHolder(A
, "skel_string", DIEValueAllocator
),
347 IsDarwin(A
->TM
.getTargetTriple().isOSDarwin()) {
348 const Triple
&TT
= Asm
->TM
.getTargetTriple();
350 // Make sure we know our "debugger tuning". The target option takes
351 // precedence; fall back to triple-based defaults.
352 if (Asm
->TM
.Options
.DebuggerTuning
!= DebuggerKind::Default
)
353 DebuggerTuning
= Asm
->TM
.Options
.DebuggerTuning
;
355 DebuggerTuning
= DebuggerKind::LLDB
;
356 else if (TT
.isPS4CPU())
357 DebuggerTuning
= DebuggerKind::SCE
;
359 DebuggerTuning
= DebuggerKind::GDB
;
361 if (DwarfInlinedStrings
== Default
)
362 UseInlineStrings
= TT
.isNVPTX();
364 UseInlineStrings
= DwarfInlinedStrings
== Enable
;
366 UseLocSection
= !TT
.isNVPTX();
368 HasAppleExtensionAttributes
= tuneForLLDB();
370 // Handle split DWARF.
371 HasSplitDwarf
= !Asm
->TM
.Options
.MCOptions
.SplitDwarfFile
.empty();
373 // SCE defaults to linkage names only for abstract subprograms.
374 if (DwarfLinkageNames
== DefaultLinkageNames
)
375 UseAllLinkageNames
= !tuneForSCE();
377 UseAllLinkageNames
= DwarfLinkageNames
== AllLinkageNames
;
379 unsigned DwarfVersionNumber
= Asm
->TM
.Options
.MCOptions
.DwarfVersion
;
380 unsigned DwarfVersion
= DwarfVersionNumber
? DwarfVersionNumber
381 : MMI
->getModule()->getDwarfVersion();
382 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
384 TT
.isNVPTX() ? 2 : (DwarfVersion
? DwarfVersion
: dwarf::DWARF_VERSION
);
386 UseRangesSection
= !NoDwarfRangesSection
&& !TT
.isNVPTX();
388 // Use sections as references. Force for NVPTX.
389 if (DwarfSectionsAsReferences
== Default
)
390 UseSectionsAsReferences
= TT
.isNVPTX();
392 UseSectionsAsReferences
= DwarfSectionsAsReferences
== Enable
;
394 // Don't generate type units for unsupported object file formats.
396 A
->TM
.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits
;
398 TheAccelTableKind
= computeAccelTableKind(
399 DwarfVersion
, GenerateTypeUnits
, DebuggerTuning
, A
->TM
.getTargetTriple());
401 // Work around a GDB bug. GDB doesn't support the standard opcode;
402 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
403 // is defined as of DWARF 3.
404 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
405 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
406 UseGNUTLSOpcode
= tuneForGDB() || DwarfVersion
< 3;
408 // GDB does not fully support the DWARF 4 representation for bitfields.
409 UseDWARF2Bitfields
= (DwarfVersion
< 4) || tuneForGDB();
411 // The DWARF v5 string offsets table has - possibly shared - contributions
412 // from each compile and type unit each preceded by a header. The string
413 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
414 // a monolithic string offsets table without any header.
415 UseSegmentedStringOffsetsTable
= DwarfVersion
>= 5;
417 Asm
->OutStreamer
->getContext().setDwarfVersion(DwarfVersion
);
420 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
421 DwarfDebug::~DwarfDebug() = default;
423 static bool isObjCClass(StringRef Name
) {
424 return Name
.startswith("+") || Name
.startswith("-");
427 static bool hasObjCCategory(StringRef Name
) {
428 if (!isObjCClass(Name
))
431 return Name
.find(") ") != StringRef::npos
;
434 static void getObjCClassCategory(StringRef In
, StringRef
&Class
,
435 StringRef
&Category
) {
436 if (!hasObjCCategory(In
)) {
437 Class
= In
.slice(In
.find('[') + 1, In
.find(' '));
442 Class
= In
.slice(In
.find('[') + 1, In
.find('('));
443 Category
= In
.slice(In
.find('[') + 1, In
.find(' '));
446 static StringRef
getObjCMethodName(StringRef In
) {
447 return In
.slice(In
.find(' ') + 1, In
.find(']'));
450 // Add the various names to the Dwarf accelerator table names.
451 void DwarfDebug::addSubprogramNames(const DICompileUnit
&CU
,
452 const DISubprogram
*SP
, DIE
&Die
) {
453 if (getAccelTableKind() != AccelTableKind::Apple
&&
454 CU
.getNameTableKind() == DICompileUnit::DebugNameTableKind::None
)
457 if (!SP
->isDefinition())
460 if (SP
->getName() != "")
461 addAccelName(CU
, SP
->getName(), Die
);
463 // If the linkage name is different than the name, go ahead and output that as
464 // well into the name table. Only do that if we are going to actually emit
466 if (SP
->getLinkageName() != "" && SP
->getName() != SP
->getLinkageName() &&
467 (useAllLinkageNames() || InfoHolder
.getAbstractSPDies().lookup(SP
)))
468 addAccelName(CU
, SP
->getLinkageName(), Die
);
470 // If this is an Objective-C selector name add it to the ObjC accelerator
472 if (isObjCClass(SP
->getName())) {
473 StringRef Class
, Category
;
474 getObjCClassCategory(SP
->getName(), Class
, Category
);
475 addAccelObjC(CU
, Class
, Die
);
477 addAccelObjC(CU
, Category
, Die
);
478 // Also add the base method name to the name table.
479 addAccelName(CU
, getObjCMethodName(SP
->getName()), Die
);
483 /// Check whether we should create a DIE for the given Scope, return true
484 /// if we don't create a DIE (the corresponding DIE is null).
485 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope
*Scope
) {
486 if (Scope
->isAbstractScope())
489 // We don't create a DIE if there is no Range.
490 const SmallVectorImpl
<InsnRange
> &Ranges
= Scope
->getRanges();
494 if (Ranges
.size() > 1)
497 // We don't create a DIE if we have a single Range and the end label
499 return !getLabelAfterInsn(Ranges
.front().second
);
502 template <typename Func
> static void forBothCUs(DwarfCompileUnit
&CU
, Func F
) {
504 if (auto *SkelCU
= CU
.getSkeleton())
505 if (CU
.getCUNode()->getSplitDebugInlining())
509 bool DwarfDebug::shareAcrossDWOCUs() const {
510 return SplitDwarfCrossCuReferences
;
513 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit
&SrcCU
,
514 LexicalScope
*Scope
) {
515 assert(Scope
&& Scope
->getScopeNode());
516 assert(Scope
->isAbstractScope());
517 assert(!Scope
->getInlinedAt());
519 auto *SP
= cast
<DISubprogram
>(Scope
->getScopeNode());
521 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
522 // was inlined from another compile unit.
523 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP
->getUnit()->getSplitDebugInlining())
524 // Avoid building the original CU if it won't be used
525 SrcCU
.constructAbstractSubprogramScopeDIE(Scope
);
527 auto &CU
= getOrCreateDwarfCompileUnit(SP
->getUnit());
528 if (auto *SkelCU
= CU
.getSkeleton()) {
529 (shareAcrossDWOCUs() ? CU
: SrcCU
)
530 .constructAbstractSubprogramScopeDIE(Scope
);
531 if (CU
.getCUNode()->getSplitDebugInlining())
532 SkelCU
->constructAbstractSubprogramScopeDIE(Scope
);
534 CU
.constructAbstractSubprogramScopeDIE(Scope
);
538 /// Try to interpret values loaded into registers that forward parameters
539 /// for \p CallMI. Store parameters with interpreted value into \p Params.
540 static void collectCallSiteParameters(const MachineInstr
*CallMI
,
542 auto *MF
= CallMI
->getMF();
543 auto CalleesMap
= MF
->getCallSitesInfo();
544 auto CallFwdRegsInfo
= CalleesMap
.find(CallMI
);
546 // There is no information for the call instruction.
547 if (CallFwdRegsInfo
== CalleesMap
.end())
550 auto *MBB
= CallMI
->getParent();
551 const auto &TRI
= MF
->getSubtarget().getRegisterInfo();
552 const auto &TII
= MF
->getSubtarget().getInstrInfo();
553 const auto &TLI
= MF
->getSubtarget().getTargetLowering();
555 // Skip the call instruction.
556 auto I
= std::next(CallMI
->getReverseIterator());
558 DenseSet
<unsigned> ForwardedRegWorklist
;
559 // Add all the forwarding registers into the ForwardedRegWorklist.
560 for (auto ArgReg
: CallFwdRegsInfo
->second
) {
561 bool InsertedReg
= ForwardedRegWorklist
.insert(ArgReg
.Reg
).second
;
562 assert(InsertedReg
&& "Single register used to forward two arguments?");
566 // We erase, from the ForwardedRegWorklist, those forwarding registers for
567 // which we successfully describe a loaded value (by using
568 // the describeLoadedValue()). For those remaining arguments in the working
569 // list, for which we do not describe a loaded value by
570 // the describeLoadedValue(), we try to generate an entry value expression
571 // for their call site value desctipion, if the call is within the entry MBB.
572 // The RegsForEntryValues maps a forwarding register into the register holding
574 // TODO: Handle situations when call site parameter value can be described
575 // as the entry value within basic blocks other then the first one.
576 bool ShouldTryEmitEntryVals
= MBB
->getIterator() == MF
->begin();
577 DenseMap
<unsigned, unsigned> RegsForEntryValues
;
579 // If the MI is an instruction defining one or more parameters' forwarding
580 // registers, add those defines. We can currently only describe forwarded
581 // registers that are explicitly defined, but keep track of implicit defines
582 // also to remove those registers from the work list.
583 auto getForwardingRegsDefinedByMI
= [&](const MachineInstr
&MI
,
584 SmallVectorImpl
<unsigned> &Explicit
,
585 SmallVectorImpl
<unsigned> &Implicit
) {
586 if (MI
.isDebugInstr())
589 for (const MachineOperand
&MO
: MI
.operands()) {
590 if (MO
.isReg() && MO
.isDef() &&
591 Register::isPhysicalRegister(MO
.getReg())) {
592 for (auto FwdReg
: ForwardedRegWorklist
) {
593 if (TRI
->regsOverlap(FwdReg
, MO
.getReg())) {
595 Implicit
.push_back(FwdReg
);
597 Explicit
.push_back(FwdReg
);
605 auto finishCallSiteParam
= [&](DbgValueLoc DbgLocVal
, unsigned Reg
) {
606 unsigned FwdReg
= Reg
;
607 if (ShouldTryEmitEntryVals
) {
608 auto EntryValReg
= RegsForEntryValues
.find(Reg
);
609 if (EntryValReg
!= RegsForEntryValues
.end())
610 FwdReg
= EntryValReg
->second
;
613 DbgCallSiteParam
CSParm(FwdReg
, DbgLocVal
);
614 Params
.push_back(CSParm
);
618 // Search for a loading value in forwaring registers.
619 for (; I
!= MBB
->rend(); ++I
) {
620 // If the next instruction is a call we can not interpret parameter's
621 // forwarding registers or we finished the interpretation of all parameters.
625 if (ForwardedRegWorklist
.empty())
628 SmallVector
<unsigned, 4> ExplicitFwdRegDefs
;
629 SmallVector
<unsigned, 4> ImplicitFwdRegDefs
;
630 getForwardingRegsDefinedByMI(*I
, ExplicitFwdRegDefs
, ImplicitFwdRegDefs
);
631 if (ExplicitFwdRegDefs
.empty() && ImplicitFwdRegDefs
.empty())
634 // If the MI clobbers more then one forwarding register we must remove
635 // all of them from the working list.
636 for (auto Reg
: concat
<unsigned>(ExplicitFwdRegDefs
, ImplicitFwdRegDefs
))
637 ForwardedRegWorklist
.erase(Reg
);
639 // The describeLoadedValue() hook currently does not have any information
640 // about which register it should describe in case of multiple defines, so
641 // for now we only handle instructions where a forwarded register is (at
642 // least partially) defined by the instruction's single explicit define.
643 if (I
->getNumExplicitDefs() != 1 || ExplicitFwdRegDefs
.empty())
645 unsigned Reg
= ExplicitFwdRegDefs
[0];
647 if (auto ParamValue
= TII
->describeLoadedValue(*I
)) {
648 if (ParamValue
->first
.isImm()) {
649 int64_t Val
= ParamValue
->first
.getImm();
650 DbgValueLoc
DbgLocVal(ParamValue
->second
, Val
);
651 finishCallSiteParam(DbgLocVal
, Reg
);
652 } else if (ParamValue
->first
.isReg()) {
653 Register RegLoc
= ParamValue
->first
.getReg();
654 unsigned SP
= TLI
->getStackPointerRegisterToSaveRestore();
655 Register FP
= TRI
->getFrameRegister(*MF
);
656 bool IsSPorFP
= (RegLoc
== SP
) || (RegLoc
== FP
);
657 if (TRI
->isCalleeSavedPhysReg(RegLoc
, *MF
) || IsSPorFP
) {
658 DbgValueLoc
DbgLocVal(ParamValue
->second
,
659 MachineLocation(RegLoc
,
660 /*IsIndirect=*/IsSPorFP
));
661 finishCallSiteParam(DbgLocVal
, Reg
);
662 } else if (ShouldTryEmitEntryVals
) {
663 ForwardedRegWorklist
.insert(RegLoc
);
664 RegsForEntryValues
[RegLoc
] = Reg
;
670 // Emit the call site parameter's value as an entry value.
671 if (ShouldTryEmitEntryVals
) {
672 // Create an expression where the register's entry value is used.
673 DIExpression
*EntryExpr
= DIExpression::get(
674 MF
->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value
, 1});
675 for (auto RegEntry
: ForwardedRegWorklist
) {
676 unsigned FwdReg
= RegEntry
;
677 auto EntryValReg
= RegsForEntryValues
.find(RegEntry
);
678 if (EntryValReg
!= RegsForEntryValues
.end())
679 FwdReg
= EntryValReg
->second
;
681 DbgValueLoc
DbgLocVal(EntryExpr
, MachineLocation(RegEntry
));
682 DbgCallSiteParam
CSParm(FwdReg
, DbgLocVal
);
683 Params
.push_back(CSParm
);
689 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram
&SP
,
690 DwarfCompileUnit
&CU
, DIE
&ScopeDIE
,
691 const MachineFunction
&MF
) {
692 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
693 // the subprogram is required to have one.
694 if (!SP
.areAllCallsDescribed() || !SP
.isDefinition())
697 // Use DW_AT_call_all_calls to express that call site entries are present
698 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
699 // because one of its requirements is not met: call site entries for
700 // optimized-out calls are elided.
701 CU
.addFlag(ScopeDIE
, CU
.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls
));
703 const TargetInstrInfo
*TII
= MF
.getSubtarget().getInstrInfo();
704 assert(TII
&& "TargetInstrInfo not found: cannot label tail calls");
705 bool ApplyGNUExtensions
= getDwarfVersion() == 4 && tuneForGDB();
707 // Emit call site entries for each call or tail call in the function.
708 for (const MachineBasicBlock
&MBB
: MF
) {
709 for (const MachineInstr
&MI
: MBB
.instrs()) {
710 // Skip instructions which aren't calls. Both calls and tail-calling jump
711 // instructions (e.g TAILJMPd64) are classified correctly here.
715 // TODO: Add support for targets with delay slots (see: beginInstruction).
716 if (MI
.hasDelaySlot())
719 // If this is a direct call, find the callee's subprogram.
720 // In the case of an indirect call find the register that holds
722 const MachineOperand
&CalleeOp
= MI
.getOperand(0);
723 if (!CalleeOp
.isGlobal() && !CalleeOp
.isReg())
726 unsigned CallReg
= 0;
727 const DISubprogram
*CalleeSP
= nullptr;
728 const Function
*CalleeDecl
= nullptr;
729 if (CalleeOp
.isReg()) {
730 CallReg
= CalleeOp
.getReg();
734 CalleeDecl
= dyn_cast
<Function
>(CalleeOp
.getGlobal());
735 if (!CalleeDecl
|| !CalleeDecl
->getSubprogram())
737 CalleeSP
= CalleeDecl
->getSubprogram();
740 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
742 bool IsTail
= TII
->isTailCall(MI
);
744 // For tail calls, for non-gdb tuning, no return PC information is needed.
745 // For regular calls (and tail calls in GDB tuning), the return PC
746 // is needed to disambiguate paths in the call graph which could lead to
747 // some target function.
748 const MCExpr
*PCOffset
=
749 (IsTail
&& !tuneForGDB()) ? nullptr
750 : getFunctionLocalOffsetAfterInsn(&MI
);
752 // Address of a call-like instruction for a normal call or a jump-like
753 // instruction for a tail call. This is needed for GDB + DWARF 4 tuning.
754 const MCSymbol
*PCAddr
=
755 ApplyGNUExtensions
? const_cast<MCSymbol
*>(getLabelAfterInsn(&MI
))
758 assert((IsTail
|| PCOffset
|| PCAddr
) &&
759 "Call without return PC information");
761 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF
.getName() << " -> "
762 << (CalleeDecl
? CalleeDecl
->getName()
763 : StringRef(MF
.getSubtarget()
766 << (IsTail
? " [IsTail]" : "") << "\n");
769 CU
.constructCallSiteEntryDIE(ScopeDIE
, CalleeSP
, IsTail
, PCAddr
,
772 // GDB and LLDB support call site parameter debug info.
773 if (Asm
->TM
.Options
.EnableDebugEntryValues
&&
774 (tuneForGDB() || tuneForLLDB())) {
776 // Try to interpret values of call site parameters.
777 collectCallSiteParameters(&MI
, Params
);
778 CU
.constructCallSiteParmEntryDIEs(CallSiteDIE
, Params
);
784 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit
&U
, DIE
&D
) const {
785 if (!U
.hasDwarfPubSections())
788 U
.addFlag(D
, dwarf::DW_AT_GNU_pubnames
);
791 void DwarfDebug::finishUnitAttributes(const DICompileUnit
*DIUnit
,
792 DwarfCompileUnit
&NewCU
) {
793 DIE
&Die
= NewCU
.getUnitDie();
794 StringRef FN
= DIUnit
->getFilename();
796 StringRef Producer
= DIUnit
->getProducer();
797 StringRef Flags
= DIUnit
->getFlags();
798 if (!Flags
.empty() && !useAppleExtensionAttributes()) {
799 std::string ProducerWithFlags
= Producer
.str() + " " + Flags
.str();
800 NewCU
.addString(Die
, dwarf::DW_AT_producer
, ProducerWithFlags
);
802 NewCU
.addString(Die
, dwarf::DW_AT_producer
, Producer
);
804 NewCU
.addUInt(Die
, dwarf::DW_AT_language
, dwarf::DW_FORM_data2
,
805 DIUnit
->getSourceLanguage());
806 NewCU
.addString(Die
, dwarf::DW_AT_name
, FN
);
808 // Add DW_str_offsets_base to the unit DIE, except for split units.
809 if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
810 NewCU
.addStringOffsetsStart();
812 if (!useSplitDwarf()) {
813 NewCU
.initStmtList();
815 // If we're using split dwarf the compilation dir is going to be in the
816 // skeleton CU and so we don't need to duplicate it here.
817 if (!CompilationDir
.empty())
818 NewCU
.addString(Die
, dwarf::DW_AT_comp_dir
, CompilationDir
);
820 addGnuPubAttributes(NewCU
, Die
);
823 if (useAppleExtensionAttributes()) {
824 if (DIUnit
->isOptimized())
825 NewCU
.addFlag(Die
, dwarf::DW_AT_APPLE_optimized
);
827 StringRef Flags
= DIUnit
->getFlags();
829 NewCU
.addString(Die
, dwarf::DW_AT_APPLE_flags
, Flags
);
831 if (unsigned RVer
= DIUnit
->getRuntimeVersion())
832 NewCU
.addUInt(Die
, dwarf::DW_AT_APPLE_major_runtime_vers
,
833 dwarf::DW_FORM_data1
, RVer
);
836 if (DIUnit
->getDWOId()) {
837 // This CU is either a clang module DWO or a skeleton CU.
838 NewCU
.addUInt(Die
, dwarf::DW_AT_GNU_dwo_id
, dwarf::DW_FORM_data8
,
840 if (!DIUnit
->getSplitDebugFilename().empty())
841 // This is a prefabricated skeleton CU.
842 NewCU
.addString(Die
, dwarf::DW_AT_GNU_dwo_name
,
843 DIUnit
->getSplitDebugFilename());
846 // Create new DwarfCompileUnit for the given metadata node with tag
847 // DW_TAG_compile_unit.
849 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit
*DIUnit
) {
850 if (auto *CU
= CUMap
.lookup(DIUnit
))
853 CompilationDir
= DIUnit
->getDirectory();
855 auto OwnedUnit
= std::make_unique
<DwarfCompileUnit
>(
856 InfoHolder
.getUnits().size(), DIUnit
, Asm
, this, &InfoHolder
);
857 DwarfCompileUnit
&NewCU
= *OwnedUnit
;
858 InfoHolder
.addUnit(std::move(OwnedUnit
));
860 for (auto *IE
: DIUnit
->getImportedEntities())
861 NewCU
.addImportedEntity(IE
);
863 // LTO with assembly output shares a single line table amongst multiple CUs.
864 // To avoid the compilation directory being ambiguous, let the line table
865 // explicitly describe the directory of all files, never relying on the
866 // compilation directory.
867 if (!Asm
->OutStreamer
->hasRawTextSupport() || SingleCU
)
868 Asm
->OutStreamer
->emitDwarfFile0Directive(
869 CompilationDir
, DIUnit
->getFilename(),
870 NewCU
.getMD5AsBytes(DIUnit
->getFile()), DIUnit
->getSource(),
871 NewCU
.getUniqueID());
873 if (useSplitDwarf()) {
874 NewCU
.setSkeleton(constructSkeletonCU(NewCU
));
875 NewCU
.setSection(Asm
->getObjFileLowering().getDwarfInfoDWOSection());
877 finishUnitAttributes(DIUnit
, NewCU
);
878 NewCU
.setSection(Asm
->getObjFileLowering().getDwarfInfoSection());
881 // Create DIEs for function declarations used for call site debug info.
882 for (auto Scope
: DIUnit
->getRetainedTypes())
883 if (auto *SP
= dyn_cast_or_null
<DISubprogram
>(Scope
))
884 NewCU
.getOrCreateSubprogramDIE(SP
);
886 CUMap
.insert({DIUnit
, &NewCU
});
887 CUDieMap
.insert({&NewCU
.getUnitDie(), &NewCU
});
891 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit
&TheCU
,
892 const DIImportedEntity
*N
) {
893 if (isa
<DILocalScope
>(N
->getScope()))
895 if (DIE
*D
= TheCU
.getOrCreateContextDIE(N
->getScope()))
896 D
->addChild(TheCU
.constructImportedEntityDIE(N
));
899 /// Sort and unique GVEs by comparing their fragment offset.
900 static SmallVectorImpl
<DwarfCompileUnit::GlobalExpr
> &
901 sortGlobalExprs(SmallVectorImpl
<DwarfCompileUnit::GlobalExpr
> &GVEs
) {
903 GVEs
, [](DwarfCompileUnit::GlobalExpr A
, DwarfCompileUnit::GlobalExpr B
) {
904 // Sort order: first null exprs, then exprs without fragment
905 // info, then sort by fragment offset in bits.
906 // FIXME: Come up with a more comprehensive comparator so
907 // the sorting isn't non-deterministic, and so the following
908 // std::unique call works correctly.
909 if (!A
.Expr
|| !B
.Expr
)
911 auto FragmentA
= A
.Expr
->getFragmentInfo();
912 auto FragmentB
= B
.Expr
->getFragmentInfo();
913 if (!FragmentA
|| !FragmentB
)
915 return FragmentA
->OffsetInBits
< FragmentB
->OffsetInBits
;
917 GVEs
.erase(std::unique(GVEs
.begin(), GVEs
.end(),
918 [](DwarfCompileUnit::GlobalExpr A
,
919 DwarfCompileUnit::GlobalExpr B
) {
920 return A
.Expr
== B
.Expr
;
926 // Emit all Dwarf sections that should come prior to the content. Create
927 // global DIEs and emit initial debug info sections. This is invoked by
928 // the target AsmPrinter.
929 void DwarfDebug::beginModule() {
930 NamedRegionTimer
T(DbgTimerName
, DbgTimerDescription
, DWARFGroupName
,
931 DWARFGroupDescription
, TimePassesIsEnabled
);
932 if (DisableDebugInfoPrinting
) {
933 MMI
->setDebugInfoAvailability(false);
937 const Module
*M
= MMI
->getModule();
939 unsigned NumDebugCUs
= std::distance(M
->debug_compile_units_begin(),
940 M
->debug_compile_units_end());
941 // Tell MMI whether we have debug info.
942 assert(MMI
->hasDebugInfo() == (NumDebugCUs
> 0) &&
943 "DebugInfoAvailabilty initialized unexpectedly");
944 SingleCU
= NumDebugCUs
== 1;
945 DenseMap
<DIGlobalVariable
*, SmallVector
<DwarfCompileUnit::GlobalExpr
, 1>>
947 for (const GlobalVariable
&Global
: M
->globals()) {
948 SmallVector
<DIGlobalVariableExpression
*, 1> GVs
;
949 Global
.getDebugInfo(GVs
);
950 for (auto *GVE
: GVs
)
951 GVMap
[GVE
->getVariable()].push_back({&Global
, GVE
->getExpression()});
954 // Create the symbol that designates the start of the unit's contribution
955 // to the string offsets table. In a split DWARF scenario, only the skeleton
956 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
957 if (useSegmentedStringOffsetsTable())
958 (useSplitDwarf() ? SkeletonHolder
: InfoHolder
)
959 .setStringOffsetsStartSym(Asm
->createTempSymbol("str_offsets_base"));
962 // Create the symbols that designates the start of the DWARF v5 range list
963 // and locations list tables. They are located past the table headers.
964 if (getDwarfVersion() >= 5) {
965 DwarfFile
&Holder
= useSplitDwarf() ? SkeletonHolder
: InfoHolder
;
966 Holder
.setRnglistsTableBaseSym(
967 Asm
->createTempSymbol("rnglists_table_base"));
970 InfoHolder
.setRnglistsTableBaseSym(
971 Asm
->createTempSymbol("rnglists_dwo_table_base"));
974 // Create the symbol that points to the first entry following the debug
975 // address table (.debug_addr) header.
976 AddrPool
.setLabel(Asm
->createTempSymbol("addr_table_base"));
978 for (DICompileUnit
*CUNode
: M
->debug_compile_units()) {
979 // FIXME: Move local imported entities into a list attached to the
980 // subprogram, then this search won't be needed and a
981 // getImportedEntities().empty() test should go below with the rest.
982 bool HasNonLocalImportedEntities
= llvm::any_of(
983 CUNode
->getImportedEntities(), [](const DIImportedEntity
*IE
) {
984 return !isa
<DILocalScope
>(IE
->getScope());
987 if (!HasNonLocalImportedEntities
&& CUNode
->getEnumTypes().empty() &&
988 CUNode
->getRetainedTypes().empty() &&
989 CUNode
->getGlobalVariables().empty() && CUNode
->getMacros().empty())
992 DwarfCompileUnit
&CU
= getOrCreateDwarfCompileUnit(CUNode
);
995 for (auto *GVE
: CUNode
->getGlobalVariables()) {
996 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
997 // already know about the variable and it isn't adding a constant
999 auto &GVMapEntry
= GVMap
[GVE
->getVariable()];
1000 auto *Expr
= GVE
->getExpression();
1001 if (!GVMapEntry
.size() || (Expr
&& Expr
->isConstant()))
1002 GVMapEntry
.push_back({nullptr, Expr
});
1004 DenseSet
<DIGlobalVariable
*> Processed
;
1005 for (auto *GVE
: CUNode
->getGlobalVariables()) {
1006 DIGlobalVariable
*GV
= GVE
->getVariable();
1007 if (Processed
.insert(GV
).second
)
1008 CU
.getOrCreateGlobalVariableDIE(GV
, sortGlobalExprs(GVMap
[GV
]));
1011 for (auto *Ty
: CUNode
->getEnumTypes()) {
1012 // The enum types array by design contains pointers to
1013 // MDNodes rather than DIRefs. Unique them here.
1014 CU
.getOrCreateTypeDIE(cast
<DIType
>(Ty
));
1016 for (auto *Ty
: CUNode
->getRetainedTypes()) {
1017 // The retained types array by design contains pointers to
1018 // MDNodes rather than DIRefs. Unique them here.
1019 if (DIType
*RT
= dyn_cast
<DIType
>(Ty
))
1020 // There is no point in force-emitting a forward declaration.
1021 CU
.getOrCreateTypeDIE(RT
);
1023 // Emit imported_modules last so that the relevant context is already
1025 for (auto *IE
: CUNode
->getImportedEntities())
1026 constructAndAddImportedEntityDIE(CU
, IE
);
1030 void DwarfDebug::finishEntityDefinitions() {
1031 for (const auto &Entity
: ConcreteEntities
) {
1032 DIE
*Die
= Entity
->getDIE();
1034 // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1035 // in the ConcreteEntities list, rather than looking it up again here.
1036 // DIE::getUnit isn't simple - it walks parent pointers, etc.
1037 DwarfCompileUnit
*Unit
= CUDieMap
.lookup(Die
->getUnitDie());
1039 Unit
->finishEntityDefinition(Entity
.get());
1043 void DwarfDebug::finishSubprogramDefinitions() {
1044 for (const DISubprogram
*SP
: ProcessedSPNodes
) {
1045 assert(SP
->getUnit()->getEmissionKind() != DICompileUnit::NoDebug
);
1047 getOrCreateDwarfCompileUnit(SP
->getUnit()),
1048 [&](DwarfCompileUnit
&CU
) { CU
.finishSubprogramDefinition(SP
); });
1052 void DwarfDebug::finalizeModuleInfo() {
1053 const TargetLoweringObjectFile
&TLOF
= Asm
->getObjFileLowering();
1055 finishSubprogramDefinitions();
1057 finishEntityDefinitions();
1059 // Include the DWO file name in the hash if there's more than one CU.
1060 // This handles ThinLTO's situation where imported CUs may very easily be
1061 // duplicate with the same CU partially imported into another ThinLTO unit.
1063 if (CUMap
.size() > 1)
1064 DWOName
= Asm
->TM
.Options
.MCOptions
.SplitDwarfFile
;
1066 // Handle anything that needs to be done on a per-unit basis after
1067 // all other generation.
1068 for (const auto &P
: CUMap
) {
1069 auto &TheCU
= *P
.second
;
1070 if (TheCU
.getCUNode()->isDebugDirectivesOnly())
1072 // Emit DW_AT_containing_type attribute to connect types with their
1073 // vtable holding type.
1074 TheCU
.constructContainingTypeDIEs();
1076 // Add CU specific attributes if we need to add any.
1077 // If we're splitting the dwarf out now that we've got the entire
1078 // CU then add the dwo id to it.
1079 auto *SkCU
= TheCU
.getSkeleton();
1080 if (useSplitDwarf() && !TheCU
.getUnitDie().children().empty()) {
1081 finishUnitAttributes(TheCU
.getCUNode(), TheCU
);
1082 TheCU
.addString(TheCU
.getUnitDie(), dwarf::DW_AT_GNU_dwo_name
,
1083 Asm
->TM
.Options
.MCOptions
.SplitDwarfFile
);
1084 SkCU
->addString(SkCU
->getUnitDie(), dwarf::DW_AT_GNU_dwo_name
,
1085 Asm
->TM
.Options
.MCOptions
.SplitDwarfFile
);
1086 // Emit a unique identifier for this CU.
1088 DIEHash(Asm
).computeCUSignature(DWOName
, TheCU
.getUnitDie());
1089 if (getDwarfVersion() >= 5) {
1093 TheCU
.addUInt(TheCU
.getUnitDie(), dwarf::DW_AT_GNU_dwo_id
,
1094 dwarf::DW_FORM_data8
, ID
);
1095 SkCU
->addUInt(SkCU
->getUnitDie(), dwarf::DW_AT_GNU_dwo_id
,
1096 dwarf::DW_FORM_data8
, ID
);
1099 if (getDwarfVersion() < 5 && !SkeletonHolder
.getRangeLists().empty()) {
1100 const MCSymbol
*Sym
= TLOF
.getDwarfRangesSection()->getBeginSymbol();
1101 SkCU
->addSectionLabel(SkCU
->getUnitDie(), dwarf::DW_AT_GNU_ranges_base
,
1105 finishUnitAttributes(SkCU
->getCUNode(), *SkCU
);
1108 // If we have code split among multiple sections or non-contiguous
1109 // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1110 // remain in the .o file, otherwise add a DW_AT_low_pc.
1111 // FIXME: We should use ranges allow reordering of code ala
1112 // .subsections_via_symbols in mach-o. This would mean turning on
1113 // ranges for all subprogram DIEs for mach-o.
1114 DwarfCompileUnit
&U
= SkCU
? *SkCU
: TheCU
;
1116 if (unsigned NumRanges
= TheCU
.getRanges().size()) {
1117 if (NumRanges
> 1 && useRangesSection())
1118 // A DW_AT_low_pc attribute may also be specified in combination with
1119 // DW_AT_ranges to specify the default base address for use in
1120 // location lists (see Section 2.6.2) and range lists (see Section
1122 U
.addUInt(U
.getUnitDie(), dwarf::DW_AT_low_pc
, dwarf::DW_FORM_addr
, 0);
1124 U
.setBaseAddress(TheCU
.getRanges().front().Begin
);
1125 U
.attachRangesOrLowHighPC(U
.getUnitDie(), TheCU
.takeRanges());
1128 // We don't keep track of which addresses are used in which CU so this
1129 // is a bit pessimistic under LTO.
1130 if (!AddrPool
.isEmpty() &&
1131 (getDwarfVersion() >= 5 ||
1132 (SkCU
&& !TheCU
.getUnitDie().children().empty())))
1133 U
.addAddrTableBase();
1135 if (getDwarfVersion() >= 5) {
1136 if (U
.hasRangeLists())
1137 U
.addRnglistsBase();
1139 if (!DebugLocs
.getLists().empty() && !useSplitDwarf()) {
1140 DebugLocs
.setSym(Asm
->createTempSymbol("loclists_table_base"));
1141 U
.addSectionLabel(U
.getUnitDie(), dwarf::DW_AT_loclists_base
,
1143 TLOF
.getDwarfLoclistsSection()->getBeginSymbol());
1147 auto *CUNode
= cast
<DICompileUnit
>(P
.first
);
1148 // If compile Unit has macros, emit "DW_AT_macro_info" attribute.
1149 if (CUNode
->getMacros())
1150 U
.addSectionLabel(U
.getUnitDie(), dwarf::DW_AT_macro_info
,
1151 U
.getMacroLabelBegin(),
1152 TLOF
.getDwarfMacinfoSection()->getBeginSymbol());
1155 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1156 for (auto *CUNode
: MMI
->getModule()->debug_compile_units())
1157 if (CUNode
->getDWOId())
1158 getOrCreateDwarfCompileUnit(CUNode
);
1160 // Compute DIE offsets and sizes.
1161 InfoHolder
.computeSizeAndOffsets();
1162 if (useSplitDwarf())
1163 SkeletonHolder
.computeSizeAndOffsets();
1166 // Emit all Dwarf sections that should come after the content.
1167 void DwarfDebug::endModule() {
1168 assert(CurFn
== nullptr);
1169 assert(CurMI
== nullptr);
1171 for (const auto &P
: CUMap
) {
1172 auto &CU
= *P
.second
;
1173 CU
.createBaseTypeDIEs();
1176 // If we aren't actually generating debug info (check beginModule -
1177 // conditionalized on !DisableDebugInfoPrinting and the presence of the
1178 // llvm.dbg.cu metadata node)
1179 if (!MMI
->hasDebugInfo())
1182 // Finalize the debug info for the module.
1183 finalizeModuleInfo();
1187 if (useSplitDwarf())
1190 // Emit info into a debug loc section.
1193 // Corresponding abbreviations into a abbrev section.
1194 emitAbbreviations();
1196 // Emit all the DIEs into a debug info section.
1199 // Emit info into a debug aranges section.
1200 if (GenerateARangeSection
)
1203 // Emit info into a debug ranges section.
1206 // Emit info into a debug macinfo section.
1209 if (useSplitDwarf()) {
1212 emitDebugAbbrevDWO();
1214 emitDebugRangesDWO();
1219 // Emit info into the dwarf accelerator table sections.
1220 switch (getAccelTableKind()) {
1221 case AccelTableKind::Apple
:
1224 emitAccelNamespaces();
1227 case AccelTableKind::Dwarf
:
1228 emitAccelDebugNames();
1230 case AccelTableKind::None
:
1232 case AccelTableKind::Default
:
1233 llvm_unreachable("Default should have already been resolved.");
1236 // Emit the pubnames and pubtypes sections if requested.
1237 emitDebugPubSections();
1240 // FIXME: AbstractVariables.clear();
1243 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit
&CU
,
1245 const MDNode
*ScopeNode
) {
1246 if (CU
.getExistingAbstractEntity(Node
))
1249 CU
.createAbstractEntity(Node
, LScopes
.getOrCreateAbstractScope(
1250 cast
<DILocalScope
>(ScopeNode
)));
1253 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit
&CU
,
1254 const DINode
*Node
, const MDNode
*ScopeNode
) {
1255 if (CU
.getExistingAbstractEntity(Node
))
1258 if (LexicalScope
*Scope
=
1259 LScopes
.findAbstractScope(cast_or_null
<DILocalScope
>(ScopeNode
)))
1260 CU
.createAbstractEntity(Node
, Scope
);
1263 // Collect variable information from side table maintained by MF.
1264 void DwarfDebug::collectVariableInfoFromMFTable(
1265 DwarfCompileUnit
&TheCU
, DenseSet
<InlinedEntity
> &Processed
) {
1266 SmallDenseMap
<InlinedEntity
, DbgVariable
*> MFVars
;
1267 for (const auto &VI
: Asm
->MF
->getVariableDbgInfo()) {
1270 assert(VI
.Var
->isValidLocationForIntrinsic(VI
.Loc
) &&
1271 "Expected inlined-at fields to agree");
1273 InlinedEntity
Var(VI
.Var
, VI
.Loc
->getInlinedAt());
1274 Processed
.insert(Var
);
1275 LexicalScope
*Scope
= LScopes
.findLexicalScope(VI
.Loc
);
1277 // If variable scope is not found then skip this variable.
1281 ensureAbstractEntityIsCreatedIfScoped(TheCU
, Var
.first
, Scope
->getScopeNode());
1282 auto RegVar
= std::make_unique
<DbgVariable
>(
1283 cast
<DILocalVariable
>(Var
.first
), Var
.second
);
1284 RegVar
->initializeMMI(VI
.Expr
, VI
.Slot
);
1285 if (DbgVariable
*DbgVar
= MFVars
.lookup(Var
))
1286 DbgVar
->addMMIEntry(*RegVar
);
1287 else if (InfoHolder
.addScopeVariable(Scope
, RegVar
.get())) {
1288 MFVars
.insert({Var
, RegVar
.get()});
1289 ConcreteEntities
.push_back(std::move(RegVar
));
1294 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1295 /// enclosing lexical scope. The check ensures there are no other instructions
1296 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1297 /// either open or otherwise rolls off the end of the scope.
1298 static bool validThroughout(LexicalScopes
&LScopes
,
1299 const MachineInstr
*DbgValue
,
1300 const MachineInstr
*RangeEnd
) {
1301 assert(DbgValue
->getDebugLoc() && "DBG_VALUE without a debug location");
1302 auto MBB
= DbgValue
->getParent();
1303 auto DL
= DbgValue
->getDebugLoc();
1304 auto *LScope
= LScopes
.findLexicalScope(DL
);
1305 // Scope doesn't exist; this is a dead DBG_VALUE.
1308 auto &LSRange
= LScope
->getRanges();
1309 if (LSRange
.size() == 0)
1312 // Determine if the DBG_VALUE is valid at the beginning of its lexical block.
1313 const MachineInstr
*LScopeBegin
= LSRange
.front().first
;
1314 // Early exit if the lexical scope begins outside of the current block.
1315 if (LScopeBegin
->getParent() != MBB
)
1317 MachineBasicBlock::const_reverse_iterator
Pred(DbgValue
);
1318 for (++Pred
; Pred
!= MBB
->rend(); ++Pred
) {
1319 if (Pred
->getFlag(MachineInstr::FrameSetup
))
1321 auto PredDL
= Pred
->getDebugLoc();
1322 if (!PredDL
|| Pred
->isMetaInstruction())
1324 // Check whether the instruction preceding the DBG_VALUE is in the same
1325 // (sub)scope as the DBG_VALUE.
1326 if (DL
->getScope() == PredDL
->getScope())
1328 auto *PredScope
= LScopes
.findLexicalScope(PredDL
);
1329 if (!PredScope
|| LScope
->dominates(PredScope
))
1333 // If the range of the DBG_VALUE is open-ended, report success.
1337 // Fail if there are instructions belonging to our scope in another block.
1338 const MachineInstr
*LScopeEnd
= LSRange
.back().second
;
1339 if (LScopeEnd
->getParent() != MBB
)
1342 // Single, constant DBG_VALUEs in the prologue are promoted to be live
1343 // throughout the function. This is a hack, presumably for DWARF v2 and not
1344 // necessarily correct. It would be much better to use a dbg.declare instead
1345 // if we know the constant is live throughout the scope.
1346 if (DbgValue
->getOperand(0).isImm() && MBB
->pred_empty())
1352 /// Build the location list for all DBG_VALUEs in the function that
1353 /// describe the same variable. The resulting DebugLocEntries will have
1354 /// strict monotonically increasing begin addresses and will never
1355 /// overlap. If the resulting list has only one entry that is valid
1356 /// throughout variable's scope return true.
1358 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1359 // different kinds of history map entries. One thing to be aware of is that if
1360 // a debug value is ended by another entry (rather than being valid until the
1361 // end of the function), that entry's instruction may or may not be included in
1362 // the range, depending on if the entry is a clobbering entry (it has an
1363 // instruction that clobbers one or more preceding locations), or if it is an
1364 // (overlapping) debug value entry. This distinction can be seen in the example
1365 // below. The first debug value is ended by the clobbering entry 2, and the
1366 // second and third debug values are ended by the overlapping debug value entry
1371 // History map entries [type, end index, mi]
1373 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1374 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1375 // 2 | | [Clobber, $reg0 = [...], -, -]
1376 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1377 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1379 // Output [start, end) [Value...]:
1381 // [0-1) [(reg0, fragment 0, 32)]
1382 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1383 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1384 // [4-) [(@g, fragment 0, 96)]
1385 bool DwarfDebug::buildLocationList(SmallVectorImpl
<DebugLocEntry
> &DebugLoc
,
1386 const DbgValueHistoryMap::Entries
&Entries
) {
1388 std::pair
<DbgValueHistoryMap::EntryIndex
, DbgValueLoc
>;
1389 SmallVector
<OpenRange
, 4> OpenRanges
;
1390 bool isSafeForSingleLocation
= true;
1391 const MachineInstr
*StartDebugMI
= nullptr;
1392 const MachineInstr
*EndMI
= nullptr;
1394 for (auto EB
= Entries
.begin(), EI
= EB
, EE
= Entries
.end(); EI
!= EE
; ++EI
) {
1395 const MachineInstr
*Instr
= EI
->getInstr();
1397 // Remove all values that are no longer live.
1398 size_t Index
= std::distance(EB
, EI
);
1400 remove_if(OpenRanges
, [&](OpenRange
&R
) { return R
.first
<= Index
; });
1401 OpenRanges
.erase(Last
, OpenRanges
.end());
1403 // If we are dealing with a clobbering entry, this iteration will result in
1404 // a location list entry starting after the clobbering instruction.
1405 const MCSymbol
*StartLabel
=
1406 EI
->isClobber() ? getLabelAfterInsn(Instr
) : getLabelBeforeInsn(Instr
);
1407 assert(StartLabel
&&
1408 "Forgot label before/after instruction starting a range!");
1410 const MCSymbol
*EndLabel
;
1411 if (std::next(EI
) == Entries
.end()) {
1412 EndLabel
= Asm
->getFunctionEnd();
1413 if (EI
->isClobber())
1414 EndMI
= EI
->getInstr();
1416 else if (std::next(EI
)->isClobber())
1417 EndLabel
= getLabelAfterInsn(std::next(EI
)->getInstr());
1419 EndLabel
= getLabelBeforeInsn(std::next(EI
)->getInstr());
1420 assert(EndLabel
&& "Forgot label after instruction ending a range!");
1422 if (EI
->isDbgValue())
1423 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr
<< "\n");
1425 // If this history map entry has a debug value, add that to the list of
1426 // open ranges and check if its location is valid for a single value
1428 if (EI
->isDbgValue()) {
1429 // Do not add undef debug values, as they are redundant information in
1430 // the location list entries. An undef debug results in an empty location
1431 // description. If there are any non-undef fragments then padding pieces
1432 // with empty location descriptions will automatically be inserted, and if
1433 // all fragments are undef then the whole location list entry is
1435 if (!Instr
->isUndefDebugValue()) {
1436 auto Value
= getDebugLocValue(Instr
);
1437 OpenRanges
.emplace_back(EI
->getEndIndex(), Value
);
1439 // TODO: Add support for single value fragment locations.
1440 if (Instr
->getDebugExpression()->isFragment())
1441 isSafeForSingleLocation
= false;
1444 StartDebugMI
= Instr
;
1446 isSafeForSingleLocation
= false;
1450 // Location list entries with empty location descriptions are redundant
1451 // information in DWARF, so do not emit those.
1452 if (OpenRanges
.empty())
1455 // Omit entries with empty ranges as they do not have any effect in DWARF.
1456 if (StartLabel
== EndLabel
) {
1457 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1461 SmallVector
<DbgValueLoc
, 4> Values
;
1462 for (auto &R
: OpenRanges
)
1463 Values
.push_back(R
.second
);
1464 DebugLoc
.emplace_back(StartLabel
, EndLabel
, Values
);
1466 // Attempt to coalesce the ranges of two otherwise identical
1468 auto CurEntry
= DebugLoc
.rbegin();
1470 dbgs() << CurEntry
->getValues().size() << " Values:\n";
1471 for (auto &Value
: CurEntry
->getValues())
1473 dbgs() << "-----\n";
1476 auto PrevEntry
= std::next(CurEntry
);
1477 if (PrevEntry
!= DebugLoc
.rend() && PrevEntry
->MergeRanges(*CurEntry
))
1478 DebugLoc
.pop_back();
1481 return DebugLoc
.size() == 1 && isSafeForSingleLocation
&&
1482 validThroughout(LScopes
, StartDebugMI
, EndMI
);
1485 DbgEntity
*DwarfDebug::createConcreteEntity(DwarfCompileUnit
&TheCU
,
1486 LexicalScope
&Scope
,
1488 const DILocation
*Location
,
1489 const MCSymbol
*Sym
) {
1490 ensureAbstractEntityIsCreatedIfScoped(TheCU
, Node
, Scope
.getScopeNode());
1491 if (isa
<const DILocalVariable
>(Node
)) {
1492 ConcreteEntities
.push_back(
1493 std::make_unique
<DbgVariable
>(cast
<const DILocalVariable
>(Node
),
1495 InfoHolder
.addScopeVariable(&Scope
,
1496 cast
<DbgVariable
>(ConcreteEntities
.back().get()));
1497 } else if (isa
<const DILabel
>(Node
)) {
1498 ConcreteEntities
.push_back(
1499 std::make_unique
<DbgLabel
>(cast
<const DILabel
>(Node
),
1501 InfoHolder
.addScopeLabel(&Scope
,
1502 cast
<DbgLabel
>(ConcreteEntities
.back().get()));
1504 return ConcreteEntities
.back().get();
1507 // Find variables for each lexical scope.
1508 void DwarfDebug::collectEntityInfo(DwarfCompileUnit
&TheCU
,
1509 const DISubprogram
*SP
,
1510 DenseSet
<InlinedEntity
> &Processed
) {
1511 // Grab the variable info that was squirreled away in the MMI side-table.
1512 collectVariableInfoFromMFTable(TheCU
, Processed
);
1514 for (const auto &I
: DbgValues
) {
1515 InlinedEntity IV
= I
.first
;
1516 if (Processed
.count(IV
))
1519 // Instruction ranges, specifying where IV is accessible.
1520 const auto &HistoryMapEntries
= I
.second
;
1521 if (HistoryMapEntries
.empty())
1524 LexicalScope
*Scope
= nullptr;
1525 const DILocalVariable
*LocalVar
= cast
<DILocalVariable
>(IV
.first
);
1526 if (const DILocation
*IA
= IV
.second
)
1527 Scope
= LScopes
.findInlinedScope(LocalVar
->getScope(), IA
);
1529 Scope
= LScopes
.findLexicalScope(LocalVar
->getScope());
1530 // If variable scope is not found then skip this variable.
1534 Processed
.insert(IV
);
1535 DbgVariable
*RegVar
= cast
<DbgVariable
>(createConcreteEntity(TheCU
,
1536 *Scope
, LocalVar
, IV
.second
));
1538 const MachineInstr
*MInsn
= HistoryMapEntries
.front().getInstr();
1539 assert(MInsn
->isDebugValue() && "History must begin with debug value");
1541 // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1542 // If the history map contains a single debug value, there may be an
1543 // additional entry which clobbers the debug value.
1544 size_t HistSize
= HistoryMapEntries
.size();
1545 bool SingleValueWithClobber
=
1546 HistSize
== 2 && HistoryMapEntries
[1].isClobber();
1547 if (HistSize
== 1 || SingleValueWithClobber
) {
1549 SingleValueWithClobber
? HistoryMapEntries
[1].getInstr() : nullptr;
1550 if (validThroughout(LScopes
, MInsn
, End
)) {
1551 RegVar
->initializeDbgValue(MInsn
);
1556 // Do not emit location lists if .debug_loc secton is disabled.
1557 if (!useLocSection())
1560 // Handle multiple DBG_VALUE instructions describing one variable.
1561 DebugLocStream::ListBuilder
List(DebugLocs
, TheCU
, *Asm
, *RegVar
, *MInsn
);
1563 // Build the location list for this variable.
1564 SmallVector
<DebugLocEntry
, 8> Entries
;
1565 bool isValidSingleLocation
= buildLocationList(Entries
, HistoryMapEntries
);
1567 // Check whether buildLocationList managed to merge all locations to one
1568 // that is valid throughout the variable's scope. If so, produce single
1570 if (isValidSingleLocation
) {
1571 RegVar
->initializeDbgValue(Entries
[0].getValues()[0]);
1575 // If the variable has a DIBasicType, extract it. Basic types cannot have
1576 // unique identifiers, so don't bother resolving the type with the
1578 const DIBasicType
*BT
= dyn_cast
<DIBasicType
>(
1579 static_cast<const Metadata
*>(LocalVar
->getType()));
1581 // Finalize the entry by lowering it into a DWARF bytestream.
1582 for (auto &Entry
: Entries
)
1583 Entry
.finalize(*Asm
, List
, BT
, TheCU
);
1586 // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1587 // DWARF-related DbgLabel.
1588 for (const auto &I
: DbgLabels
) {
1589 InlinedEntity IL
= I
.first
;
1590 const MachineInstr
*MI
= I
.second
;
1594 LexicalScope
*Scope
= nullptr;
1595 const DILabel
*Label
= cast
<DILabel
>(IL
.first
);
1596 // The scope could have an extra lexical block file.
1597 const DILocalScope
*LocalScope
=
1598 Label
->getScope()->getNonLexicalBlockFileScope();
1599 // Get inlined DILocation if it is inlined label.
1600 if (const DILocation
*IA
= IL
.second
)
1601 Scope
= LScopes
.findInlinedScope(LocalScope
, IA
);
1603 Scope
= LScopes
.findLexicalScope(LocalScope
);
1604 // If label scope is not found then skip this label.
1608 Processed
.insert(IL
);
1609 /// At this point, the temporary label is created.
1610 /// Save the temporary label to DbgLabel entity to get the
1611 /// actually address when generating Dwarf DIE.
1612 MCSymbol
*Sym
= getLabelBeforeInsn(MI
);
1613 createConcreteEntity(TheCU
, *Scope
, Label
, IL
.second
, Sym
);
1616 // Collect info for variables/labels that were optimized out.
1617 for (const DINode
*DN
: SP
->getRetainedNodes()) {
1618 if (!Processed
.insert(InlinedEntity(DN
, nullptr)).second
)
1620 LexicalScope
*Scope
= nullptr;
1621 if (auto *DV
= dyn_cast
<DILocalVariable
>(DN
)) {
1622 Scope
= LScopes
.findLexicalScope(DV
->getScope());
1623 } else if (auto *DL
= dyn_cast
<DILabel
>(DN
)) {
1624 Scope
= LScopes
.findLexicalScope(DL
->getScope());
1628 createConcreteEntity(TheCU
, *Scope
, DN
, nullptr);
1632 // Process beginning of an instruction.
1633 void DwarfDebug::beginInstruction(const MachineInstr
*MI
) {
1634 DebugHandlerBase::beginInstruction(MI
);
1637 const auto *SP
= MI
->getMF()->getFunction().getSubprogram();
1638 if (!SP
|| SP
->getUnit()->getEmissionKind() == DICompileUnit::NoDebug
)
1641 // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1642 // If the instruction is part of the function frame setup code, do not emit
1643 // any line record, as there is no correspondence with any user code.
1644 if (MI
->isMetaInstruction() || MI
->getFlag(MachineInstr::FrameSetup
))
1646 const DebugLoc
&DL
= MI
->getDebugLoc();
1647 // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1648 // the last line number actually emitted, to see if it was line 0.
1649 unsigned LastAsmLine
=
1650 Asm
->OutStreamer
->getContext().getCurrentDwarfLoc().getLine();
1652 // Request a label after the call in order to emit AT_return_pc information
1653 // in call site entries. TODO: Add support for targets with delay slots.
1654 if (SP
->areAllCallsDescribed() && MI
->isCall() && !MI
->hasDelaySlot())
1655 requestLabelAfterInsn(MI
);
1657 if (DL
== PrevInstLoc
) {
1658 // If we have an ongoing unspecified location, nothing to do here.
1661 // We have an explicit location, same as the previous location.
1662 // But we might be coming back to it after a line 0 record.
1663 if (LastAsmLine
== 0 && DL
.getLine() != 0) {
1664 // Reinstate the source location but not marked as a statement.
1665 const MDNode
*Scope
= DL
.getScope();
1666 recordSourceLine(DL
.getLine(), DL
.getCol(), Scope
, /*Flags=*/0);
1672 // We have an unspecified location, which might want to be line 0.
1673 // If we have already emitted a line-0 record, don't repeat it.
1674 if (LastAsmLine
== 0)
1676 // If user said Don't Do That, don't do that.
1677 if (UnknownLocations
== Disable
)
1679 // See if we have a reason to emit a line-0 record now.
1680 // Reasons to emit a line-0 record include:
1681 // - User asked for it (UnknownLocations).
1682 // - Instruction has a label, so it's referenced from somewhere else,
1683 // possibly debug information; we want it to have a source location.
1684 // - Instruction is at the top of a block; we don't want to inherit the
1685 // location from the physically previous (maybe unrelated) block.
1686 if (UnknownLocations
== Enable
|| PrevLabel
||
1687 (PrevInstBB
&& PrevInstBB
!= MI
->getParent())) {
1688 // Preserve the file and column numbers, if we can, to save space in
1689 // the encoded line table.
1690 // Do not update PrevInstLoc, it remembers the last non-0 line.
1691 const MDNode
*Scope
= nullptr;
1692 unsigned Column
= 0;
1694 Scope
= PrevInstLoc
.getScope();
1695 Column
= PrevInstLoc
.getCol();
1697 recordSourceLine(/*Line=*/0, Column
, Scope
, /*Flags=*/0);
1702 // We have an explicit location, different from the previous location.
1703 // Don't repeat a line-0 record, but otherwise emit the new location.
1704 // (The new location might be an explicit line 0, which we do emit.)
1705 if (DL
.getLine() == 0 && LastAsmLine
== 0)
1708 if (DL
== PrologEndLoc
) {
1709 Flags
|= DWARF2_FLAG_PROLOGUE_END
| DWARF2_FLAG_IS_STMT
;
1710 PrologEndLoc
= DebugLoc();
1712 // If the line changed, we call that a new statement; unless we went to
1713 // line 0 and came back, in which case it is not a new statement.
1714 unsigned OldLine
= PrevInstLoc
? PrevInstLoc
.getLine() : LastAsmLine
;
1715 if (DL
.getLine() && DL
.getLine() != OldLine
)
1716 Flags
|= DWARF2_FLAG_IS_STMT
;
1718 const MDNode
*Scope
= DL
.getScope();
1719 recordSourceLine(DL
.getLine(), DL
.getCol(), Scope
, Flags
);
1721 // If we're not at line 0, remember this location.
1726 static DebugLoc
findPrologueEndLoc(const MachineFunction
*MF
) {
1727 // First known non-DBG_VALUE and non-frame setup location marks
1728 // the beginning of the function body.
1729 for (const auto &MBB
: *MF
)
1730 for (const auto &MI
: MBB
)
1731 if (!MI
.isMetaInstruction() && !MI
.getFlag(MachineInstr::FrameSetup
) &&
1733 return MI
.getDebugLoc();
1737 /// Register a source line with debug info. Returns the unique label that was
1738 /// emitted and which provides correspondence to the source line list.
1739 static void recordSourceLine(AsmPrinter
&Asm
, unsigned Line
, unsigned Col
,
1740 const MDNode
*S
, unsigned Flags
, unsigned CUID
,
1741 uint16_t DwarfVersion
,
1742 ArrayRef
<std::unique_ptr
<DwarfCompileUnit
>> DCUs
) {
1744 unsigned FileNo
= 1;
1745 unsigned Discriminator
= 0;
1746 if (auto *Scope
= cast_or_null
<DIScope
>(S
)) {
1747 Fn
= Scope
->getFilename();
1748 if (Line
!= 0 && DwarfVersion
>= 4)
1749 if (auto *LBF
= dyn_cast
<DILexicalBlockFile
>(Scope
))
1750 Discriminator
= LBF
->getDiscriminator();
1752 FileNo
= static_cast<DwarfCompileUnit
&>(*DCUs
[CUID
])
1753 .getOrCreateSourceID(Scope
->getFile());
1755 Asm
.OutStreamer
->EmitDwarfLocDirective(FileNo
, Line
, Col
, Flags
, 0,
1759 DebugLoc
DwarfDebug::emitInitialLocDirective(const MachineFunction
&MF
,
1761 // Get beginning of function.
1762 if (DebugLoc PrologEndLoc
= findPrologueEndLoc(&MF
)) {
1763 // Ensure the compile unit is created if the function is called before
1765 (void)getOrCreateDwarfCompileUnit(
1766 MF
.getFunction().getSubprogram()->getUnit());
1767 // We'd like to list the prologue as "not statements" but GDB behaves
1768 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
1769 const DISubprogram
*SP
= PrologEndLoc
->getInlinedAtScope()->getSubprogram();
1770 ::recordSourceLine(*Asm
, SP
->getScopeLine(), 0, SP
, DWARF2_FLAG_IS_STMT
,
1771 CUID
, getDwarfVersion(), getUnits());
1772 return PrologEndLoc
;
1777 // Gather pre-function debug information. Assumes being called immediately
1778 // after the function entry point has been emitted.
1779 void DwarfDebug::beginFunctionImpl(const MachineFunction
*MF
) {
1782 auto *SP
= MF
->getFunction().getSubprogram();
1783 assert(LScopes
.empty() || SP
== LScopes
.getCurrentFunctionScope()->getScopeNode());
1784 if (SP
->getUnit()->getEmissionKind() == DICompileUnit::NoDebug
)
1787 SectionLabels
.insert(std::make_pair(&Asm
->getFunctionBegin()->getSection(),
1788 Asm
->getFunctionBegin()));
1790 DwarfCompileUnit
&CU
= getOrCreateDwarfCompileUnit(SP
->getUnit());
1792 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
1793 // belongs to so that we add to the correct per-cu line table in the
1795 if (Asm
->OutStreamer
->hasRawTextSupport())
1796 // Use a single line table if we are generating assembly.
1797 Asm
->OutStreamer
->getContext().setDwarfCompileUnitID(0);
1799 Asm
->OutStreamer
->getContext().setDwarfCompileUnitID(CU
.getUniqueID());
1801 // Record beginning of function.
1802 PrologEndLoc
= emitInitialLocDirective(
1803 *MF
, Asm
->OutStreamer
->getContext().getDwarfCompileUnitID());
1806 void DwarfDebug::skippedNonDebugFunction() {
1807 // If we don't have a subprogram for this function then there will be a hole
1808 // in the range information. Keep note of this by setting the previously used
1809 // section to nullptr.
1814 // Gather and emit post-function debug information.
1815 void DwarfDebug::endFunctionImpl(const MachineFunction
*MF
) {
1816 const DISubprogram
*SP
= MF
->getFunction().getSubprogram();
1818 assert(CurFn
== MF
&&
1819 "endFunction should be called with the same function as beginFunction");
1821 // Set DwarfDwarfCompileUnitID in MCContext to default value.
1822 Asm
->OutStreamer
->getContext().setDwarfCompileUnitID(0);
1824 LexicalScope
*FnScope
= LScopes
.getCurrentFunctionScope();
1825 assert(!FnScope
|| SP
== FnScope
->getScopeNode());
1826 DwarfCompileUnit
&TheCU
= *CUMap
.lookup(SP
->getUnit());
1827 if (TheCU
.getCUNode()->isDebugDirectivesOnly()) {
1828 PrevLabel
= nullptr;
1833 DenseSet
<InlinedEntity
> Processed
;
1834 collectEntityInfo(TheCU
, SP
, Processed
);
1836 // Add the range of this function to the list of ranges for the CU.
1837 TheCU
.addRange({Asm
->getFunctionBegin(), Asm
->getFunctionEnd()});
1839 // Under -gmlt, skip building the subprogram if there are no inlined
1840 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
1841 // is still needed as we need its source location.
1842 if (!TheCU
.getCUNode()->getDebugInfoForProfiling() &&
1843 TheCU
.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly
&&
1844 LScopes
.getAbstractScopesList().empty() && !IsDarwin
) {
1845 assert(InfoHolder
.getScopeVariables().empty());
1846 PrevLabel
= nullptr;
1852 size_t NumAbstractScopes
= LScopes
.getAbstractScopesList().size();
1854 // Construct abstract scopes.
1855 for (LexicalScope
*AScope
: LScopes
.getAbstractScopesList()) {
1856 auto *SP
= cast
<DISubprogram
>(AScope
->getScopeNode());
1857 for (const DINode
*DN
: SP
->getRetainedNodes()) {
1858 if (!Processed
.insert(InlinedEntity(DN
, nullptr)).second
)
1861 const MDNode
*Scope
= nullptr;
1862 if (auto *DV
= dyn_cast
<DILocalVariable
>(DN
))
1863 Scope
= DV
->getScope();
1864 else if (auto *DL
= dyn_cast
<DILabel
>(DN
))
1865 Scope
= DL
->getScope();
1867 llvm_unreachable("Unexpected DI type!");
1869 // Collect info for variables/labels that were optimized out.
1870 ensureAbstractEntityIsCreated(TheCU
, DN
, Scope
);
1871 assert(LScopes
.getAbstractScopesList().size() == NumAbstractScopes
1872 && "ensureAbstractEntityIsCreated inserted abstract scopes");
1874 constructAbstractSubprogramScopeDIE(TheCU
, AScope
);
1877 ProcessedSPNodes
.insert(SP
);
1878 DIE
&ScopeDIE
= TheCU
.constructSubprogramScopeDIE(SP
, FnScope
);
1879 if (auto *SkelCU
= TheCU
.getSkeleton())
1880 if (!LScopes
.getAbstractScopesList().empty() &&
1881 TheCU
.getCUNode()->getSplitDebugInlining())
1882 SkelCU
->constructSubprogramScopeDIE(SP
, FnScope
);
1884 // Construct call site entries.
1885 constructCallSiteEntryDIEs(*SP
, TheCU
, ScopeDIE
, *MF
);
1888 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
1889 // DbgVariables except those that are also in AbstractVariables (since they
1890 // can be used cross-function)
1891 InfoHolder
.getScopeVariables().clear();
1892 InfoHolder
.getScopeLabels().clear();
1893 PrevLabel
= nullptr;
1897 // Register a source line with debug info. Returns the unique label that was
1898 // emitted and which provides correspondence to the source line list.
1899 void DwarfDebug::recordSourceLine(unsigned Line
, unsigned Col
, const MDNode
*S
,
1901 ::recordSourceLine(*Asm
, Line
, Col
, S
, Flags
,
1902 Asm
->OutStreamer
->getContext().getDwarfCompileUnitID(),
1903 getDwarfVersion(), getUnits());
1906 //===----------------------------------------------------------------------===//
1908 //===----------------------------------------------------------------------===//
1910 // Emit the debug info section.
1911 void DwarfDebug::emitDebugInfo() {
1912 DwarfFile
&Holder
= useSplitDwarf() ? SkeletonHolder
: InfoHolder
;
1913 Holder
.emitUnits(/* UseOffsets */ false);
1916 // Emit the abbreviation section.
1917 void DwarfDebug::emitAbbreviations() {
1918 DwarfFile
&Holder
= useSplitDwarf() ? SkeletonHolder
: InfoHolder
;
1920 Holder
.emitAbbrevs(Asm
->getObjFileLowering().getDwarfAbbrevSection());
1923 void DwarfDebug::emitStringOffsetsTableHeader() {
1924 DwarfFile
&Holder
= useSplitDwarf() ? SkeletonHolder
: InfoHolder
;
1925 Holder
.getStringPool().emitStringOffsetsTableHeader(
1926 *Asm
, Asm
->getObjFileLowering().getDwarfStrOffSection(),
1927 Holder
.getStringOffsetsStartSym());
1930 template <typename AccelTableT
>
1931 void DwarfDebug::emitAccel(AccelTableT
&Accel
, MCSection
*Section
,
1932 StringRef TableName
) {
1933 Asm
->OutStreamer
->SwitchSection(Section
);
1935 // Emit the full data.
1936 emitAppleAccelTable(Asm
, Accel
, TableName
, Section
->getBeginSymbol());
1939 void DwarfDebug::emitAccelDebugNames() {
1940 // Don't emit anything if we have no compilation units to index.
1941 if (getUnits().empty())
1944 emitDWARF5AccelTable(Asm
, AccelDebugNames
, *this, getUnits());
1947 // Emit visible names into a hashed accelerator table section.
1948 void DwarfDebug::emitAccelNames() {
1949 emitAccel(AccelNames
, Asm
->getObjFileLowering().getDwarfAccelNamesSection(),
1953 // Emit objective C classes and categories into a hashed accelerator table
1955 void DwarfDebug::emitAccelObjC() {
1956 emitAccel(AccelObjC
, Asm
->getObjFileLowering().getDwarfAccelObjCSection(),
1960 // Emit namespace dies into a hashed accelerator table.
1961 void DwarfDebug::emitAccelNamespaces() {
1962 emitAccel(AccelNamespace
,
1963 Asm
->getObjFileLowering().getDwarfAccelNamespaceSection(),
1967 // Emit type dies into a hashed accelerator table.
1968 void DwarfDebug::emitAccelTypes() {
1969 emitAccel(AccelTypes
, Asm
->getObjFileLowering().getDwarfAccelTypesSection(),
1973 // Public name handling.
1974 // The format for the various pubnames:
1976 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
1977 // for the DIE that is named.
1979 // gnu pubnames - offset/index value/name tuples where the offset is the offset
1980 // into the CU and the index value is computed according to the type of value
1981 // for the DIE that is named.
1983 // For type units the offset is the offset of the skeleton DIE. For split dwarf
1984 // it's the offset within the debug_info/debug_types dwo section, however, the
1985 // reference in the pubname header doesn't change.
1987 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
1988 static dwarf::PubIndexEntryDescriptor
computeIndexValue(DwarfUnit
*CU
,
1990 // Entities that ended up only in a Type Unit reference the CU instead (since
1991 // the pub entry has offsets within the CU there's no real offset that can be
1992 // provided anyway). As it happens all such entities (namespaces and types,
1993 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
1994 // not to be true it would be necessary to persist this information from the
1995 // point at which the entry is added to the index data structure - since by
1996 // the time the index is built from that, the original type/namespace DIE in a
1997 // type unit has already been destroyed so it can't be queried for properties
1999 if (Die
->getTag() == dwarf::DW_TAG_compile_unit
)
2000 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE
,
2001 dwarf::GIEL_EXTERNAL
);
2002 dwarf::GDBIndexEntryLinkage Linkage
= dwarf::GIEL_STATIC
;
2004 // We could have a specification DIE that has our most of our knowledge,
2005 // look for that now.
2006 if (DIEValue SpecVal
= Die
->findAttribute(dwarf::DW_AT_specification
)) {
2007 DIE
&SpecDIE
= SpecVal
.getDIEEntry().getEntry();
2008 if (SpecDIE
.findAttribute(dwarf::DW_AT_external
))
2009 Linkage
= dwarf::GIEL_EXTERNAL
;
2010 } else if (Die
->findAttribute(dwarf::DW_AT_external
))
2011 Linkage
= dwarf::GIEL_EXTERNAL
;
2013 switch (Die
->getTag()) {
2014 case dwarf::DW_TAG_class_type
:
2015 case dwarf::DW_TAG_structure_type
:
2016 case dwarf::DW_TAG_union_type
:
2017 case dwarf::DW_TAG_enumeration_type
:
2018 return dwarf::PubIndexEntryDescriptor(
2020 dwarf::isCPlusPlus((dwarf::SourceLanguage
)CU
->getLanguage())
2021 ? dwarf::GIEL_EXTERNAL
2022 : dwarf::GIEL_STATIC
);
2023 case dwarf::DW_TAG_typedef
:
2024 case dwarf::DW_TAG_base_type
:
2025 case dwarf::DW_TAG_subrange_type
:
2026 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE
, dwarf::GIEL_STATIC
);
2027 case dwarf::DW_TAG_namespace
:
2028 return dwarf::GIEK_TYPE
;
2029 case dwarf::DW_TAG_subprogram
:
2030 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION
, Linkage
);
2031 case dwarf::DW_TAG_variable
:
2032 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE
, Linkage
);
2033 case dwarf::DW_TAG_enumerator
:
2034 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE
,
2035 dwarf::GIEL_STATIC
);
2037 return dwarf::GIEK_NONE
;
2041 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2042 /// pubtypes sections.
2043 void DwarfDebug::emitDebugPubSections() {
2044 for (const auto &NU
: CUMap
) {
2045 DwarfCompileUnit
*TheU
= NU
.second
;
2046 if (!TheU
->hasDwarfPubSections())
2049 bool GnuStyle
= TheU
->getCUNode()->getNameTableKind() ==
2050 DICompileUnit::DebugNameTableKind::GNU
;
2052 Asm
->OutStreamer
->SwitchSection(
2053 GnuStyle
? Asm
->getObjFileLowering().getDwarfGnuPubNamesSection()
2054 : Asm
->getObjFileLowering().getDwarfPubNamesSection());
2055 emitDebugPubSection(GnuStyle
, "Names", TheU
, TheU
->getGlobalNames());
2057 Asm
->OutStreamer
->SwitchSection(
2058 GnuStyle
? Asm
->getObjFileLowering().getDwarfGnuPubTypesSection()
2059 : Asm
->getObjFileLowering().getDwarfPubTypesSection());
2060 emitDebugPubSection(GnuStyle
, "Types", TheU
, TheU
->getGlobalTypes());
2064 void DwarfDebug::emitSectionReference(const DwarfCompileUnit
&CU
) {
2065 if (useSectionsAsReferences())
2066 Asm
->EmitDwarfOffset(CU
.getSection()->getBeginSymbol(),
2067 CU
.getDebugSectionOffset());
2069 Asm
->emitDwarfSymbolReference(CU
.getLabelBegin());
2072 void DwarfDebug::emitDebugPubSection(bool GnuStyle
, StringRef Name
,
2073 DwarfCompileUnit
*TheU
,
2074 const StringMap
<const DIE
*> &Globals
) {
2075 if (auto *Skeleton
= TheU
->getSkeleton())
2079 Asm
->OutStreamer
->AddComment("Length of Public " + Name
+ " Info");
2080 MCSymbol
*BeginLabel
= Asm
->createTempSymbol("pub" + Name
+ "_begin");
2081 MCSymbol
*EndLabel
= Asm
->createTempSymbol("pub" + Name
+ "_end");
2082 Asm
->EmitLabelDifference(EndLabel
, BeginLabel
, 4);
2084 Asm
->OutStreamer
->EmitLabel(BeginLabel
);
2086 Asm
->OutStreamer
->AddComment("DWARF Version");
2087 Asm
->emitInt16(dwarf::DW_PUBNAMES_VERSION
);
2089 Asm
->OutStreamer
->AddComment("Offset of Compilation Unit Info");
2090 emitSectionReference(*TheU
);
2092 Asm
->OutStreamer
->AddComment("Compilation Unit Length");
2093 Asm
->emitInt32(TheU
->getLength());
2095 // Emit the pubnames for this compilation unit.
2096 for (const auto &GI
: Globals
) {
2097 const char *Name
= GI
.getKeyData();
2098 const DIE
*Entity
= GI
.second
;
2100 Asm
->OutStreamer
->AddComment("DIE offset");
2101 Asm
->emitInt32(Entity
->getOffset());
2104 dwarf::PubIndexEntryDescriptor Desc
= computeIndexValue(TheU
, Entity
);
2105 Asm
->OutStreamer
->AddComment(
2106 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc
.Kind
) +
2107 ", " + dwarf::GDBIndexEntryLinkageString(Desc
.Linkage
));
2108 Asm
->emitInt8(Desc
.toBits());
2111 Asm
->OutStreamer
->AddComment("External Name");
2112 Asm
->OutStreamer
->EmitBytes(StringRef(Name
, GI
.getKeyLength() + 1));
2115 Asm
->OutStreamer
->AddComment("End Mark");
2117 Asm
->OutStreamer
->EmitLabel(EndLabel
);
2120 /// Emit null-terminated strings into a debug str section.
2121 void DwarfDebug::emitDebugStr() {
2122 MCSection
*StringOffsetsSection
= nullptr;
2123 if (useSegmentedStringOffsetsTable()) {
2124 emitStringOffsetsTableHeader();
2125 StringOffsetsSection
= Asm
->getObjFileLowering().getDwarfStrOffSection();
2127 DwarfFile
&Holder
= useSplitDwarf() ? SkeletonHolder
: InfoHolder
;
2128 Holder
.emitStrings(Asm
->getObjFileLowering().getDwarfStrSection(),
2129 StringOffsetsSection
, /* UseRelativeOffsets = */ true);
2132 void DwarfDebug::emitDebugLocEntry(ByteStreamer
&Streamer
,
2133 const DebugLocStream::Entry
&Entry
,
2134 const DwarfCompileUnit
*CU
) {
2135 auto &&Comments
= DebugLocs
.getComments(Entry
);
2136 auto Comment
= Comments
.begin();
2137 auto End
= Comments
.end();
2139 // The expressions are inserted into a byte stream rather early (see
2140 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2141 // need to reference a base_type DIE the offset of that DIE is not yet known.
2142 // To deal with this we instead insert a placeholder early and then extract
2143 // it here and replace it with the real reference.
2144 unsigned PtrSize
= Asm
->MAI
->getCodePointerSize();
2145 DWARFDataExtractor
Data(StringRef(DebugLocs
.getBytes(Entry
).data(),
2146 DebugLocs
.getBytes(Entry
).size()),
2147 Asm
->getDataLayout().isLittleEndian(), PtrSize
);
2148 DWARFExpression
Expr(Data
, getDwarfVersion(), PtrSize
);
2150 using Encoding
= DWARFExpression::Operation::Encoding
;
2151 uint64_t Offset
= 0;
2152 for (auto &Op
: Expr
) {
2153 assert(Op
.getCode() != dwarf::DW_OP_const_type
&&
2154 "3 operand ops not yet supported");
2155 Streamer
.EmitInt8(Op
.getCode(), Comment
!= End
? *(Comment
++) : "");
2157 for (unsigned I
= 0; I
< 2; ++I
) {
2158 if (Op
.getDescription().Op
[I
] == Encoding::SizeNA
)
2160 if (Op
.getDescription().Op
[I
] == Encoding::BaseTypeRef
) {
2162 uint64_t Offset
= CU
->ExprRefedBaseTypes
[Op
.getRawOperand(I
)].Die
->getOffset();
2163 assert(Offset
< (1ULL << (ULEB128PadSize
* 7)) && "Offset wont fit");
2164 Asm
->EmitULEB128(Offset
, nullptr, ULEB128PadSize
);
2166 // Emit a reference to the 'generic type'.
2167 Asm
->EmitULEB128(0, nullptr, ULEB128PadSize
);
2169 // Make sure comments stay aligned.
2170 for (unsigned J
= 0; J
< ULEB128PadSize
; ++J
)
2174 for (uint64_t J
= Offset
; J
< Op
.getOperandEndOffset(I
); ++J
)
2175 Streamer
.EmitInt8(Data
.getData()[J
], Comment
!= End
? *(Comment
++) : "");
2177 Offset
= Op
.getOperandEndOffset(I
);
2179 assert(Offset
== Op
.getEndOffset());
2183 void DwarfDebug::emitDebugLocValue(const AsmPrinter
&AP
, const DIBasicType
*BT
,
2184 const DbgValueLoc
&Value
,
2185 DwarfExpression
&DwarfExpr
) {
2186 auto *DIExpr
= Value
.getExpression();
2187 DIExpressionCursor
ExprCursor(DIExpr
);
2188 DwarfExpr
.addFragmentOffset(DIExpr
);
2190 if (Value
.isInt()) {
2191 if (BT
&& (BT
->getEncoding() == dwarf::DW_ATE_signed
||
2192 BT
->getEncoding() == dwarf::DW_ATE_signed_char
))
2193 DwarfExpr
.addSignedConstant(Value
.getInt());
2195 DwarfExpr
.addUnsignedConstant(Value
.getInt());
2196 } else if (Value
.isLocation()) {
2197 MachineLocation Location
= Value
.getLoc();
2198 if (Location
.isIndirect())
2199 DwarfExpr
.setMemoryLocationKind();
2200 DIExpressionCursor
Cursor(DIExpr
);
2202 if (DIExpr
->isEntryValue()) {
2203 DwarfExpr
.setEntryValueFlag();
2204 DwarfExpr
.beginEntryValueExpression(Cursor
);
2207 const TargetRegisterInfo
&TRI
= *AP
.MF
->getSubtarget().getRegisterInfo();
2208 if (!DwarfExpr
.addMachineRegExpression(TRI
, Cursor
, Location
.getReg()))
2210 return DwarfExpr
.addExpression(std::move(Cursor
));
2211 } else if (Value
.isConstantFP()) {
2212 APInt RawBytes
= Value
.getConstantFP()->getValueAPF().bitcastToAPInt();
2213 DwarfExpr
.addUnsignedConstant(RawBytes
);
2215 DwarfExpr
.addExpression(std::move(ExprCursor
));
2218 void DebugLocEntry::finalize(const AsmPrinter
&AP
,
2219 DebugLocStream::ListBuilder
&List
,
2220 const DIBasicType
*BT
,
2221 DwarfCompileUnit
&TheCU
) {
2222 assert(!Values
.empty() &&
2223 "location list entries without values are redundant");
2224 assert(Begin
!= End
&& "unexpected location list entry with empty range");
2225 DebugLocStream::EntryBuilder
Entry(List
, Begin
, End
);
2226 BufferByteStreamer Streamer
= Entry
.getStreamer();
2227 DebugLocDwarfExpression
DwarfExpr(AP
.getDwarfVersion(), Streamer
, TheCU
);
2228 const DbgValueLoc
&Value
= Values
[0];
2229 if (Value
.isFragment()) {
2230 // Emit all fragments that belong to the same variable and range.
2231 assert(llvm::all_of(Values
, [](DbgValueLoc P
) {
2232 return P
.isFragment();
2233 }) && "all values are expected to be fragments");
2234 assert(std::is_sorted(Values
.begin(), Values
.end()) &&
2235 "fragments are expected to be sorted");
2237 for (auto Fragment
: Values
)
2238 DwarfDebug::emitDebugLocValue(AP
, BT
, Fragment
, DwarfExpr
);
2241 assert(Values
.size() == 1 && "only fragments may have >1 value");
2242 DwarfDebug::emitDebugLocValue(AP
, BT
, Value
, DwarfExpr
);
2244 DwarfExpr
.finalize();
2247 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry
&Entry
,
2248 const DwarfCompileUnit
*CU
) {
2250 Asm
->OutStreamer
->AddComment("Loc expr size");
2251 if (getDwarfVersion() >= 5)
2252 Asm
->EmitULEB128(DebugLocs
.getBytes(Entry
).size());
2253 else if (DebugLocs
.getBytes(Entry
).size() <= std::numeric_limits
<uint16_t>::max())
2254 Asm
->emitInt16(DebugLocs
.getBytes(Entry
).size());
2256 // The entry is too big to fit into 16 bit, drop it as there is nothing we
2262 APByteStreamer
Streamer(*Asm
);
2263 emitDebugLocEntry(Streamer
, Entry
, CU
);
2266 // Emit the common part of the DWARF 5 range/locations list tables header.
2267 static void emitListsTableHeaderStart(AsmPrinter
*Asm
,
2268 MCSymbol
*TableStart
,
2269 MCSymbol
*TableEnd
) {
2270 // Build the table header, which starts with the length field.
2271 Asm
->OutStreamer
->AddComment("Length");
2272 Asm
->EmitLabelDifference(TableEnd
, TableStart
, 4);
2273 Asm
->OutStreamer
->EmitLabel(TableStart
);
2274 // Version number (DWARF v5 and later).
2275 Asm
->OutStreamer
->AddComment("Version");
2276 Asm
->emitInt16(Asm
->OutStreamer
->getContext().getDwarfVersion());
2278 Asm
->OutStreamer
->AddComment("Address size");
2279 Asm
->emitInt8(Asm
->MAI
->getCodePointerSize());
2280 // Segment selector size.
2281 Asm
->OutStreamer
->AddComment("Segment selector size");
2285 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2286 // that designates the end of the table for the caller to emit when the table is
2288 static MCSymbol
*emitRnglistsTableHeader(AsmPrinter
*Asm
,
2289 const DwarfFile
&Holder
) {
2290 MCSymbol
*TableStart
= Asm
->createTempSymbol("debug_rnglist_table_start");
2291 MCSymbol
*TableEnd
= Asm
->createTempSymbol("debug_rnglist_table_end");
2292 emitListsTableHeaderStart(Asm
, TableStart
, TableEnd
);
2294 Asm
->OutStreamer
->AddComment("Offset entry count");
2295 Asm
->emitInt32(Holder
.getRangeLists().size());
2296 Asm
->OutStreamer
->EmitLabel(Holder
.getRnglistsTableBaseSym());
2298 for (const RangeSpanList
&List
: Holder
.getRangeLists())
2299 Asm
->EmitLabelDifference(List
.getSym(), Holder
.getRnglistsTableBaseSym(),
2305 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2306 // designates the end of the table for the caller to emit when the table is
2308 static MCSymbol
*emitLoclistsTableHeader(AsmPrinter
*Asm
,
2309 const DwarfDebug
&DD
) {
2310 MCSymbol
*TableStart
= Asm
->createTempSymbol("debug_loclist_table_start");
2311 MCSymbol
*TableEnd
= Asm
->createTempSymbol("debug_loclist_table_end");
2312 emitListsTableHeaderStart(Asm
, TableStart
, TableEnd
);
2314 const auto &DebugLocs
= DD
.getDebugLocs();
2316 // FIXME: Generate the offsets table and use DW_FORM_loclistx with the
2317 // DW_AT_loclists_base attribute. Until then set the number of offsets to 0.
2318 Asm
->OutStreamer
->AddComment("Offset entry count");
2320 Asm
->OutStreamer
->EmitLabel(DebugLocs
.getSym());
2325 template <typename Ranges
, typename PayloadEmitter
>
2326 static void emitRangeList(
2327 DwarfDebug
&DD
, AsmPrinter
*Asm
, MCSymbol
*Sym
, const Ranges
&R
,
2328 const DwarfCompileUnit
&CU
, unsigned BaseAddressx
, unsigned OffsetPair
,
2329 unsigned StartxLength
, unsigned EndOfList
,
2330 StringRef (*StringifyEnum
)(unsigned),
2331 bool ShouldUseBaseAddress
,
2332 PayloadEmitter EmitPayload
) {
2334 auto Size
= Asm
->MAI
->getCodePointerSize();
2335 bool UseDwarf5
= DD
.getDwarfVersion() >= 5;
2337 // Emit our symbol so we can find the beginning of the range.
2338 Asm
->OutStreamer
->EmitLabel(Sym
);
2340 // Gather all the ranges that apply to the same section so they can share
2341 // a base address entry.
2342 MapVector
<const MCSection
*, std::vector
<decltype(&*R
.begin())>> SectionRanges
;
2344 for (const auto &Range
: R
)
2345 SectionRanges
[&Range
.Begin
->getSection()].push_back(&Range
);
2347 const MCSymbol
*CUBase
= CU
.getBaseAddress();
2348 bool BaseIsSet
= false;
2349 for (const auto &P
: SectionRanges
) {
2350 auto *Base
= CUBase
;
2351 if (!Base
&& ShouldUseBaseAddress
) {
2352 const MCSymbol
*Begin
= P
.second
.front()->Begin
;
2353 const MCSymbol
*NewBase
= DD
.getSectionLabel(&Begin
->getSection());
2357 Asm
->OutStreamer
->EmitIntValue(-1, Size
);
2358 Asm
->OutStreamer
->AddComment(" base address");
2359 Asm
->OutStreamer
->EmitSymbolValue(Base
, Size
);
2360 } else if (NewBase
!= Begin
|| P
.second
.size() > 1) {
2361 // Only use a base address if
2362 // * the existing pool address doesn't match (NewBase != Begin)
2363 // * or, there's more than one entry to share the base address
2366 Asm
->OutStreamer
->AddComment(StringifyEnum(BaseAddressx
));
2367 Asm
->emitInt8(BaseAddressx
);
2368 Asm
->OutStreamer
->AddComment(" base address index");
2369 Asm
->EmitULEB128(DD
.getAddressPool().getIndex(Base
));
2371 } else if (BaseIsSet
&& !UseDwarf5
) {
2374 Asm
->OutStreamer
->EmitIntValue(-1, Size
);
2375 Asm
->OutStreamer
->EmitIntValue(0, Size
);
2378 for (const auto *RS
: P
.second
) {
2379 const MCSymbol
*Begin
= RS
->Begin
;
2380 const MCSymbol
*End
= RS
->End
;
2381 assert(Begin
&& "Range without a begin symbol?");
2382 assert(End
&& "Range without an end symbol?");
2385 // Emit offset_pair when we have a base.
2386 Asm
->OutStreamer
->AddComment(StringifyEnum(OffsetPair
));
2387 Asm
->emitInt8(OffsetPair
);
2388 Asm
->OutStreamer
->AddComment(" starting offset");
2389 Asm
->EmitLabelDifferenceAsULEB128(Begin
, Base
);
2390 Asm
->OutStreamer
->AddComment(" ending offset");
2391 Asm
->EmitLabelDifferenceAsULEB128(End
, Base
);
2393 Asm
->EmitLabelDifference(Begin
, Base
, Size
);
2394 Asm
->EmitLabelDifference(End
, Base
, Size
);
2396 } else if (UseDwarf5
) {
2397 Asm
->OutStreamer
->AddComment(StringifyEnum(StartxLength
));
2398 Asm
->emitInt8(StartxLength
);
2399 Asm
->OutStreamer
->AddComment(" start index");
2400 Asm
->EmitULEB128(DD
.getAddressPool().getIndex(Begin
));
2401 Asm
->OutStreamer
->AddComment(" length");
2402 Asm
->EmitLabelDifferenceAsULEB128(End
, Begin
);
2404 Asm
->OutStreamer
->EmitSymbolValue(Begin
, Size
);
2405 Asm
->OutStreamer
->EmitSymbolValue(End
, Size
);
2412 Asm
->OutStreamer
->AddComment(StringifyEnum(EndOfList
));
2413 Asm
->emitInt8(EndOfList
);
2415 // Terminate the list with two 0 values.
2416 Asm
->OutStreamer
->EmitIntValue(0, Size
);
2417 Asm
->OutStreamer
->EmitIntValue(0, Size
);
2421 static void emitLocList(DwarfDebug
&DD
, AsmPrinter
*Asm
, const DebugLocStream::List
&List
) {
2423 DD
, Asm
, List
.Label
, DD
.getDebugLocs().getEntries(List
), *List
.CU
,
2424 dwarf::DW_LLE_base_addressx
, dwarf::DW_LLE_offset_pair
,
2425 dwarf::DW_LLE_startx_length
, dwarf::DW_LLE_end_of_list
,
2426 llvm::dwarf::LocListEncodingString
,
2427 /* ShouldUseBaseAddress */ true,
2428 [&](const DebugLocStream::Entry
&E
) {
2429 DD
.emitDebugLocEntryLocation(E
, List
.CU
);
2433 // Emit locations into the .debug_loc/.debug_rnglists section.
2434 void DwarfDebug::emitDebugLoc() {
2435 if (DebugLocs
.getLists().empty())
2438 MCSymbol
*TableEnd
= nullptr;
2439 if (getDwarfVersion() >= 5) {
2440 Asm
->OutStreamer
->SwitchSection(
2441 Asm
->getObjFileLowering().getDwarfLoclistsSection());
2442 TableEnd
= emitLoclistsTableHeader(Asm
, *this);
2444 Asm
->OutStreamer
->SwitchSection(
2445 Asm
->getObjFileLowering().getDwarfLocSection());
2448 for (const auto &List
: DebugLocs
.getLists())
2449 emitLocList(*this, Asm
, List
);
2452 Asm
->OutStreamer
->EmitLabel(TableEnd
);
2455 void DwarfDebug::emitDebugLocDWO() {
2456 for (const auto &List
: DebugLocs
.getLists()) {
2457 Asm
->OutStreamer
->SwitchSection(
2458 Asm
->getObjFileLowering().getDwarfLocDWOSection());
2459 Asm
->OutStreamer
->EmitLabel(List
.Label
);
2460 for (const auto &Entry
: DebugLocs
.getEntries(List
)) {
2461 // GDB only supports startx_length in pre-standard split-DWARF.
2462 // (in v5 standard loclists, it currently* /only/ supports base_address +
2463 // offset_pair, so the implementations can't really share much since they
2464 // need to use different representations)
2465 // * as of October 2018, at least
2466 // Ideally/in v5, this could use SectionLabels to reuse existing addresses
2467 // in the address pool to minimize object size/relocations.
2468 Asm
->emitInt8(dwarf::DW_LLE_startx_length
);
2469 unsigned idx
= AddrPool
.getIndex(Entry
.Begin
);
2470 Asm
->EmitULEB128(idx
);
2471 Asm
->EmitLabelDifference(Entry
.End
, Entry
.Begin
, 4);
2473 emitDebugLocEntryLocation(Entry
, List
.CU
);
2475 Asm
->emitInt8(dwarf::DW_LLE_end_of_list
);
2480 const MCSymbol
*Start
, *End
;
2483 // Emit a debug aranges section, containing a CU lookup for any
2484 // address we can tie back to a CU.
2485 void DwarfDebug::emitDebugARanges() {
2486 // Provides a unique id per text section.
2487 MapVector
<MCSection
*, SmallVector
<SymbolCU
, 8>> SectionMap
;
2489 // Filter labels by section.
2490 for (const SymbolCU
&SCU
: ArangeLabels
) {
2491 if (SCU
.Sym
->isInSection()) {
2492 // Make a note of this symbol and it's section.
2493 MCSection
*Section
= &SCU
.Sym
->getSection();
2494 if (!Section
->getKind().isMetadata())
2495 SectionMap
[Section
].push_back(SCU
);
2497 // Some symbols (e.g. common/bss on mach-o) can have no section but still
2498 // appear in the output. This sucks as we rely on sections to build
2499 // arange spans. We can do it without, but it's icky.
2500 SectionMap
[nullptr].push_back(SCU
);
2504 DenseMap
<DwarfCompileUnit
*, std::vector
<ArangeSpan
>> Spans
;
2506 for (auto &I
: SectionMap
) {
2507 MCSection
*Section
= I
.first
;
2508 SmallVector
<SymbolCU
, 8> &List
= I
.second
;
2509 if (List
.size() < 1)
2512 // If we have no section (e.g. common), just write out
2513 // individual spans for each symbol.
2515 for (const SymbolCU
&Cur
: List
) {
2517 Span
.Start
= Cur
.Sym
;
2520 Spans
[Cur
.CU
].push_back(Span
);
2525 // Sort the symbols by offset within the section.
2526 llvm::stable_sort(List
, [&](const SymbolCU
&A
, const SymbolCU
&B
) {
2527 unsigned IA
= A
.Sym
? Asm
->OutStreamer
->GetSymbolOrder(A
.Sym
) : 0;
2528 unsigned IB
= B
.Sym
? Asm
->OutStreamer
->GetSymbolOrder(B
.Sym
) : 0;
2530 // Symbols with no order assigned should be placed at the end.
2531 // (e.g. section end labels)
2539 // Insert a final terminator.
2540 List
.push_back(SymbolCU(nullptr, Asm
->OutStreamer
->endSection(Section
)));
2542 // Build spans between each label.
2543 const MCSymbol
*StartSym
= List
[0].Sym
;
2544 for (size_t n
= 1, e
= List
.size(); n
< e
; n
++) {
2545 const SymbolCU
&Prev
= List
[n
- 1];
2546 const SymbolCU
&Cur
= List
[n
];
2548 // Try and build the longest span we can within the same CU.
2549 if (Cur
.CU
!= Prev
.CU
) {
2551 Span
.Start
= StartSym
;
2554 Spans
[Prev
.CU
].push_back(Span
);
2560 // Start the dwarf aranges section.
2561 Asm
->OutStreamer
->SwitchSection(
2562 Asm
->getObjFileLowering().getDwarfARangesSection());
2564 unsigned PtrSize
= Asm
->MAI
->getCodePointerSize();
2566 // Build a list of CUs used.
2567 std::vector
<DwarfCompileUnit
*> CUs
;
2568 for (const auto &it
: Spans
) {
2569 DwarfCompileUnit
*CU
= it
.first
;
2573 // Sort the CU list (again, to ensure consistent output order).
2574 llvm::sort(CUs
, [](const DwarfCompileUnit
*A
, const DwarfCompileUnit
*B
) {
2575 return A
->getUniqueID() < B
->getUniqueID();
2578 // Emit an arange table for each CU we used.
2579 for (DwarfCompileUnit
*CU
: CUs
) {
2580 std::vector
<ArangeSpan
> &List
= Spans
[CU
];
2582 // Describe the skeleton CU's offset and length, not the dwo file's.
2583 if (auto *Skel
= CU
->getSkeleton())
2586 // Emit size of content not including length itself.
2587 unsigned ContentSize
=
2588 sizeof(int16_t) + // DWARF ARange version number
2589 sizeof(int32_t) + // Offset of CU in the .debug_info section
2590 sizeof(int8_t) + // Pointer Size (in bytes)
2591 sizeof(int8_t); // Segment Size (in bytes)
2593 unsigned TupleSize
= PtrSize
* 2;
2595 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2597 offsetToAlignment(sizeof(int32_t) + ContentSize
, Align(TupleSize
));
2599 ContentSize
+= Padding
;
2600 ContentSize
+= (List
.size() + 1) * TupleSize
;
2602 // For each compile unit, write the list of spans it covers.
2603 Asm
->OutStreamer
->AddComment("Length of ARange Set");
2604 Asm
->emitInt32(ContentSize
);
2605 Asm
->OutStreamer
->AddComment("DWARF Arange version number");
2606 Asm
->emitInt16(dwarf::DW_ARANGES_VERSION
);
2607 Asm
->OutStreamer
->AddComment("Offset Into Debug Info Section");
2608 emitSectionReference(*CU
);
2609 Asm
->OutStreamer
->AddComment("Address Size (in bytes)");
2610 Asm
->emitInt8(PtrSize
);
2611 Asm
->OutStreamer
->AddComment("Segment Size (in bytes)");
2614 Asm
->OutStreamer
->emitFill(Padding
, 0xff);
2616 for (const ArangeSpan
&Span
: List
) {
2617 Asm
->EmitLabelReference(Span
.Start
, PtrSize
);
2619 // Calculate the size as being from the span start to it's end.
2621 Asm
->EmitLabelDifference(Span
.End
, Span
.Start
, PtrSize
);
2623 // For symbols without an end marker (e.g. common), we
2624 // write a single arange entry containing just that one symbol.
2625 uint64_t Size
= SymSize
[Span
.Start
];
2629 Asm
->OutStreamer
->EmitIntValue(Size
, PtrSize
);
2633 Asm
->OutStreamer
->AddComment("ARange terminator");
2634 Asm
->OutStreamer
->EmitIntValue(0, PtrSize
);
2635 Asm
->OutStreamer
->EmitIntValue(0, PtrSize
);
2639 /// Emit a single range list. We handle both DWARF v5 and earlier.
2640 static void emitRangeList(DwarfDebug
&DD
, AsmPrinter
*Asm
,
2641 const RangeSpanList
&List
) {
2642 emitRangeList(DD
, Asm
, List
.getSym(), List
.getRanges(), List
.getCU(),
2643 dwarf::DW_RLE_base_addressx
, dwarf::DW_RLE_offset_pair
,
2644 dwarf::DW_RLE_startx_length
, dwarf::DW_RLE_end_of_list
,
2645 llvm::dwarf::RangeListEncodingString
,
2646 List
.getCU().getCUNode()->getRangesBaseAddress() ||
2647 DD
.getDwarfVersion() >= 5,
2651 static void emitDebugRangesImpl(DwarfDebug
&DD
, AsmPrinter
*Asm
,
2652 const DwarfFile
&Holder
, MCSymbol
*TableEnd
) {
2653 for (const RangeSpanList
&List
: Holder
.getRangeLists())
2654 emitRangeList(DD
, Asm
, List
);
2657 Asm
->OutStreamer
->EmitLabel(TableEnd
);
2660 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
2661 /// .debug_rnglists section.
2662 void DwarfDebug::emitDebugRanges() {
2666 const auto &Holder
= useSplitDwarf() ? SkeletonHolder
: InfoHolder
;
2668 if (Holder
.getRangeLists().empty())
2671 assert(useRangesSection());
2672 assert(llvm::none_of(CUMap
, [](const decltype(CUMap
)::value_type
&Pair
) {
2673 return Pair
.second
->getCUNode()->isDebugDirectivesOnly();
2676 // Start the dwarf ranges section.
2677 MCSymbol
*TableEnd
= nullptr;
2678 if (getDwarfVersion() >= 5) {
2679 Asm
->OutStreamer
->SwitchSection(
2680 Asm
->getObjFileLowering().getDwarfRnglistsSection());
2681 TableEnd
= emitRnglistsTableHeader(Asm
, Holder
);
2683 Asm
->OutStreamer
->SwitchSection(
2684 Asm
->getObjFileLowering().getDwarfRangesSection());
2686 emitDebugRangesImpl(*this, Asm
, Holder
, TableEnd
);
2689 void DwarfDebug::emitDebugRangesDWO() {
2690 assert(useSplitDwarf());
2695 const auto &Holder
= InfoHolder
;
2697 if (Holder
.getRangeLists().empty())
2700 assert(getDwarfVersion() >= 5);
2701 assert(useRangesSection());
2702 assert(llvm::none_of(CUMap
, [](const decltype(CUMap
)::value_type
&Pair
) {
2703 return Pair
.second
->getCUNode()->isDebugDirectivesOnly();
2706 // Start the dwarf ranges section.
2707 Asm
->OutStreamer
->SwitchSection(
2708 Asm
->getObjFileLowering().getDwarfRnglistsDWOSection());
2709 MCSymbol
*TableEnd
= emitRnglistsTableHeader(Asm
, Holder
);
2711 emitDebugRangesImpl(*this, Asm
, Holder
, TableEnd
);
2714 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes
, DwarfCompileUnit
&U
) {
2715 for (auto *MN
: Nodes
) {
2716 if (auto *M
= dyn_cast
<DIMacro
>(MN
))
2718 else if (auto *F
= dyn_cast
<DIMacroFile
>(MN
))
2719 emitMacroFile(*F
, U
);
2721 llvm_unreachable("Unexpected DI type!");
2725 void DwarfDebug::emitMacro(DIMacro
&M
) {
2726 Asm
->EmitULEB128(M
.getMacinfoType());
2727 Asm
->EmitULEB128(M
.getLine());
2728 StringRef Name
= M
.getName();
2729 StringRef Value
= M
.getValue();
2730 Asm
->OutStreamer
->EmitBytes(Name
);
2731 if (!Value
.empty()) {
2732 // There should be one space between macro name and macro value.
2734 Asm
->OutStreamer
->EmitBytes(Value
);
2736 Asm
->emitInt8('\0');
2739 void DwarfDebug::emitMacroFile(DIMacroFile
&F
, DwarfCompileUnit
&U
) {
2740 assert(F
.getMacinfoType() == dwarf::DW_MACINFO_start_file
);
2741 Asm
->EmitULEB128(dwarf::DW_MACINFO_start_file
);
2742 Asm
->EmitULEB128(F
.getLine());
2743 Asm
->EmitULEB128(U
.getOrCreateSourceID(F
.getFile()));
2744 handleMacroNodes(F
.getElements(), U
);
2745 Asm
->EmitULEB128(dwarf::DW_MACINFO_end_file
);
2748 /// Emit macros into a debug macinfo section.
2749 void DwarfDebug::emitDebugMacinfo() {
2753 if (llvm::all_of(CUMap
, [](const decltype(CUMap
)::value_type
&Pair
) {
2754 return Pair
.second
->getCUNode()->isDebugDirectivesOnly();
2758 // Start the dwarf macinfo section.
2759 Asm
->OutStreamer
->SwitchSection(
2760 Asm
->getObjFileLowering().getDwarfMacinfoSection());
2762 for (const auto &P
: CUMap
) {
2763 auto &TheCU
= *P
.second
;
2764 if (TheCU
.getCUNode()->isDebugDirectivesOnly())
2766 auto *SkCU
= TheCU
.getSkeleton();
2767 DwarfCompileUnit
&U
= SkCU
? *SkCU
: TheCU
;
2768 auto *CUNode
= cast
<DICompileUnit
>(P
.first
);
2769 DIMacroNodeArray Macros
= CUNode
->getMacros();
2770 if (!Macros
.empty()) {
2771 Asm
->OutStreamer
->EmitLabel(U
.getMacroLabelBegin());
2772 handleMacroNodes(Macros
, U
);
2775 Asm
->OutStreamer
->AddComment("End Of Macro List Mark");
2779 // DWARF5 Experimental Separate Dwarf emitters.
2781 void DwarfDebug::initSkeletonUnit(const DwarfUnit
&U
, DIE
&Die
,
2782 std::unique_ptr
<DwarfCompileUnit
> NewU
) {
2784 if (!CompilationDir
.empty())
2785 NewU
->addString(Die
, dwarf::DW_AT_comp_dir
, CompilationDir
);
2787 addGnuPubAttributes(*NewU
, Die
);
2789 SkeletonHolder
.addUnit(std::move(NewU
));
2792 DwarfCompileUnit
&DwarfDebug::constructSkeletonCU(const DwarfCompileUnit
&CU
) {
2794 auto OwnedUnit
= std::make_unique
<DwarfCompileUnit
>(
2795 CU
.getUniqueID(), CU
.getCUNode(), Asm
, this, &SkeletonHolder
);
2796 DwarfCompileUnit
&NewCU
= *OwnedUnit
;
2797 NewCU
.setSection(Asm
->getObjFileLowering().getDwarfInfoSection());
2799 NewCU
.initStmtList();
2801 if (useSegmentedStringOffsetsTable())
2802 NewCU
.addStringOffsetsStart();
2804 initSkeletonUnit(CU
, NewCU
.getUnitDie(), std::move(OwnedUnit
));
2809 // Emit the .debug_info.dwo section for separated dwarf. This contains the
2810 // compile units that would normally be in debug_info.
2811 void DwarfDebug::emitDebugInfoDWO() {
2812 assert(useSplitDwarf() && "No split dwarf debug info?");
2813 // Don't emit relocations into the dwo file.
2814 InfoHolder
.emitUnits(/* UseOffsets */ true);
2817 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
2818 // abbreviations for the .debug_info.dwo section.
2819 void DwarfDebug::emitDebugAbbrevDWO() {
2820 assert(useSplitDwarf() && "No split dwarf?");
2821 InfoHolder
.emitAbbrevs(Asm
->getObjFileLowering().getDwarfAbbrevDWOSection());
2824 void DwarfDebug::emitDebugLineDWO() {
2825 assert(useSplitDwarf() && "No split dwarf?");
2826 SplitTypeUnitFileTable
.Emit(
2827 *Asm
->OutStreamer
, MCDwarfLineTableParams(),
2828 Asm
->getObjFileLowering().getDwarfLineDWOSection());
2831 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
2832 assert(useSplitDwarf() && "No split dwarf?");
2833 InfoHolder
.getStringPool().emitStringOffsetsTableHeader(
2834 *Asm
, Asm
->getObjFileLowering().getDwarfStrOffDWOSection(),
2835 InfoHolder
.getStringOffsetsStartSym());
2838 // Emit the .debug_str.dwo section for separated dwarf. This contains the
2839 // string section and is identical in format to traditional .debug_str
2841 void DwarfDebug::emitDebugStrDWO() {
2842 if (useSegmentedStringOffsetsTable())
2843 emitStringOffsetsTableHeaderDWO();
2844 assert(useSplitDwarf() && "No split dwarf?");
2845 MCSection
*OffSec
= Asm
->getObjFileLowering().getDwarfStrOffDWOSection();
2846 InfoHolder
.emitStrings(Asm
->getObjFileLowering().getDwarfStrDWOSection(),
2847 OffSec
, /* UseRelativeOffsets = */ false);
2850 // Emit address pool.
2851 void DwarfDebug::emitDebugAddr() {
2852 AddrPool
.emit(*Asm
, Asm
->getObjFileLowering().getDwarfAddrSection());
2855 MCDwarfDwoLineTable
*DwarfDebug::getDwoLineTable(const DwarfCompileUnit
&CU
) {
2856 if (!useSplitDwarf())
2858 const DICompileUnit
*DIUnit
= CU
.getCUNode();
2859 SplitTypeUnitFileTable
.maybeSetRootFile(
2860 DIUnit
->getDirectory(), DIUnit
->getFilename(),
2861 CU
.getMD5AsBytes(DIUnit
->getFile()), DIUnit
->getSource());
2862 return &SplitTypeUnitFileTable
;
2865 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier
) {
2867 Hash
.update(Identifier
);
2868 // ... take the least significant 8 bytes and return those. Our MD5
2869 // implementation always returns its results in little endian, so we actually
2870 // need the "high" word.
2871 MD5::MD5Result Result
;
2873 return Result
.high();
2876 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit
&CU
,
2877 StringRef Identifier
, DIE
&RefDie
,
2878 const DICompositeType
*CTy
) {
2879 // Fast path if we're building some type units and one has already used the
2880 // address pool we know we're going to throw away all this work anyway, so
2881 // don't bother building dependent types.
2882 if (!TypeUnitsUnderConstruction
.empty() && AddrPool
.hasBeenUsed())
2885 auto Ins
= TypeSignatures
.insert(std::make_pair(CTy
, 0));
2887 CU
.addDIETypeSignature(RefDie
, Ins
.first
->second
);
2891 bool TopLevelType
= TypeUnitsUnderConstruction
.empty();
2892 AddrPool
.resetUsedFlag();
2894 auto OwnedUnit
= std::make_unique
<DwarfTypeUnit
>(CU
, Asm
, this, &InfoHolder
,
2895 getDwoLineTable(CU
));
2896 DwarfTypeUnit
&NewTU
= *OwnedUnit
;
2897 DIE
&UnitDie
= NewTU
.getUnitDie();
2898 TypeUnitsUnderConstruction
.emplace_back(std::move(OwnedUnit
), CTy
);
2900 NewTU
.addUInt(UnitDie
, dwarf::DW_AT_language
, dwarf::DW_FORM_data2
,
2903 uint64_t Signature
= makeTypeSignature(Identifier
);
2904 NewTU
.setTypeSignature(Signature
);
2905 Ins
.first
->second
= Signature
;
2907 if (useSplitDwarf()) {
2908 MCSection
*Section
=
2909 getDwarfVersion() <= 4
2910 ? Asm
->getObjFileLowering().getDwarfTypesDWOSection()
2911 : Asm
->getObjFileLowering().getDwarfInfoDWOSection();
2912 NewTU
.setSection(Section
);
2914 MCSection
*Section
=
2915 getDwarfVersion() <= 4
2916 ? Asm
->getObjFileLowering().getDwarfTypesSection(Signature
)
2917 : Asm
->getObjFileLowering().getDwarfInfoSection(Signature
);
2918 NewTU
.setSection(Section
);
2919 // Non-split type units reuse the compile unit's line table.
2920 CU
.applyStmtList(UnitDie
);
2923 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
2925 if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
2926 NewTU
.addStringOffsetsStart();
2928 NewTU
.setType(NewTU
.createTypeDIE(CTy
));
2931 auto TypeUnitsToAdd
= std::move(TypeUnitsUnderConstruction
);
2932 TypeUnitsUnderConstruction
.clear();
2934 // Types referencing entries in the address table cannot be placed in type
2936 if (AddrPool
.hasBeenUsed()) {
2938 // Remove all the types built while building this type.
2939 // This is pessimistic as some of these types might not be dependent on
2940 // the type that used an address.
2941 for (const auto &TU
: TypeUnitsToAdd
)
2942 TypeSignatures
.erase(TU
.second
);
2944 // Construct this type in the CU directly.
2945 // This is inefficient because all the dependent types will be rebuilt
2946 // from scratch, including building them in type units, discovering that
2947 // they depend on addresses, throwing them out and rebuilding them.
2948 CU
.constructTypeDIE(RefDie
, cast
<DICompositeType
>(CTy
));
2952 // If the type wasn't dependent on fission addresses, finish adding the type
2953 // and all its dependent types.
2954 for (auto &TU
: TypeUnitsToAdd
) {
2955 InfoHolder
.computeSizeAndOffsetsForUnit(TU
.first
.get());
2956 InfoHolder
.emitUnit(TU
.first
.get(), useSplitDwarf());
2959 CU
.addDIETypeSignature(RefDie
, Signature
);
2962 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug
*DD
)
2964 TypeUnitsUnderConstruction(std::move(DD
->TypeUnitsUnderConstruction
)) {
2965 DD
->TypeUnitsUnderConstruction
.clear();
2966 assert(TypeUnitsUnderConstruction
.empty() || !DD
->AddrPool
.hasBeenUsed());
2969 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
2970 DD
->TypeUnitsUnderConstruction
= std::move(TypeUnitsUnderConstruction
);
2971 DD
->AddrPool
.resetUsedFlag();
2974 DwarfDebug::NonTypeUnitContext
DwarfDebug::enterNonTypeUnitContext() {
2975 return NonTypeUnitContext(this);
2978 // Add the Name along with its companion DIE to the appropriate accelerator
2979 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
2980 // AccelTableKind::Apple, we use the table we got as an argument). If
2981 // accelerator tables are disabled, this function does nothing.
2982 template <typename DataT
>
2983 void DwarfDebug::addAccelNameImpl(const DICompileUnit
&CU
,
2984 AccelTable
<DataT
> &AppleAccel
, StringRef Name
,
2986 if (getAccelTableKind() == AccelTableKind::None
)
2989 if (getAccelTableKind() != AccelTableKind::Apple
&&
2990 CU
.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default
)
2993 DwarfFile
&Holder
= useSplitDwarf() ? SkeletonHolder
: InfoHolder
;
2994 DwarfStringPoolEntryRef Ref
= Holder
.getStringPool().getEntry(*Asm
, Name
);
2996 switch (getAccelTableKind()) {
2997 case AccelTableKind::Apple
:
2998 AppleAccel
.addName(Ref
, Die
);
3000 case AccelTableKind::Dwarf
:
3001 AccelDebugNames
.addName(Ref
, Die
);
3003 case AccelTableKind::Default
:
3004 llvm_unreachable("Default should have already been resolved.");
3005 case AccelTableKind::None
:
3006 llvm_unreachable("None handled above");
3010 void DwarfDebug::addAccelName(const DICompileUnit
&CU
, StringRef Name
,
3012 addAccelNameImpl(CU
, AccelNames
, Name
, Die
);
3015 void DwarfDebug::addAccelObjC(const DICompileUnit
&CU
, StringRef Name
,
3017 // ObjC names go only into the Apple accelerator tables.
3018 if (getAccelTableKind() == AccelTableKind::Apple
)
3019 addAccelNameImpl(CU
, AccelObjC
, Name
, Die
);
3022 void DwarfDebug::addAccelNamespace(const DICompileUnit
&CU
, StringRef Name
,
3024 addAccelNameImpl(CU
, AccelNamespace
, Name
, Die
);
3027 void DwarfDebug::addAccelType(const DICompileUnit
&CU
, StringRef Name
,
3028 const DIE
&Die
, char Flags
) {
3029 addAccelNameImpl(CU
, AccelTypes
, Name
, Die
);
3032 uint16_t DwarfDebug::getDwarfVersion() const {
3033 return Asm
->OutStreamer
->getContext().getDwarfVersion();
3036 const MCSymbol
*DwarfDebug::getSectionLabel(const MCSection
*S
) {
3037 return SectionLabels
.find(S
)->second
;