[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / CodeGen / GlobalISel / RegBankSelect.cpp
blobf0e35c65c53b87d94f81265b07680ff9a4164a23
1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the RegBankSelect class.
10 //===----------------------------------------------------------------------===//
12 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
17 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
18 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
19 #include "llvm/CodeGen/GlobalISel/Utils.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
22 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/BlockFrequency.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <limits>
46 #include <memory>
47 #include <utility>
49 #define DEBUG_TYPE "regbankselect"
51 using namespace llvm;
53 static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
54 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
55 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
56 "Run the Fast mode (default mapping)"),
57 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
58 "Use the Greedy mode (best local mapping)")));
60 char RegBankSelect::ID = 0;
62 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
63 "Assign register bank of generic virtual registers",
64 false, false);
65 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
66 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
68 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
69 "Assign register bank of generic virtual registers", false,
70 false)
72 RegBankSelect::RegBankSelect(Mode RunningMode)
73 : MachineFunctionPass(ID), OptMode(RunningMode) {
74 if (RegBankSelectMode.getNumOccurrences() != 0) {
75 OptMode = RegBankSelectMode;
76 if (RegBankSelectMode != RunningMode)
77 LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
81 void RegBankSelect::init(MachineFunction &MF) {
82 RBI = MF.getSubtarget().getRegBankInfo();
83 assert(RBI && "Cannot work without RegisterBankInfo");
84 MRI = &MF.getRegInfo();
85 TRI = MF.getSubtarget().getRegisterInfo();
86 TPC = &getAnalysis<TargetPassConfig>();
87 if (OptMode != Mode::Fast) {
88 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
89 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
90 } else {
91 MBFI = nullptr;
92 MBPI = nullptr;
94 MIRBuilder.setMF(MF);
95 MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
98 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
99 if (OptMode != Mode::Fast) {
100 // We could preserve the information from these two analysis but
101 // the APIs do not allow to do so yet.
102 AU.addRequired<MachineBlockFrequencyInfo>();
103 AU.addRequired<MachineBranchProbabilityInfo>();
105 AU.addRequired<TargetPassConfig>();
106 getSelectionDAGFallbackAnalysisUsage(AU);
107 MachineFunctionPass::getAnalysisUsage(AU);
110 bool RegBankSelect::assignmentMatch(
111 Register Reg, const RegisterBankInfo::ValueMapping &ValMapping,
112 bool &OnlyAssign) const {
113 // By default we assume we will have to repair something.
114 OnlyAssign = false;
115 // Each part of a break down needs to end up in a different register.
116 // In other word, Reg assignment does not match.
117 if (ValMapping.NumBreakDowns != 1)
118 return false;
120 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
121 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
122 // Reg is free of assignment, a simple assignment will make the
123 // register bank to match.
124 OnlyAssign = CurRegBank == nullptr;
125 LLVM_DEBUG(dbgs() << "Does assignment already match: ";
126 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
127 dbgs() << " against ";
128 assert(DesiredRegBrank && "The mapping must be valid");
129 dbgs() << *DesiredRegBrank << '\n';);
130 return CurRegBank == DesiredRegBrank;
133 bool RegBankSelect::repairReg(
134 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
135 RegBankSelect::RepairingPlacement &RepairPt,
136 const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) {
138 assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) &&
139 "need new vreg for each breakdown");
141 // An empty range of new register means no repairing.
142 assert(!NewVRegs.empty() && "We should not have to repair");
144 MachineInstr *MI;
145 if (ValMapping.NumBreakDowns == 1) {
146 // Assume we are repairing a use and thus, the original reg will be
147 // the source of the repairing.
148 Register Src = MO.getReg();
149 Register Dst = *NewVRegs.begin();
151 // If we repair a definition, swap the source and destination for
152 // the repairing.
153 if (MO.isDef())
154 std::swap(Src, Dst);
156 assert((RepairPt.getNumInsertPoints() == 1 ||
157 Register::isPhysicalRegister(Dst)) &&
158 "We are about to create several defs for Dst");
160 // Build the instruction used to repair, then clone it at the right
161 // places. Avoiding buildCopy bypasses the check that Src and Dst have the
162 // same types because the type is a placeholder when this function is called.
163 MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY)
164 .addDef(Dst)
165 .addUse(Src);
166 LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
167 << '\n');
168 } else {
169 // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
170 // sequence.
171 assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported");
173 LLT RegTy = MRI->getType(MO.getReg());
174 if (MO.isDef()) {
175 unsigned MergeOp;
176 if (RegTy.isVector()) {
177 if (ValMapping.NumBreakDowns == RegTy.getNumElements())
178 MergeOp = TargetOpcode::G_BUILD_VECTOR;
179 else {
180 assert(
181 (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns ==
182 RegTy.getSizeInBits()) &&
183 (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() ==
184 0) &&
185 "don't understand this value breakdown");
187 MergeOp = TargetOpcode::G_CONCAT_VECTORS;
189 } else
190 MergeOp = TargetOpcode::G_MERGE_VALUES;
192 auto MergeBuilder =
193 MIRBuilder.buildInstrNoInsert(MergeOp)
194 .addDef(MO.getReg());
196 for (Register SrcReg : NewVRegs)
197 MergeBuilder.addUse(SrcReg);
199 MI = MergeBuilder;
200 } else {
201 MachineInstrBuilder UnMergeBuilder =
202 MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES);
203 for (Register DefReg : NewVRegs)
204 UnMergeBuilder.addDef(DefReg);
206 UnMergeBuilder.addUse(MO.getReg());
207 MI = UnMergeBuilder;
211 if (RepairPt.getNumInsertPoints() != 1)
212 report_fatal_error("need testcase to support multiple insertion points");
214 // TODO:
215 // Check if MI is legal. if not, we need to legalize all the
216 // instructions we are going to insert.
217 std::unique_ptr<MachineInstr *[]> NewInstrs(
218 new MachineInstr *[RepairPt.getNumInsertPoints()]);
219 bool IsFirst = true;
220 unsigned Idx = 0;
221 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
222 MachineInstr *CurMI;
223 if (IsFirst)
224 CurMI = MI;
225 else
226 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
227 InsertPt->insert(*CurMI);
228 NewInstrs[Idx++] = CurMI;
229 IsFirst = false;
231 // TODO:
232 // Legalize NewInstrs if need be.
233 return true;
236 uint64_t RegBankSelect::getRepairCost(
237 const MachineOperand &MO,
238 const RegisterBankInfo::ValueMapping &ValMapping) const {
239 assert(MO.isReg() && "We should only repair register operand");
240 assert(ValMapping.NumBreakDowns && "Nothing to map??");
242 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
243 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
244 // If MO does not have a register bank, we should have just been
245 // able to set one unless we have to break the value down.
246 assert(CurRegBank || MO.isDef());
248 // Def: Val <- NewDefs
249 // Same number of values: copy
250 // Different number: Val = build_sequence Defs1, Defs2, ...
251 // Use: NewSources <- Val.
252 // Same number of values: copy.
253 // Different number: Src1, Src2, ... =
254 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
255 // We should remember that this value is available somewhere else to
256 // coalesce the value.
258 if (ValMapping.NumBreakDowns != 1)
259 return RBI->getBreakDownCost(ValMapping, CurRegBank);
261 if (IsSameNumOfValues) {
262 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
263 // If we repair a definition, swap the source and destination for
264 // the repairing.
265 if (MO.isDef())
266 std::swap(CurRegBank, DesiredRegBrank);
267 // TODO: It may be possible to actually avoid the copy.
268 // If we repair something where the source is defined by a copy
269 // and the source of that copy is on the right bank, we can reuse
270 // it for free.
271 // E.g.,
272 // RegToRepair<BankA> = copy AlternativeSrc<BankB>
273 // = op RegToRepair<BankA>
274 // We can simply propagate AlternativeSrc instead of copying RegToRepair
275 // into a new virtual register.
276 // We would also need to propagate this information in the
277 // repairing placement.
278 unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank,
279 RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
280 // TODO: use a dedicated constant for ImpossibleCost.
281 if (Cost != std::numeric_limits<unsigned>::max())
282 return Cost;
283 // Return the legalization cost of that repairing.
285 return std::numeric_limits<unsigned>::max();
288 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
289 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
290 SmallVectorImpl<RepairingPlacement> &RepairPts) {
291 assert(!PossibleMappings.empty() &&
292 "Do not know how to map this instruction");
294 const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
295 MappingCost Cost = MappingCost::ImpossibleCost();
296 SmallVector<RepairingPlacement, 4> LocalRepairPts;
297 for (const RegisterBankInfo::InstructionMapping *CurMapping :
298 PossibleMappings) {
299 MappingCost CurCost =
300 computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
301 if (CurCost < Cost) {
302 LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
303 Cost = CurCost;
304 BestMapping = CurMapping;
305 RepairPts.clear();
306 for (RepairingPlacement &RepairPt : LocalRepairPts)
307 RepairPts.emplace_back(std::move(RepairPt));
310 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
311 // If none of the mapping worked that means they are all impossible.
312 // Thus, pick the first one and set an impossible repairing point.
313 // It will trigger the failed isel mode.
314 BestMapping = *PossibleMappings.begin();
315 RepairPts.emplace_back(
316 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
317 } else
318 assert(BestMapping && "No suitable mapping for instruction");
319 return *BestMapping;
322 void RegBankSelect::tryAvoidingSplit(
323 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
324 const RegisterBankInfo::ValueMapping &ValMapping) const {
325 const MachineInstr &MI = *MO.getParent();
326 assert(RepairPt.hasSplit() && "We should not have to adjust for split");
327 // Splitting should only occur for PHIs or between terminators,
328 // because we only do local repairing.
329 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
331 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
332 "Repairing placement does not match operand");
334 // If we need splitting for phis, that means it is because we
335 // could not find an insertion point before the terminators of
336 // the predecessor block for this argument. In other words,
337 // the input value is defined by one of the terminators.
338 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
340 // We split to repair the use of a phi or a terminator.
341 if (!MO.isDef()) {
342 if (MI.isTerminator()) {
343 assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
344 "Need to split for the first terminator?!");
345 } else {
346 // For the PHI case, the split may not be actually required.
347 // In the copy case, a phi is already a copy on the incoming edge,
348 // therefore there is no need to split.
349 if (ValMapping.NumBreakDowns == 1)
350 // This is a already a copy, there is nothing to do.
351 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
353 return;
356 // At this point, we need to repair a defintion of a terminator.
358 // Technically we need to fix the def of MI on all outgoing
359 // edges of MI to keep the repairing local. In other words, we
360 // will create several definitions of the same register. This
361 // does not work for SSA unless that definition is a physical
362 // register.
363 // However, there are other cases where we can get away with
364 // that while still keeping the repairing local.
365 assert(MI.isTerminator() && MO.isDef() &&
366 "This code is for the def of a terminator");
368 // Since we use RPO traversal, if we need to repair a definition
369 // this means this definition could be:
370 // 1. Used by PHIs (i.e., this VReg has been visited as part of the
371 // uses of a phi.), or
372 // 2. Part of a target specific instruction (i.e., the target applied
373 // some register class constraints when creating the instruction.)
374 // If the constraints come for #2, the target said that another mapping
375 // is supported so we may just drop them. Indeed, if we do not change
376 // the number of registers holding that value, the uses will get fixed
377 // when we get to them.
378 // Uses in PHIs may have already been proceeded though.
379 // If the constraints come for #1, then, those are weak constraints and
380 // no actual uses may rely on them. However, the problem remains mainly
381 // the same as for #2. If the value stays in one register, we could
382 // just switch the register bank of the definition, but we would need to
383 // account for a repairing cost for each phi we silently change.
385 // In any case, if the value needs to be broken down into several
386 // registers, the repairing is not local anymore as we need to patch
387 // every uses to rebuild the value in just one register.
389 // To summarize:
390 // - If the value is in a physical register, we can do the split and
391 // fix locally.
392 // Otherwise if the value is in a virtual register:
393 // - If the value remains in one register, we do not have to split
394 // just switching the register bank would do, but we need to account
395 // in the repairing cost all the phi we changed.
396 // - If the value spans several registers, then we cannot do a local
397 // repairing.
399 // Check if this is a physical or virtual register.
400 Register Reg = MO.getReg();
401 if (Register::isPhysicalRegister(Reg)) {
402 // We are going to split every outgoing edges.
403 // Check that this is possible.
404 // FIXME: The machine representation is currently broken
405 // since it also several terminators in one basic block.
406 // Because of that we would technically need a way to get
407 // the targets of just one terminator to know which edges
408 // we have to split.
409 // Assert that we do not hit the ill-formed representation.
411 // If there are other terminators before that one, some of
412 // the outgoing edges may not be dominated by this definition.
413 assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
414 "Do not know which outgoing edges are relevant");
415 const MachineInstr *Next = MI.getNextNode();
416 assert((!Next || Next->isUnconditionalBranch()) &&
417 "Do not know where each terminator ends up");
418 if (Next)
419 // If the next terminator uses Reg, this means we have
420 // to split right after MI and thus we need a way to ask
421 // which outgoing edges are affected.
422 assert(!Next->readsRegister(Reg) && "Need to split between terminators");
423 // We will split all the edges and repair there.
424 } else {
425 // This is a virtual register defined by a terminator.
426 if (ValMapping.NumBreakDowns == 1) {
427 // There is nothing to repair, but we may actually lie on
428 // the repairing cost because of the PHIs already proceeded
429 // as already stated.
430 // Though the code will be correct.
431 assert(false && "Repairing cost may not be accurate");
432 } else {
433 // We need to do non-local repairing. Basically, patch all
434 // the uses (i.e., phis) that we already proceeded.
435 // For now, just say this mapping is not possible.
436 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
441 RegBankSelect::MappingCost RegBankSelect::computeMapping(
442 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
443 SmallVectorImpl<RepairingPlacement> &RepairPts,
444 const RegBankSelect::MappingCost *BestCost) {
445 assert((MBFI || !BestCost) && "Costs comparison require MBFI");
447 if (!InstrMapping.isValid())
448 return MappingCost::ImpossibleCost();
450 // If mapped with InstrMapping, MI will have the recorded cost.
451 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
452 bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
453 assert(!Saturated && "Possible mapping saturated the cost");
454 LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
455 LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
456 RepairPts.clear();
457 if (BestCost && Cost > *BestCost) {
458 LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
459 return Cost;
462 // Moreover, to realize this mapping, the register bank of each operand must
463 // match this mapping. In other words, we may need to locally reassign the
464 // register banks. Account for that repairing cost as well.
465 // In this context, local means in the surrounding of MI.
466 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
467 OpIdx != EndOpIdx; ++OpIdx) {
468 const MachineOperand &MO = MI.getOperand(OpIdx);
469 if (!MO.isReg())
470 continue;
471 Register Reg = MO.getReg();
472 if (!Reg)
473 continue;
474 LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
475 const RegisterBankInfo::ValueMapping &ValMapping =
476 InstrMapping.getOperandMapping(OpIdx);
477 // If Reg is already properly mapped, this is free.
478 bool Assign;
479 if (assignmentMatch(Reg, ValMapping, Assign)) {
480 LLVM_DEBUG(dbgs() << "=> is free (match).\n");
481 continue;
483 if (Assign) {
484 LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
485 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
486 RepairingPlacement::Reassign));
487 continue;
490 // Find the insertion point for the repairing code.
491 RepairPts.emplace_back(
492 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
493 RepairingPlacement &RepairPt = RepairPts.back();
495 // If we need to split a basic block to materialize this insertion point,
496 // we may give a higher cost to this mapping.
497 // Nevertheless, we may get away with the split, so try that first.
498 if (RepairPt.hasSplit())
499 tryAvoidingSplit(RepairPt, MO, ValMapping);
501 // Check that the materialization of the repairing is possible.
502 if (!RepairPt.canMaterialize()) {
503 LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
504 return MappingCost::ImpossibleCost();
507 // Account for the split cost and repair cost.
508 // Unless the cost is already saturated or we do not care about the cost.
509 if (!BestCost || Saturated)
510 continue;
512 // To get accurate information we need MBFI and MBPI.
513 // Thus, if we end up here this information should be here.
514 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
516 // FIXME: We will have to rework the repairing cost model.
517 // The repairing cost depends on the register bank that MO has.
518 // However, when we break down the value into different values,
519 // MO may not have a register bank while still needing repairing.
520 // For the fast mode, we don't compute the cost so that is fine,
521 // but still for the repairing code, we will have to make a choice.
522 // For the greedy mode, we should choose greedily what is the best
523 // choice based on the next use of MO.
525 // Sums up the repairing cost of MO at each insertion point.
526 uint64_t RepairCost = getRepairCost(MO, ValMapping);
528 // This is an impossible to repair cost.
529 if (RepairCost == std::numeric_limits<unsigned>::max())
530 return MappingCost::ImpossibleCost();
532 // Bias used for splitting: 5%.
533 const uint64_t PercentageForBias = 5;
534 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
535 // We should not need more than a couple of instructions to repair
536 // an assignment. In other words, the computation should not
537 // overflow because the repairing cost is free of basic block
538 // frequency.
539 assert(((RepairCost < RepairCost * PercentageForBias) &&
540 (RepairCost * PercentageForBias <
541 RepairCost * PercentageForBias + 99)) &&
542 "Repairing involves more than a billion of instructions?!");
543 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
544 assert(InsertPt->canMaterialize() && "We should not have made it here");
545 // We will applied some basic block frequency and those uses uint64_t.
546 if (!InsertPt->isSplit())
547 Saturated = Cost.addLocalCost(RepairCost);
548 else {
549 uint64_t CostForInsertPt = RepairCost;
550 // Again we shouldn't overflow here givent that
551 // CostForInsertPt is frequency free at this point.
552 assert(CostForInsertPt + Bias > CostForInsertPt &&
553 "Repairing + split bias overflows");
554 CostForInsertPt += Bias;
555 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
556 // Check if we just overflowed.
557 if ((Saturated = PtCost < CostForInsertPt))
558 Cost.saturate();
559 else
560 Saturated = Cost.addNonLocalCost(PtCost);
563 // Stop looking into what it takes to repair, this is already
564 // too expensive.
565 if (BestCost && Cost > *BestCost) {
566 LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
567 return Cost;
570 // No need to accumulate more cost information.
571 // We need to still gather the repairing information though.
572 if (Saturated)
573 break;
576 LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
577 return Cost;
580 bool RegBankSelect::applyMapping(
581 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
582 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
583 // OpdMapper will hold all the information needed for the rewriting.
584 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
586 // First, place the repairing code.
587 for (RepairingPlacement &RepairPt : RepairPts) {
588 if (!RepairPt.canMaterialize() ||
589 RepairPt.getKind() == RepairingPlacement::Impossible)
590 return false;
591 assert(RepairPt.getKind() != RepairingPlacement::None &&
592 "This should not make its way in the list");
593 unsigned OpIdx = RepairPt.getOpIdx();
594 MachineOperand &MO = MI.getOperand(OpIdx);
595 const RegisterBankInfo::ValueMapping &ValMapping =
596 InstrMapping.getOperandMapping(OpIdx);
597 Register Reg = MO.getReg();
599 switch (RepairPt.getKind()) {
600 case RepairingPlacement::Reassign:
601 assert(ValMapping.NumBreakDowns == 1 &&
602 "Reassignment should only be for simple mapping");
603 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
604 break;
605 case RepairingPlacement::Insert:
606 OpdMapper.createVRegs(OpIdx);
607 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
608 return false;
609 break;
610 default:
611 llvm_unreachable("Other kind should not happen");
615 // Second, rewrite the instruction.
616 LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
617 RBI->applyMapping(OpdMapper);
619 return true;
622 bool RegBankSelect::assignInstr(MachineInstr &MI) {
623 LLVM_DEBUG(dbgs() << "Assign: " << MI);
624 // Remember the repairing placement for all the operands.
625 SmallVector<RepairingPlacement, 4> RepairPts;
627 const RegisterBankInfo::InstructionMapping *BestMapping;
628 if (OptMode == RegBankSelect::Mode::Fast) {
629 BestMapping = &RBI->getInstrMapping(MI);
630 MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
631 (void)DefaultCost;
632 if (DefaultCost == MappingCost::ImpossibleCost())
633 return false;
634 } else {
635 RegisterBankInfo::InstructionMappings PossibleMappings =
636 RBI->getInstrPossibleMappings(MI);
637 if (PossibleMappings.empty())
638 return false;
639 BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
641 // Make sure the mapping is valid for MI.
642 assert(BestMapping->verify(MI) && "Invalid instruction mapping");
644 LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
646 // After this call, MI may not be valid anymore.
647 // Do not use it.
648 return applyMapping(MI, *BestMapping, RepairPts);
651 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
652 // If the ISel pipeline failed, do not bother running that pass.
653 if (MF.getProperties().hasProperty(
654 MachineFunctionProperties::Property::FailedISel))
655 return false;
657 LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
658 const Function &F = MF.getFunction();
659 Mode SaveOptMode = OptMode;
660 if (F.hasOptNone())
661 OptMode = Mode::Fast;
662 init(MF);
664 #ifndef NDEBUG
665 // Check that our input is fully legal: we require the function to have the
666 // Legalized property, so it should be.
667 // FIXME: This should be in the MachineVerifier.
668 if (!DisableGISelLegalityCheck)
669 if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
670 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
671 "instruction is not legal", *MI);
672 return false;
674 #endif
676 // Walk the function and assign register banks to all operands.
677 // Use a RPOT to make sure all registers are assigned before we choose
678 // the best mapping of the current instruction.
679 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
680 for (MachineBasicBlock *MBB : RPOT) {
681 // Set a sensible insertion point so that subsequent calls to
682 // MIRBuilder.
683 MIRBuilder.setMBB(*MBB);
684 for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
685 MII != End;) {
686 // MI might be invalidated by the assignment, so move the
687 // iterator before hand.
688 MachineInstr &MI = *MII++;
690 // Ignore target-specific post-isel instructions: they should use proper
691 // regclasses.
692 if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode())
693 continue;
695 if (!assignInstr(MI)) {
696 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
697 "unable to map instruction", MI);
698 return false;
701 // It's possible the mapping changed control flow, and moved the following
702 // instruction to a new block, so figure out the new parent.
703 if (MII != End) {
704 MachineBasicBlock *NextInstBB = MII->getParent();
705 if (NextInstBB != MBB) {
706 LLVM_DEBUG(dbgs() << "Instruction mapping changed control flow\n");
707 MBB = NextInstBB;
708 MIRBuilder.setMBB(*MBB);
709 End = MBB->end();
715 OptMode = SaveOptMode;
716 return false;
719 //------------------------------------------------------------------------------
720 // Helper Classes Implementation
721 //------------------------------------------------------------------------------
722 RegBankSelect::RepairingPlacement::RepairingPlacement(
723 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
724 RepairingPlacement::RepairingKind Kind)
725 // Default is, we are going to insert code to repair OpIdx.
726 : Kind(Kind), OpIdx(OpIdx),
727 CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
728 const MachineOperand &MO = MI.getOperand(OpIdx);
729 assert(MO.isReg() && "Trying to repair a non-reg operand");
731 if (Kind != RepairingKind::Insert)
732 return;
734 // Repairings for definitions happen after MI, uses happen before.
735 bool Before = !MO.isDef();
737 // Check if we are done with MI.
738 if (!MI.isPHI() && !MI.isTerminator()) {
739 addInsertPoint(MI, Before);
740 // We are done with the initialization.
741 return;
744 // Now, look for the special cases.
745 if (MI.isPHI()) {
746 // - PHI must be the first instructions:
747 // * Before, we have to split the related incoming edge.
748 // * After, move the insertion point past the last phi.
749 if (!Before) {
750 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
751 if (It != MI.getParent()->end())
752 addInsertPoint(*It, /*Before*/ true);
753 else
754 addInsertPoint(*(--It), /*Before*/ false);
755 return;
757 // We repair a use of a phi, we may need to split the related edge.
758 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
759 // Check if we can move the insertion point prior to the
760 // terminators of the predecessor.
761 Register Reg = MO.getReg();
762 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
763 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
764 if (It->modifiesRegister(Reg, &TRI)) {
765 // We cannot hoist the repairing code in the predecessor.
766 // Split the edge.
767 addInsertPoint(Pred, *MI.getParent());
768 return;
770 // At this point, we can insert in Pred.
772 // - If It is invalid, Pred is empty and we can insert in Pred
773 // wherever we want.
774 // - If It is valid, It is the first non-terminator, insert after It.
775 if (It == Pred.end())
776 addInsertPoint(Pred, /*Beginning*/ false);
777 else
778 addInsertPoint(*It, /*Before*/ false);
779 } else {
780 // - Terminators must be the last instructions:
781 // * Before, move the insert point before the first terminator.
782 // * After, we have to split the outcoming edges.
783 if (Before) {
784 // Check whether Reg is defined by any terminator.
785 MachineBasicBlock::reverse_iterator It = MI;
786 auto REnd = MI.getParent()->rend();
788 for (; It != REnd && It->isTerminator(); ++It) {
789 assert(!It->modifiesRegister(MO.getReg(), &TRI) &&
790 "copy insertion in middle of terminators not handled");
793 if (It == REnd) {
794 addInsertPoint(*MI.getParent()->begin(), true);
795 return;
798 // We are sure to be right before the first terminator.
799 addInsertPoint(*It, /*Before*/ false);
800 return;
802 // Make sure Reg is not redefined by other terminators, otherwise
803 // we do not know how to split.
804 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
805 ++It != End;)
806 // The machine verifier should reject this kind of code.
807 assert(It->modifiesRegister(MO.getReg(), &TRI) &&
808 "Do not know where to split");
809 // Split each outcoming edges.
810 MachineBasicBlock &Src = *MI.getParent();
811 for (auto &Succ : Src.successors())
812 addInsertPoint(Src, Succ);
816 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
817 bool Before) {
818 addInsertPoint(*new InstrInsertPoint(MI, Before));
821 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
822 bool Beginning) {
823 addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
826 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
827 MachineBasicBlock &Dst) {
828 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
831 void RegBankSelect::RepairingPlacement::addInsertPoint(
832 RegBankSelect::InsertPoint &Point) {
833 CanMaterialize &= Point.canMaterialize();
834 HasSplit |= Point.isSplit();
835 InsertPoints.emplace_back(&Point);
838 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
839 bool Before)
840 : InsertPoint(), Instr(Instr), Before(Before) {
841 // Since we do not support splitting, we do not need to update
842 // liveness and such, so do not do anything with P.
843 assert((!Before || !Instr.isPHI()) &&
844 "Splitting before phis requires more points");
845 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
846 "Splitting between phis does not make sense");
849 void RegBankSelect::InstrInsertPoint::materialize() {
850 if (isSplit()) {
851 // Slice and return the beginning of the new block.
852 // If we need to split between the terminators, we theoritically
853 // need to know where the first and second set of terminators end
854 // to update the successors properly.
855 // Now, in pratice, we should have a maximum of 2 branch
856 // instructions; one conditional and one unconditional. Therefore
857 // we know how to update the successor by looking at the target of
858 // the unconditional branch.
859 // If we end up splitting at some point, then, we should update
860 // the liveness information and such. I.e., we would need to
861 // access P here.
862 // The machine verifier should actually make sure such cases
863 // cannot happen.
864 llvm_unreachable("Not yet implemented");
866 // Otherwise the insertion point is just the current or next
867 // instruction depending on Before. I.e., there is nothing to do
868 // here.
871 bool RegBankSelect::InstrInsertPoint::isSplit() const {
872 // If the insertion point is after a terminator, we need to split.
873 if (!Before)
874 return Instr.isTerminator();
875 // If we insert before an instruction that is after a terminator,
876 // we are still after a terminator.
877 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
880 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
881 // Even if we need to split, because we insert between terminators,
882 // this split has actually the same frequency as the instruction.
883 const MachineBlockFrequencyInfo *MBFI =
884 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
885 if (!MBFI)
886 return 1;
887 return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
890 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
891 const MachineBlockFrequencyInfo *MBFI =
892 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
893 if (!MBFI)
894 return 1;
895 return MBFI->getBlockFreq(&MBB).getFrequency();
898 void RegBankSelect::EdgeInsertPoint::materialize() {
899 // If we end up repairing twice at the same place before materializing the
900 // insertion point, we may think we have to split an edge twice.
901 // We should have a factory for the insert point such that identical points
902 // are the same instance.
903 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
904 "This point has already been split");
905 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
906 assert(NewBB && "Invalid call to materialize");
907 // We reuse the destination block to hold the information of the new block.
908 DstOrSplit = NewBB;
911 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
912 const MachineBlockFrequencyInfo *MBFI =
913 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
914 if (!MBFI)
915 return 1;
916 if (WasMaterialized)
917 return MBFI->getBlockFreq(DstOrSplit).getFrequency();
919 const MachineBranchProbabilityInfo *MBPI =
920 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
921 if (!MBPI)
922 return 1;
923 // The basic block will be on the edge.
924 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
925 .getFrequency();
928 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
929 // If this is not a critical edge, we should not have used this insert
930 // point. Indeed, either the successor or the predecessor should
931 // have do.
932 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
933 "Edge is not critical");
934 return Src.canSplitCriticalEdge(DstOrSplit);
937 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
938 : LocalFreq(LocalFreq.getFrequency()) {}
940 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
941 // Check if this overflows.
942 if (LocalCost + Cost < LocalCost) {
943 saturate();
944 return true;
946 LocalCost += Cost;
947 return isSaturated();
950 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
951 // Check if this overflows.
952 if (NonLocalCost + Cost < NonLocalCost) {
953 saturate();
954 return true;
956 NonLocalCost += Cost;
957 return isSaturated();
960 bool RegBankSelect::MappingCost::isSaturated() const {
961 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
962 LocalFreq == UINT64_MAX;
965 void RegBankSelect::MappingCost::saturate() {
966 *this = ImpossibleCost();
967 --LocalCost;
970 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
971 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
974 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
975 // Sort out the easy cases.
976 if (*this == Cost)
977 return false;
978 // If one is impossible to realize the other is cheaper unless it is
979 // impossible as well.
980 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
981 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
982 // If one is saturated the other is cheaper, unless it is saturated
983 // as well.
984 if (isSaturated() || Cost.isSaturated())
985 return isSaturated() < Cost.isSaturated();
986 // At this point we know both costs hold sensible values.
988 // If both values have a different base frequency, there is no much
989 // we can do but to scale everything.
990 // However, if they have the same base frequency we can avoid making
991 // complicated computation.
992 uint64_t ThisLocalAdjust;
993 uint64_t OtherLocalAdjust;
994 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
996 // At this point, we know the local costs are comparable.
997 // Do the case that do not involve potential overflow first.
998 if (NonLocalCost == Cost.NonLocalCost)
999 // Since the non-local costs do not discriminate on the result,
1000 // just compare the local costs.
1001 return LocalCost < Cost.LocalCost;
1003 // The base costs are comparable so we may only keep the relative
1004 // value to increase our chances of avoiding overflows.
1005 ThisLocalAdjust = 0;
1006 OtherLocalAdjust = 0;
1007 if (LocalCost < Cost.LocalCost)
1008 OtherLocalAdjust = Cost.LocalCost - LocalCost;
1009 else
1010 ThisLocalAdjust = LocalCost - Cost.LocalCost;
1011 } else {
1012 ThisLocalAdjust = LocalCost;
1013 OtherLocalAdjust = Cost.LocalCost;
1016 // The non-local costs are comparable, just keep the relative value.
1017 uint64_t ThisNonLocalAdjust = 0;
1018 uint64_t OtherNonLocalAdjust = 0;
1019 if (NonLocalCost < Cost.NonLocalCost)
1020 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
1021 else
1022 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
1023 // Scale everything to make them comparable.
1024 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
1025 // Check for overflow on that operation.
1026 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
1027 ThisScaledCost < LocalFreq);
1028 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
1029 // Check for overflow on the last operation.
1030 bool OtherOverflows =
1031 OtherLocalAdjust &&
1032 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
1033 // Add the non-local costs.
1034 ThisOverflows |= ThisNonLocalAdjust &&
1035 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
1036 ThisScaledCost += ThisNonLocalAdjust;
1037 OtherOverflows |= OtherNonLocalAdjust &&
1038 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
1039 OtherScaledCost += OtherNonLocalAdjust;
1040 // If both overflows, we cannot compare without additional
1041 // precision, e.g., APInt. Just give up on that case.
1042 if (ThisOverflows && OtherOverflows)
1043 return false;
1044 // If one overflows but not the other, we can still compare.
1045 if (ThisOverflows || OtherOverflows)
1046 return ThisOverflows < OtherOverflows;
1047 // Otherwise, just compare the values.
1048 return ThisScaledCost < OtherScaledCost;
1051 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
1052 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
1053 LocalFreq == Cost.LocalFreq;
1056 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1057 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
1058 print(dbgs());
1059 dbgs() << '\n';
1061 #endif
1063 void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
1064 if (*this == ImpossibleCost()) {
1065 OS << "impossible";
1066 return;
1068 if (isSaturated()) {
1069 OS << "saturated";
1070 return;
1072 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;