1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
25 //===----------------------------------------------------------------------===//
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachinePostDominators.h"
44 #include "llvm/CodeGen/TailDuplicator.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Allocator.h"
53 #include "llvm/Support/BlockFrequency.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetMachine.h"
73 #define DEBUG_TYPE "block-placement"
75 STATISTIC(NumCondBranches
, "Number of conditional branches");
76 STATISTIC(NumUncondBranches
, "Number of unconditional branches");
77 STATISTIC(CondBranchTakenFreq
,
78 "Potential frequency of taking conditional branches");
79 STATISTIC(UncondBranchTakenFreq
,
80 "Potential frequency of taking unconditional branches");
82 static cl::opt
<unsigned> AlignAllBlock(
84 cl::desc("Force the alignment of all blocks in the function in log2 format "
85 "(e.g 4 means align on 16B boundaries)."),
86 cl::init(0), cl::Hidden
);
88 static cl::opt
<unsigned> AlignAllNonFallThruBlocks(
89 "align-all-nofallthru-blocks",
90 cl::desc("Force the alignment of all blocks that have no fall-through "
91 "predecessors (i.e. don't add nops that are executed). In log2 "
92 "format (e.g 4 means align on 16B boundaries)."),
93 cl::init(0), cl::Hidden
);
95 // FIXME: Find a good default for this flag and remove the flag.
96 static cl::opt
<unsigned> ExitBlockBias(
97 "block-placement-exit-block-bias",
98 cl::desc("Block frequency percentage a loop exit block needs "
99 "over the original exit to be considered the new exit."),
100 cl::init(0), cl::Hidden
);
103 // - Outlining: placement of a basic block outside the chain or hot path.
105 static cl::opt
<unsigned> LoopToColdBlockRatio(
106 "loop-to-cold-block-ratio",
107 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
108 "(frequency of block) is greater than this ratio"),
109 cl::init(5), cl::Hidden
);
111 static cl::opt
<bool> ForceLoopColdBlock(
112 "force-loop-cold-block",
113 cl::desc("Force outlining cold blocks from loops."),
114 cl::init(false), cl::Hidden
);
117 PreciseRotationCost("precise-rotation-cost",
118 cl::desc("Model the cost of loop rotation more "
119 "precisely by using profile data."),
120 cl::init(false), cl::Hidden
);
123 ForcePreciseRotationCost("force-precise-rotation-cost",
124 cl::desc("Force the use of precise cost "
125 "loop rotation strategy."),
126 cl::init(false), cl::Hidden
);
128 static cl::opt
<unsigned> MisfetchCost(
130 cl::desc("Cost that models the probabilistic risk of an instruction "
131 "misfetch due to a jump comparing to falling through, whose cost "
133 cl::init(1), cl::Hidden
);
135 static cl::opt
<unsigned> JumpInstCost("jump-inst-cost",
136 cl::desc("Cost of jump instructions."),
137 cl::init(1), cl::Hidden
);
139 TailDupPlacement("tail-dup-placement",
140 cl::desc("Perform tail duplication during placement. "
141 "Creates more fallthrough opportunites in "
142 "outline branches."),
143 cl::init(true), cl::Hidden
);
146 BranchFoldPlacement("branch-fold-placement",
147 cl::desc("Perform branch folding during placement. "
148 "Reduces code size."),
149 cl::init(true), cl::Hidden
);
151 // Heuristic for tail duplication.
152 static cl::opt
<unsigned> TailDupPlacementThreshold(
153 "tail-dup-placement-threshold",
154 cl::desc("Instruction cutoff for tail duplication during layout. "
155 "Tail merging during layout is forced to have a threshold "
156 "that won't conflict."), cl::init(2),
159 // Heuristic for aggressive tail duplication.
160 static cl::opt
<unsigned> TailDupPlacementAggressiveThreshold(
161 "tail-dup-placement-aggressive-threshold",
162 cl::desc("Instruction cutoff for aggressive tail duplication during "
163 "layout. Used at -O3. Tail merging during layout is forced to "
164 "have a threshold that won't conflict."), cl::init(4),
167 // Heuristic for tail duplication.
168 static cl::opt
<unsigned> TailDupPlacementPenalty(
169 "tail-dup-placement-penalty",
170 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
171 "Copying can increase fallthrough, but it also increases icache "
172 "pressure. This parameter controls the penalty to account for that. "
173 "Percent as integer."),
177 // Heuristic for triangle chains.
178 static cl::opt
<unsigned> TriangleChainCount(
179 "triangle-chain-count",
180 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
181 "triangle tail duplication heuristic to kick in. 0 to disable."),
185 extern cl::opt
<unsigned> StaticLikelyProb
;
186 extern cl::opt
<unsigned> ProfileLikelyProb
;
188 // Internal option used to control BFI display only after MBP pass.
189 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
190 // -view-block-layout-with-bfi=
191 extern cl::opt
<GVDAGType
> ViewBlockLayoutWithBFI
;
193 // Command line option to specify the name of the function for CFG dump
194 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
195 extern cl::opt
<std::string
> ViewBlockFreqFuncName
;
201 /// Type for our function-wide basic block -> block chain mapping.
202 using BlockToChainMapType
= DenseMap
<const MachineBasicBlock
*, BlockChain
*>;
204 /// A chain of blocks which will be laid out contiguously.
206 /// This is the datastructure representing a chain of consecutive blocks that
207 /// are profitable to layout together in order to maximize fallthrough
208 /// probabilities and code locality. We also can use a block chain to represent
209 /// a sequence of basic blocks which have some external (correctness)
210 /// requirement for sequential layout.
212 /// Chains can be built around a single basic block and can be merged to grow
213 /// them. They participate in a block-to-chain mapping, which is updated
214 /// automatically as chains are merged together.
216 /// The sequence of blocks belonging to this chain.
218 /// This is the sequence of blocks for a particular chain. These will be laid
219 /// out in-order within the function.
220 SmallVector
<MachineBasicBlock
*, 4> Blocks
;
222 /// A handle to the function-wide basic block to block chain mapping.
224 /// This is retained in each block chain to simplify the computation of child
225 /// block chains for SCC-formation and iteration. We store the edges to child
226 /// basic blocks, and map them back to their associated chains using this
228 BlockToChainMapType
&BlockToChain
;
231 /// Construct a new BlockChain.
233 /// This builds a new block chain representing a single basic block in the
234 /// function. It also registers itself as the chain that block participates
235 /// in with the BlockToChain mapping.
236 BlockChain(BlockToChainMapType
&BlockToChain
, MachineBasicBlock
*BB
)
237 : Blocks(1, BB
), BlockToChain(BlockToChain
) {
238 assert(BB
&& "Cannot create a chain with a null basic block");
239 BlockToChain
[BB
] = this;
242 /// Iterator over blocks within the chain.
243 using iterator
= SmallVectorImpl
<MachineBasicBlock
*>::iterator
;
244 using const_iterator
= SmallVectorImpl
<MachineBasicBlock
*>::const_iterator
;
246 /// Beginning of blocks within the chain.
247 iterator
begin() { return Blocks
.begin(); }
248 const_iterator
begin() const { return Blocks
.begin(); }
250 /// End of blocks within the chain.
251 iterator
end() { return Blocks
.end(); }
252 const_iterator
end() const { return Blocks
.end(); }
254 bool remove(MachineBasicBlock
* BB
) {
255 for(iterator i
= begin(); i
!= end(); ++i
) {
264 /// Merge a block chain into this one.
266 /// This routine merges a block chain into this one. It takes care of forming
267 /// a contiguous sequence of basic blocks, updating the edge list, and
268 /// updating the block -> chain mapping. It does not free or tear down the
269 /// old chain, but the old chain's block list is no longer valid.
270 void merge(MachineBasicBlock
*BB
, BlockChain
*Chain
) {
271 assert(BB
&& "Can't merge a null block.");
272 assert(!Blocks
.empty() && "Can't merge into an empty chain.");
274 // Fast path in case we don't have a chain already.
276 assert(!BlockToChain
[BB
] &&
277 "Passed chain is null, but BB has entry in BlockToChain.");
278 Blocks
.push_back(BB
);
279 BlockToChain
[BB
] = this;
283 assert(BB
== *Chain
->begin() && "Passed BB is not head of Chain.");
284 assert(Chain
->begin() != Chain
->end());
286 // Update the incoming blocks to point to this chain, and add them to the
288 for (MachineBasicBlock
*ChainBB
: *Chain
) {
289 Blocks
.push_back(ChainBB
);
290 assert(BlockToChain
[ChainBB
] == Chain
&& "Incoming blocks not in chain.");
291 BlockToChain
[ChainBB
] = this;
296 /// Dump the blocks in this chain.
297 LLVM_DUMP_METHOD
void dump() {
298 for (MachineBasicBlock
*MBB
: *this)
303 /// Count of predecessors of any block within the chain which have not
304 /// yet been scheduled. In general, we will delay scheduling this chain
305 /// until those predecessors are scheduled (or we find a sufficiently good
306 /// reason to override this heuristic.) Note that when forming loop chains,
307 /// blocks outside the loop are ignored and treated as if they were already
310 /// Note: This field is reinitialized multiple times - once for each loop,
311 /// and then once for the function as a whole.
312 unsigned UnscheduledPredecessors
= 0;
315 class MachineBlockPlacement
: public MachineFunctionPass
{
316 /// A type for a block filter set.
317 using BlockFilterSet
= SmallSetVector
<const MachineBasicBlock
*, 16>;
319 /// Pair struct containing basic block and taildup profitability
320 struct BlockAndTailDupResult
{
321 MachineBasicBlock
*BB
;
325 /// Triple struct containing edge weight and the edge.
326 struct WeightedEdge
{
327 BlockFrequency Weight
;
328 MachineBasicBlock
*Src
;
329 MachineBasicBlock
*Dest
;
332 /// work lists of blocks that are ready to be laid out
333 SmallVector
<MachineBasicBlock
*, 16> BlockWorkList
;
334 SmallVector
<MachineBasicBlock
*, 16> EHPadWorkList
;
336 /// Edges that have already been computed as optimal.
337 DenseMap
<const MachineBasicBlock
*, BlockAndTailDupResult
> ComputedEdges
;
342 /// A handle to the branch probability pass.
343 const MachineBranchProbabilityInfo
*MBPI
;
345 /// A handle to the function-wide block frequency pass.
346 std::unique_ptr
<BranchFolder::MBFIWrapper
> MBFI
;
348 /// A handle to the loop info.
349 MachineLoopInfo
*MLI
;
351 /// Preferred loop exit.
352 /// Member variable for convenience. It may be removed by duplication deep
353 /// in the call stack.
354 MachineBasicBlock
*PreferredLoopExit
;
356 /// A handle to the target's instruction info.
357 const TargetInstrInfo
*TII
;
359 /// A handle to the target's lowering info.
360 const TargetLoweringBase
*TLI
;
362 /// A handle to the post dominator tree.
363 MachinePostDominatorTree
*MPDT
;
365 /// Duplicator used to duplicate tails during placement.
367 /// Placement decisions can open up new tail duplication opportunities, but
368 /// since tail duplication affects placement decisions of later blocks, it
369 /// must be done inline.
370 TailDuplicator TailDup
;
372 /// Allocator and owner of BlockChain structures.
374 /// We build BlockChains lazily while processing the loop structure of
375 /// a function. To reduce malloc traffic, we allocate them using this
376 /// slab-like allocator, and destroy them after the pass completes. An
377 /// important guarantee is that this allocator produces stable pointers to
379 SpecificBumpPtrAllocator
<BlockChain
> ChainAllocator
;
381 /// Function wide BasicBlock to BlockChain mapping.
383 /// This mapping allows efficiently moving from any given basic block to the
384 /// BlockChain it participates in, if any. We use it to, among other things,
385 /// allow implicitly defining edges between chains as the existing edges
386 /// between basic blocks.
387 DenseMap
<const MachineBasicBlock
*, BlockChain
*> BlockToChain
;
390 /// The set of basic blocks that have terminators that cannot be fully
391 /// analyzed. These basic blocks cannot be re-ordered safely by
392 /// MachineBlockPlacement, and we must preserve physical layout of these
393 /// blocks and their successors through the pass.
394 SmallPtrSet
<MachineBasicBlock
*, 4> BlocksWithUnanalyzableExits
;
397 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
398 /// if the count goes to 0, add them to the appropriate work list.
399 void markChainSuccessors(
400 const BlockChain
&Chain
, const MachineBasicBlock
*LoopHeaderBB
,
401 const BlockFilterSet
*BlockFilter
= nullptr);
403 /// Decrease the UnscheduledPredecessors count for a single block, and
404 /// if the count goes to 0, add them to the appropriate work list.
405 void markBlockSuccessors(
406 const BlockChain
&Chain
, const MachineBasicBlock
*BB
,
407 const MachineBasicBlock
*LoopHeaderBB
,
408 const BlockFilterSet
*BlockFilter
= nullptr);
411 collectViableSuccessors(
412 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
413 const BlockFilterSet
*BlockFilter
,
414 SmallVector
<MachineBasicBlock
*, 4> &Successors
);
415 bool shouldPredBlockBeOutlined(
416 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
417 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
,
418 BranchProbability SuccProb
, BranchProbability HotProb
);
419 bool repeatedlyTailDuplicateBlock(
420 MachineBasicBlock
*BB
, MachineBasicBlock
*&LPred
,
421 const MachineBasicBlock
*LoopHeaderBB
,
422 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
423 MachineFunction::iterator
&PrevUnplacedBlockIt
);
424 bool maybeTailDuplicateBlock(
425 MachineBasicBlock
*BB
, MachineBasicBlock
*LPred
,
426 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
427 MachineFunction::iterator
&PrevUnplacedBlockIt
,
428 bool &DuplicatedToLPred
);
429 bool hasBetterLayoutPredecessor(
430 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
431 const BlockChain
&SuccChain
, BranchProbability SuccProb
,
432 BranchProbability RealSuccProb
, const BlockChain
&Chain
,
433 const BlockFilterSet
*BlockFilter
);
434 BlockAndTailDupResult
selectBestSuccessor(
435 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
436 const BlockFilterSet
*BlockFilter
);
437 MachineBasicBlock
*selectBestCandidateBlock(
438 const BlockChain
&Chain
, SmallVectorImpl
<MachineBasicBlock
*> &WorkList
);
439 MachineBasicBlock
*getFirstUnplacedBlock(
440 const BlockChain
&PlacedChain
,
441 MachineFunction::iterator
&PrevUnplacedBlockIt
,
442 const BlockFilterSet
*BlockFilter
);
444 /// Add a basic block to the work list if it is appropriate.
446 /// If the optional parameter BlockFilter is provided, only MBB
447 /// present in the set will be added to the worklist. If nullptr
448 /// is provided, no filtering occurs.
449 void fillWorkLists(const MachineBasicBlock
*MBB
,
450 SmallPtrSetImpl
<BlockChain
*> &UpdatedPreds
,
451 const BlockFilterSet
*BlockFilter
);
453 void buildChain(const MachineBasicBlock
*BB
, BlockChain
&Chain
,
454 BlockFilterSet
*BlockFilter
= nullptr);
455 bool canMoveBottomBlockToTop(const MachineBasicBlock
*BottomBlock
,
456 const MachineBasicBlock
*OldTop
);
457 bool hasViableTopFallthrough(const MachineBasicBlock
*Top
,
458 const BlockFilterSet
&LoopBlockSet
);
459 BlockFrequency
TopFallThroughFreq(const MachineBasicBlock
*Top
,
460 const BlockFilterSet
&LoopBlockSet
);
461 BlockFrequency
FallThroughGains(const MachineBasicBlock
*NewTop
,
462 const MachineBasicBlock
*OldTop
,
463 const MachineBasicBlock
*ExitBB
,
464 const BlockFilterSet
&LoopBlockSet
);
465 MachineBasicBlock
*findBestLoopTopHelper(MachineBasicBlock
*OldTop
,
466 const MachineLoop
&L
, const BlockFilterSet
&LoopBlockSet
);
467 MachineBasicBlock
*findBestLoopTop(
468 const MachineLoop
&L
, const BlockFilterSet
&LoopBlockSet
);
469 MachineBasicBlock
*findBestLoopExit(
470 const MachineLoop
&L
, const BlockFilterSet
&LoopBlockSet
,
471 BlockFrequency
&ExitFreq
);
472 BlockFilterSet
collectLoopBlockSet(const MachineLoop
&L
);
473 void buildLoopChains(const MachineLoop
&L
);
475 BlockChain
&LoopChain
, const MachineBasicBlock
*ExitingBB
,
476 BlockFrequency ExitFreq
, const BlockFilterSet
&LoopBlockSet
);
477 void rotateLoopWithProfile(
478 BlockChain
&LoopChain
, const MachineLoop
&L
,
479 const BlockFilterSet
&LoopBlockSet
);
480 void buildCFGChains();
481 void optimizeBranches();
483 /// Returns true if a block should be tail-duplicated to increase fallthrough
485 bool shouldTailDuplicate(MachineBasicBlock
*BB
);
486 /// Check the edge frequencies to see if tail duplication will increase
488 bool isProfitableToTailDup(
489 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
490 BranchProbability QProb
,
491 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
);
493 /// Check for a trellis layout.
494 bool isTrellis(const MachineBasicBlock
*BB
,
495 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
496 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
);
498 /// Get the best successor given a trellis layout.
499 BlockAndTailDupResult
getBestTrellisSuccessor(
500 const MachineBasicBlock
*BB
,
501 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
502 BranchProbability AdjustedSumProb
, const BlockChain
&Chain
,
503 const BlockFilterSet
*BlockFilter
);
505 /// Get the best pair of non-conflicting edges.
506 static std::pair
<WeightedEdge
, WeightedEdge
> getBestNonConflictingEdges(
507 const MachineBasicBlock
*BB
,
508 MutableArrayRef
<SmallVector
<WeightedEdge
, 8>> Edges
);
510 /// Returns true if a block can tail duplicate into all unplaced
511 /// predecessors. Filters based on loop.
512 bool canTailDuplicateUnplacedPreds(
513 const MachineBasicBlock
*BB
, MachineBasicBlock
*Succ
,
514 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
);
516 /// Find chains of triangles to tail-duplicate where a global analysis works,
517 /// but a local analysis would not find them.
518 void precomputeTriangleChains();
521 static char ID
; // Pass identification, replacement for typeid
523 MachineBlockPlacement() : MachineFunctionPass(ID
) {
524 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
527 bool runOnMachineFunction(MachineFunction
&F
) override
;
529 bool allowTailDupPlacement() const {
531 return TailDupPlacement
&& !F
->getTarget().requiresStructuredCFG();
534 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
535 AU
.addRequired
<MachineBranchProbabilityInfo
>();
536 AU
.addRequired
<MachineBlockFrequencyInfo
>();
537 if (TailDupPlacement
)
538 AU
.addRequired
<MachinePostDominatorTree
>();
539 AU
.addRequired
<MachineLoopInfo
>();
540 AU
.addRequired
<TargetPassConfig
>();
541 MachineFunctionPass::getAnalysisUsage(AU
);
545 } // end anonymous namespace
547 char MachineBlockPlacement::ID
= 0;
549 char &llvm::MachineBlockPlacementID
= MachineBlockPlacement::ID
;
551 INITIALIZE_PASS_BEGIN(MachineBlockPlacement
, DEBUG_TYPE
,
552 "Branch Probability Basic Block Placement", false, false)
553 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
554 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo
)
555 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree
)
556 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
557 INITIALIZE_PASS_END(MachineBlockPlacement
, DEBUG_TYPE
,
558 "Branch Probability Basic Block Placement", false, false)
561 /// Helper to print the name of a MBB.
563 /// Only used by debug logging.
564 static std::string
getBlockName(const MachineBasicBlock
*BB
) {
566 raw_string_ostream
OS(Result
);
567 OS
<< printMBBReference(*BB
);
568 OS
<< " ('" << BB
->getName() << "')";
574 /// Mark a chain's successors as having one fewer preds.
576 /// When a chain is being merged into the "placed" chain, this routine will
577 /// quickly walk the successors of each block in the chain and mark them as
578 /// having one fewer active predecessor. It also adds any successors of this
579 /// chain which reach the zero-predecessor state to the appropriate worklist.
580 void MachineBlockPlacement::markChainSuccessors(
581 const BlockChain
&Chain
, const MachineBasicBlock
*LoopHeaderBB
,
582 const BlockFilterSet
*BlockFilter
) {
583 // Walk all the blocks in this chain, marking their successors as having
584 // a predecessor placed.
585 for (MachineBasicBlock
*MBB
: Chain
) {
586 markBlockSuccessors(Chain
, MBB
, LoopHeaderBB
, BlockFilter
);
590 /// Mark a single block's successors as having one fewer preds.
592 /// Under normal circumstances, this is only called by markChainSuccessors,
593 /// but if a block that was to be placed is completely tail-duplicated away,
594 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
595 /// for just that block.
596 void MachineBlockPlacement::markBlockSuccessors(
597 const BlockChain
&Chain
, const MachineBasicBlock
*MBB
,
598 const MachineBasicBlock
*LoopHeaderBB
, const BlockFilterSet
*BlockFilter
) {
599 // Add any successors for which this is the only un-placed in-loop
600 // predecessor to the worklist as a viable candidate for CFG-neutral
601 // placement. No subsequent placement of this block will violate the CFG
602 // shape, so we get to use heuristics to choose a favorable placement.
603 for (MachineBasicBlock
*Succ
: MBB
->successors()) {
604 if (BlockFilter
&& !BlockFilter
->count(Succ
))
606 BlockChain
&SuccChain
= *BlockToChain
[Succ
];
607 // Disregard edges within a fixed chain, or edges to the loop header.
608 if (&Chain
== &SuccChain
|| Succ
== LoopHeaderBB
)
611 // This is a cross-chain edge that is within the loop, so decrement the
612 // loop predecessor count of the destination chain.
613 if (SuccChain
.UnscheduledPredecessors
== 0 ||
614 --SuccChain
.UnscheduledPredecessors
> 0)
617 auto *NewBB
= *SuccChain
.begin();
618 if (NewBB
->isEHPad())
619 EHPadWorkList
.push_back(NewBB
);
621 BlockWorkList
.push_back(NewBB
);
625 /// This helper function collects the set of successors of block
626 /// \p BB that are allowed to be its layout successors, and return
627 /// the total branch probability of edges from \p BB to those
629 BranchProbability
MachineBlockPlacement::collectViableSuccessors(
630 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
631 const BlockFilterSet
*BlockFilter
,
632 SmallVector
<MachineBasicBlock
*, 4> &Successors
) {
633 // Adjust edge probabilities by excluding edges pointing to blocks that is
634 // either not in BlockFilter or is already in the current chain. Consider the
643 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
644 // A->C is chosen as a fall-through, D won't be selected as a successor of C
645 // due to CFG constraint (the probability of C->D is not greater than
646 // HotProb to break topo-order). If we exclude E that is not in BlockFilter
647 // when calculating the probability of C->D, D will be selected and we
648 // will get A C D B as the layout of this loop.
649 auto AdjustedSumProb
= BranchProbability::getOne();
650 for (MachineBasicBlock
*Succ
: BB
->successors()) {
651 bool SkipSucc
= false;
652 if (Succ
->isEHPad() || (BlockFilter
&& !BlockFilter
->count(Succ
))) {
655 BlockChain
*SuccChain
= BlockToChain
[Succ
];
656 if (SuccChain
== &Chain
) {
658 } else if (Succ
!= *SuccChain
->begin()) {
659 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ
)
660 << " -> Mid chain!\n");
665 AdjustedSumProb
-= MBPI
->getEdgeProbability(BB
, Succ
);
667 Successors
.push_back(Succ
);
670 return AdjustedSumProb
;
673 /// The helper function returns the branch probability that is adjusted
674 /// or normalized over the new total \p AdjustedSumProb.
675 static BranchProbability
676 getAdjustedProbability(BranchProbability OrigProb
,
677 BranchProbability AdjustedSumProb
) {
678 BranchProbability SuccProb
;
679 uint32_t SuccProbN
= OrigProb
.getNumerator();
680 uint32_t SuccProbD
= AdjustedSumProb
.getNumerator();
681 if (SuccProbN
>= SuccProbD
)
682 SuccProb
= BranchProbability::getOne();
684 SuccProb
= BranchProbability(SuccProbN
, SuccProbD
);
689 /// Check if \p BB has exactly the successors in \p Successors.
691 hasSameSuccessors(MachineBasicBlock
&BB
,
692 SmallPtrSetImpl
<const MachineBasicBlock
*> &Successors
) {
693 if (BB
.succ_size() != Successors
.size())
695 // We don't want to count self-loops
696 if (Successors
.count(&BB
))
698 for (MachineBasicBlock
*Succ
: BB
.successors())
699 if (!Successors
.count(Succ
))
704 /// Check if a block should be tail duplicated to increase fallthrough
706 /// \p BB Block to check.
707 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock
*BB
) {
708 // Blocks with single successors don't create additional fallthrough
709 // opportunities. Don't duplicate them. TODO: When conditional exits are
710 // analyzable, allow them to be duplicated.
711 bool IsSimple
= TailDup
.isSimpleBB(BB
);
713 if (BB
->succ_size() == 1)
715 return TailDup
.shouldTailDuplicate(IsSimple
, *BB
);
718 /// Compare 2 BlockFrequency's with a small penalty for \p A.
719 /// In order to be conservative, we apply a X% penalty to account for
720 /// increased icache pressure and static heuristics. For small frequencies
721 /// we use only the numerators to improve accuracy. For simplicity, we assume the
722 /// penalty is less than 100%
723 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
724 static bool greaterWithBias(BlockFrequency A
, BlockFrequency B
,
725 uint64_t EntryFreq
) {
726 BranchProbability
ThresholdProb(TailDupPlacementPenalty
, 100);
727 BlockFrequency Gain
= A
- B
;
728 return (Gain
/ ThresholdProb
).getFrequency() >= EntryFreq
;
731 /// Check the edge frequencies to see if tail duplication will increase
732 /// fallthroughs. It only makes sense to call this function when
733 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
734 /// always locally profitable if we would have picked \p Succ without
735 /// considering duplication.
736 bool MachineBlockPlacement::isProfitableToTailDup(
737 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
738 BranchProbability QProb
,
739 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
) {
740 // We need to do a probability calculation to make sure this is profitable.
741 // First: does succ have a successor that post-dominates? This affects the
742 // calculation. The 2 relevant cases are:
757 // '=' : Branch taken for that CFG edge
758 // In the second case, Placing Succ while duplicating it into C prevents the
759 // fallthrough of Succ into either D or PDom, because they now have C as an
760 // unplaced predecessor
762 // Start by figuring out which case we fall into
763 MachineBasicBlock
*PDom
= nullptr;
764 SmallVector
<MachineBasicBlock
*, 4> SuccSuccs
;
765 // Only scan the relevant successors
766 auto AdjustedSuccSumProb
=
767 collectViableSuccessors(Succ
, Chain
, BlockFilter
, SuccSuccs
);
768 BranchProbability PProb
= MBPI
->getEdgeProbability(BB
, Succ
);
769 auto BBFreq
= MBFI
->getBlockFreq(BB
);
770 auto SuccFreq
= MBFI
->getBlockFreq(Succ
);
771 BlockFrequency P
= BBFreq
* PProb
;
772 BlockFrequency Qout
= BBFreq
* QProb
;
773 uint64_t EntryFreq
= MBFI
->getEntryFreq();
774 // If there are no more successors, it is profitable to copy, as it strictly
775 // increases fallthrough.
776 if (SuccSuccs
.size() == 0)
777 return greaterWithBias(P
, Qout
, EntryFreq
);
779 auto BestSuccSucc
= BranchProbability::getZero();
780 // Find the PDom or the best Succ if no PDom exists.
781 for (MachineBasicBlock
*SuccSucc
: SuccSuccs
) {
782 auto Prob
= MBPI
->getEdgeProbability(Succ
, SuccSucc
);
783 if (Prob
> BestSuccSucc
)
786 if (MPDT
->dominates(SuccSucc
, Succ
)) {
791 // For the comparisons, we need to know Succ's best incoming edge that isn't
793 auto SuccBestPred
= BlockFrequency(0);
794 for (MachineBasicBlock
*SuccPred
: Succ
->predecessors()) {
795 if (SuccPred
== Succ
|| SuccPred
== BB
796 || BlockToChain
[SuccPred
] == &Chain
797 || (BlockFilter
&& !BlockFilter
->count(SuccPred
)))
799 auto Freq
= MBFI
->getBlockFreq(SuccPred
)
800 * MBPI
->getEdgeProbability(SuccPred
, Succ
);
801 if (Freq
> SuccBestPred
)
804 // Qin is Succ's best unplaced incoming edge that isn't BB
805 BlockFrequency Qin
= SuccBestPred
;
806 // If it doesn't have a post-dominating successor, here is the calculation:
818 // '=' : Branch taken for that CFG edge
819 // Cost in the first case is: P + V
820 // For this calculation, we always assume P > Qout. If Qout > P
821 // The result of this function will be ignored at the caller.
822 // Let F = SuccFreq - Qin
823 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
825 if (PDom
== nullptr || !Succ
->isSuccessor(PDom
)) {
826 BranchProbability UProb
= BestSuccSucc
;
827 BranchProbability VProb
= AdjustedSuccSumProb
- UProb
;
828 BlockFrequency F
= SuccFreq
- Qin
;
829 BlockFrequency V
= SuccFreq
* VProb
;
830 BlockFrequency QinU
= std::min(Qin
, F
) * UProb
;
831 BlockFrequency BaseCost
= P
+ V
;
832 BlockFrequency DupCost
= Qout
+ QinU
+ std::max(Qin
, F
) * VProb
;
833 return greaterWithBias(BaseCost
, DupCost
, EntryFreq
);
835 BranchProbability UProb
= MBPI
->getEdgeProbability(Succ
, PDom
);
836 BranchProbability VProb
= AdjustedSuccSumProb
- UProb
;
837 BlockFrequency U
= SuccFreq
* UProb
;
838 BlockFrequency V
= SuccFreq
* VProb
;
839 BlockFrequency F
= SuccFreq
- Qin
;
840 // If there is a post-dominating successor, here is the calculation:
842 // | \Qout | \ | \Qout | \
844 // = C' |P C = C' |P C
845 // | /Qin | | | /Qin | |
846 // | / | C' (+Succ) | / | C' (+Succ)
847 // Succ Succ /| Succ Succ /|
848 // | \ V | \/ | | \ V | \/ |
849 // |U \ |U /\ =? |U = |U /\ |
850 // = D = = =?| | D | = =|
855 // '=' : Branch taken for that CFG edge
856 // The cost for taken branches in the first case is P + U
857 // Let F = SuccFreq - Qin
858 // The cost in the second case (assuming independence), given the layout:
859 // BB, Succ, (C+Succ), D, Dom or the layout:
860 // BB, Succ, D, Dom, (C+Succ)
861 // is Qout + max(F, Qin) * U + min(F, Qin)
862 // compare P + U vs Qout + P * U + Qin.
864 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
866 // For the 3rd case, the cost is P + 2 * V
867 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
868 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
869 if (UProb
> AdjustedSuccSumProb
/ 2 &&
870 !hasBetterLayoutPredecessor(Succ
, PDom
, *BlockToChain
[PDom
], UProb
, UProb
,
873 return greaterWithBias(
874 (P
+ V
), (Qout
+ std::max(Qin
, F
) * VProb
+ std::min(Qin
, F
) * UProb
),
877 return greaterWithBias((P
+ U
),
878 (Qout
+ std::min(Qin
, F
) * AdjustedSuccSumProb
+
879 std::max(Qin
, F
) * UProb
),
883 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
884 /// successors form the lower part of a trellis. A successor set S forms the
885 /// lower part of a trellis if all of the predecessors of S are either in S or
886 /// have all of S as successors. We ignore trellises where BB doesn't have 2
887 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
888 /// are very uncommon and complex to compute optimally. Allowing edges within S
889 /// is not strictly a trellis, but the same algorithm works, so we allow it.
890 bool MachineBlockPlacement::isTrellis(
891 const MachineBasicBlock
*BB
,
892 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
893 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
) {
894 // Technically BB could form a trellis with branching factor higher than 2.
895 // But that's extremely uncommon.
896 if (BB
->succ_size() != 2 || ViableSuccs
.size() != 2)
899 SmallPtrSet
<const MachineBasicBlock
*, 2> Successors(BB
->succ_begin(),
901 // To avoid reviewing the same predecessors twice.
902 SmallPtrSet
<const MachineBasicBlock
*, 8> SeenPreds
;
904 for (MachineBasicBlock
*Succ
: ViableSuccs
) {
906 for (auto SuccPred
: Succ
->predecessors()) {
907 // Allow triangle successors, but don't count them.
908 if (Successors
.count(SuccPred
)) {
909 // Make sure that it is actually a triangle.
910 for (MachineBasicBlock
*CheckSucc
: SuccPred
->successors())
911 if (!Successors
.count(CheckSucc
))
915 const BlockChain
*PredChain
= BlockToChain
[SuccPred
];
916 if (SuccPred
== BB
|| (BlockFilter
&& !BlockFilter
->count(SuccPred
)) ||
917 PredChain
== &Chain
|| PredChain
== BlockToChain
[Succ
])
920 // Perform the successor check only once.
921 if (!SeenPreds
.insert(SuccPred
).second
)
923 if (!hasSameSuccessors(*SuccPred
, Successors
))
926 // If one of the successors has only BB as a predecessor, it is not a
934 /// Pick the highest total weight pair of edges that can both be laid out.
935 /// The edges in \p Edges[0] are assumed to have a different destination than
936 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
937 /// the individual highest weight edges to the 2 different destinations, or in
938 /// case of a conflict, one of them should be replaced with a 2nd best edge.
939 std::pair
<MachineBlockPlacement::WeightedEdge
,
940 MachineBlockPlacement::WeightedEdge
>
941 MachineBlockPlacement::getBestNonConflictingEdges(
942 const MachineBasicBlock
*BB
,
943 MutableArrayRef
<SmallVector
<MachineBlockPlacement::WeightedEdge
, 8>>
945 // Sort the edges, and then for each successor, find the best incoming
946 // predecessor. If the best incoming predecessors aren't the same,
947 // then that is clearly the best layout. If there is a conflict, one of the
948 // successors will have to fallthrough from the second best predecessor. We
949 // compare which combination is better overall.
951 // Sort for highest frequency.
952 auto Cmp
= [](WeightedEdge A
, WeightedEdge B
) { return A
.Weight
> B
.Weight
; };
954 llvm::stable_sort(Edges
[0], Cmp
);
955 llvm::stable_sort(Edges
[1], Cmp
);
956 auto BestA
= Edges
[0].begin();
957 auto BestB
= Edges
[1].begin();
958 // Arrange for the correct answer to be in BestA and BestB
959 // If the 2 best edges don't conflict, the answer is already there.
960 if (BestA
->Src
== BestB
->Src
) {
961 // Compare the total fallthrough of (Best + Second Best) for both pairs
962 auto SecondBestA
= std::next(BestA
);
963 auto SecondBestB
= std::next(BestB
);
964 BlockFrequency BestAScore
= BestA
->Weight
+ SecondBestB
->Weight
;
965 BlockFrequency BestBScore
= BestB
->Weight
+ SecondBestA
->Weight
;
966 if (BestAScore
< BestBScore
)
971 // Arrange for the BB edge to be in BestA if it exists.
972 if (BestB
->Src
== BB
)
973 std::swap(BestA
, BestB
);
974 return std::make_pair(*BestA
, *BestB
);
977 /// Get the best successor from \p BB based on \p BB being part of a trellis.
978 /// We only handle trellises with 2 successors, so the algorithm is
979 /// straightforward: Find the best pair of edges that don't conflict. We find
980 /// the best incoming edge for each successor in the trellis. If those conflict,
981 /// we consider which of them should be replaced with the second best.
982 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
983 /// comes from \p BB, it will be in \p BestEdges[0]
984 MachineBlockPlacement::BlockAndTailDupResult
985 MachineBlockPlacement::getBestTrellisSuccessor(
986 const MachineBasicBlock
*BB
,
987 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
988 BranchProbability AdjustedSumProb
, const BlockChain
&Chain
,
989 const BlockFilterSet
*BlockFilter
) {
991 BlockAndTailDupResult Result
= {nullptr, false};
992 SmallPtrSet
<const MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
995 // We assume size 2 because it's common. For general n, we would have to do
996 // the Hungarian algorithm, but it's not worth the complexity because more
997 // than 2 successors is fairly uncommon, and a trellis even more so.
998 if (Successors
.size() != 2 || ViableSuccs
.size() != 2)
1001 // Collect the edge frequencies of all edges that form the trellis.
1002 SmallVector
<WeightedEdge
, 8> Edges
[2];
1004 for (auto Succ
: ViableSuccs
) {
1005 for (MachineBasicBlock
*SuccPred
: Succ
->predecessors()) {
1006 // Skip any placed predecessors that are not BB
1008 if ((BlockFilter
&& !BlockFilter
->count(SuccPred
)) ||
1009 BlockToChain
[SuccPred
] == &Chain
||
1010 BlockToChain
[SuccPred
] == BlockToChain
[Succ
])
1012 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(SuccPred
) *
1013 MBPI
->getEdgeProbability(SuccPred
, Succ
);
1014 Edges
[SuccIndex
].push_back({EdgeFreq
, SuccPred
, Succ
});
1019 // Pick the best combination of 2 edges from all the edges in the trellis.
1020 WeightedEdge BestA
, BestB
;
1021 std::tie(BestA
, BestB
) = getBestNonConflictingEdges(BB
, Edges
);
1023 if (BestA
.Src
!= BB
) {
1024 // If we have a trellis, and BB doesn't have the best fallthrough edges,
1025 // we shouldn't choose any successor. We've already looked and there's a
1026 // better fallthrough edge for all the successors.
1027 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1031 // Did we pick the triangle edge? If tail-duplication is profitable, do
1032 // that instead. Otherwise merge the triangle edge now while we know it is
1034 if (BestA
.Dest
== BestB
.Src
) {
1035 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1037 MachineBasicBlock
*Succ1
= BestA
.Dest
;
1038 MachineBasicBlock
*Succ2
= BestB
.Dest
;
1039 // Check to see if tail-duplication would be profitable.
1040 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2
) &&
1041 canTailDuplicateUnplacedPreds(BB
, Succ2
, Chain
, BlockFilter
) &&
1042 isProfitableToTailDup(BB
, Succ2
, MBPI
->getEdgeProbability(BB
, Succ1
),
1043 Chain
, BlockFilter
)) {
1044 LLVM_DEBUG(BranchProbability Succ2Prob
= getAdjustedProbability(
1045 MBPI
->getEdgeProbability(BB
, Succ2
), AdjustedSumProb
);
1046 dbgs() << " Selected: " << getBlockName(Succ2
)
1047 << ", probability: " << Succ2Prob
1048 << " (Tail Duplicate)\n");
1050 Result
.ShouldTailDup
= true;
1054 // We have already computed the optimal edge for the other side of the
1056 ComputedEdges
[BestB
.Src
] = { BestB
.Dest
, false };
1058 auto TrellisSucc
= BestA
.Dest
;
1059 LLVM_DEBUG(BranchProbability SuccProb
= getAdjustedProbability(
1060 MBPI
->getEdgeProbability(BB
, TrellisSucc
), AdjustedSumProb
);
1061 dbgs() << " Selected: " << getBlockName(TrellisSucc
)
1062 << ", probability: " << SuccProb
<< " (Trellis)\n");
1063 Result
.BB
= TrellisSucc
;
1067 /// When the option allowTailDupPlacement() is on, this method checks if the
1068 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1069 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1070 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1071 const MachineBasicBlock
*BB
, MachineBasicBlock
*Succ
,
1072 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
) {
1073 if (!shouldTailDuplicate(Succ
))
1076 // For CFG checking.
1077 SmallPtrSet
<const MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
1079 for (MachineBasicBlock
*Pred
: Succ
->predecessors()) {
1080 // Make sure all unplaced and unfiltered predecessors can be
1081 // tail-duplicated into.
1082 // Skip any blocks that are already placed or not in this loop.
1083 if (Pred
== BB
|| (BlockFilter
&& !BlockFilter
->count(Pred
))
1084 || BlockToChain
[Pred
] == &Chain
)
1086 if (!TailDup
.canTailDuplicate(Succ
, Pred
)) {
1087 if (Successors
.size() > 1 && hasSameSuccessors(*Pred
, Successors
))
1088 // This will result in a trellis after tail duplication, so we don't
1089 // need to copy Succ into this predecessor. In the presence
1090 // of a trellis tail duplication can continue to be profitable.
1106 // After BB was duplicated into C, the layout looks like the one on the
1107 // right. BB and C now have the same successors. When considering
1108 // whether Succ can be duplicated into all its unplaced predecessors, we
1110 // We can do this because C already has a profitable fallthrough, namely
1111 // D. TODO(iteratee): ignore sufficiently cold predecessors for
1112 // duplication and for this test.
1114 // This allows trellises to be laid out in 2 separate chains
1115 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1116 // because it allows the creation of 2 fallthrough paths with links
1117 // between them, and we correctly identify the best layout for these
1118 // CFGs. We want to extend trellises that the user created in addition
1119 // to trellises created by tail-duplication, so we just look for the
1128 /// Find chains of triangles where we believe it would be profitable to
1129 /// tail-duplicate them all, but a local analysis would not find them.
1130 /// There are 3 ways this can be profitable:
1131 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1133 /// 2) The chains are statically correlated. Branch probabilities have a very
1134 /// U-shaped distribution.
1135 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1136 /// If the branches in a chain are likely to be from the same side of the
1137 /// distribution as their predecessor, but are independent at runtime, this
1138 /// transformation is profitable. (Because the cost of being wrong is a small
1139 /// fixed cost, unlike the standard triangle layout where the cost of being
1140 /// wrong scales with the # of triangles.)
1141 /// 3) The chains are dynamically correlated. If the probability that a previous
1142 /// branch was taken positively influences whether the next branch will be
1144 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1145 void MachineBlockPlacement::precomputeTriangleChains() {
1146 struct TriangleChain
{
1147 std::vector
<MachineBasicBlock
*> Edges
;
1149 TriangleChain(MachineBasicBlock
*src
, MachineBasicBlock
*dst
)
1150 : Edges({src
, dst
}) {}
1152 void append(MachineBasicBlock
*dst
) {
1153 assert(getKey()->isSuccessor(dst
) &&
1154 "Attempting to append a block that is not a successor.");
1155 Edges
.push_back(dst
);
1158 unsigned count() const { return Edges
.size() - 1; }
1160 MachineBasicBlock
*getKey() const {
1161 return Edges
.back();
1165 if (TriangleChainCount
== 0)
1168 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1169 // Map from last block to the chain that contains it. This allows us to extend
1170 // chains as we find new triangles.
1171 DenseMap
<const MachineBasicBlock
*, TriangleChain
> TriangleChainMap
;
1172 for (MachineBasicBlock
&BB
: *F
) {
1173 // If BB doesn't have 2 successors, it doesn't start a triangle.
1174 if (BB
.succ_size() != 2)
1176 MachineBasicBlock
*PDom
= nullptr;
1177 for (MachineBasicBlock
*Succ
: BB
.successors()) {
1178 if (!MPDT
->dominates(Succ
, &BB
))
1183 // If BB doesn't have a post-dominating successor, it doesn't form a
1185 if (PDom
== nullptr)
1187 // If PDom has a hint that it is low probability, skip this triangle.
1188 if (MBPI
->getEdgeProbability(&BB
, PDom
) < BranchProbability(50, 100))
1190 // If PDom isn't eligible for duplication, this isn't the kind of triangle
1191 // we're looking for.
1192 if (!shouldTailDuplicate(PDom
))
1194 bool CanTailDuplicate
= true;
1195 // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1196 // isn't the kind of triangle we're looking for.
1197 for (MachineBasicBlock
* Pred
: PDom
->predecessors()) {
1200 if (!TailDup
.canTailDuplicate(PDom
, Pred
)) {
1201 CanTailDuplicate
= false;
1205 // If we can't tail-duplicate PDom to its predecessors, then skip this
1207 if (!CanTailDuplicate
)
1210 // Now we have an interesting triangle. Insert it if it's not part of an
1212 // Note: This cannot be replaced with a call insert() or emplace() because
1213 // the find key is BB, but the insert/emplace key is PDom.
1214 auto Found
= TriangleChainMap
.find(&BB
);
1215 // If it is, remove the chain from the map, grow it, and put it back in the
1216 // map with the end as the new key.
1217 if (Found
!= TriangleChainMap
.end()) {
1218 TriangleChain Chain
= std::move(Found
->second
);
1219 TriangleChainMap
.erase(Found
);
1221 TriangleChainMap
.insert(std::make_pair(Chain
.getKey(), std::move(Chain
)));
1223 auto InsertResult
= TriangleChainMap
.try_emplace(PDom
, &BB
, PDom
);
1224 assert(InsertResult
.second
&& "Block seen twice.");
1229 // Iterating over a DenseMap is safe here, because the only thing in the body
1230 // of the loop is inserting into another DenseMap (ComputedEdges).
1231 // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1232 for (auto &ChainPair
: TriangleChainMap
) {
1233 TriangleChain
&Chain
= ChainPair
.second
;
1234 // Benchmarking has shown that due to branch correlation duplicating 2 or
1235 // more triangles is profitable, despite the calculations assuming
1237 if (Chain
.count() < TriangleChainCount
)
1239 MachineBasicBlock
*dst
= Chain
.Edges
.back();
1240 Chain
.Edges
.pop_back();
1241 for (MachineBasicBlock
*src
: reverse(Chain
.Edges
)) {
1242 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src
) << "->"
1243 << getBlockName(dst
)
1244 << " as pre-computed based on triangles.\n");
1246 auto InsertResult
= ComputedEdges
.insert({src
, {dst
, true}});
1247 assert(InsertResult
.second
&& "Block seen twice.");
1255 // When profile is not present, return the StaticLikelyProb.
1256 // When profile is available, we need to handle the triangle-shape CFG.
1257 static BranchProbability
getLayoutSuccessorProbThreshold(
1258 const MachineBasicBlock
*BB
) {
1259 if (!BB
->getParent()->getFunction().hasProfileData())
1260 return BranchProbability(StaticLikelyProb
, 100);
1261 if (BB
->succ_size() == 2) {
1262 const MachineBasicBlock
*Succ1
= *BB
->succ_begin();
1263 const MachineBasicBlock
*Succ2
= *(BB
->succ_begin() + 1);
1264 if (Succ1
->isSuccessor(Succ2
) || Succ2
->isSuccessor(Succ1
)) {
1265 /* See case 1 below for the cost analysis. For BB->Succ to
1266 * be taken with smaller cost, the following needs to hold:
1267 * Prob(BB->Succ) > 2 * Prob(BB->Pred)
1268 * So the threshold T in the calculation below
1269 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1270 * So T / (1 - T) = 2, Yielding T = 2/3
1271 * Also adding user specified branch bias, we have
1272 * T = (2/3)*(ProfileLikelyProb/50)
1273 * = (2*ProfileLikelyProb)/150)
1275 return BranchProbability(2 * ProfileLikelyProb
, 150);
1278 return BranchProbability(ProfileLikelyProb
, 100);
1281 /// Checks to see if the layout candidate block \p Succ has a better layout
1282 /// predecessor than \c BB. If yes, returns true.
1283 /// \p SuccProb: The probability adjusted for only remaining blocks.
1284 /// Only used for logging
1285 /// \p RealSuccProb: The un-adjusted probability.
1286 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1287 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1289 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1290 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
1291 const BlockChain
&SuccChain
, BranchProbability SuccProb
,
1292 BranchProbability RealSuccProb
, const BlockChain
&Chain
,
1293 const BlockFilterSet
*BlockFilter
) {
1295 // There isn't a better layout when there are no unscheduled predecessors.
1296 if (SuccChain
.UnscheduledPredecessors
== 0)
1299 // There are two basic scenarios here:
1300 // -------------------------------------
1301 // Case 1: triangular shape CFG (if-then):
1308 // In this case, we are evaluating whether to select edge -> Succ, e.g.
1309 // set Succ as the layout successor of BB. Picking Succ as BB's
1310 // successor breaks the CFG constraints (FIXME: define these constraints).
1311 // With this layout, Pred BB
1312 // is forced to be outlined, so the overall cost will be cost of the
1313 // branch taken from BB to Pred, plus the cost of back taken branch
1314 // from Pred to Succ, as well as the additional cost associated
1315 // with the needed unconditional jump instruction from Pred To Succ.
1317 // The cost of the topological order layout is the taken branch cost
1318 // from BB to Succ, so to make BB->Succ a viable candidate, the following
1320 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1321 // < freq(BB->Succ) * taken_branch_cost.
1322 // Ignoring unconditional jump cost, we get
1323 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1324 // prob(BB->Succ) > 2 * prob(BB->Pred)
1326 // When real profile data is available, we can precisely compute the
1327 // probability threshold that is needed for edge BB->Succ to be considered.
1328 // Without profile data, the heuristic requires the branch bias to be
1329 // a lot larger to make sure the signal is very strong (e.g. 80% default).
1330 // -----------------------------------------------------------------
1331 // Case 2: diamond like CFG (if-then-else):
1340 // The current block is BB and edge BB->Succ is now being evaluated.
1341 // Note that edge S->BB was previously already selected because
1342 // prob(S->BB) > prob(S->Pred).
1343 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1344 // choose Pred, we will have a topological ordering as shown on the left
1345 // in the picture below. If we choose Succ, we have the solution as shown
1354 // | Pred-- | Succ--
1356 // ---Succ ---Pred--
1358 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred)
1359 // = freq(S->Pred) + freq(S->BB)
1361 // If we have profile data (i.e, branch probabilities can be trusted), the
1362 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1363 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1364 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1365 // means the cost of topological order is greater.
1366 // When profile data is not available, however, we need to be more
1367 // conservative. If the branch prediction is wrong, breaking the topo-order
1368 // will actually yield a layout with large cost. For this reason, we need
1369 // strong biased branch at block S with Prob(S->BB) in order to select
1370 // BB->Succ. This is equivalent to looking the CFG backward with backward
1371 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1373 // --------------------------------------------------------------------------
1374 // Case 3: forked diamond
1386 // The current block is BB and edge BB->S1 is now being evaluated.
1387 // As above S->BB was already selected because
1388 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1396 // | Pred----| | S1----
1398 // --(S1 or S2) ---Pred--
1402 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1403 // + min(freq(Pred->S1), freq(Pred->S2))
1404 // Non-topo-order cost:
1405 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1406 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1407 // is 0. Then the non topo layout is better when
1408 // freq(S->Pred) < freq(BB->S1).
1409 // This is exactly what is checked below.
1410 // Note there are other shapes that apply (Pred may not be a single block,
1411 // but they all fit this general pattern.)
1412 BranchProbability HotProb
= getLayoutSuccessorProbThreshold(BB
);
1414 // Make sure that a hot successor doesn't have a globally more
1415 // important predecessor.
1416 BlockFrequency CandidateEdgeFreq
= MBFI
->getBlockFreq(BB
) * RealSuccProb
;
1417 bool BadCFGConflict
= false;
1419 for (MachineBasicBlock
*Pred
: Succ
->predecessors()) {
1420 if (Pred
== Succ
|| BlockToChain
[Pred
] == &SuccChain
||
1421 (BlockFilter
&& !BlockFilter
->count(Pred
)) ||
1422 BlockToChain
[Pred
] == &Chain
||
1423 // This check is redundant except for look ahead. This function is
1424 // called for lookahead by isProfitableToTailDup when BB hasn't been
1428 // Do backward checking.
1429 // For all cases above, we need a backward checking to filter out edges that
1430 // are not 'strongly' biased.
1434 // We select edge BB->Succ if
1435 // freq(BB->Succ) > freq(Succ) * HotProb
1436 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1438 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1439 // Case 1 is covered too, because the first equation reduces to:
1440 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1441 BlockFrequency PredEdgeFreq
=
1442 MBFI
->getBlockFreq(Pred
) * MBPI
->getEdgeProbability(Pred
, Succ
);
1443 if (PredEdgeFreq
* HotProb
>= CandidateEdgeFreq
* HotProb
.getCompl()) {
1444 BadCFGConflict
= true;
1449 if (BadCFGConflict
) {
1450 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ
) << " -> "
1451 << SuccProb
<< " (prob) (non-cold CFG conflict)\n");
1458 /// Select the best successor for a block.
1460 /// This looks across all successors of a particular block and attempts to
1461 /// select the "best" one to be the layout successor. It only considers direct
1462 /// successors which also pass the block filter. It will attempt to avoid
1463 /// breaking CFG structure, but cave and break such structures in the case of
1464 /// very hot successor edges.
1466 /// \returns The best successor block found, or null if none are viable, along
1467 /// with a boolean indicating if tail duplication is necessary.
1468 MachineBlockPlacement::BlockAndTailDupResult
1469 MachineBlockPlacement::selectBestSuccessor(
1470 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
1471 const BlockFilterSet
*BlockFilter
) {
1472 const BranchProbability
HotProb(StaticLikelyProb
, 100);
1474 BlockAndTailDupResult BestSucc
= { nullptr, false };
1475 auto BestProb
= BranchProbability::getZero();
1477 SmallVector
<MachineBasicBlock
*, 4> Successors
;
1478 auto AdjustedSumProb
=
1479 collectViableSuccessors(BB
, Chain
, BlockFilter
, Successors
);
1481 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB
)
1484 // if we already precomputed the best successor for BB, return that if still
1486 auto FoundEdge
= ComputedEdges
.find(BB
);
1487 if (FoundEdge
!= ComputedEdges
.end()) {
1488 MachineBasicBlock
*Succ
= FoundEdge
->second
.BB
;
1489 ComputedEdges
.erase(FoundEdge
);
1490 BlockChain
*SuccChain
= BlockToChain
[Succ
];
1491 if (BB
->isSuccessor(Succ
) && (!BlockFilter
|| BlockFilter
->count(Succ
)) &&
1492 SuccChain
!= &Chain
&& Succ
== *SuccChain
->begin())
1493 return FoundEdge
->second
;
1496 // if BB is part of a trellis, Use the trellis to determine the optimal
1497 // fallthrough edges
1498 if (isTrellis(BB
, Successors
, Chain
, BlockFilter
))
1499 return getBestTrellisSuccessor(BB
, Successors
, AdjustedSumProb
, Chain
,
1502 // For blocks with CFG violations, we may be able to lay them out anyway with
1503 // tail-duplication. We keep this vector so we can perform the probability
1504 // calculations the minimum number of times.
1505 SmallVector
<std::tuple
<BranchProbability
, MachineBasicBlock
*>, 4>
1507 for (MachineBasicBlock
*Succ
: Successors
) {
1508 auto RealSuccProb
= MBPI
->getEdgeProbability(BB
, Succ
);
1509 BranchProbability SuccProb
=
1510 getAdjustedProbability(RealSuccProb
, AdjustedSumProb
);
1512 BlockChain
&SuccChain
= *BlockToChain
[Succ
];
1513 // Skip the edge \c BB->Succ if block \c Succ has a better layout
1514 // predecessor that yields lower global cost.
1515 if (hasBetterLayoutPredecessor(BB
, Succ
, SuccChain
, SuccProb
, RealSuccProb
,
1516 Chain
, BlockFilter
)) {
1517 // If tail duplication would make Succ profitable, place it.
1518 if (allowTailDupPlacement() && shouldTailDuplicate(Succ
))
1519 DupCandidates
.push_back(std::make_tuple(SuccProb
, Succ
));
1524 dbgs() << " Candidate: " << getBlockName(Succ
)
1525 << ", probability: " << SuccProb
1526 << (SuccChain
.UnscheduledPredecessors
!= 0 ? " (CFG break)" : "")
1529 if (BestSucc
.BB
&& BestProb
>= SuccProb
) {
1530 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n");
1534 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n");
1536 BestProb
= SuccProb
;
1538 // Handle the tail duplication candidates in order of decreasing probability.
1539 // Stop at the first one that is profitable. Also stop if they are less
1540 // profitable than BestSucc. Position is important because we preserve it and
1541 // prefer first best match. Here we aren't comparing in order, so we capture
1542 // the position instead.
1543 llvm::stable_sort(DupCandidates
,
1544 [](std::tuple
<BranchProbability
, MachineBasicBlock
*> L
,
1545 std::tuple
<BranchProbability
, MachineBasicBlock
*> R
) {
1546 return std::get
<0>(L
) > std::get
<0>(R
);
1548 for (auto &Tup
: DupCandidates
) {
1549 BranchProbability DupProb
;
1550 MachineBasicBlock
*Succ
;
1551 std::tie(DupProb
, Succ
) = Tup
;
1552 if (DupProb
< BestProb
)
1554 if (canTailDuplicateUnplacedPreds(BB
, Succ
, Chain
, BlockFilter
)
1555 && (isProfitableToTailDup(BB
, Succ
, BestProb
, Chain
, BlockFilter
))) {
1556 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ
)
1557 << ", probability: " << DupProb
1558 << " (Tail Duplicate)\n");
1560 BestSucc
.ShouldTailDup
= true;
1566 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc
.BB
) << "\n");
1571 /// Select the best block from a worklist.
1573 /// This looks through the provided worklist as a list of candidate basic
1574 /// blocks and select the most profitable one to place. The definition of
1575 /// profitable only really makes sense in the context of a loop. This returns
1576 /// the most frequently visited block in the worklist, which in the case of
1577 /// a loop, is the one most desirable to be physically close to the rest of the
1578 /// loop body in order to improve i-cache behavior.
1580 /// \returns The best block found, or null if none are viable.
1581 MachineBasicBlock
*MachineBlockPlacement::selectBestCandidateBlock(
1582 const BlockChain
&Chain
, SmallVectorImpl
<MachineBasicBlock
*> &WorkList
) {
1583 // Once we need to walk the worklist looking for a candidate, cleanup the
1584 // worklist of already placed entries.
1585 // FIXME: If this shows up on profiles, it could be folded (at the cost of
1586 // some code complexity) into the loop below.
1587 WorkList
.erase(llvm::remove_if(WorkList
,
1588 [&](MachineBasicBlock
*BB
) {
1589 return BlockToChain
.lookup(BB
) == &Chain
;
1593 if (WorkList
.empty())
1596 bool IsEHPad
= WorkList
[0]->isEHPad();
1598 MachineBasicBlock
*BestBlock
= nullptr;
1599 BlockFrequency BestFreq
;
1600 for (MachineBasicBlock
*MBB
: WorkList
) {
1601 assert(MBB
->isEHPad() == IsEHPad
&&
1602 "EHPad mismatch between block and work list.");
1604 BlockChain
&SuccChain
= *BlockToChain
[MBB
];
1605 if (&SuccChain
== &Chain
)
1608 assert(SuccChain
.UnscheduledPredecessors
== 0 &&
1609 "Found CFG-violating block");
1611 BlockFrequency CandidateFreq
= MBFI
->getBlockFreq(MBB
);
1612 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB
) << " -> ";
1613 MBFI
->printBlockFreq(dbgs(), CandidateFreq
) << " (freq)\n");
1615 // For ehpad, we layout the least probable first as to avoid jumping back
1616 // from least probable landingpads to more probable ones.
1618 // FIXME: Using probability is probably (!) not the best way to achieve
1619 // this. We should probably have a more principled approach to layout
1622 // The goal is to get:
1624 // +--------------------------+
1626 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
1630 // +-------------------------------------+
1632 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
1633 if (BestBlock
&& (IsEHPad
^ (BestFreq
>= CandidateFreq
)))
1637 BestFreq
= CandidateFreq
;
1643 /// Retrieve the first unplaced basic block.
1645 /// This routine is called when we are unable to use the CFG to walk through
1646 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1647 /// We walk through the function's blocks in order, starting from the
1648 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1649 /// re-scanning the entire sequence on repeated calls to this routine.
1650 MachineBasicBlock
*MachineBlockPlacement::getFirstUnplacedBlock(
1651 const BlockChain
&PlacedChain
,
1652 MachineFunction::iterator
&PrevUnplacedBlockIt
,
1653 const BlockFilterSet
*BlockFilter
) {
1654 for (MachineFunction::iterator I
= PrevUnplacedBlockIt
, E
= F
->end(); I
!= E
;
1656 if (BlockFilter
&& !BlockFilter
->count(&*I
))
1658 if (BlockToChain
[&*I
] != &PlacedChain
) {
1659 PrevUnplacedBlockIt
= I
;
1660 // Now select the head of the chain to which the unplaced block belongs
1661 // as the block to place. This will force the entire chain to be placed,
1662 // and satisfies the requirements of merging chains.
1663 return *BlockToChain
[&*I
]->begin();
1669 void MachineBlockPlacement::fillWorkLists(
1670 const MachineBasicBlock
*MBB
,
1671 SmallPtrSetImpl
<BlockChain
*> &UpdatedPreds
,
1672 const BlockFilterSet
*BlockFilter
= nullptr) {
1673 BlockChain
&Chain
= *BlockToChain
[MBB
];
1674 if (!UpdatedPreds
.insert(&Chain
).second
)
1678 Chain
.UnscheduledPredecessors
== 0 &&
1679 "Attempting to place block with unscheduled predecessors in worklist.");
1680 for (MachineBasicBlock
*ChainBB
: Chain
) {
1681 assert(BlockToChain
[ChainBB
] == &Chain
&&
1682 "Block in chain doesn't match BlockToChain map.");
1683 for (MachineBasicBlock
*Pred
: ChainBB
->predecessors()) {
1684 if (BlockFilter
&& !BlockFilter
->count(Pred
))
1686 if (BlockToChain
[Pred
] == &Chain
)
1688 ++Chain
.UnscheduledPredecessors
;
1692 if (Chain
.UnscheduledPredecessors
!= 0)
1695 MachineBasicBlock
*BB
= *Chain
.begin();
1697 EHPadWorkList
.push_back(BB
);
1699 BlockWorkList
.push_back(BB
);
1702 void MachineBlockPlacement::buildChain(
1703 const MachineBasicBlock
*HeadBB
, BlockChain
&Chain
,
1704 BlockFilterSet
*BlockFilter
) {
1705 assert(HeadBB
&& "BB must not be null.\n");
1706 assert(BlockToChain
[HeadBB
] == &Chain
&& "BlockToChainMap mis-match.\n");
1707 MachineFunction::iterator PrevUnplacedBlockIt
= F
->begin();
1709 const MachineBasicBlock
*LoopHeaderBB
= HeadBB
;
1710 markChainSuccessors(Chain
, LoopHeaderBB
, BlockFilter
);
1711 MachineBasicBlock
*BB
= *std::prev(Chain
.end());
1713 assert(BB
&& "null block found at end of chain in loop.");
1714 assert(BlockToChain
[BB
] == &Chain
&& "BlockToChainMap mis-match in loop.");
1715 assert(*std::prev(Chain
.end()) == BB
&& "BB Not found at end of chain.");
1718 // Look for the best viable successor if there is one to place immediately
1719 // after this block.
1720 auto Result
= selectBestSuccessor(BB
, Chain
, BlockFilter
);
1721 MachineBasicBlock
* BestSucc
= Result
.BB
;
1722 bool ShouldTailDup
= Result
.ShouldTailDup
;
1723 if (allowTailDupPlacement())
1724 ShouldTailDup
|= (BestSucc
&& shouldTailDuplicate(BestSucc
));
1726 // If an immediate successor isn't available, look for the best viable
1727 // block among those we've identified as not violating the loop's CFG at
1728 // this point. This won't be a fallthrough, but it will increase locality.
1730 BestSucc
= selectBestCandidateBlock(Chain
, BlockWorkList
);
1732 BestSucc
= selectBestCandidateBlock(Chain
, EHPadWorkList
);
1735 BestSucc
= getFirstUnplacedBlock(Chain
, PrevUnplacedBlockIt
, BlockFilter
);
1739 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1740 "layout successor until the CFG reduces\n");
1743 // Placement may have changed tail duplication opportunities.
1744 // Check for that now.
1745 if (allowTailDupPlacement() && BestSucc
&& ShouldTailDup
) {
1746 // If the chosen successor was duplicated into all its predecessors,
1747 // don't bother laying it out, just go round the loop again with BB as
1749 if (repeatedlyTailDuplicateBlock(BestSucc
, BB
, LoopHeaderBB
, Chain
,
1750 BlockFilter
, PrevUnplacedBlockIt
))
1754 // Place this block, updating the datastructures to reflect its placement.
1755 BlockChain
&SuccChain
= *BlockToChain
[BestSucc
];
1756 // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1757 // we selected a successor that didn't fit naturally into the CFG.
1758 SuccChain
.UnscheduledPredecessors
= 0;
1759 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB
) << " to "
1760 << getBlockName(BestSucc
) << "\n");
1761 markChainSuccessors(SuccChain
, LoopHeaderBB
, BlockFilter
);
1762 Chain
.merge(BestSucc
, &SuccChain
);
1763 BB
= *std::prev(Chain
.end());
1766 LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1767 << getBlockName(*Chain
.begin()) << "\n");
1770 // If bottom of block BB has only one successor OldTop, in most cases it is
1771 // profitable to move it before OldTop, except the following case:
1781 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1782 // layout the other successor below it, so it can't reduce taken branch.
1783 // In this case we keep its original layout.
1785 MachineBlockPlacement::canMoveBottomBlockToTop(
1786 const MachineBasicBlock
*BottomBlock
,
1787 const MachineBasicBlock
*OldTop
) {
1788 if (BottomBlock
->pred_size() != 1)
1790 MachineBasicBlock
*Pred
= *BottomBlock
->pred_begin();
1791 if (Pred
->succ_size() != 2)
1794 MachineBasicBlock
*OtherBB
= *Pred
->succ_begin();
1795 if (OtherBB
== BottomBlock
)
1796 OtherBB
= *Pred
->succ_rbegin();
1797 if (OtherBB
== OldTop
)
1803 // Find out the possible fall through frequence to the top of a loop.
1805 MachineBlockPlacement::TopFallThroughFreq(
1806 const MachineBasicBlock
*Top
,
1807 const BlockFilterSet
&LoopBlockSet
) {
1808 BlockFrequency MaxFreq
= 0;
1809 for (MachineBasicBlock
*Pred
: Top
->predecessors()) {
1810 BlockChain
*PredChain
= BlockToChain
[Pred
];
1811 if (!LoopBlockSet
.count(Pred
) &&
1812 (!PredChain
|| Pred
== *std::prev(PredChain
->end()))) {
1813 // Found a Pred block can be placed before Top.
1814 // Check if Top is the best successor of Pred.
1815 auto TopProb
= MBPI
->getEdgeProbability(Pred
, Top
);
1817 for (MachineBasicBlock
*Succ
: Pred
->successors()) {
1818 auto SuccProb
= MBPI
->getEdgeProbability(Pred
, Succ
);
1819 BlockChain
*SuccChain
= BlockToChain
[Succ
];
1820 // Check if Succ can be placed after Pred.
1821 // Succ should not be in any chain, or it is the head of some chain.
1822 if (!LoopBlockSet
.count(Succ
) && (SuccProb
> TopProb
) &&
1823 (!SuccChain
|| Succ
== *SuccChain
->begin())) {
1829 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(Pred
) *
1830 MBPI
->getEdgeProbability(Pred
, Top
);
1831 if (EdgeFreq
> MaxFreq
)
1839 // Compute the fall through gains when move NewTop before OldTop.
1841 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1842 // marked as "+" are increased fallthrough, this function computes
1844 // SUM(increased fallthrough) - SUM(decreased fallthrough)
1861 MachineBlockPlacement::FallThroughGains(
1862 const MachineBasicBlock
*NewTop
,
1863 const MachineBasicBlock
*OldTop
,
1864 const MachineBasicBlock
*ExitBB
,
1865 const BlockFilterSet
&LoopBlockSet
) {
1866 BlockFrequency FallThrough2Top
= TopFallThroughFreq(OldTop
, LoopBlockSet
);
1867 BlockFrequency FallThrough2Exit
= 0;
1869 FallThrough2Exit
= MBFI
->getBlockFreq(NewTop
) *
1870 MBPI
->getEdgeProbability(NewTop
, ExitBB
);
1871 BlockFrequency BackEdgeFreq
= MBFI
->getBlockFreq(NewTop
) *
1872 MBPI
->getEdgeProbability(NewTop
, OldTop
);
1874 // Find the best Pred of NewTop.
1875 MachineBasicBlock
*BestPred
= nullptr;
1876 BlockFrequency FallThroughFromPred
= 0;
1877 for (MachineBasicBlock
*Pred
: NewTop
->predecessors()) {
1878 if (!LoopBlockSet
.count(Pred
))
1880 BlockChain
*PredChain
= BlockToChain
[Pred
];
1881 if (!PredChain
|| Pred
== *std::prev(PredChain
->end())) {
1882 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(Pred
) *
1883 MBPI
->getEdgeProbability(Pred
, NewTop
);
1884 if (EdgeFreq
> FallThroughFromPred
) {
1885 FallThroughFromPred
= EdgeFreq
;
1891 // If NewTop is not placed after Pred, another successor can be placed
1893 BlockFrequency NewFreq
= 0;
1895 for (MachineBasicBlock
*Succ
: BestPred
->successors()) {
1896 if ((Succ
== NewTop
) || (Succ
== BestPred
) || !LoopBlockSet
.count(Succ
))
1898 if (ComputedEdges
.find(Succ
) != ComputedEdges
.end())
1900 BlockChain
*SuccChain
= BlockToChain
[Succ
];
1901 if ((SuccChain
&& (Succ
!= *SuccChain
->begin())) ||
1902 (SuccChain
== BlockToChain
[BestPred
]))
1904 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(BestPred
) *
1905 MBPI
->getEdgeProbability(BestPred
, Succ
);
1906 if (EdgeFreq
> NewFreq
)
1909 BlockFrequency OrigEdgeFreq
= MBFI
->getBlockFreq(BestPred
) *
1910 MBPI
->getEdgeProbability(BestPred
, NewTop
);
1911 if (NewFreq
> OrigEdgeFreq
) {
1912 // If NewTop is not the best successor of Pred, then Pred doesn't
1913 // fallthrough to NewTop. So there is no FallThroughFromPred and
1916 FallThroughFromPred
= 0;
1920 BlockFrequency Result
= 0;
1921 BlockFrequency Gains
= BackEdgeFreq
+ NewFreq
;
1922 BlockFrequency Lost
= FallThrough2Top
+ FallThrough2Exit
+
1923 FallThroughFromPred
;
1925 Result
= Gains
- Lost
;
1929 /// Helper function of findBestLoopTop. Find the best loop top block
1930 /// from predecessors of old top.
1932 /// Look for a block which is strictly better than the old top for laying
1933 /// out before the old top of the loop. This looks for only two patterns:
1935 /// 1. a block has only one successor, the old loop top
1937 /// Because such a block will always result in an unconditional jump,
1938 /// rotating it in front of the old top is always profitable.
1940 /// 2. a block has two successors, one is old top, another is exit
1941 /// and it has more than one predecessors
1943 /// If it is below one of its predecessors P, only P can fall through to
1944 /// it, all other predecessors need a jump to it, and another conditional
1945 /// jump to loop header. If it is moved before loop header, all its
1946 /// predecessors jump to it, then fall through to loop header. So all its
1947 /// predecessors except P can reduce one taken branch.
1948 /// At the same time, move it before old top increases the taken branch
1949 /// to loop exit block, so the reduced taken branch will be compared with
1950 /// the increased taken branch to the loop exit block.
1952 MachineBlockPlacement::findBestLoopTopHelper(
1953 MachineBasicBlock
*OldTop
,
1954 const MachineLoop
&L
,
1955 const BlockFilterSet
&LoopBlockSet
) {
1956 // Check that the header hasn't been fused with a preheader block due to
1957 // crazy branches. If it has, we need to start with the header at the top to
1958 // prevent pulling the preheader into the loop body.
1959 BlockChain
&HeaderChain
= *BlockToChain
[OldTop
];
1960 if (!LoopBlockSet
.count(*HeaderChain
.begin()))
1963 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop
)
1966 BlockFrequency BestGains
= 0;
1967 MachineBasicBlock
*BestPred
= nullptr;
1968 for (MachineBasicBlock
*Pred
: OldTop
->predecessors()) {
1969 if (!LoopBlockSet
.count(Pred
))
1971 if (Pred
== L
.getHeader())
1973 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred
) << ", has "
1974 << Pred
->succ_size() << " successors, ";
1975 MBFI
->printBlockFreq(dbgs(), Pred
) << " freq\n");
1976 if (Pred
->succ_size() > 2)
1979 MachineBasicBlock
*OtherBB
= nullptr;
1980 if (Pred
->succ_size() == 2) {
1981 OtherBB
= *Pred
->succ_begin();
1982 if (OtherBB
== OldTop
)
1983 OtherBB
= *Pred
->succ_rbegin();
1986 if (!canMoveBottomBlockToTop(Pred
, OldTop
))
1989 BlockFrequency Gains
= FallThroughGains(Pred
, OldTop
, OtherBB
,
1991 if ((Gains
> 0) && (Gains
> BestGains
||
1992 ((Gains
== BestGains
) && Pred
->isLayoutSuccessor(OldTop
)))) {
1998 // If no direct predecessor is fine, just use the loop header.
2000 LLVM_DEBUG(dbgs() << " final top unchanged\n");
2004 // Walk backwards through any straight line of predecessors.
2005 while (BestPred
->pred_size() == 1 &&
2006 (*BestPred
->pred_begin())->succ_size() == 1 &&
2007 *BestPred
->pred_begin() != L
.getHeader())
2008 BestPred
= *BestPred
->pred_begin();
2010 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred
) << "\n");
2014 /// Find the best loop top block for layout.
2016 /// This function iteratively calls findBestLoopTopHelper, until no new better
2017 /// BB can be found.
2019 MachineBlockPlacement::findBestLoopTop(const MachineLoop
&L
,
2020 const BlockFilterSet
&LoopBlockSet
) {
2021 // Placing the latch block before the header may introduce an extra branch
2022 // that skips this block the first time the loop is executed, which we want
2023 // to avoid when optimising for size.
2024 // FIXME: in theory there is a case that does not introduce a new branch,
2025 // i.e. when the layout predecessor does not fallthrough to the loop header.
2026 // In practice this never happens though: there always seems to be a preheader
2027 // that can fallthrough and that is also placed before the header.
2028 if (F
->getFunction().hasOptSize())
2029 return L
.getHeader();
2031 MachineBasicBlock
*OldTop
= nullptr;
2032 MachineBasicBlock
*NewTop
= L
.getHeader();
2033 while (NewTop
!= OldTop
) {
2035 NewTop
= findBestLoopTopHelper(OldTop
, L
, LoopBlockSet
);
2036 if (NewTop
!= OldTop
)
2037 ComputedEdges
[NewTop
] = { OldTop
, false };
2042 /// Find the best loop exiting block for layout.
2044 /// This routine implements the logic to analyze the loop looking for the best
2045 /// block to layout at the top of the loop. Typically this is done to maximize
2046 /// fallthrough opportunities.
2048 MachineBlockPlacement::findBestLoopExit(const MachineLoop
&L
,
2049 const BlockFilterSet
&LoopBlockSet
,
2050 BlockFrequency
&ExitFreq
) {
2051 // We don't want to layout the loop linearly in all cases. If the loop header
2052 // is just a normal basic block in the loop, we want to look for what block
2053 // within the loop is the best one to layout at the top. However, if the loop
2054 // header has be pre-merged into a chain due to predecessors not having
2055 // analyzable branches, *and* the predecessor it is merged with is *not* part
2056 // of the loop, rotating the header into the middle of the loop will create
2057 // a non-contiguous range of blocks which is Very Bad. So start with the
2058 // header and only rotate if safe.
2059 BlockChain
&HeaderChain
= *BlockToChain
[L
.getHeader()];
2060 if (!LoopBlockSet
.count(*HeaderChain
.begin()))
2063 BlockFrequency BestExitEdgeFreq
;
2064 unsigned BestExitLoopDepth
= 0;
2065 MachineBasicBlock
*ExitingBB
= nullptr;
2066 // If there are exits to outer loops, loop rotation can severely limit
2067 // fallthrough opportunities unless it selects such an exit. Keep a set of
2068 // blocks where rotating to exit with that block will reach an outer loop.
2069 SmallPtrSet
<MachineBasicBlock
*, 4> BlocksExitingToOuterLoop
;
2071 LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2072 << getBlockName(L
.getHeader()) << "\n");
2073 for (MachineBasicBlock
*MBB
: L
.getBlocks()) {
2074 BlockChain
&Chain
= *BlockToChain
[MBB
];
2075 // Ensure that this block is at the end of a chain; otherwise it could be
2076 // mid-way through an inner loop or a successor of an unanalyzable branch.
2077 if (MBB
!= *std::prev(Chain
.end()))
2080 // Now walk the successors. We need to establish whether this has a viable
2081 // exiting successor and whether it has a viable non-exiting successor.
2082 // We store the old exiting state and restore it if a viable looping
2083 // successor isn't found.
2084 MachineBasicBlock
*OldExitingBB
= ExitingBB
;
2085 BlockFrequency OldBestExitEdgeFreq
= BestExitEdgeFreq
;
2086 bool HasLoopingSucc
= false;
2087 for (MachineBasicBlock
*Succ
: MBB
->successors()) {
2088 if (Succ
->isEHPad())
2092 BlockChain
&SuccChain
= *BlockToChain
[Succ
];
2093 // Don't split chains, either this chain or the successor's chain.
2094 if (&Chain
== &SuccChain
) {
2095 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB
) << " -> "
2096 << getBlockName(Succ
) << " (chain conflict)\n");
2100 auto SuccProb
= MBPI
->getEdgeProbability(MBB
, Succ
);
2101 if (LoopBlockSet
.count(Succ
)) {
2102 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB
) << " -> "
2103 << getBlockName(Succ
) << " (" << SuccProb
<< ")\n");
2104 HasLoopingSucc
= true;
2108 unsigned SuccLoopDepth
= 0;
2109 if (MachineLoop
*ExitLoop
= MLI
->getLoopFor(Succ
)) {
2110 SuccLoopDepth
= ExitLoop
->getLoopDepth();
2111 if (ExitLoop
->contains(&L
))
2112 BlocksExitingToOuterLoop
.insert(MBB
);
2115 BlockFrequency ExitEdgeFreq
= MBFI
->getBlockFreq(MBB
) * SuccProb
;
2116 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB
) << " -> "
2117 << getBlockName(Succ
) << " [L:" << SuccLoopDepth
2119 MBFI
->printBlockFreq(dbgs(), ExitEdgeFreq
) << ")\n");
2120 // Note that we bias this toward an existing layout successor to retain
2121 // incoming order in the absence of better information. The exit must have
2122 // a frequency higher than the current exit before we consider breaking
2124 BranchProbability
Bias(100 - ExitBlockBias
, 100);
2125 if (!ExitingBB
|| SuccLoopDepth
> BestExitLoopDepth
||
2126 ExitEdgeFreq
> BestExitEdgeFreq
||
2127 (MBB
->isLayoutSuccessor(Succ
) &&
2128 !(ExitEdgeFreq
< BestExitEdgeFreq
* Bias
))) {
2129 BestExitEdgeFreq
= ExitEdgeFreq
;
2134 if (!HasLoopingSucc
) {
2135 // Restore the old exiting state, no viable looping successor was found.
2136 ExitingBB
= OldExitingBB
;
2137 BestExitEdgeFreq
= OldBestExitEdgeFreq
;
2140 // Without a candidate exiting block or with only a single block in the
2141 // loop, just use the loop header to layout the loop.
2144 dbgs() << " No other candidate exit blocks, using loop header\n");
2147 if (L
.getNumBlocks() == 1) {
2148 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n");
2152 // Also, if we have exit blocks which lead to outer loops but didn't select
2153 // one of them as the exiting block we are rotating toward, disable loop
2154 // rotation altogether.
2155 if (!BlocksExitingToOuterLoop
.empty() &&
2156 !BlocksExitingToOuterLoop
.count(ExitingBB
))
2159 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB
)
2161 ExitFreq
= BestExitEdgeFreq
;
2165 /// Check if there is a fallthrough to loop header Top.
2167 /// 1. Look for a Pred that can be layout before Top.
2168 /// 2. Check if Top is the most possible successor of Pred.
2170 MachineBlockPlacement::hasViableTopFallthrough(
2171 const MachineBasicBlock
*Top
,
2172 const BlockFilterSet
&LoopBlockSet
) {
2173 for (MachineBasicBlock
*Pred
: Top
->predecessors()) {
2174 BlockChain
*PredChain
= BlockToChain
[Pred
];
2175 if (!LoopBlockSet
.count(Pred
) &&
2176 (!PredChain
|| Pred
== *std::prev(PredChain
->end()))) {
2177 // Found a Pred block can be placed before Top.
2178 // Check if Top is the best successor of Pred.
2179 auto TopProb
= MBPI
->getEdgeProbability(Pred
, Top
);
2181 for (MachineBasicBlock
*Succ
: Pred
->successors()) {
2182 auto SuccProb
= MBPI
->getEdgeProbability(Pred
, Succ
);
2183 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2184 // Check if Succ can be placed after Pred.
2185 // Succ should not be in any chain, or it is the head of some chain.
2186 if ((!SuccChain
|| Succ
== *SuccChain
->begin()) && SuccProb
> TopProb
) {
2198 /// Attempt to rotate an exiting block to the bottom of the loop.
2200 /// Once we have built a chain, try to rotate it to line up the hot exit block
2201 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2202 /// branches. For example, if the loop has fallthrough into its header and out
2203 /// of its bottom already, don't rotate it.
2204 void MachineBlockPlacement::rotateLoop(BlockChain
&LoopChain
,
2205 const MachineBasicBlock
*ExitingBB
,
2206 BlockFrequency ExitFreq
,
2207 const BlockFilterSet
&LoopBlockSet
) {
2211 MachineBasicBlock
*Top
= *LoopChain
.begin();
2212 MachineBasicBlock
*Bottom
= *std::prev(LoopChain
.end());
2214 // If ExitingBB is already the last one in a chain then nothing to do.
2215 if (Bottom
== ExitingBB
)
2218 bool ViableTopFallthrough
= hasViableTopFallthrough(Top
, LoopBlockSet
);
2220 // If the header has viable fallthrough, check whether the current loop
2221 // bottom is a viable exiting block. If so, bail out as rotating will
2222 // introduce an unnecessary branch.
2223 if (ViableTopFallthrough
) {
2224 for (MachineBasicBlock
*Succ
: Bottom
->successors()) {
2225 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2226 if (!LoopBlockSet
.count(Succ
) &&
2227 (!SuccChain
|| Succ
== *SuccChain
->begin()))
2231 // Rotate will destroy the top fallthrough, we need to ensure the new exit
2232 // frequency is larger than top fallthrough.
2233 BlockFrequency FallThrough2Top
= TopFallThroughFreq(Top
, LoopBlockSet
);
2234 if (FallThrough2Top
>= ExitFreq
)
2238 BlockChain::iterator ExitIt
= llvm::find(LoopChain
, ExitingBB
);
2239 if (ExitIt
== LoopChain
.end())
2242 // Rotating a loop exit to the bottom when there is a fallthrough to top
2243 // trades the entry fallthrough for an exit fallthrough.
2244 // If there is no bottom->top edge, but the chosen exit block does have
2245 // a fallthrough, we break that fallthrough for nothing in return.
2247 // Let's consider an example. We have a built chain of basic blocks
2248 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2249 // By doing a rotation we get
2250 // Bk+1, ..., Bn, B1, ..., Bk
2251 // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2252 // If we had a fallthrough Bk -> Bk+1 it is broken now.
2253 // It might be compensated by fallthrough Bn -> B1.
2254 // So we have a condition to avoid creation of extra branch by loop rotation.
2255 // All below must be true to avoid loop rotation:
2256 // If there is a fallthrough to top (B1)
2257 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2258 // There is no fallthrough from bottom (Bn) to top (B1).
2259 // Please note that there is no exit fallthrough from Bn because we checked it
2261 if (ViableTopFallthrough
) {
2262 assert(std::next(ExitIt
) != LoopChain
.end() &&
2263 "Exit should not be last BB");
2264 MachineBasicBlock
*NextBlockInChain
= *std::next(ExitIt
);
2265 if (ExitingBB
->isSuccessor(NextBlockInChain
))
2266 if (!Bottom
->isSuccessor(Top
))
2270 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB
)
2272 std::rotate(LoopChain
.begin(), std::next(ExitIt
), LoopChain
.end());
2275 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2277 /// With profile data, we can determine the cost in terms of missed fall through
2278 /// opportunities when rotating a loop chain and select the best rotation.
2279 /// Basically, there are three kinds of cost to consider for each rotation:
2280 /// 1. The possibly missed fall through edge (if it exists) from BB out of
2281 /// the loop to the loop header.
2282 /// 2. The possibly missed fall through edges (if they exist) from the loop
2283 /// exits to BB out of the loop.
2284 /// 3. The missed fall through edge (if it exists) from the last BB to the
2285 /// first BB in the loop chain.
2286 /// Therefore, the cost for a given rotation is the sum of costs listed above.
2287 /// We select the best rotation with the smallest cost.
2288 void MachineBlockPlacement::rotateLoopWithProfile(
2289 BlockChain
&LoopChain
, const MachineLoop
&L
,
2290 const BlockFilterSet
&LoopBlockSet
) {
2291 auto RotationPos
= LoopChain
.end();
2293 BlockFrequency SmallestRotationCost
= BlockFrequency::getMaxFrequency();
2295 // A utility lambda that scales up a block frequency by dividing it by a
2296 // branch probability which is the reciprocal of the scale.
2297 auto ScaleBlockFrequency
= [](BlockFrequency Freq
,
2298 unsigned Scale
) -> BlockFrequency
{
2301 // Use operator / between BlockFrequency and BranchProbability to implement
2302 // saturating multiplication.
2303 return Freq
/ BranchProbability(1, Scale
);
2306 // Compute the cost of the missed fall-through edge to the loop header if the
2307 // chain head is not the loop header. As we only consider natural loops with
2308 // single header, this computation can be done only once.
2309 BlockFrequency
HeaderFallThroughCost(0);
2310 MachineBasicBlock
*ChainHeaderBB
= *LoopChain
.begin();
2311 for (auto *Pred
: ChainHeaderBB
->predecessors()) {
2312 BlockChain
*PredChain
= BlockToChain
[Pred
];
2313 if (!LoopBlockSet
.count(Pred
) &&
2314 (!PredChain
|| Pred
== *std::prev(PredChain
->end()))) {
2315 auto EdgeFreq
= MBFI
->getBlockFreq(Pred
) *
2316 MBPI
->getEdgeProbability(Pred
, ChainHeaderBB
);
2317 auto FallThruCost
= ScaleBlockFrequency(EdgeFreq
, MisfetchCost
);
2318 // If the predecessor has only an unconditional jump to the header, we
2319 // need to consider the cost of this jump.
2320 if (Pred
->succ_size() == 1)
2321 FallThruCost
+= ScaleBlockFrequency(EdgeFreq
, JumpInstCost
);
2322 HeaderFallThroughCost
= std::max(HeaderFallThroughCost
, FallThruCost
);
2326 // Here we collect all exit blocks in the loop, and for each exit we find out
2327 // its hottest exit edge. For each loop rotation, we define the loop exit cost
2328 // as the sum of frequencies of exit edges we collect here, excluding the exit
2329 // edge from the tail of the loop chain.
2330 SmallVector
<std::pair
<MachineBasicBlock
*, BlockFrequency
>, 4> ExitsWithFreq
;
2331 for (auto BB
: LoopChain
) {
2332 auto LargestExitEdgeProb
= BranchProbability::getZero();
2333 for (auto *Succ
: BB
->successors()) {
2334 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2335 if (!LoopBlockSet
.count(Succ
) &&
2336 (!SuccChain
|| Succ
== *SuccChain
->begin())) {
2337 auto SuccProb
= MBPI
->getEdgeProbability(BB
, Succ
);
2338 LargestExitEdgeProb
= std::max(LargestExitEdgeProb
, SuccProb
);
2341 if (LargestExitEdgeProb
> BranchProbability::getZero()) {
2342 auto ExitFreq
= MBFI
->getBlockFreq(BB
) * LargestExitEdgeProb
;
2343 ExitsWithFreq
.emplace_back(BB
, ExitFreq
);
2347 // In this loop we iterate every block in the loop chain and calculate the
2348 // cost assuming the block is the head of the loop chain. When the loop ends,
2349 // we should have found the best candidate as the loop chain's head.
2350 for (auto Iter
= LoopChain
.begin(), TailIter
= std::prev(LoopChain
.end()),
2351 EndIter
= LoopChain
.end();
2352 Iter
!= EndIter
; Iter
++, TailIter
++) {
2353 // TailIter is used to track the tail of the loop chain if the block we are
2354 // checking (pointed by Iter) is the head of the chain.
2355 if (TailIter
== LoopChain
.end())
2356 TailIter
= LoopChain
.begin();
2358 auto TailBB
= *TailIter
;
2360 // Calculate the cost by putting this BB to the top.
2361 BlockFrequency Cost
= 0;
2363 // If the current BB is the loop header, we need to take into account the
2364 // cost of the missed fall through edge from outside of the loop to the
2366 if (Iter
!= LoopChain
.begin())
2367 Cost
+= HeaderFallThroughCost
;
2369 // Collect the loop exit cost by summing up frequencies of all exit edges
2370 // except the one from the chain tail.
2371 for (auto &ExitWithFreq
: ExitsWithFreq
)
2372 if (TailBB
!= ExitWithFreq
.first
)
2373 Cost
+= ExitWithFreq
.second
;
2375 // The cost of breaking the once fall-through edge from the tail to the top
2376 // of the loop chain. Here we need to consider three cases:
2377 // 1. If the tail node has only one successor, then we will get an
2378 // additional jmp instruction. So the cost here is (MisfetchCost +
2379 // JumpInstCost) * tail node frequency.
2380 // 2. If the tail node has two successors, then we may still get an
2381 // additional jmp instruction if the layout successor after the loop
2382 // chain is not its CFG successor. Note that the more frequently executed
2383 // jmp instruction will be put ahead of the other one. Assume the
2384 // frequency of those two branches are x and y, where x is the frequency
2385 // of the edge to the chain head, then the cost will be
2386 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2387 // 3. If the tail node has more than two successors (this rarely happens),
2388 // we won't consider any additional cost.
2389 if (TailBB
->isSuccessor(*Iter
)) {
2390 auto TailBBFreq
= MBFI
->getBlockFreq(TailBB
);
2391 if (TailBB
->succ_size() == 1)
2392 Cost
+= ScaleBlockFrequency(TailBBFreq
.getFrequency(),
2393 MisfetchCost
+ JumpInstCost
);
2394 else if (TailBB
->succ_size() == 2) {
2395 auto TailToHeadProb
= MBPI
->getEdgeProbability(TailBB
, *Iter
);
2396 auto TailToHeadFreq
= TailBBFreq
* TailToHeadProb
;
2397 auto ColderEdgeFreq
= TailToHeadProb
> BranchProbability(1, 2)
2398 ? TailBBFreq
* TailToHeadProb
.getCompl()
2400 Cost
+= ScaleBlockFrequency(TailToHeadFreq
, MisfetchCost
) +
2401 ScaleBlockFrequency(ColderEdgeFreq
, JumpInstCost
);
2405 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2406 << getBlockName(*Iter
)
2407 << " to the top: " << Cost
.getFrequency() << "\n");
2409 if (Cost
< SmallestRotationCost
) {
2410 SmallestRotationCost
= Cost
;
2415 if (RotationPos
!= LoopChain
.end()) {
2416 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos
)
2417 << " to the top\n");
2418 std::rotate(LoopChain
.begin(), RotationPos
, LoopChain
.end());
2422 /// Collect blocks in the given loop that are to be placed.
2424 /// When profile data is available, exclude cold blocks from the returned set;
2425 /// otherwise, collect all blocks in the loop.
2426 MachineBlockPlacement::BlockFilterSet
2427 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop
&L
) {
2428 BlockFilterSet LoopBlockSet
;
2430 // Filter cold blocks off from LoopBlockSet when profile data is available.
2431 // Collect the sum of frequencies of incoming edges to the loop header from
2432 // outside. If we treat the loop as a super block, this is the frequency of
2433 // the loop. Then for each block in the loop, we calculate the ratio between
2434 // its frequency and the frequency of the loop block. When it is too small,
2435 // don't add it to the loop chain. If there are outer loops, then this block
2436 // will be merged into the first outer loop chain for which this block is not
2437 // cold anymore. This needs precise profile data and we only do this when
2438 // profile data is available.
2439 if (F
->getFunction().hasProfileData() || ForceLoopColdBlock
) {
2440 BlockFrequency
LoopFreq(0);
2441 for (auto LoopPred
: L
.getHeader()->predecessors())
2442 if (!L
.contains(LoopPred
))
2443 LoopFreq
+= MBFI
->getBlockFreq(LoopPred
) *
2444 MBPI
->getEdgeProbability(LoopPred
, L
.getHeader());
2446 for (MachineBasicBlock
*LoopBB
: L
.getBlocks()) {
2447 auto Freq
= MBFI
->getBlockFreq(LoopBB
).getFrequency();
2448 if (Freq
== 0 || LoopFreq
.getFrequency() / Freq
> LoopToColdBlockRatio
)
2450 LoopBlockSet
.insert(LoopBB
);
2453 LoopBlockSet
.insert(L
.block_begin(), L
.block_end());
2455 return LoopBlockSet
;
2458 /// Forms basic block chains from the natural loop structures.
2460 /// These chains are designed to preserve the existing *structure* of the code
2461 /// as much as possible. We can then stitch the chains together in a way which
2462 /// both preserves the topological structure and minimizes taken conditional
2464 void MachineBlockPlacement::buildLoopChains(const MachineLoop
&L
) {
2465 // First recurse through any nested loops, building chains for those inner
2467 for (const MachineLoop
*InnerLoop
: L
)
2468 buildLoopChains(*InnerLoop
);
2470 assert(BlockWorkList
.empty() &&
2471 "BlockWorkList not empty when starting to build loop chains.");
2472 assert(EHPadWorkList
.empty() &&
2473 "EHPadWorkList not empty when starting to build loop chains.");
2474 BlockFilterSet LoopBlockSet
= collectLoopBlockSet(L
);
2476 // Check if we have profile data for this function. If yes, we will rotate
2477 // this loop by modeling costs more precisely which requires the profile data
2478 // for better layout.
2479 bool RotateLoopWithProfile
=
2480 ForcePreciseRotationCost
||
2481 (PreciseRotationCost
&& F
->getFunction().hasProfileData());
2483 // First check to see if there is an obviously preferable top block for the
2484 // loop. This will default to the header, but may end up as one of the
2485 // predecessors to the header if there is one which will result in strictly
2486 // fewer branches in the loop body.
2487 MachineBasicBlock
*LoopTop
= findBestLoopTop(L
, LoopBlockSet
);
2489 // If we selected just the header for the loop top, look for a potentially
2490 // profitable exit block in the event that rotating the loop can eliminate
2491 // branches by placing an exit edge at the bottom.
2493 // Loops are processed innermost to uttermost, make sure we clear
2494 // PreferredLoopExit before processing a new loop.
2495 PreferredLoopExit
= nullptr;
2496 BlockFrequency ExitFreq
;
2497 if (!RotateLoopWithProfile
&& LoopTop
== L
.getHeader())
2498 PreferredLoopExit
= findBestLoopExit(L
, LoopBlockSet
, ExitFreq
);
2500 BlockChain
&LoopChain
= *BlockToChain
[LoopTop
];
2502 // FIXME: This is a really lame way of walking the chains in the loop: we
2503 // walk the blocks, and use a set to prevent visiting a particular chain
2505 SmallPtrSet
<BlockChain
*, 4> UpdatedPreds
;
2506 assert(LoopChain
.UnscheduledPredecessors
== 0 &&
2507 "LoopChain should not have unscheduled predecessors.");
2508 UpdatedPreds
.insert(&LoopChain
);
2510 for (const MachineBasicBlock
*LoopBB
: LoopBlockSet
)
2511 fillWorkLists(LoopBB
, UpdatedPreds
, &LoopBlockSet
);
2513 buildChain(LoopTop
, LoopChain
, &LoopBlockSet
);
2515 if (RotateLoopWithProfile
)
2516 rotateLoopWithProfile(LoopChain
, L
, LoopBlockSet
);
2518 rotateLoop(LoopChain
, PreferredLoopExit
, ExitFreq
, LoopBlockSet
);
2521 // Crash at the end so we get all of the debugging output first.
2522 bool BadLoop
= false;
2523 if (LoopChain
.UnscheduledPredecessors
) {
2525 dbgs() << "Loop chain contains a block without its preds placed!\n"
2526 << " Loop header: " << getBlockName(*L
.block_begin()) << "\n"
2527 << " Chain header: " << getBlockName(*LoopChain
.begin()) << "\n";
2529 for (MachineBasicBlock
*ChainBB
: LoopChain
) {
2530 dbgs() << " ... " << getBlockName(ChainBB
) << "\n";
2531 if (!LoopBlockSet
.remove(ChainBB
)) {
2532 // We don't mark the loop as bad here because there are real situations
2533 // where this can occur. For example, with an unanalyzable fallthrough
2534 // from a loop block to a non-loop block or vice versa.
2535 dbgs() << "Loop chain contains a block not contained by the loop!\n"
2536 << " Loop header: " << getBlockName(*L
.block_begin()) << "\n"
2537 << " Chain header: " << getBlockName(*LoopChain
.begin()) << "\n"
2538 << " Bad block: " << getBlockName(ChainBB
) << "\n";
2542 if (!LoopBlockSet
.empty()) {
2544 for (const MachineBasicBlock
*LoopBB
: LoopBlockSet
)
2545 dbgs() << "Loop contains blocks never placed into a chain!\n"
2546 << " Loop header: " << getBlockName(*L
.block_begin()) << "\n"
2547 << " Chain header: " << getBlockName(*LoopChain
.begin()) << "\n"
2548 << " Bad block: " << getBlockName(LoopBB
) << "\n";
2550 assert(!BadLoop
&& "Detected problems with the placement of this loop.");
2553 BlockWorkList
.clear();
2554 EHPadWorkList
.clear();
2557 void MachineBlockPlacement::buildCFGChains() {
2558 // Ensure that every BB in the function has an associated chain to simplify
2559 // the assumptions of the remaining algorithm.
2560 SmallVector
<MachineOperand
, 4> Cond
; // For AnalyzeBranch.
2561 for (MachineFunction::iterator FI
= F
->begin(), FE
= F
->end(); FI
!= FE
;
2563 MachineBasicBlock
*BB
= &*FI
;
2565 new (ChainAllocator
.Allocate()) BlockChain(BlockToChain
, BB
);
2566 // Also, merge any blocks which we cannot reason about and must preserve
2567 // the exact fallthrough behavior for.
2570 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For AnalyzeBranch.
2571 if (!TII
->analyzeBranch(*BB
, TBB
, FBB
, Cond
) || !FI
->canFallThrough())
2574 MachineFunction::iterator NextFI
= std::next(FI
);
2575 MachineBasicBlock
*NextBB
= &*NextFI
;
2576 // Ensure that the layout successor is a viable block, as we know that
2577 // fallthrough is a possibility.
2578 assert(NextFI
!= FE
&& "Can't fallthrough past the last block.");
2579 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2580 << getBlockName(BB
) << " -> " << getBlockName(NextBB
)
2582 Chain
->merge(NextBB
, nullptr);
2584 BlocksWithUnanalyzableExits
.insert(&*BB
);
2591 // Build any loop-based chains.
2592 PreferredLoopExit
= nullptr;
2593 for (MachineLoop
*L
: *MLI
)
2594 buildLoopChains(*L
);
2596 assert(BlockWorkList
.empty() &&
2597 "BlockWorkList should be empty before building final chain.");
2598 assert(EHPadWorkList
.empty() &&
2599 "EHPadWorkList should be empty before building final chain.");
2601 SmallPtrSet
<BlockChain
*, 4> UpdatedPreds
;
2602 for (MachineBasicBlock
&MBB
: *F
)
2603 fillWorkLists(&MBB
, UpdatedPreds
);
2605 BlockChain
&FunctionChain
= *BlockToChain
[&F
->front()];
2606 buildChain(&F
->front(), FunctionChain
);
2609 using FunctionBlockSetType
= SmallPtrSet
<MachineBasicBlock
*, 16>;
2612 // Crash at the end so we get all of the debugging output first.
2613 bool BadFunc
= false;
2614 FunctionBlockSetType FunctionBlockSet
;
2615 for (MachineBasicBlock
&MBB
: *F
)
2616 FunctionBlockSet
.insert(&MBB
);
2618 for (MachineBasicBlock
*ChainBB
: FunctionChain
)
2619 if (!FunctionBlockSet
.erase(ChainBB
)) {
2621 dbgs() << "Function chain contains a block not in the function!\n"
2622 << " Bad block: " << getBlockName(ChainBB
) << "\n";
2625 if (!FunctionBlockSet
.empty()) {
2627 for (MachineBasicBlock
*RemainingBB
: FunctionBlockSet
)
2628 dbgs() << "Function contains blocks never placed into a chain!\n"
2629 << " Bad block: " << getBlockName(RemainingBB
) << "\n";
2631 assert(!BadFunc
&& "Detected problems with the block placement.");
2634 // Splice the blocks into place.
2635 MachineFunction::iterator InsertPos
= F
->begin();
2636 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F
->getName() << "\n");
2637 for (MachineBasicBlock
*ChainBB
: FunctionChain
) {
2638 LLVM_DEBUG(dbgs() << (ChainBB
== *FunctionChain
.begin() ? "Placing chain "
2640 << getBlockName(ChainBB
) << "\n");
2641 if (InsertPos
!= MachineFunction::iterator(ChainBB
))
2642 F
->splice(InsertPos
, ChainBB
);
2646 // Update the terminator of the previous block.
2647 if (ChainBB
== *FunctionChain
.begin())
2649 MachineBasicBlock
*PrevBB
= &*std::prev(MachineFunction::iterator(ChainBB
));
2651 // FIXME: It would be awesome of updateTerminator would just return rather
2652 // than assert when the branch cannot be analyzed in order to remove this
2655 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For AnalyzeBranch.
2658 if (!BlocksWithUnanalyzableExits
.count(PrevBB
)) {
2659 // Given the exact block placement we chose, we may actually not _need_ to
2660 // be able to edit PrevBB's terminator sequence, but not being _able_ to
2661 // do that at this point is a bug.
2662 assert((!TII
->analyzeBranch(*PrevBB
, TBB
, FBB
, Cond
) ||
2663 !PrevBB
->canFallThrough()) &&
2664 "Unexpected block with un-analyzable fallthrough!");
2666 TBB
= FBB
= nullptr;
2670 // The "PrevBB" is not yet updated to reflect current code layout, so,
2671 // o. it may fall-through to a block without explicit "goto" instruction
2672 // before layout, and no longer fall-through it after layout; or
2673 // o. just opposite.
2675 // analyzeBranch() may return erroneous value for FBB when these two
2676 // situations take place. For the first scenario FBB is mistakenly set NULL;
2677 // for the 2nd scenario, the FBB, which is expected to be NULL, is
2678 // mistakenly pointing to "*BI".
2679 // Thus, if the future change needs to use FBB before the layout is set, it
2680 // has to correct FBB first by using the code similar to the following:
2682 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2683 // PrevBB->updateTerminator();
2685 // TBB = FBB = nullptr;
2686 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2687 // // FIXME: This should never take place.
2688 // TBB = FBB = nullptr;
2691 if (!TII
->analyzeBranch(*PrevBB
, TBB
, FBB
, Cond
))
2692 PrevBB
->updateTerminator();
2695 // Fixup the last block.
2697 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For AnalyzeBranch.
2698 if (!TII
->analyzeBranch(F
->back(), TBB
, FBB
, Cond
))
2699 F
->back().updateTerminator();
2701 BlockWorkList
.clear();
2702 EHPadWorkList
.clear();
2705 void MachineBlockPlacement::optimizeBranches() {
2706 BlockChain
&FunctionChain
= *BlockToChain
[&F
->front()];
2707 SmallVector
<MachineOperand
, 4> Cond
; // For AnalyzeBranch.
2709 // Now that all the basic blocks in the chain have the proper layout,
2710 // make a final call to AnalyzeBranch with AllowModify set.
2711 // Indeed, the target may be able to optimize the branches in a way we
2712 // cannot because all branches may not be analyzable.
2713 // E.g., the target may be able to remove an unconditional branch to
2714 // a fallthrough when it occurs after predicated terminators.
2715 for (MachineBasicBlock
*ChainBB
: FunctionChain
) {
2717 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For AnalyzeBranch.
2718 if (!TII
->analyzeBranch(*ChainBB
, TBB
, FBB
, Cond
, /*AllowModify*/ true)) {
2719 // If PrevBB has a two-way branch, try to re-order the branches
2720 // such that we branch to the successor with higher probability first.
2721 if (TBB
&& !Cond
.empty() && FBB
&&
2722 MBPI
->getEdgeProbability(ChainBB
, FBB
) >
2723 MBPI
->getEdgeProbability(ChainBB
, TBB
) &&
2724 !TII
->reverseBranchCondition(Cond
)) {
2725 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2726 << getBlockName(ChainBB
) << "\n");
2727 LLVM_DEBUG(dbgs() << " Edge probability: "
2728 << MBPI
->getEdgeProbability(ChainBB
, FBB
) << " vs "
2729 << MBPI
->getEdgeProbability(ChainBB
, TBB
) << "\n");
2730 DebugLoc dl
; // FIXME: this is nowhere
2731 TII
->removeBranch(*ChainBB
);
2732 TII
->insertBranch(*ChainBB
, FBB
, TBB
, Cond
, dl
);
2733 ChainBB
->updateTerminator();
2739 void MachineBlockPlacement::alignBlocks() {
2740 // Walk through the backedges of the function now that we have fully laid out
2741 // the basic blocks and align the destination of each backedge. We don't rely
2742 // exclusively on the loop info here so that we can align backedges in
2743 // unnatural CFGs and backedges that were introduced purely because of the
2744 // loop rotations done during this layout pass.
2745 if (F
->getFunction().hasMinSize() ||
2746 (F
->getFunction().hasOptSize() && !TLI
->alignLoopsWithOptSize()))
2748 BlockChain
&FunctionChain
= *BlockToChain
[&F
->front()];
2749 if (FunctionChain
.begin() == FunctionChain
.end())
2750 return; // Empty chain.
2752 const BranchProbability
ColdProb(1, 5); // 20%
2753 BlockFrequency EntryFreq
= MBFI
->getBlockFreq(&F
->front());
2754 BlockFrequency WeightedEntryFreq
= EntryFreq
* ColdProb
;
2755 for (MachineBasicBlock
*ChainBB
: FunctionChain
) {
2756 if (ChainBB
== *FunctionChain
.begin())
2759 // Don't align non-looping basic blocks. These are unlikely to execute
2760 // enough times to matter in practice. Note that we'll still handle
2761 // unnatural CFGs inside of a natural outer loop (the common case) and
2763 MachineLoop
*L
= MLI
->getLoopFor(ChainBB
);
2767 const Align Align
= TLI
->getPrefLoopAlignment(L
);
2769 continue; // Don't care about loop alignment.
2771 // If the block is cold relative to the function entry don't waste space
2773 BlockFrequency Freq
= MBFI
->getBlockFreq(ChainBB
);
2774 if (Freq
< WeightedEntryFreq
)
2777 // If the block is cold relative to its loop header, don't align it
2778 // regardless of what edges into the block exist.
2779 MachineBasicBlock
*LoopHeader
= L
->getHeader();
2780 BlockFrequency LoopHeaderFreq
= MBFI
->getBlockFreq(LoopHeader
);
2781 if (Freq
< (LoopHeaderFreq
* ColdProb
))
2784 // Check for the existence of a non-layout predecessor which would benefit
2785 // from aligning this block.
2786 MachineBasicBlock
*LayoutPred
=
2787 &*std::prev(MachineFunction::iterator(ChainBB
));
2789 // Force alignment if all the predecessors are jumps. We already checked
2790 // that the block isn't cold above.
2791 if (!LayoutPred
->isSuccessor(ChainBB
)) {
2792 ChainBB
->setAlignment(Align
);
2796 // Align this block if the layout predecessor's edge into this block is
2797 // cold relative to the block. When this is true, other predecessors make up
2798 // all of the hot entries into the block and thus alignment is likely to be
2800 BranchProbability LayoutProb
=
2801 MBPI
->getEdgeProbability(LayoutPred
, ChainBB
);
2802 BlockFrequency LayoutEdgeFreq
= MBFI
->getBlockFreq(LayoutPred
) * LayoutProb
;
2803 if (LayoutEdgeFreq
<= (Freq
* ColdProb
))
2804 ChainBB
->setAlignment(Align
);
2808 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2809 /// it was duplicated into its chain predecessor and removed.
2810 /// \p BB - Basic block that may be duplicated.
2812 /// \p LPred - Chosen layout predecessor of \p BB.
2813 /// Updated to be the chain end if LPred is removed.
2814 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2815 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2816 /// Used to identify which blocks to update predecessor
2818 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2819 /// chosen in the given order due to unnatural CFG
2820 /// only needed if \p BB is removed and
2821 /// \p PrevUnplacedBlockIt pointed to \p BB.
2822 /// @return true if \p BB was removed.
2823 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2824 MachineBasicBlock
*BB
, MachineBasicBlock
*&LPred
,
2825 const MachineBasicBlock
*LoopHeaderBB
,
2826 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
2827 MachineFunction::iterator
&PrevUnplacedBlockIt
) {
2828 bool Removed
, DuplicatedToLPred
;
2829 bool DuplicatedToOriginalLPred
;
2830 Removed
= maybeTailDuplicateBlock(BB
, LPred
, Chain
, BlockFilter
,
2831 PrevUnplacedBlockIt
,
2835 DuplicatedToOriginalLPred
= DuplicatedToLPred
;
2836 // Iteratively try to duplicate again. It can happen that a block that is
2837 // duplicated into is still small enough to be duplicated again.
2838 // No need to call markBlockSuccessors in this case, as the blocks being
2839 // duplicated from here on are already scheduled.
2840 // Note that DuplicatedToLPred always implies Removed.
2841 while (DuplicatedToLPred
) {
2842 assert(Removed
&& "Block must have been removed to be duplicated into its "
2843 "layout predecessor.");
2844 MachineBasicBlock
*DupBB
, *DupPred
;
2845 // The removal callback causes Chain.end() to be updated when a block is
2846 // removed. On the first pass through the loop, the chain end should be the
2847 // same as it was on function entry. On subsequent passes, because we are
2848 // duplicating the block at the end of the chain, if it is removed the
2849 // chain will have shrunk by one block.
2850 BlockChain::iterator ChainEnd
= Chain
.end();
2851 DupBB
= *(--ChainEnd
);
2852 // Now try to duplicate again.
2853 if (ChainEnd
== Chain
.begin())
2855 DupPred
= *std::prev(ChainEnd
);
2856 Removed
= maybeTailDuplicateBlock(DupBB
, DupPred
, Chain
, BlockFilter
,
2857 PrevUnplacedBlockIt
,
2860 // If BB was duplicated into LPred, it is now scheduled. But because it was
2861 // removed, markChainSuccessors won't be called for its chain. Instead we
2862 // call markBlockSuccessors for LPred to achieve the same effect. This must go
2863 // at the end because repeating the tail duplication can increase the number
2864 // of unscheduled predecessors.
2865 LPred
= *std::prev(Chain
.end());
2866 if (DuplicatedToOriginalLPred
)
2867 markBlockSuccessors(Chain
, LPred
, LoopHeaderBB
, BlockFilter
);
2871 /// Tail duplicate \p BB into (some) predecessors if profitable.
2872 /// \p BB - Basic block that may be duplicated
2873 /// \p LPred - Chosen layout predecessor of \p BB
2874 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2875 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2876 /// Used to identify which blocks to update predecessor
2878 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2879 /// chosen in the given order due to unnatural CFG
2880 /// only needed if \p BB is removed and
2881 /// \p PrevUnplacedBlockIt pointed to \p BB.
2882 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
2883 /// only be true if the block was removed.
2884 /// \return - True if the block was duplicated into all preds and removed.
2885 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2886 MachineBasicBlock
*BB
, MachineBasicBlock
*LPred
,
2887 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
2888 MachineFunction::iterator
&PrevUnplacedBlockIt
,
2889 bool &DuplicatedToLPred
) {
2890 DuplicatedToLPred
= false;
2891 if (!shouldTailDuplicate(BB
))
2894 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB
->getNumber()
2897 // This has to be a callback because none of it can be done after
2899 bool Removed
= false;
2900 auto RemovalCallback
=
2901 [&](MachineBasicBlock
*RemBB
) {
2902 // Signal to outer function
2905 // Conservative default.
2906 bool InWorkList
= true;
2907 // Remove from the Chain and Chain Map
2908 if (BlockToChain
.count(RemBB
)) {
2909 BlockChain
*Chain
= BlockToChain
[RemBB
];
2910 InWorkList
= Chain
->UnscheduledPredecessors
== 0;
2911 Chain
->remove(RemBB
);
2912 BlockToChain
.erase(RemBB
);
2915 // Handle the unplaced block iterator
2916 if (&(*PrevUnplacedBlockIt
) == RemBB
) {
2917 PrevUnplacedBlockIt
++;
2920 // Handle the Work Lists
2922 SmallVectorImpl
<MachineBasicBlock
*> &RemoveList
= BlockWorkList
;
2923 if (RemBB
->isEHPad())
2924 RemoveList
= EHPadWorkList
;
2926 llvm::remove_if(RemoveList
,
2927 [RemBB
](MachineBasicBlock
*BB
) {
2933 // Handle the filter set
2935 BlockFilter
->remove(RemBB
);
2938 // Remove the block from loop info.
2939 MLI
->removeBlock(RemBB
);
2940 if (RemBB
== PreferredLoopExit
)
2941 PreferredLoopExit
= nullptr;
2943 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
2944 << getBlockName(RemBB
) << "\n");
2946 auto RemovalCallbackRef
=
2947 function_ref
<void(MachineBasicBlock
*)>(RemovalCallback
);
2949 SmallVector
<MachineBasicBlock
*, 8> DuplicatedPreds
;
2950 bool IsSimple
= TailDup
.isSimpleBB(BB
);
2951 TailDup
.tailDuplicateAndUpdate(IsSimple
, BB
, LPred
,
2952 &DuplicatedPreds
, &RemovalCallbackRef
);
2954 // Update UnscheduledPredecessors to reflect tail-duplication.
2955 DuplicatedToLPred
= false;
2956 for (MachineBasicBlock
*Pred
: DuplicatedPreds
) {
2957 // We're only looking for unscheduled predecessors that match the filter.
2958 BlockChain
* PredChain
= BlockToChain
[Pred
];
2960 DuplicatedToLPred
= true;
2961 if (Pred
== LPred
|| (BlockFilter
&& !BlockFilter
->count(Pred
))
2962 || PredChain
== &Chain
)
2964 for (MachineBasicBlock
*NewSucc
: Pred
->successors()) {
2965 if (BlockFilter
&& !BlockFilter
->count(NewSucc
))
2967 BlockChain
*NewChain
= BlockToChain
[NewSucc
];
2968 if (NewChain
!= &Chain
&& NewChain
!= PredChain
)
2969 NewChain
->UnscheduledPredecessors
++;
2975 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction
&MF
) {
2976 if (skipFunction(MF
.getFunction()))
2979 // Check for single-block functions and skip them.
2980 if (std::next(MF
.begin()) == MF
.end())
2984 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
2985 MBFI
= std::make_unique
<BranchFolder::MBFIWrapper
>(
2986 getAnalysis
<MachineBlockFrequencyInfo
>());
2987 MLI
= &getAnalysis
<MachineLoopInfo
>();
2988 TII
= MF
.getSubtarget().getInstrInfo();
2989 TLI
= MF
.getSubtarget().getTargetLowering();
2992 // Initialize PreferredLoopExit to nullptr here since it may never be set if
2993 // there are no MachineLoops.
2994 PreferredLoopExit
= nullptr;
2996 assert(BlockToChain
.empty() &&
2997 "BlockToChain map should be empty before starting placement.");
2998 assert(ComputedEdges
.empty() &&
2999 "Computed Edge map should be empty before starting placement.");
3001 unsigned TailDupSize
= TailDupPlacementThreshold
;
3002 // If only the aggressive threshold is explicitly set, use it.
3003 if (TailDupPlacementAggressiveThreshold
.getNumOccurrences() != 0 &&
3004 TailDupPlacementThreshold
.getNumOccurrences() == 0)
3005 TailDupSize
= TailDupPlacementAggressiveThreshold
;
3007 TargetPassConfig
*PassConfig
= &getAnalysis
<TargetPassConfig
>();
3008 // For aggressive optimization, we can adjust some thresholds to be less
3010 if (PassConfig
->getOptLevel() >= CodeGenOpt::Aggressive
) {
3011 // At O3 we should be more willing to copy blocks for tail duplication. This
3012 // increases size pressure, so we only do it at O3
3013 // Do this unless only the regular threshold is explicitly set.
3014 if (TailDupPlacementThreshold
.getNumOccurrences() == 0 ||
3015 TailDupPlacementAggressiveThreshold
.getNumOccurrences() != 0)
3016 TailDupSize
= TailDupPlacementAggressiveThreshold
;
3019 if (allowTailDupPlacement()) {
3020 MPDT
= &getAnalysis
<MachinePostDominatorTree
>();
3021 if (MF
.getFunction().hasOptSize())
3023 bool PreRegAlloc
= false;
3024 TailDup
.initMF(MF
, PreRegAlloc
, MBPI
, /* LayoutMode */ true, TailDupSize
);
3025 precomputeTriangleChains();
3030 // Changing the layout can create new tail merging opportunities.
3031 // TailMerge can create jump into if branches that make CFG irreducible for
3032 // HW that requires structured CFG.
3033 bool EnableTailMerge
= !MF
.getTarget().requiresStructuredCFG() &&
3034 PassConfig
->getEnableTailMerge() &&
3035 BranchFoldPlacement
;
3036 // No tail merging opportunities if the block number is less than four.
3037 if (MF
.size() > 3 && EnableTailMerge
) {
3038 unsigned TailMergeSize
= TailDupSize
+ 1;
3039 BranchFolder
BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI
,
3040 *MBPI
, TailMergeSize
);
3042 auto *MMIWP
= getAnalysisIfAvailable
<MachineModuleInfoWrapperPass
>();
3043 if (BF
.OptimizeFunction(MF
, TII
, MF
.getSubtarget().getRegisterInfo(),
3044 MMIWP
? &MMIWP
->getMMI() : nullptr, MLI
,
3045 /*AfterPlacement=*/true)) {
3046 // Redo the layout if tail merging creates/removes/moves blocks.
3047 BlockToChain
.clear();
3048 ComputedEdges
.clear();
3049 // Must redo the post-dominator tree if blocks were changed.
3051 MPDT
->runOnMachineFunction(MF
);
3052 ChainAllocator
.DestroyAll();
3060 BlockToChain
.clear();
3061 ComputedEdges
.clear();
3062 ChainAllocator
.DestroyAll();
3065 // Align all of the blocks in the function to a specific alignment.
3066 for (MachineBasicBlock
&MBB
: MF
)
3067 MBB
.setAlignment(Align(1ULL << AlignAllBlock
));
3068 else if (AlignAllNonFallThruBlocks
) {
3069 // Align all of the blocks that have no fall-through predecessors to a
3070 // specific alignment.
3071 for (auto MBI
= std::next(MF
.begin()), MBE
= MF
.end(); MBI
!= MBE
; ++MBI
) {
3072 auto LayoutPred
= std::prev(MBI
);
3073 if (!LayoutPred
->isSuccessor(&*MBI
))
3074 MBI
->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks
));
3077 if (ViewBlockLayoutWithBFI
!= GVDT_None
&&
3078 (ViewBlockFreqFuncName
.empty() ||
3079 F
->getFunction().getName().equals(ViewBlockFreqFuncName
))) {
3080 MBFI
->view("MBP." + MF
.getName(), false);
3084 // We always return true as we have no way to track whether the final order
3085 // differs from the original order.
3091 /// A pass to compute block placement statistics.
3093 /// A separate pass to compute interesting statistics for evaluating block
3094 /// placement. This is separate from the actual placement pass so that they can
3095 /// be computed in the absence of any placement transformations or when using
3096 /// alternative placement strategies.
3097 class MachineBlockPlacementStats
: public MachineFunctionPass
{
3098 /// A handle to the branch probability pass.
3099 const MachineBranchProbabilityInfo
*MBPI
;
3101 /// A handle to the function-wide block frequency pass.
3102 const MachineBlockFrequencyInfo
*MBFI
;
3105 static char ID
; // Pass identification, replacement for typeid
3107 MachineBlockPlacementStats() : MachineFunctionPass(ID
) {
3108 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3111 bool runOnMachineFunction(MachineFunction
&F
) override
;
3113 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
3114 AU
.addRequired
<MachineBranchProbabilityInfo
>();
3115 AU
.addRequired
<MachineBlockFrequencyInfo
>();
3116 AU
.setPreservesAll();
3117 MachineFunctionPass::getAnalysisUsage(AU
);
3121 } // end anonymous namespace
3123 char MachineBlockPlacementStats::ID
= 0;
3125 char &llvm::MachineBlockPlacementStatsID
= MachineBlockPlacementStats::ID
;
3127 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats
, "block-placement-stats",
3128 "Basic Block Placement Stats", false, false)
3129 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
3130 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo
)
3131 INITIALIZE_PASS_END(MachineBlockPlacementStats
, "block-placement-stats",
3132 "Basic Block Placement Stats", false, false)
3134 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction
&F
) {
3135 // Check for single-block functions and skip them.
3136 if (std::next(F
.begin()) == F
.end())
3139 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
3140 MBFI
= &getAnalysis
<MachineBlockFrequencyInfo
>();
3142 for (MachineBasicBlock
&MBB
: F
) {
3143 BlockFrequency BlockFreq
= MBFI
->getBlockFreq(&MBB
);
3144 Statistic
&NumBranches
=
3145 (MBB
.succ_size() > 1) ? NumCondBranches
: NumUncondBranches
;
3146 Statistic
&BranchTakenFreq
=
3147 (MBB
.succ_size() > 1) ? CondBranchTakenFreq
: UncondBranchTakenFreq
;
3148 for (MachineBasicBlock
*Succ
: MBB
.successors()) {
3149 // Skip if this successor is a fallthrough.
3150 if (MBB
.isLayoutSuccessor(Succ
))
3153 BlockFrequency EdgeFreq
=
3154 BlockFreq
* MBPI
->getEdgeProbability(&MBB
, Succ
);
3156 BranchTakenFreq
+= EdgeFreq
.getFrequency();