1 //===- LiveInterval.cpp - Live Interval Representation --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the LiveRange and LiveInterval classes. Given some
10 // numbering of each the machine instructions an interval [i, j) is said to be a
11 // live range for register v if there is no instruction with number j' >= j
12 // such that v is live at j' and there is no instruction with number i' < i such
13 // that v is live at i'. In this implementation ranges can have holes,
14 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each
15 // individual segment is represented as an instance of LiveRange::Segment,
16 // and the whole range is represented as an instance of LiveRange.
18 //===----------------------------------------------------------------------===//
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "LiveRangeUtils.h"
22 #include "RegisterCoalescer.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/CodeGen/LiveIntervals.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SlotIndexes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/Config/llvm-config.h"
36 #include "llvm/MC/LaneBitmask.h"
37 #include "llvm/Support/Compiler.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
50 //===----------------------------------------------------------------------===//
51 // Implementation of various methods necessary for calculation of live ranges.
52 // The implementation of the methods abstracts from the concrete type of the
53 // segment collection.
55 // Implementation of the class follows the Template design pattern. The base
56 // class contains generic algorithms that call collection-specific methods,
57 // which are provided in concrete subclasses. In order to avoid virtual calls
58 // these methods are provided by means of C++ template instantiation.
59 // The base class calls the methods of the subclass through method impl(),
60 // which casts 'this' pointer to the type of the subclass.
62 //===----------------------------------------------------------------------===//
64 template <typename ImplT
, typename IteratorT
, typename CollectionT
>
65 class CalcLiveRangeUtilBase
{
70 CalcLiveRangeUtilBase(LiveRange
*LR
) : LR(LR
) {}
73 using Segment
= LiveRange::Segment
;
74 using iterator
= IteratorT
;
76 /// A counterpart of LiveRange::createDeadDef: Make sure the range has a
77 /// value defined at @p Def.
78 /// If @p ForVNI is null, and there is no value defined at @p Def, a new
79 /// value will be allocated using @p VNInfoAllocator.
80 /// If @p ForVNI is null, the return value is the value defined at @p Def,
81 /// either a pre-existing one, or the one newly created.
82 /// If @p ForVNI is not null, then @p Def should be the location where
83 /// @p ForVNI is defined. If the range does not have a value defined at
84 /// @p Def, the value @p ForVNI will be used instead of allocating a new
85 /// one. If the range already has a value defined at @p Def, it must be
86 /// same as @p ForVNI. In either case, @p ForVNI will be the return value.
87 VNInfo
*createDeadDef(SlotIndex Def
, VNInfo::Allocator
*VNInfoAllocator
,
89 assert(!Def
.isDead() && "Cannot define a value at the dead slot");
90 assert((!ForVNI
|| ForVNI
->def
== Def
) &&
91 "If ForVNI is specified, it must match Def");
92 iterator I
= impl().find(Def
);
93 if (I
== segments().end()) {
94 VNInfo
*VNI
= ForVNI
? ForVNI
: LR
->getNextValue(Def
, *VNInfoAllocator
);
95 impl().insertAtEnd(Segment(Def
, Def
.getDeadSlot(), VNI
));
99 Segment
*S
= segmentAt(I
);
100 if (SlotIndex::isSameInstr(Def
, S
->start
)) {
101 assert((!ForVNI
|| ForVNI
== S
->valno
) && "Value number mismatch");
102 assert(S
->valno
->def
== S
->start
&& "Inconsistent existing value def");
104 // It is possible to have both normal and early-clobber defs of the same
105 // register on an instruction. It doesn't make a lot of sense, but it is
106 // possible to specify in inline assembly.
108 // Just convert everything to early-clobber.
109 Def
= std::min(Def
, S
->start
);
111 S
->start
= S
->valno
->def
= Def
;
114 assert(SlotIndex::isEarlierInstr(Def
, S
->start
) && "Already live at def");
115 VNInfo
*VNI
= ForVNI
? ForVNI
: LR
->getNextValue(Def
, *VNInfoAllocator
);
116 segments().insert(I
, Segment(Def
, Def
.getDeadSlot(), VNI
));
120 VNInfo
*extendInBlock(SlotIndex StartIdx
, SlotIndex Use
) {
121 if (segments().empty())
124 impl().findInsertPos(Segment(Use
.getPrevSlot(), Use
, nullptr));
125 if (I
== segments().begin())
128 if (I
->end
<= StartIdx
)
131 extendSegmentEndTo(I
, Use
);
135 std::pair
<VNInfo
*,bool> extendInBlock(ArrayRef
<SlotIndex
> Undefs
,
136 SlotIndex StartIdx
, SlotIndex Use
) {
137 if (segments().empty())
138 return std::make_pair(nullptr, false);
139 SlotIndex BeforeUse
= Use
.getPrevSlot();
140 iterator I
= impl().findInsertPos(Segment(BeforeUse
, Use
, nullptr));
141 if (I
== segments().begin())
142 return std::make_pair(nullptr, LR
->isUndefIn(Undefs
, StartIdx
, BeforeUse
));
144 if (I
->end
<= StartIdx
)
145 return std::make_pair(nullptr, LR
->isUndefIn(Undefs
, StartIdx
, BeforeUse
));
147 if (LR
->isUndefIn(Undefs
, I
->end
, BeforeUse
))
148 return std::make_pair(nullptr, true);
149 extendSegmentEndTo(I
, Use
);
151 return std::make_pair(I
->valno
, false);
154 /// This method is used when we want to extend the segment specified
155 /// by I to end at the specified endpoint. To do this, we should
156 /// merge and eliminate all segments that this will overlap
157 /// with. The iterator is not invalidated.
158 void extendSegmentEndTo(iterator I
, SlotIndex NewEnd
) {
159 assert(I
!= segments().end() && "Not a valid segment!");
160 Segment
*S
= segmentAt(I
);
161 VNInfo
*ValNo
= I
->valno
;
163 // Search for the first segment that we can't merge with.
164 iterator MergeTo
= std::next(I
);
165 for (; MergeTo
!= segments().end() && NewEnd
>= MergeTo
->end
; ++MergeTo
)
166 assert(MergeTo
->valno
== ValNo
&& "Cannot merge with differing values!");
168 // If NewEnd was in the middle of a segment, make sure to get its endpoint.
169 S
->end
= std::max(NewEnd
, std::prev(MergeTo
)->end
);
171 // If the newly formed segment now touches the segment after it and if they
172 // have the same value number, merge the two segments into one segment.
173 if (MergeTo
!= segments().end() && MergeTo
->start
<= I
->end
&&
174 MergeTo
->valno
== ValNo
) {
175 S
->end
= MergeTo
->end
;
179 // Erase any dead segments.
180 segments().erase(std::next(I
), MergeTo
);
183 /// This method is used when we want to extend the segment specified
184 /// by I to start at the specified endpoint. To do this, we should
185 /// merge and eliminate all segments that this will overlap with.
186 iterator
extendSegmentStartTo(iterator I
, SlotIndex NewStart
) {
187 assert(I
!= segments().end() && "Not a valid segment!");
188 Segment
*S
= segmentAt(I
);
189 VNInfo
*ValNo
= I
->valno
;
191 // Search for the first segment that we can't merge with.
192 iterator MergeTo
= I
;
194 if (MergeTo
== segments().begin()) {
196 segments().erase(MergeTo
, I
);
199 assert(MergeTo
->valno
== ValNo
&& "Cannot merge with differing values!");
201 } while (NewStart
<= MergeTo
->start
);
203 // If we start in the middle of another segment, just delete a range and
204 // extend that segment.
205 if (MergeTo
->end
>= NewStart
&& MergeTo
->valno
== ValNo
) {
206 segmentAt(MergeTo
)->end
= S
->end
;
208 // Otherwise, extend the segment right after.
210 Segment
*MergeToSeg
= segmentAt(MergeTo
);
211 MergeToSeg
->start
= NewStart
;
212 MergeToSeg
->end
= S
->end
;
215 segments().erase(std::next(MergeTo
), std::next(I
));
219 iterator
addSegment(Segment S
) {
220 SlotIndex Start
= S
.start
, End
= S
.end
;
221 iterator I
= impl().findInsertPos(S
);
223 // If the inserted segment starts in the middle or right at the end of
224 // another segment, just extend that segment to contain the segment of S.
225 if (I
!= segments().begin()) {
226 iterator B
= std::prev(I
);
227 if (S
.valno
== B
->valno
) {
228 if (B
->start
<= Start
&& B
->end
>= Start
) {
229 extendSegmentEndTo(B
, End
);
233 // Check to make sure that we are not overlapping two live segments with
234 // different valno's.
235 assert(B
->end
<= Start
&&
236 "Cannot overlap two segments with differing ValID's"
237 " (did you def the same reg twice in a MachineInstr?)");
241 // Otherwise, if this segment ends in the middle of, or right next
242 // to, another segment, merge it into that segment.
243 if (I
!= segments().end()) {
244 if (S
.valno
== I
->valno
) {
245 if (I
->start
<= End
) {
246 I
= extendSegmentStartTo(I
, Start
);
248 // If S is a complete superset of a segment, we may need to grow its
251 extendSegmentEndTo(I
, End
);
255 // Check to make sure that we are not overlapping two live segments with
256 // different valno's.
257 assert(I
->start
>= End
&&
258 "Cannot overlap two segments with differing ValID's");
262 // Otherwise, this is just a new segment that doesn't interact with
265 return segments().insert(I
, S
);
269 ImplT
&impl() { return *static_cast<ImplT
*>(this); }
271 CollectionT
&segments() { return impl().segmentsColl(); }
273 Segment
*segmentAt(iterator I
) { return const_cast<Segment
*>(&(*I
)); }
276 //===----------------------------------------------------------------------===//
277 // Instantiation of the methods for calculation of live ranges
278 // based on a segment vector.
279 //===----------------------------------------------------------------------===//
281 class CalcLiveRangeUtilVector
;
282 using CalcLiveRangeUtilVectorBase
=
283 CalcLiveRangeUtilBase
<CalcLiveRangeUtilVector
, LiveRange::iterator
,
284 LiveRange::Segments
>;
286 class CalcLiveRangeUtilVector
: public CalcLiveRangeUtilVectorBase
{
288 CalcLiveRangeUtilVector(LiveRange
*LR
) : CalcLiveRangeUtilVectorBase(LR
) {}
291 friend CalcLiveRangeUtilVectorBase
;
293 LiveRange::Segments
&segmentsColl() { return LR
->segments
; }
295 void insertAtEnd(const Segment
&S
) { LR
->segments
.push_back(S
); }
297 iterator
find(SlotIndex Pos
) { return LR
->find(Pos
); }
299 iterator
findInsertPos(Segment S
) { return llvm::upper_bound(*LR
, S
.start
); }
302 //===----------------------------------------------------------------------===//
303 // Instantiation of the methods for calculation of live ranges
304 // based on a segment set.
305 //===----------------------------------------------------------------------===//
307 class CalcLiveRangeUtilSet
;
308 using CalcLiveRangeUtilSetBase
=
309 CalcLiveRangeUtilBase
<CalcLiveRangeUtilSet
, LiveRange::SegmentSet::iterator
,
310 LiveRange::SegmentSet
>;
312 class CalcLiveRangeUtilSet
: public CalcLiveRangeUtilSetBase
{
314 CalcLiveRangeUtilSet(LiveRange
*LR
) : CalcLiveRangeUtilSetBase(LR
) {}
317 friend CalcLiveRangeUtilSetBase
;
319 LiveRange::SegmentSet
&segmentsColl() { return *LR
->segmentSet
; }
321 void insertAtEnd(const Segment
&S
) {
322 LR
->segmentSet
->insert(LR
->segmentSet
->end(), S
);
325 iterator
find(SlotIndex Pos
) {
327 LR
->segmentSet
->upper_bound(Segment(Pos
, Pos
.getNextSlot(), nullptr));
328 if (I
== LR
->segmentSet
->begin())
330 iterator PrevI
= std::prev(I
);
331 if (Pos
< (*PrevI
).end
)
336 iterator
findInsertPos(Segment S
) {
337 iterator I
= LR
->segmentSet
->upper_bound(S
);
338 if (I
!= LR
->segmentSet
->end() && !(S
.start
< *I
))
344 } // end anonymous namespace
346 //===----------------------------------------------------------------------===//
348 //===----------------------------------------------------------------------===//
350 LiveRange::iterator
LiveRange::find(SlotIndex Pos
) {
351 // This algorithm is basically std::upper_bound.
352 // Unfortunately, std::upper_bound cannot be used with mixed types until we
353 // adopt C++0x. Many libraries can do it, but not all.
354 if (empty() || Pos
>= endIndex())
356 iterator I
= begin();
359 size_t Mid
= Len
>> 1;
360 if (Pos
< I
[Mid
].end
) {
370 VNInfo
*LiveRange::createDeadDef(SlotIndex Def
, VNInfo::Allocator
&VNIAlloc
) {
371 // Use the segment set, if it is available.
372 if (segmentSet
!= nullptr)
373 return CalcLiveRangeUtilSet(this).createDeadDef(Def
, &VNIAlloc
, nullptr);
374 // Otherwise use the segment vector.
375 return CalcLiveRangeUtilVector(this).createDeadDef(Def
, &VNIAlloc
, nullptr);
378 VNInfo
*LiveRange::createDeadDef(VNInfo
*VNI
) {
379 // Use the segment set, if it is available.
380 if (segmentSet
!= nullptr)
381 return CalcLiveRangeUtilSet(this).createDeadDef(VNI
->def
, nullptr, VNI
);
382 // Otherwise use the segment vector.
383 return CalcLiveRangeUtilVector(this).createDeadDef(VNI
->def
, nullptr, VNI
);
386 // overlaps - Return true if the intersection of the two live ranges is
389 // An example for overlaps():
393 // 8: C = A + B ;; last use of A
395 // The live ranges should look like:
401 // A->overlaps(C) should return false since we want to be able to join
404 bool LiveRange::overlapsFrom(const LiveRange
& other
,
405 const_iterator StartPos
) const {
406 assert(!empty() && "empty range");
407 const_iterator i
= begin();
408 const_iterator ie
= end();
409 const_iterator j
= StartPos
;
410 const_iterator je
= other
.end();
412 assert((StartPos
->start
<= i
->start
|| StartPos
== other
.begin()) &&
413 StartPos
!= other
.end() && "Bogus start position hint!");
415 if (i
->start
< j
->start
) {
416 i
= std::upper_bound(i
, ie
, j
->start
);
417 if (i
!= begin()) --i
;
418 } else if (j
->start
< i
->start
) {
420 if (StartPos
!= other
.end() && StartPos
->start
<= i
->start
) {
421 assert(StartPos
< other
.end() && i
< end());
422 j
= std::upper_bound(j
, je
, i
->start
);
423 if (j
!= other
.begin()) --j
;
429 if (j
== je
) return false;
432 if (i
->start
> j
->start
) {
437 if (i
->end
> j
->start
)
445 bool LiveRange::overlaps(const LiveRange
&Other
, const CoalescerPair
&CP
,
446 const SlotIndexes
&Indexes
) const {
447 assert(!empty() && "empty range");
451 // Use binary searches to find initial positions.
452 const_iterator I
= find(Other
.beginIndex());
453 const_iterator IE
= end();
456 const_iterator J
= Other
.find(I
->start
);
457 const_iterator JE
= Other
.end();
462 // J has just been advanced to satisfy:
463 assert(J
->end
>= I
->start
);
464 // Check for an overlap.
465 if (J
->start
< I
->end
) {
466 // I and J are overlapping. Find the later start.
467 SlotIndex Def
= std::max(I
->start
, J
->start
);
468 // Allow the overlap if Def is a coalescable copy.
470 !CP
.isCoalescable(Indexes
.getInstructionFromIndex(Def
)))
473 // Advance the iterator that ends first to check for more overlaps.
474 if (J
->end
> I
->end
) {
478 // Advance J until J->end >= I->start.
482 while (J
->end
< I
->start
);
486 /// overlaps - Return true if the live range overlaps an interval specified
488 bool LiveRange::overlaps(SlotIndex Start
, SlotIndex End
) const {
489 assert(Start
< End
&& "Invalid range");
490 const_iterator I
= std::lower_bound(begin(), end(), End
);
491 return I
!= begin() && (--I
)->end
> Start
;
494 bool LiveRange::covers(const LiveRange
&Other
) const {
496 return Other
.empty();
498 const_iterator I
= begin();
499 for (const Segment
&O
: Other
.segments
) {
500 I
= advanceTo(I
, O
.start
);
501 if (I
== end() || I
->start
> O
.start
)
504 // Check adjacent live segments and see if we can get behind O.end.
505 while (I
->end
< O
.end
) {
506 const_iterator Last
= I
;
507 // Get next segment and abort if it was not adjacent.
509 if (I
== end() || Last
->end
!= I
->start
)
516 /// ValNo is dead, remove it. If it is the largest value number, just nuke it
517 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
518 /// it can be nuked later.
519 void LiveRange::markValNoForDeletion(VNInfo
*ValNo
) {
520 if (ValNo
->id
== getNumValNums()-1) {
523 } while (!valnos
.empty() && valnos
.back()->isUnused());
529 /// RenumberValues - Renumber all values in order of appearance and delete the
530 /// remaining unused values.
531 void LiveRange::RenumberValues() {
532 SmallPtrSet
<VNInfo
*, 8> Seen
;
534 for (const Segment
&S
: segments
) {
535 VNInfo
*VNI
= S
.valno
;
536 if (!Seen
.insert(VNI
).second
)
538 assert(!VNI
->isUnused() && "Unused valno used by live segment");
539 VNI
->id
= (unsigned)valnos
.size();
540 valnos
.push_back(VNI
);
544 void LiveRange::addSegmentToSet(Segment S
) {
545 CalcLiveRangeUtilSet(this).addSegment(S
);
548 LiveRange::iterator
LiveRange::addSegment(Segment S
) {
549 // Use the segment set, if it is available.
550 if (segmentSet
!= nullptr) {
554 // Otherwise use the segment vector.
555 return CalcLiveRangeUtilVector(this).addSegment(S
);
558 void LiveRange::append(const Segment S
) {
559 // Check that the segment belongs to the back of the list.
560 assert(segments
.empty() || segments
.back().end
<= S
.start
);
561 segments
.push_back(S
);
564 std::pair
<VNInfo
*,bool> LiveRange::extendInBlock(ArrayRef
<SlotIndex
> Undefs
,
565 SlotIndex StartIdx
, SlotIndex Kill
) {
566 // Use the segment set, if it is available.
567 if (segmentSet
!= nullptr)
568 return CalcLiveRangeUtilSet(this).extendInBlock(Undefs
, StartIdx
, Kill
);
569 // Otherwise use the segment vector.
570 return CalcLiveRangeUtilVector(this).extendInBlock(Undefs
, StartIdx
, Kill
);
573 VNInfo
*LiveRange::extendInBlock(SlotIndex StartIdx
, SlotIndex Kill
) {
574 // Use the segment set, if it is available.
575 if (segmentSet
!= nullptr)
576 return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx
, Kill
);
577 // Otherwise use the segment vector.
578 return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx
, Kill
);
581 /// Remove the specified segment from this range. Note that the segment must
582 /// be in a single Segment in its entirety.
583 void LiveRange::removeSegment(SlotIndex Start
, SlotIndex End
,
584 bool RemoveDeadValNo
) {
585 // Find the Segment containing this span.
586 iterator I
= find(Start
);
587 assert(I
!= end() && "Segment is not in range!");
588 assert(I
->containsInterval(Start
, End
)
589 && "Segment is not entirely in range!");
591 // If the span we are removing is at the start of the Segment, adjust it.
592 VNInfo
*ValNo
= I
->valno
;
593 if (I
->start
== Start
) {
595 if (RemoveDeadValNo
) {
596 // Check if val# is dead.
598 for (const_iterator II
= begin(), EE
= end(); II
!= EE
; ++II
)
599 if (II
!= I
&& II
->valno
== ValNo
) {
604 // Now that ValNo is dead, remove it.
605 markValNoForDeletion(ValNo
);
609 segments
.erase(I
); // Removed the whole Segment.
615 // Otherwise if the span we are removing is at the end of the Segment,
616 // adjust the other way.
622 // Otherwise, we are splitting the Segment into two pieces.
623 SlotIndex OldEnd
= I
->end
;
624 I
->end
= Start
; // Trim the old segment.
626 // Insert the new one.
627 segments
.insert(std::next(I
), Segment(End
, OldEnd
, ValNo
));
630 /// removeValNo - Remove all the segments defined by the specified value#.
631 /// Also remove the value# from value# list.
632 void LiveRange::removeValNo(VNInfo
*ValNo
) {
634 segments
.erase(remove_if(*this, [ValNo
](const Segment
&S
) {
635 return S
.valno
== ValNo
;
637 // Now that ValNo is dead, remove it.
638 markValNoForDeletion(ValNo
);
641 void LiveRange::join(LiveRange
&Other
,
642 const int *LHSValNoAssignments
,
643 const int *RHSValNoAssignments
,
644 SmallVectorImpl
<VNInfo
*> &NewVNInfo
) {
647 // Determine if any of our values are mapped. This is uncommon, so we want
648 // to avoid the range scan if not.
649 bool MustMapCurValNos
= false;
650 unsigned NumVals
= getNumValNums();
651 unsigned NumNewVals
= NewVNInfo
.size();
652 for (unsigned i
= 0; i
!= NumVals
; ++i
) {
653 unsigned LHSValID
= LHSValNoAssignments
[i
];
655 (NewVNInfo
[LHSValID
] && NewVNInfo
[LHSValID
] != getValNumInfo(i
))) {
656 MustMapCurValNos
= true;
661 // If we have to apply a mapping to our base range assignment, rewrite it now.
662 if (MustMapCurValNos
&& !empty()) {
663 // Map the first live range.
665 iterator OutIt
= begin();
666 OutIt
->valno
= NewVNInfo
[LHSValNoAssignments
[OutIt
->valno
->id
]];
667 for (iterator I
= std::next(OutIt
), E
= end(); I
!= E
; ++I
) {
668 VNInfo
* nextValNo
= NewVNInfo
[LHSValNoAssignments
[I
->valno
->id
]];
669 assert(nextValNo
&& "Huh?");
671 // If this live range has the same value # as its immediate predecessor,
672 // and if they are neighbors, remove one Segment. This happens when we
673 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
674 if (OutIt
->valno
== nextValNo
&& OutIt
->end
== I
->start
) {
677 // Didn't merge. Move OutIt to the next segment,
679 OutIt
->valno
= nextValNo
;
681 OutIt
->start
= I
->start
;
686 // If we merge some segments, chop off the end.
688 segments
.erase(OutIt
, end());
691 // Rewrite Other values before changing the VNInfo ids.
692 // This can leave Other in an invalid state because we're not coalescing
693 // touching segments that now have identical values. That's OK since Other is
694 // not supposed to be valid after calling join();
695 for (Segment
&S
: Other
.segments
)
696 S
.valno
= NewVNInfo
[RHSValNoAssignments
[S
.valno
->id
]];
698 // Update val# info. Renumber them and make sure they all belong to this
699 // LiveRange now. Also remove dead val#'s.
700 unsigned NumValNos
= 0;
701 for (unsigned i
= 0; i
< NumNewVals
; ++i
) {
702 VNInfo
*VNI
= NewVNInfo
[i
];
704 if (NumValNos
>= NumVals
)
705 valnos
.push_back(VNI
);
707 valnos
[NumValNos
] = VNI
;
708 VNI
->id
= NumValNos
++; // Renumber val#.
711 if (NumNewVals
< NumVals
)
712 valnos
.resize(NumNewVals
); // shrinkify
714 // Okay, now insert the RHS live segments into the LHS.
715 LiveRangeUpdater
Updater(this);
716 for (Segment
&S
: Other
.segments
)
720 /// Merge all of the segments in RHS into this live range as the specified
721 /// value number. The segments in RHS are allowed to overlap with segments in
722 /// the current range, but only if the overlapping segments have the
723 /// specified value number.
724 void LiveRange::MergeSegmentsInAsValue(const LiveRange
&RHS
,
726 LiveRangeUpdater
Updater(this);
727 for (const Segment
&S
: RHS
.segments
)
728 Updater
.add(S
.start
, S
.end
, LHSValNo
);
731 /// MergeValueInAsValue - Merge all of the live segments of a specific val#
732 /// in RHS into this live range as the specified value number.
733 /// The segments in RHS are allowed to overlap with segments in the
734 /// current range, it will replace the value numbers of the overlaped
735 /// segments with the specified value number.
736 void LiveRange::MergeValueInAsValue(const LiveRange
&RHS
,
737 const VNInfo
*RHSValNo
,
739 LiveRangeUpdater
Updater(this);
740 for (const Segment
&S
: RHS
.segments
)
741 if (S
.valno
== RHSValNo
)
742 Updater
.add(S
.start
, S
.end
, LHSValNo
);
745 /// MergeValueNumberInto - This method is called when two value nubmers
746 /// are found to be equivalent. This eliminates V1, replacing all
747 /// segments with the V1 value number with the V2 value number. This can
748 /// cause merging of V1/V2 values numbers and compaction of the value space.
749 VNInfo
*LiveRange::MergeValueNumberInto(VNInfo
*V1
, VNInfo
*V2
) {
750 assert(V1
!= V2
&& "Identical value#'s are always equivalent!");
752 // This code actually merges the (numerically) larger value number into the
753 // smaller value number, which is likely to allow us to compactify the value
754 // space. The only thing we have to be careful of is to preserve the
755 // instruction that defines the result value.
757 // Make sure V2 is smaller than V1.
758 if (V1
->id
< V2
->id
) {
763 // Merge V1 segments into V2.
764 for (iterator I
= begin(); I
!= end(); ) {
766 if (S
->valno
!= V1
) continue; // Not a V1 Segment.
768 // Okay, we found a V1 live range. If it had a previous, touching, V2 live
772 if (Prev
->valno
== V2
&& Prev
->end
== S
->start
) {
775 // Erase this live-range.
782 // Okay, now we have a V1 or V2 live range that is maximally merged forward.
783 // Ensure that it is a V2 live-range.
786 // If we can merge it into later V2 segments, do so now. We ignore any
787 // following V1 segments, as they will be merged in subsequent iterations
790 if (I
->start
== S
->end
&& I
->valno
== V2
) {
798 // Now that V1 is dead, remove it.
799 markValNoForDeletion(V1
);
804 void LiveRange::flushSegmentSet() {
805 assert(segmentSet
!= nullptr && "segment set must have been created");
808 "segment set can be used only initially before switching to the array");
809 segments
.append(segmentSet
->begin(), segmentSet
->end());
810 segmentSet
= nullptr;
814 bool LiveRange::isLiveAtIndexes(ArrayRef
<SlotIndex
> Slots
) const {
815 ArrayRef
<SlotIndex
>::iterator SlotI
= Slots
.begin();
816 ArrayRef
<SlotIndex
>::iterator SlotE
= Slots
.end();
818 // If there are no regmask slots, we have nothing to search.
822 // Start our search at the first segment that ends after the first slot.
823 const_iterator SegmentI
= find(*SlotI
);
824 const_iterator SegmentE
= end();
826 // If there are no segments that end after the first slot, we're done.
827 if (SegmentI
== SegmentE
)
830 // Look for each slot in the live range.
831 for ( ; SlotI
!= SlotE
; ++SlotI
) {
832 // Go to the next segment that ends after the current slot.
833 // The slot may be within a hole in the range.
834 SegmentI
= advanceTo(SegmentI
, *SlotI
);
835 if (SegmentI
== SegmentE
)
838 // If this segment contains the slot, we're done.
839 if (SegmentI
->contains(*SlotI
))
841 // Otherwise, look for the next slot.
844 // We didn't find a segment containing any of the slots.
848 void LiveInterval::freeSubRange(SubRange
*S
) {
850 // Memory was allocated with BumpPtr allocator and is not freed here.
853 void LiveInterval::removeEmptySubRanges() {
854 SubRange
**NextPtr
= &SubRanges
;
855 SubRange
*I
= *NextPtr
;
856 while (I
!= nullptr) {
862 // Skip empty subranges until we find the first nonempty one.
864 SubRange
*Next
= I
->Next
;
867 } while (I
!= nullptr && I
->empty());
872 void LiveInterval::clearSubRanges() {
873 for (SubRange
*I
= SubRanges
, *Next
; I
!= nullptr; I
= Next
) {
880 /// For each VNI in \p SR, check whether or not that value defines part
881 /// of the mask describe by \p LaneMask and if not, remove that value
883 static void stripValuesNotDefiningMask(unsigned Reg
, LiveInterval::SubRange
&SR
,
884 LaneBitmask LaneMask
,
885 const SlotIndexes
&Indexes
,
886 const TargetRegisterInfo
&TRI
) {
887 // Phys reg should not be tracked at subreg level.
888 // Same for noreg (Reg == 0).
889 if (!Register::isVirtualRegister(Reg
) || !Reg
)
891 // Remove the values that don't define those lanes.
892 SmallVector
<VNInfo
*, 8> ToBeRemoved
;
893 for (VNInfo
*VNI
: SR
.valnos
) {
896 // PHI definitions don't have MI attached, so there is nothing
897 // we can use to strip the VNI.
900 const MachineInstr
*MI
= Indexes
.getInstructionFromIndex(VNI
->def
);
901 assert(MI
&& "Cannot find the definition of a value");
903 for (ConstMIBundleOperands
MOI(*MI
); MOI
.isValid(); ++MOI
) {
904 if (!MOI
->isReg() || !MOI
->isDef())
906 if (MOI
->getReg() != Reg
)
908 if ((TRI
.getSubRegIndexLaneMask(MOI
->getSubReg()) & LaneMask
).none())
915 ToBeRemoved
.push_back(VNI
);
917 for (VNInfo
*VNI
: ToBeRemoved
)
920 // If the subrange is empty at this point, the MIR is invalid. Do not assert
921 // and let the verifier catch this case.
924 void LiveInterval::refineSubRanges(
925 BumpPtrAllocator
&Allocator
, LaneBitmask LaneMask
,
926 std::function
<void(LiveInterval::SubRange
&)> Apply
,
927 const SlotIndexes
&Indexes
, const TargetRegisterInfo
&TRI
) {
928 LaneBitmask ToApply
= LaneMask
;
929 for (SubRange
&SR
: subranges()) {
930 LaneBitmask SRMask
= SR
.LaneMask
;
931 LaneBitmask Matching
= SRMask
& LaneMask
;
935 SubRange
*MatchingRange
;
936 if (SRMask
== Matching
) {
937 // The subrange fits (it does not cover bits outside \p LaneMask).
940 // We have to split the subrange into a matching and non-matching part.
941 // Reduce lanemask of existing lane to non-matching part.
942 SR
.LaneMask
= SRMask
& ~Matching
;
943 // Create a new subrange for the matching part
944 MatchingRange
= createSubRangeFrom(Allocator
, Matching
, SR
);
945 // Now that the subrange is split in half, make sure we
946 // only keep in the subranges the VNIs that touch the related half.
947 stripValuesNotDefiningMask(reg
, *MatchingRange
, Matching
, Indexes
, TRI
);
948 stripValuesNotDefiningMask(reg
, SR
, SR
.LaneMask
, Indexes
, TRI
);
950 Apply(*MatchingRange
);
951 ToApply
&= ~Matching
;
953 // Create a new subrange if there are uncovered bits left.
955 SubRange
*NewRange
= createSubRange(Allocator
, ToApply
);
960 unsigned LiveInterval::getSize() const {
962 for (const Segment
&S
: segments
)
963 Sum
+= S
.start
.distance(S
.end
);
967 void LiveInterval::computeSubRangeUndefs(SmallVectorImpl
<SlotIndex
> &Undefs
,
968 LaneBitmask LaneMask
,
969 const MachineRegisterInfo
&MRI
,
970 const SlotIndexes
&Indexes
) const {
971 assert(Register::isVirtualRegister(reg
));
972 LaneBitmask VRegMask
= MRI
.getMaxLaneMaskForVReg(reg
);
973 assert((VRegMask
& LaneMask
).any());
974 const TargetRegisterInfo
&TRI
= *MRI
.getTargetRegisterInfo();
975 for (const MachineOperand
&MO
: MRI
.def_operands(reg
)) {
978 unsigned SubReg
= MO
.getSubReg();
979 assert(SubReg
!= 0 && "Undef should only be set on subreg defs");
980 LaneBitmask DefMask
= TRI
.getSubRegIndexLaneMask(SubReg
);
981 LaneBitmask UndefMask
= VRegMask
& ~DefMask
;
982 if ((UndefMask
& LaneMask
).any()) {
983 const MachineInstr
&MI
= *MO
.getParent();
984 bool EarlyClobber
= MO
.isEarlyClobber();
985 SlotIndex Pos
= Indexes
.getInstructionIndex(MI
).getRegSlot(EarlyClobber
);
986 Undefs
.push_back(Pos
);
991 raw_ostream
& llvm::operator<<(raw_ostream
& OS
, const LiveRange::Segment
&S
) {
992 return OS
<< '[' << S
.start
<< ',' << S
.end
<< ':' << S
.valno
->id
<< ')';
995 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
996 LLVM_DUMP_METHOD
void LiveRange::Segment::dump() const {
997 dbgs() << *this << '\n';
1001 void LiveRange::print(raw_ostream
&OS
) const {
1005 for (const Segment
&S
: segments
) {
1007 assert(S
.valno
== getValNumInfo(S
.valno
->id
) && "Bad VNInfo");
1011 // Print value number info.
1012 if (getNumValNums()) {
1015 for (const_vni_iterator i
= vni_begin(), e
= vni_end(); i
!= e
;
1017 const VNInfo
*vni
= *i
;
1018 if (vnum
) OS
<< ' ';
1020 if (vni
->isUnused()) {
1024 if (vni
->isPHIDef())
1031 void LiveInterval::SubRange::print(raw_ostream
&OS
) const {
1032 OS
<< " L" << PrintLaneMask(LaneMask
) << ' '
1033 << static_cast<const LiveRange
&>(*this);
1036 void LiveInterval::print(raw_ostream
&OS
) const {
1037 OS
<< printReg(reg
) << ' ';
1040 for (const SubRange
&SR
: subranges())
1042 OS
<< " weight:" << weight
;
1045 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1046 LLVM_DUMP_METHOD
void LiveRange::dump() const {
1047 dbgs() << *this << '\n';
1050 LLVM_DUMP_METHOD
void LiveInterval::SubRange::dump() const {
1051 dbgs() << *this << '\n';
1054 LLVM_DUMP_METHOD
void LiveInterval::dump() const {
1055 dbgs() << *this << '\n';
1060 void LiveRange::verify() const {
1061 for (const_iterator I
= begin(), E
= end(); I
!= E
; ++I
) {
1062 assert(I
->start
.isValid());
1063 assert(I
->end
.isValid());
1064 assert(I
->start
< I
->end
);
1065 assert(I
->valno
!= nullptr);
1066 assert(I
->valno
->id
< valnos
.size());
1067 assert(I
->valno
== valnos
[I
->valno
->id
]);
1068 if (std::next(I
) != E
) {
1069 assert(I
->end
<= std::next(I
)->start
);
1070 if (I
->end
== std::next(I
)->start
)
1071 assert(I
->valno
!= std::next(I
)->valno
);
1076 void LiveInterval::verify(const MachineRegisterInfo
*MRI
) const {
1079 // Make sure SubRanges are fine and LaneMasks are disjunct.
1081 LaneBitmask MaxMask
= MRI
!= nullptr ? MRI
->getMaxLaneMaskForVReg(reg
)
1082 : LaneBitmask::getAll();
1083 for (const SubRange
&SR
: subranges()) {
1084 // Subrange lanemask should be disjunct to any previous subrange masks.
1085 assert((Mask
& SR
.LaneMask
).none());
1086 Mask
|= SR
.LaneMask
;
1088 // subrange mask should not contained in maximum lane mask for the vreg.
1089 assert((Mask
& ~MaxMask
).none());
1090 // empty subranges must be removed.
1091 assert(!SR
.empty());
1094 // Main liverange should cover subrange.
1100 //===----------------------------------------------------------------------===//
1101 // LiveRangeUpdater class
1102 //===----------------------------------------------------------------------===//
1104 // The LiveRangeUpdater class always maintains these invariants:
1106 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
1107 // This is the initial state, and the state created by flush().
1108 // In this state, isDirty() returns false.
1110 // Otherwise, segments are kept in three separate areas:
1112 // 1. [begin; WriteI) at the front of LR.
1113 // 2. [ReadI; end) at the back of LR.
1116 // - LR.begin() <= WriteI <= ReadI <= LR.end().
1117 // - Segments in all three areas are fully ordered and coalesced.
1118 // - Segments in area 1 precede and can't coalesce with segments in area 2.
1119 // - Segments in Spills precede and can't coalesce with segments in area 2.
1120 // - No coalescing is possible between segments in Spills and segments in area
1121 // 1, and there are no overlapping segments.
1123 // The segments in Spills are not ordered with respect to the segments in area
1124 // 1. They need to be merged.
1126 // When they exist, Spills.back().start <= LastStart,
1127 // and WriteI[-1].start <= LastStart.
1129 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1130 void LiveRangeUpdater::print(raw_ostream
&OS
) const {
1133 OS
<< "Clean updater: " << *LR
<< '\n';
1135 OS
<< "Null updater.\n";
1138 assert(LR
&& "Can't have null LR in dirty updater.");
1139 OS
<< " updater with gap = " << (ReadI
- WriteI
)
1140 << ", last start = " << LastStart
1142 for (const auto &S
: make_range(LR
->begin(), WriteI
))
1145 for (unsigned I
= 0, E
= Spills
.size(); I
!= E
; ++I
)
1146 OS
<< ' ' << Spills
[I
];
1148 for (const auto &S
: make_range(ReadI
, LR
->end()))
1153 LLVM_DUMP_METHOD
void LiveRangeUpdater::dump() const {
1158 // Determine if A and B should be coalesced.
1159 static inline bool coalescable(const LiveRange::Segment
&A
,
1160 const LiveRange::Segment
&B
) {
1161 assert(A
.start
<= B
.start
&& "Unordered live segments.");
1162 if (A
.end
== B
.start
)
1163 return A
.valno
== B
.valno
;
1164 if (A
.end
< B
.start
)
1166 assert(A
.valno
== B
.valno
&& "Cannot overlap different values");
1170 void LiveRangeUpdater::add(LiveRange::Segment Seg
) {
1171 assert(LR
&& "Cannot add to a null destination");
1173 // Fall back to the regular add method if the live range
1174 // is using the segment set instead of the segment vector.
1175 if (LR
->segmentSet
!= nullptr) {
1176 LR
->addSegmentToSet(Seg
);
1180 // Flush the state if Start moves backwards.
1181 if (!LastStart
.isValid() || LastStart
> Seg
.start
) {
1184 // This brings us to an uninitialized state. Reinitialize.
1185 assert(Spills
.empty() && "Leftover spilled segments");
1186 WriteI
= ReadI
= LR
->begin();
1189 // Remember start for next time.
1190 LastStart
= Seg
.start
;
1192 // Advance ReadI until it ends after Seg.start.
1193 LiveRange::iterator E
= LR
->end();
1194 if (ReadI
!= E
&& ReadI
->end
<= Seg
.start
) {
1195 // First try to close the gap between WriteI and ReadI with spills.
1196 if (ReadI
!= WriteI
)
1198 // Then advance ReadI.
1199 if (ReadI
== WriteI
)
1200 ReadI
= WriteI
= LR
->find(Seg
.start
);
1202 while (ReadI
!= E
&& ReadI
->end
<= Seg
.start
)
1203 *WriteI
++ = *ReadI
++;
1206 assert(ReadI
== E
|| ReadI
->end
> Seg
.start
);
1208 // Check if the ReadI segment begins early.
1209 if (ReadI
!= E
&& ReadI
->start
<= Seg
.start
) {
1210 assert(ReadI
->valno
== Seg
.valno
&& "Cannot overlap different values");
1211 // Bail if Seg is completely contained in ReadI.
1212 if (ReadI
->end
>= Seg
.end
)
1214 // Coalesce into Seg.
1215 Seg
.start
= ReadI
->start
;
1219 // Coalesce as much as possible from ReadI into Seg.
1220 while (ReadI
!= E
&& coalescable(Seg
, *ReadI
)) {
1221 Seg
.end
= std::max(Seg
.end
, ReadI
->end
);
1225 // Try coalescing Spills.back() into Seg.
1226 if (!Spills
.empty() && coalescable(Spills
.back(), Seg
)) {
1227 Seg
.start
= Spills
.back().start
;
1228 Seg
.end
= std::max(Spills
.back().end
, Seg
.end
);
1232 // Try coalescing Seg into WriteI[-1].
1233 if (WriteI
!= LR
->begin() && coalescable(WriteI
[-1], Seg
)) {
1234 WriteI
[-1].end
= std::max(WriteI
[-1].end
, Seg
.end
);
1238 // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
1239 if (WriteI
!= ReadI
) {
1244 // Finally, append to LR or Spills.
1246 LR
->segments
.push_back(Seg
);
1247 WriteI
= ReadI
= LR
->end();
1249 Spills
.push_back(Seg
);
1252 // Merge as many spilled segments as possible into the gap between WriteI
1253 // and ReadI. Advance WriteI to reflect the inserted instructions.
1254 void LiveRangeUpdater::mergeSpills() {
1255 // Perform a backwards merge of Spills and [SpillI;WriteI).
1256 size_t GapSize
= ReadI
- WriteI
;
1257 size_t NumMoved
= std::min(Spills
.size(), GapSize
);
1258 LiveRange::iterator Src
= WriteI
;
1259 LiveRange::iterator Dst
= Src
+ NumMoved
;
1260 LiveRange::iterator SpillSrc
= Spills
.end();
1261 LiveRange::iterator B
= LR
->begin();
1263 // This is the new WriteI position after merging spills.
1266 // Now merge Src and Spills backwards.
1267 while (Src
!= Dst
) {
1268 if (Src
!= B
&& Src
[-1].start
> SpillSrc
[-1].start
)
1271 *--Dst
= *--SpillSrc
;
1273 assert(NumMoved
== size_t(Spills
.end() - SpillSrc
));
1274 Spills
.erase(SpillSrc
, Spills
.end());
1277 void LiveRangeUpdater::flush() {
1280 // Clear the dirty state.
1281 LastStart
= SlotIndex();
1283 assert(LR
&& "Cannot add to a null destination");
1285 // Nothing to merge?
1286 if (Spills
.empty()) {
1287 LR
->segments
.erase(WriteI
, ReadI
);
1292 // Resize the WriteI - ReadI gap to match Spills.
1293 size_t GapSize
= ReadI
- WriteI
;
1294 if (GapSize
< Spills
.size()) {
1295 // The gap is too small. Make some room.
1296 size_t WritePos
= WriteI
- LR
->begin();
1297 LR
->segments
.insert(ReadI
, Spills
.size() - GapSize
, LiveRange::Segment());
1298 // This also invalidated ReadI, but it is recomputed below.
1299 WriteI
= LR
->begin() + WritePos
;
1301 // Shrink the gap if necessary.
1302 LR
->segments
.erase(WriteI
+ Spills
.size(), ReadI
);
1304 ReadI
= WriteI
+ Spills
.size();
1309 unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange
&LR
) {
1310 // Create initial equivalence classes.
1312 EqClass
.grow(LR
.getNumValNums());
1314 const VNInfo
*used
= nullptr, *unused
= nullptr;
1316 // Determine connections.
1317 for (const VNInfo
*VNI
: LR
.valnos
) {
1318 // Group all unused values into one class.
1319 if (VNI
->isUnused()) {
1321 EqClass
.join(unused
->id
, VNI
->id
);
1326 if (VNI
->isPHIDef()) {
1327 const MachineBasicBlock
*MBB
= LIS
.getMBBFromIndex(VNI
->def
);
1328 assert(MBB
&& "Phi-def has no defining MBB");
1329 // Connect to values live out of predecessors.
1330 for (MachineBasicBlock::const_pred_iterator PI
= MBB
->pred_begin(),
1331 PE
= MBB
->pred_end(); PI
!= PE
; ++PI
)
1332 if (const VNInfo
*PVNI
= LR
.getVNInfoBefore(LIS
.getMBBEndIdx(*PI
)))
1333 EqClass
.join(VNI
->id
, PVNI
->id
);
1335 // Normal value defined by an instruction. Check for two-addr redef.
1336 // FIXME: This could be coincidental. Should we really check for a tied
1337 // operand constraint?
1338 // Note that VNI->def may be a use slot for an early clobber def.
1339 if (const VNInfo
*UVNI
= LR
.getVNInfoBefore(VNI
->def
))
1340 EqClass
.join(VNI
->id
, UVNI
->id
);
1344 // Lump all the unused values in with the last used value.
1346 EqClass
.join(used
->id
, unused
->id
);
1349 return EqClass
.getNumClasses();
1352 void ConnectedVNInfoEqClasses::Distribute(LiveInterval
&LI
, LiveInterval
*LIV
[],
1353 MachineRegisterInfo
&MRI
) {
1354 // Rewrite instructions.
1355 for (MachineRegisterInfo::reg_iterator RI
= MRI
.reg_begin(LI
.reg
),
1356 RE
= MRI
.reg_end(); RI
!= RE
;) {
1357 MachineOperand
&MO
= *RI
;
1358 MachineInstr
*MI
= RI
->getParent();
1361 if (MI
->isDebugValue()) {
1362 // DBG_VALUE instructions don't have slot indexes, so get the index of
1363 // the instruction before them. The value is defined there too.
1364 SlotIndex Idx
= LIS
.getSlotIndexes()->getIndexBefore(*MI
);
1365 VNI
= LI
.Query(Idx
).valueOut();
1367 SlotIndex Idx
= LIS
.getInstructionIndex(*MI
);
1368 LiveQueryResult LRQ
= LI
.Query(Idx
);
1369 VNI
= MO
.readsReg() ? LRQ
.valueIn() : LRQ
.valueDefined();
1371 // In the case of an <undef> use that isn't tied to any def, VNI will be
1372 // NULL. If the use is tied to a def, VNI will be the defined value.
1375 if (unsigned EqClass
= getEqClass(VNI
))
1376 MO
.setReg(LIV
[EqClass
-1]->reg
);
1379 // Distribute subregister liveranges.
1380 if (LI
.hasSubRanges()) {
1381 unsigned NumComponents
= EqClass
.getNumClasses();
1382 SmallVector
<unsigned, 8> VNIMapping
;
1383 SmallVector
<LiveInterval::SubRange
*, 8> SubRanges
;
1384 BumpPtrAllocator
&Allocator
= LIS
.getVNInfoAllocator();
1385 for (LiveInterval::SubRange
&SR
: LI
.subranges()) {
1386 // Create new subranges in the split intervals and construct a mapping
1387 // for the VNInfos in the subrange.
1388 unsigned NumValNos
= SR
.valnos
.size();
1390 VNIMapping
.reserve(NumValNos
);
1392 SubRanges
.resize(NumComponents
-1, nullptr);
1393 for (unsigned I
= 0; I
< NumValNos
; ++I
) {
1394 const VNInfo
&VNI
= *SR
.valnos
[I
];
1395 unsigned ComponentNum
;
1396 if (VNI
.isUnused()) {
1399 const VNInfo
*MainRangeVNI
= LI
.getVNInfoAt(VNI
.def
);
1400 assert(MainRangeVNI
!= nullptr
1401 && "SubRange def must have corresponding main range def");
1402 ComponentNum
= getEqClass(MainRangeVNI
);
1403 if (ComponentNum
> 0 && SubRanges
[ComponentNum
-1] == nullptr) {
1404 SubRanges
[ComponentNum
-1]
1405 = LIV
[ComponentNum
-1]->createSubRange(Allocator
, SR
.LaneMask
);
1408 VNIMapping
.push_back(ComponentNum
);
1410 DistributeRange(SR
, SubRanges
.data(), VNIMapping
);
1412 LI
.removeEmptySubRanges();
1415 // Distribute main liverange.
1416 DistributeRange(LI
, LIV
, EqClass
);