1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseBitVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePostDominators.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/TargetInstrInfo.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/BranchProbability.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
56 #define DEBUG_TYPE "machine-sink"
59 SplitEdges("machine-sink-split",
60 cl::desc("Split critical edges during machine sinking"),
61 cl::init(true), cl::Hidden
);
64 UseBlockFreqInfo("machine-sink-bfi",
65 cl::desc("Use block frequency info to find successors to sink"),
66 cl::init(true), cl::Hidden
);
68 static cl::opt
<unsigned> SplitEdgeProbabilityThreshold(
69 "machine-sink-split-probability-threshold",
71 "Percentage threshold for splitting single-instruction critical edge. "
72 "If the branch threshold is higher than this threshold, we allow "
73 "speculative execution of up to 1 instruction to avoid branching to "
74 "splitted critical edge"),
75 cl::init(40), cl::Hidden
);
77 STATISTIC(NumSunk
, "Number of machine instructions sunk");
78 STATISTIC(NumSplit
, "Number of critical edges split");
79 STATISTIC(NumCoalesces
, "Number of copies coalesced");
80 STATISTIC(NumPostRACopySink
, "Number of copies sunk after RA");
84 class MachineSinking
: public MachineFunctionPass
{
85 const TargetInstrInfo
*TII
;
86 const TargetRegisterInfo
*TRI
;
87 MachineRegisterInfo
*MRI
; // Machine register information
88 MachineDominatorTree
*DT
; // Machine dominator tree
89 MachinePostDominatorTree
*PDT
; // Machine post dominator tree
91 const MachineBlockFrequencyInfo
*MBFI
;
92 const MachineBranchProbabilityInfo
*MBPI
;
95 // Remember which edges have been considered for breaking.
96 SmallSet
<std::pair
<MachineBasicBlock
*, MachineBasicBlock
*>, 8>
98 // Remember which edges we are about to split.
99 // This is different from CEBCandidates since those edges
101 SetVector
<std::pair
<MachineBasicBlock
*, MachineBasicBlock
*>> ToSplit
;
103 SparseBitVector
<> RegsToClearKillFlags
;
105 using AllSuccsCache
=
106 std::map
<MachineBasicBlock
*, SmallVector
<MachineBasicBlock
*, 4>>;
109 static char ID
; // Pass identification
111 MachineSinking() : MachineFunctionPass(ID
) {
112 initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
115 bool runOnMachineFunction(MachineFunction
&MF
) override
;
117 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
118 MachineFunctionPass::getAnalysisUsage(AU
);
119 AU
.addRequired
<AAResultsWrapperPass
>();
120 AU
.addRequired
<MachineDominatorTree
>();
121 AU
.addRequired
<MachinePostDominatorTree
>();
122 AU
.addRequired
<MachineLoopInfo
>();
123 AU
.addRequired
<MachineBranchProbabilityInfo
>();
124 AU
.addPreserved
<MachineLoopInfo
>();
125 if (UseBlockFreqInfo
)
126 AU
.addRequired
<MachineBlockFrequencyInfo
>();
129 void releaseMemory() override
{
130 CEBCandidates
.clear();
134 bool ProcessBlock(MachineBasicBlock
&MBB
);
135 bool isWorthBreakingCriticalEdge(MachineInstr
&MI
,
136 MachineBasicBlock
*From
,
137 MachineBasicBlock
*To
);
139 /// Postpone the splitting of the given critical
140 /// edge (\p From, \p To).
142 /// We do not split the edges on the fly. Indeed, this invalidates
143 /// the dominance information and thus triggers a lot of updates
144 /// of that information underneath.
145 /// Instead, we postpone all the splits after each iteration of
146 /// the main loop. That way, the information is at least valid
147 /// for the lifetime of an iteration.
149 /// \return True if the edge is marked as toSplit, false otherwise.
150 /// False can be returned if, for instance, this is not profitable.
151 bool PostponeSplitCriticalEdge(MachineInstr
&MI
,
152 MachineBasicBlock
*From
,
153 MachineBasicBlock
*To
,
155 bool SinkInstruction(MachineInstr
&MI
, bool &SawStore
,
157 AllSuccsCache
&AllSuccessors
);
158 bool AllUsesDominatedByBlock(unsigned Reg
, MachineBasicBlock
*MBB
,
159 MachineBasicBlock
*DefMBB
,
160 bool &BreakPHIEdge
, bool &LocalUse
) const;
161 MachineBasicBlock
*FindSuccToSinkTo(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
162 bool &BreakPHIEdge
, AllSuccsCache
&AllSuccessors
);
163 bool isProfitableToSinkTo(unsigned Reg
, MachineInstr
&MI
,
164 MachineBasicBlock
*MBB
,
165 MachineBasicBlock
*SuccToSinkTo
,
166 AllSuccsCache
&AllSuccessors
);
168 bool PerformTrivialForwardCoalescing(MachineInstr
&MI
,
169 MachineBasicBlock
*MBB
);
171 SmallVector
<MachineBasicBlock
*, 4> &
172 GetAllSortedSuccessors(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
173 AllSuccsCache
&AllSuccessors
) const;
176 } // end anonymous namespace
178 char MachineSinking::ID
= 0;
180 char &llvm::MachineSinkingID
= MachineSinking::ID
;
182 INITIALIZE_PASS_BEGIN(MachineSinking
, DEBUG_TYPE
,
183 "Machine code sinking", false, false)
184 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
185 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
186 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
187 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
188 INITIALIZE_PASS_END(MachineSinking
, DEBUG_TYPE
,
189 "Machine code sinking", false, false)
191 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr
&MI
,
192 MachineBasicBlock
*MBB
) {
196 Register SrcReg
= MI
.getOperand(1).getReg();
197 Register DstReg
= MI
.getOperand(0).getReg();
198 if (!Register::isVirtualRegister(SrcReg
) ||
199 !Register::isVirtualRegister(DstReg
) || !MRI
->hasOneNonDBGUse(SrcReg
))
202 const TargetRegisterClass
*SRC
= MRI
->getRegClass(SrcReg
);
203 const TargetRegisterClass
*DRC
= MRI
->getRegClass(DstReg
);
207 MachineInstr
*DefMI
= MRI
->getVRegDef(SrcReg
);
208 if (DefMI
->isCopyLike())
210 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI
);
211 LLVM_DEBUG(dbgs() << "*** to: " << MI
);
212 MRI
->replaceRegWith(DstReg
, SrcReg
);
213 MI
.eraseFromParent();
215 // Conservatively, clear any kill flags, since it's possible that they are no
217 MRI
->clearKillFlags(SrcReg
);
223 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
224 /// occur in blocks dominated by the specified block. If any use is in the
225 /// definition block, then return false since it is never legal to move def
228 MachineSinking::AllUsesDominatedByBlock(unsigned Reg
,
229 MachineBasicBlock
*MBB
,
230 MachineBasicBlock
*DefMBB
,
232 bool &LocalUse
) const {
233 assert(Register::isVirtualRegister(Reg
) && "Only makes sense for vregs");
235 // Ignore debug uses because debug info doesn't affect the code.
236 if (MRI
->use_nodbg_empty(Reg
))
239 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
240 // into and they are all PHI nodes. In this case, machine-sink must break
241 // the critical edge first. e.g.
243 // %bb.1: derived from LLVM BB %bb4.preheader
244 // Predecessors according to CFG: %bb.0
246 // %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
248 // JE_4 <%bb.37>, implicit %eflags
249 // Successors according to CFG: %bb.37 %bb.2
251 // %bb.2: derived from LLVM BB %bb.nph
252 // Predecessors according to CFG: %bb.0 %bb.1
253 // %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
255 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(Reg
)) {
256 MachineInstr
*UseInst
= MO
.getParent();
257 unsigned OpNo
= &MO
- &UseInst
->getOperand(0);
258 MachineBasicBlock
*UseBlock
= UseInst
->getParent();
259 if (!(UseBlock
== MBB
&& UseInst
->isPHI() &&
260 UseInst
->getOperand(OpNo
+1).getMBB() == DefMBB
)) {
261 BreakPHIEdge
= false;
268 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(Reg
)) {
269 // Determine the block of the use.
270 MachineInstr
*UseInst
= MO
.getParent();
271 unsigned OpNo
= &MO
- &UseInst
->getOperand(0);
272 MachineBasicBlock
*UseBlock
= UseInst
->getParent();
273 if (UseInst
->isPHI()) {
274 // PHI nodes use the operand in the predecessor block, not the block with
276 UseBlock
= UseInst
->getOperand(OpNo
+1).getMBB();
277 } else if (UseBlock
== DefMBB
) {
282 // Check that it dominates.
283 if (!DT
->dominates(MBB
, UseBlock
))
290 bool MachineSinking::runOnMachineFunction(MachineFunction
&MF
) {
291 if (skipFunction(MF
.getFunction()))
294 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
296 TII
= MF
.getSubtarget().getInstrInfo();
297 TRI
= MF
.getSubtarget().getRegisterInfo();
298 MRI
= &MF
.getRegInfo();
299 DT
= &getAnalysis
<MachineDominatorTree
>();
300 PDT
= &getAnalysis
<MachinePostDominatorTree
>();
301 LI
= &getAnalysis
<MachineLoopInfo
>();
302 MBFI
= UseBlockFreqInfo
? &getAnalysis
<MachineBlockFrequencyInfo
>() : nullptr;
303 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
304 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
306 bool EverMadeChange
= false;
309 bool MadeChange
= false;
311 // Process all basic blocks.
312 CEBCandidates
.clear();
315 MadeChange
|= ProcessBlock(MBB
);
317 // If we have anything we marked as toSplit, split it now.
318 for (auto &Pair
: ToSplit
) {
319 auto NewSucc
= Pair
.first
->SplitCriticalEdge(Pair
.second
, *this);
320 if (NewSucc
!= nullptr) {
321 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
322 << printMBBReference(*Pair
.first
) << " -- "
323 << printMBBReference(*NewSucc
) << " -- "
324 << printMBBReference(*Pair
.second
) << '\n');
328 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
330 // If this iteration over the code changed anything, keep iterating.
331 if (!MadeChange
) break;
332 EverMadeChange
= true;
335 // Now clear any kill flags for recorded registers.
336 for (auto I
: RegsToClearKillFlags
)
337 MRI
->clearKillFlags(I
);
338 RegsToClearKillFlags
.clear();
340 return EverMadeChange
;
343 bool MachineSinking::ProcessBlock(MachineBasicBlock
&MBB
) {
344 // Can't sink anything out of a block that has less than two successors.
345 if (MBB
.succ_size() <= 1 || MBB
.empty()) return false;
347 // Don't bother sinking code out of unreachable blocks. In addition to being
348 // unprofitable, it can also lead to infinite looping, because in an
349 // unreachable loop there may be nowhere to stop.
350 if (!DT
->isReachableFromEntry(&MBB
)) return false;
352 bool MadeChange
= false;
354 // Cache all successors, sorted by frequency info and loop depth.
355 AllSuccsCache AllSuccessors
;
357 // Walk the basic block bottom-up. Remember if we saw a store.
358 MachineBasicBlock::iterator I
= MBB
.end();
360 bool ProcessedBegin
, SawStore
= false;
362 MachineInstr
&MI
= *I
; // The instruction to sink.
364 // Predecrement I (if it's not begin) so that it isn't invalidated by
366 ProcessedBegin
= I
== MBB
.begin();
370 if (MI
.isDebugInstr())
373 bool Joined
= PerformTrivialForwardCoalescing(MI
, &MBB
);
379 if (SinkInstruction(MI
, SawStore
, AllSuccessors
)) {
384 // If we just processed the first instruction in the block, we're done.
385 } while (!ProcessedBegin
);
390 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr
&MI
,
391 MachineBasicBlock
*From
,
392 MachineBasicBlock
*To
) {
393 // FIXME: Need much better heuristics.
395 // If the pass has already considered breaking this edge (during this pass
396 // through the function), then let's go ahead and break it. This means
397 // sinking multiple "cheap" instructions into the same block.
398 if (!CEBCandidates
.insert(std::make_pair(From
, To
)).second
)
401 if (!MI
.isCopy() && !TII
->isAsCheapAsAMove(MI
))
404 if (From
->isSuccessor(To
) && MBPI
->getEdgeProbability(From
, To
) <=
405 BranchProbability(SplitEdgeProbabilityThreshold
, 100))
408 // MI is cheap, we probably don't want to break the critical edge for it.
409 // However, if this would allow some definitions of its source operands
410 // to be sunk then it's probably worth it.
411 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
412 const MachineOperand
&MO
= MI
.getOperand(i
);
413 if (!MO
.isReg() || !MO
.isUse())
415 Register Reg
= MO
.getReg();
419 // We don't move live definitions of physical registers,
420 // so sinking their uses won't enable any opportunities.
421 if (Register::isPhysicalRegister(Reg
))
424 // If this instruction is the only user of a virtual register,
425 // check if breaking the edge will enable sinking
426 // both this instruction and the defining instruction.
427 if (MRI
->hasOneNonDBGUse(Reg
)) {
428 // If the definition resides in same MBB,
429 // claim it's likely we can sink these together.
430 // If definition resides elsewhere, we aren't
431 // blocking it from being sunk so don't break the edge.
432 MachineInstr
*DefMI
= MRI
->getVRegDef(Reg
);
433 if (DefMI
->getParent() == MI
.getParent())
441 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr
&MI
,
442 MachineBasicBlock
*FromBB
,
443 MachineBasicBlock
*ToBB
,
445 if (!isWorthBreakingCriticalEdge(MI
, FromBB
, ToBB
))
448 // Avoid breaking back edge. From == To means backedge for single BB loop.
449 if (!SplitEdges
|| FromBB
== ToBB
)
452 // Check for backedges of more "complex" loops.
453 if (LI
->getLoopFor(FromBB
) == LI
->getLoopFor(ToBB
) &&
454 LI
->isLoopHeader(ToBB
))
457 // It's not always legal to break critical edges and sink the computation
465 // ... no uses of v1024
471 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
480 // ... no uses of v1024
486 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
487 // flow. We need to ensure the new basic block where the computation is
488 // sunk to dominates all the uses.
489 // It's only legal to break critical edge and sink the computation to the
490 // new block if all the predecessors of "To", except for "From", are
491 // not dominated by "From". Given SSA property, this means these
492 // predecessors are dominated by "To".
494 // There is no need to do this check if all the uses are PHI nodes. PHI
495 // sources are only defined on the specific predecessor edges.
497 for (MachineBasicBlock::pred_iterator PI
= ToBB
->pred_begin(),
498 E
= ToBB
->pred_end(); PI
!= E
; ++PI
) {
501 if (!DT
->dominates(ToBB
, *PI
))
506 ToSplit
.insert(std::make_pair(FromBB
, ToBB
));
511 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
512 bool MachineSinking::isProfitableToSinkTo(unsigned Reg
, MachineInstr
&MI
,
513 MachineBasicBlock
*MBB
,
514 MachineBasicBlock
*SuccToSinkTo
,
515 AllSuccsCache
&AllSuccessors
) {
516 assert (SuccToSinkTo
&& "Invalid SinkTo Candidate BB");
518 if (MBB
== SuccToSinkTo
)
521 // It is profitable if SuccToSinkTo does not post dominate current block.
522 if (!PDT
->dominates(SuccToSinkTo
, MBB
))
525 // It is profitable to sink an instruction from a deeper loop to a shallower
526 // loop, even if the latter post-dominates the former (PR21115).
527 if (LI
->getLoopDepth(MBB
) > LI
->getLoopDepth(SuccToSinkTo
))
530 // Check if only use in post dominated block is PHI instruction.
531 bool NonPHIUse
= false;
532 for (MachineInstr
&UseInst
: MRI
->use_nodbg_instructions(Reg
)) {
533 MachineBasicBlock
*UseBlock
= UseInst
.getParent();
534 if (UseBlock
== SuccToSinkTo
&& !UseInst
.isPHI())
540 // If SuccToSinkTo post dominates then also it may be profitable if MI
541 // can further profitably sinked into another block in next round.
542 bool BreakPHIEdge
= false;
543 // FIXME - If finding successor is compile time expensive then cache results.
544 if (MachineBasicBlock
*MBB2
=
545 FindSuccToSinkTo(MI
, SuccToSinkTo
, BreakPHIEdge
, AllSuccessors
))
546 return isProfitableToSinkTo(Reg
, MI
, SuccToSinkTo
, MBB2
, AllSuccessors
);
548 // If SuccToSinkTo is final destination and it is a post dominator of current
549 // block then it is not profitable to sink MI into SuccToSinkTo block.
553 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
554 /// computing it if it was not already cached.
555 SmallVector
<MachineBasicBlock
*, 4> &
556 MachineSinking::GetAllSortedSuccessors(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
557 AllSuccsCache
&AllSuccessors
) const {
558 // Do we have the sorted successors in cache ?
559 auto Succs
= AllSuccessors
.find(MBB
);
560 if (Succs
!= AllSuccessors
.end())
561 return Succs
->second
;
563 SmallVector
<MachineBasicBlock
*, 4> AllSuccs(MBB
->succ_begin(),
566 // Handle cases where sinking can happen but where the sink point isn't a
567 // successor. For example:
573 const std::vector
<MachineDomTreeNode
*> &Children
=
574 DT
->getNode(MBB
)->getChildren();
575 for (const auto &DTChild
: Children
)
576 // DomTree children of MBB that have MBB as immediate dominator are added.
577 if (DTChild
->getIDom()->getBlock() == MI
.getParent() &&
578 // Skip MBBs already added to the AllSuccs vector above.
579 !MBB
->isSuccessor(DTChild
->getBlock()))
580 AllSuccs
.push_back(DTChild
->getBlock());
582 // Sort Successors according to their loop depth or block frequency info.
584 AllSuccs
, [this](const MachineBasicBlock
*L
, const MachineBasicBlock
*R
) {
585 uint64_t LHSFreq
= MBFI
? MBFI
->getBlockFreq(L
).getFrequency() : 0;
586 uint64_t RHSFreq
= MBFI
? MBFI
->getBlockFreq(R
).getFrequency() : 0;
587 bool HasBlockFreq
= LHSFreq
!= 0 && RHSFreq
!= 0;
588 return HasBlockFreq
? LHSFreq
< RHSFreq
589 : LI
->getLoopDepth(L
) < LI
->getLoopDepth(R
);
592 auto it
= AllSuccessors
.insert(std::make_pair(MBB
, AllSuccs
));
594 return it
.first
->second
;
597 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
599 MachineSinking::FindSuccToSinkTo(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
601 AllSuccsCache
&AllSuccessors
) {
602 assert (MBB
&& "Invalid MachineBasicBlock!");
604 // Loop over all the operands of the specified instruction. If there is
605 // anything we can't handle, bail out.
607 // SuccToSinkTo - This is the successor to sink this instruction to, once we
609 MachineBasicBlock
*SuccToSinkTo
= nullptr;
610 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
611 const MachineOperand
&MO
= MI
.getOperand(i
);
612 if (!MO
.isReg()) continue; // Ignore non-register operands.
614 Register Reg
= MO
.getReg();
615 if (Reg
== 0) continue;
617 if (Register::isPhysicalRegister(Reg
)) {
619 // If the physreg has no defs anywhere, it's just an ambient register
620 // and we can freely move its uses. Alternatively, if it's allocatable,
621 // it could get allocated to something with a def during allocation.
622 if (!MRI
->isConstantPhysReg(Reg
))
624 } else if (!MO
.isDead()) {
625 // A def that isn't dead. We can't move it.
629 // Virtual register uses are always safe to sink.
630 if (MO
.isUse()) continue;
632 // If it's not safe to move defs of the register class, then abort.
633 if (!TII
->isSafeToMoveRegClassDefs(MRI
->getRegClass(Reg
)))
636 // Virtual register defs can only be sunk if all their uses are in blocks
637 // dominated by one of the successors.
639 // If a previous operand picked a block to sink to, then this operand
640 // must be sinkable to the same block.
641 bool LocalUse
= false;
642 if (!AllUsesDominatedByBlock(Reg
, SuccToSinkTo
, MBB
,
643 BreakPHIEdge
, LocalUse
))
649 // Otherwise, we should look at all the successors and decide which one
650 // we should sink to. If we have reliable block frequency information
651 // (frequency != 0) available, give successors with smaller frequencies
652 // higher priority, otherwise prioritize smaller loop depths.
653 for (MachineBasicBlock
*SuccBlock
:
654 GetAllSortedSuccessors(MI
, MBB
, AllSuccessors
)) {
655 bool LocalUse
= false;
656 if (AllUsesDominatedByBlock(Reg
, SuccBlock
, MBB
,
657 BreakPHIEdge
, LocalUse
)) {
658 SuccToSinkTo
= SuccBlock
;
662 // Def is used locally, it's never safe to move this def.
666 // If we couldn't find a block to sink to, ignore this instruction.
669 if (!isProfitableToSinkTo(Reg
, MI
, MBB
, SuccToSinkTo
, AllSuccessors
))
674 // It is not possible to sink an instruction into its own block. This can
675 // happen with loops.
676 if (MBB
== SuccToSinkTo
)
679 // It's not safe to sink instructions to EH landing pad. Control flow into
680 // landing pad is implicitly defined.
681 if (SuccToSinkTo
&& SuccToSinkTo
->isEHPad())
687 /// Return true if MI is likely to be usable as a memory operation by the
688 /// implicit null check optimization.
690 /// This is a "best effort" heuristic, and should not be relied upon for
691 /// correctness. This returning true does not guarantee that the implicit null
692 /// check optimization is legal over MI, and this returning false does not
693 /// guarantee MI cannot possibly be used to do a null check.
694 static bool SinkingPreventsImplicitNullCheck(MachineInstr
&MI
,
695 const TargetInstrInfo
*TII
,
696 const TargetRegisterInfo
*TRI
) {
697 using MachineBranchPredicate
= TargetInstrInfo::MachineBranchPredicate
;
699 auto *MBB
= MI
.getParent();
700 if (MBB
->pred_size() != 1)
703 auto *PredMBB
= *MBB
->pred_begin();
704 auto *PredBB
= PredMBB
->getBasicBlock();
706 // Frontends that don't use implicit null checks have no reason to emit
707 // branches with make.implicit metadata, and this function should always
708 // return false for them.
710 !PredBB
->getTerminator()->getMetadata(LLVMContext::MD_make_implicit
))
713 const MachineOperand
*BaseOp
;
715 if (!TII
->getMemOperandWithOffset(MI
, BaseOp
, Offset
, TRI
))
718 if (!BaseOp
->isReg())
721 if (!(MI
.mayLoad() && !MI
.isPredicable()))
724 MachineBranchPredicate MBP
;
725 if (TII
->analyzeBranchPredicate(*PredMBB
, MBP
, false))
728 return MBP
.LHS
.isReg() && MBP
.RHS
.isImm() && MBP
.RHS
.getImm() == 0 &&
729 (MBP
.Predicate
== MachineBranchPredicate::PRED_NE
||
730 MBP
.Predicate
== MachineBranchPredicate::PRED_EQ
) &&
731 MBP
.LHS
.getReg() == BaseOp
->getReg();
734 /// Sink an instruction and its associated debug instructions. If the debug
735 /// instructions to be sunk are already known, they can be provided in DbgVals.
736 static void performSink(MachineInstr
&MI
, MachineBasicBlock
&SuccToSinkTo
,
737 MachineBasicBlock::iterator InsertPos
,
738 SmallVectorImpl
<MachineInstr
*> *DbgVals
= nullptr) {
739 // If debug values are provided use those, otherwise call collectDebugValues.
740 SmallVector
<MachineInstr
*, 2> DbgValuesToSink
;
742 DbgValuesToSink
.insert(DbgValuesToSink
.begin(),
743 DbgVals
->begin(), DbgVals
->end());
745 MI
.collectDebugValues(DbgValuesToSink
);
747 // If we cannot find a location to use (merge with), then we erase the debug
748 // location to prevent debug-info driven tools from potentially reporting
749 // wrong location information.
750 if (!SuccToSinkTo
.empty() && InsertPos
!= SuccToSinkTo
.end())
751 MI
.setDebugLoc(DILocation::getMergedLocation(MI
.getDebugLoc(),
752 InsertPos
->getDebugLoc()));
754 MI
.setDebugLoc(DebugLoc());
756 // Move the instruction.
757 MachineBasicBlock
*ParentBlock
= MI
.getParent();
758 SuccToSinkTo
.splice(InsertPos
, ParentBlock
, MI
,
759 ++MachineBasicBlock::iterator(MI
));
761 // Move previously adjacent debug value instructions to the insert position.
762 for (SmallVectorImpl
<MachineInstr
*>::iterator DBI
= DbgValuesToSink
.begin(),
763 DBE
= DbgValuesToSink
.end();
765 MachineInstr
*DbgMI
= *DBI
;
766 SuccToSinkTo
.splice(InsertPos
, ParentBlock
, DbgMI
,
767 ++MachineBasicBlock::iterator(DbgMI
));
771 /// SinkInstruction - Determine whether it is safe to sink the specified machine
772 /// instruction out of its current block into a successor.
773 bool MachineSinking::SinkInstruction(MachineInstr
&MI
, bool &SawStore
,
774 AllSuccsCache
&AllSuccessors
) {
775 // Don't sink instructions that the target prefers not to sink.
776 if (!TII
->shouldSink(MI
))
779 // Check if it's safe to move the instruction.
780 if (!MI
.isSafeToMove(AA
, SawStore
))
783 // Convergent operations may not be made control-dependent on additional
785 if (MI
.isConvergent())
788 // Don't break implicit null checks. This is a performance heuristic, and not
789 // required for correctness.
790 if (SinkingPreventsImplicitNullCheck(MI
, TII
, TRI
))
793 // FIXME: This should include support for sinking instructions within the
794 // block they are currently in to shorten the live ranges. We often get
795 // instructions sunk into the top of a large block, but it would be better to
796 // also sink them down before their first use in the block. This xform has to
797 // be careful not to *increase* register pressure though, e.g. sinking
798 // "x = y + z" down if it kills y and z would increase the live ranges of y
799 // and z and only shrink the live range of x.
801 bool BreakPHIEdge
= false;
802 MachineBasicBlock
*ParentBlock
= MI
.getParent();
803 MachineBasicBlock
*SuccToSinkTo
=
804 FindSuccToSinkTo(MI
, ParentBlock
, BreakPHIEdge
, AllSuccessors
);
806 // If there are no outputs, it must have side-effects.
810 // If the instruction to move defines a dead physical register which is live
811 // when leaving the basic block, don't move it because it could turn into a
812 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
813 for (unsigned I
= 0, E
= MI
.getNumOperands(); I
!= E
; ++I
) {
814 const MachineOperand
&MO
= MI
.getOperand(I
);
815 if (!MO
.isReg()) continue;
816 Register Reg
= MO
.getReg();
817 if (Reg
== 0 || !Register::isPhysicalRegister(Reg
))
819 if (SuccToSinkTo
->isLiveIn(Reg
))
823 LLVM_DEBUG(dbgs() << "Sink instr " << MI
<< "\tinto block " << *SuccToSinkTo
);
825 // If the block has multiple predecessors, this is a critical edge.
826 // Decide if we can sink along it or need to break the edge.
827 if (SuccToSinkTo
->pred_size() > 1) {
828 // We cannot sink a load across a critical edge - there may be stores in
830 bool TryBreak
= false;
832 if (!MI
.isSafeToMove(AA
, store
)) {
833 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
837 // We don't want to sink across a critical edge if we don't dominate the
838 // successor. We could be introducing calculations to new code paths.
839 if (!TryBreak
&& !DT
->dominates(ParentBlock
, SuccToSinkTo
)) {
840 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
844 // Don't sink instructions into a loop.
845 if (!TryBreak
&& LI
->isLoopHeader(SuccToSinkTo
)) {
846 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
850 // Otherwise we are OK with sinking along a critical edge.
852 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
854 // Mark this edge as to be split.
855 // If the edge can actually be split, the next iteration of the main loop
856 // will sink MI in the newly created block.
858 PostponeSplitCriticalEdge(MI
, ParentBlock
, SuccToSinkTo
, BreakPHIEdge
);
860 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
861 "break critical edge\n");
862 // The instruction will not be sunk this time.
868 // BreakPHIEdge is true if all the uses are in the successor MBB being
869 // sunken into and they are all PHI nodes. In this case, machine-sink must
870 // break the critical edge first.
871 bool Status
= PostponeSplitCriticalEdge(MI
, ParentBlock
,
872 SuccToSinkTo
, BreakPHIEdge
);
874 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
875 "break critical edge\n");
876 // The instruction will not be sunk this time.
880 // Determine where to insert into. Skip phi nodes.
881 MachineBasicBlock::iterator InsertPos
= SuccToSinkTo
->begin();
882 while (InsertPos
!= SuccToSinkTo
->end() && InsertPos
->isPHI())
885 performSink(MI
, *SuccToSinkTo
, InsertPos
);
887 // Conservatively, clear any kill flags, since it's possible that they are no
889 // Note that we have to clear the kill flags for any register this instruction
890 // uses as we may sink over another instruction which currently kills the
892 for (MachineOperand
&MO
: MI
.operands()) {
893 if (MO
.isReg() && MO
.isUse())
894 RegsToClearKillFlags
.set(MO
.getReg()); // Remember to clear kill flags.
900 //===----------------------------------------------------------------------===//
901 // This pass is not intended to be a replacement or a complete alternative
902 // for the pre-ra machine sink pass. It is only designed to sink COPY
903 // instructions which should be handled after RA.
905 // This pass sinks COPY instructions into a successor block, if the COPY is not
906 // used in the current block and the COPY is live-in to a single successor
907 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the
908 // copy on paths where their results aren't needed. This also exposes
909 // additional opportunites for dead copy elimination and shrink wrapping.
911 // These copies were either not handled by or are inserted after the MachineSink
912 // pass. As an example of the former case, the MachineSink pass cannot sink
913 // COPY instructions with allocatable source registers; for AArch64 these type
914 // of copy instructions are frequently used to move function parameters (PhyReg)
915 // into virtual registers in the entry block.
917 // For the machine IR below, this pass will sink %w19 in the entry into its
918 // successor (%bb.1) because %w19 is only live-in in %bb.1.
920 // %wzr = SUBSWri %w1, 1
926 // %w0 = ADDWrr %w0, %w19
931 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
932 // able to see %bb.0 as a candidate.
933 //===----------------------------------------------------------------------===//
936 class PostRAMachineSinking
: public MachineFunctionPass
{
938 bool runOnMachineFunction(MachineFunction
&MF
) override
;
941 PostRAMachineSinking() : MachineFunctionPass(ID
) {}
942 StringRef
getPassName() const override
{ return "PostRA Machine Sink"; }
944 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
945 AU
.setPreservesCFG();
946 MachineFunctionPass::getAnalysisUsage(AU
);
949 MachineFunctionProperties
getRequiredProperties() const override
{
950 return MachineFunctionProperties().set(
951 MachineFunctionProperties::Property::NoVRegs
);
955 /// Track which register units have been modified and used.
956 LiveRegUnits ModifiedRegUnits
, UsedRegUnits
;
958 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
959 /// entry in this map for each unit it touches.
960 DenseMap
<unsigned, TinyPtrVector
<MachineInstr
*>> SeenDbgInstrs
;
962 /// Sink Copy instructions unused in the same block close to their uses in
964 bool tryToSinkCopy(MachineBasicBlock
&BB
, MachineFunction
&MF
,
965 const TargetRegisterInfo
*TRI
, const TargetInstrInfo
*TII
);
969 char PostRAMachineSinking::ID
= 0;
970 char &llvm::PostRAMachineSinkingID
= PostRAMachineSinking::ID
;
972 INITIALIZE_PASS(PostRAMachineSinking
, "postra-machine-sink",
973 "PostRA Machine Sink", false, false)
975 static bool aliasWithRegsInLiveIn(MachineBasicBlock
&MBB
, unsigned Reg
,
976 const TargetRegisterInfo
*TRI
) {
977 LiveRegUnits
LiveInRegUnits(*TRI
);
978 LiveInRegUnits
.addLiveIns(MBB
);
979 return !LiveInRegUnits
.available(Reg
);
982 static MachineBasicBlock
*
983 getSingleLiveInSuccBB(MachineBasicBlock
&CurBB
,
984 const SmallPtrSetImpl
<MachineBasicBlock
*> &SinkableBBs
,
985 unsigned Reg
, const TargetRegisterInfo
*TRI
) {
986 // Try to find a single sinkable successor in which Reg is live-in.
987 MachineBasicBlock
*BB
= nullptr;
988 for (auto *SI
: SinkableBBs
) {
989 if (aliasWithRegsInLiveIn(*SI
, Reg
, TRI
)) {
990 // If BB is set here, Reg is live-in to at least two sinkable successors,
997 // Reg is not live-in to any sinkable successors.
1001 // Check if any register aliased with Reg is live-in in other successors.
1002 for (auto *SI
: CurBB
.successors()) {
1003 if (!SinkableBBs
.count(SI
) && aliasWithRegsInLiveIn(*SI
, Reg
, TRI
))
1009 static MachineBasicBlock
*
1010 getSingleLiveInSuccBB(MachineBasicBlock
&CurBB
,
1011 const SmallPtrSetImpl
<MachineBasicBlock
*> &SinkableBBs
,
1012 ArrayRef
<unsigned> DefedRegsInCopy
,
1013 const TargetRegisterInfo
*TRI
) {
1014 MachineBasicBlock
*SingleBB
= nullptr;
1015 for (auto DefReg
: DefedRegsInCopy
) {
1016 MachineBasicBlock
*BB
=
1017 getSingleLiveInSuccBB(CurBB
, SinkableBBs
, DefReg
, TRI
);
1018 if (!BB
|| (SingleBB
&& SingleBB
!= BB
))
1025 static void clearKillFlags(MachineInstr
*MI
, MachineBasicBlock
&CurBB
,
1026 SmallVectorImpl
<unsigned> &UsedOpsInCopy
,
1027 LiveRegUnits
&UsedRegUnits
,
1028 const TargetRegisterInfo
*TRI
) {
1029 for (auto U
: UsedOpsInCopy
) {
1030 MachineOperand
&MO
= MI
->getOperand(U
);
1031 Register SrcReg
= MO
.getReg();
1032 if (!UsedRegUnits
.available(SrcReg
)) {
1033 MachineBasicBlock::iterator NI
= std::next(MI
->getIterator());
1034 for (MachineInstr
&UI
: make_range(NI
, CurBB
.end())) {
1035 if (UI
.killsRegister(SrcReg
, TRI
)) {
1036 UI
.clearRegisterKills(SrcReg
, TRI
);
1045 static void updateLiveIn(MachineInstr
*MI
, MachineBasicBlock
*SuccBB
,
1046 SmallVectorImpl
<unsigned> &UsedOpsInCopy
,
1047 SmallVectorImpl
<unsigned> &DefedRegsInCopy
) {
1048 MachineFunction
&MF
= *SuccBB
->getParent();
1049 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
1050 for (unsigned DefReg
: DefedRegsInCopy
)
1051 for (MCSubRegIterator
S(DefReg
, TRI
, true); S
.isValid(); ++S
)
1052 SuccBB
->removeLiveIn(*S
);
1053 for (auto U
: UsedOpsInCopy
) {
1054 Register Reg
= MI
->getOperand(U
).getReg();
1055 if (!SuccBB
->isLiveIn(Reg
))
1056 SuccBB
->addLiveIn(Reg
);
1060 static bool hasRegisterDependency(MachineInstr
*MI
,
1061 SmallVectorImpl
<unsigned> &UsedOpsInCopy
,
1062 SmallVectorImpl
<unsigned> &DefedRegsInCopy
,
1063 LiveRegUnits
&ModifiedRegUnits
,
1064 LiveRegUnits
&UsedRegUnits
) {
1065 bool HasRegDependency
= false;
1066 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1067 MachineOperand
&MO
= MI
->getOperand(i
);
1070 Register Reg
= MO
.getReg();
1074 if (!ModifiedRegUnits
.available(Reg
) || !UsedRegUnits
.available(Reg
)) {
1075 HasRegDependency
= true;
1078 DefedRegsInCopy
.push_back(Reg
);
1080 // FIXME: instead of isUse(), readsReg() would be a better fix here,
1081 // For example, we can ignore modifications in reg with undef. However,
1082 // it's not perfectly clear if skipping the internal read is safe in all
1084 } else if (MO
.isUse()) {
1085 if (!ModifiedRegUnits
.available(Reg
)) {
1086 HasRegDependency
= true;
1089 UsedOpsInCopy
.push_back(i
);
1092 return HasRegDependency
;
1095 static SmallSet
<unsigned, 4> getRegUnits(unsigned Reg
,
1096 const TargetRegisterInfo
*TRI
) {
1097 SmallSet
<unsigned, 4> RegUnits
;
1098 for (auto RI
= MCRegUnitIterator(Reg
, TRI
); RI
.isValid(); ++RI
)
1099 RegUnits
.insert(*RI
);
1103 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock
&CurBB
,
1104 MachineFunction
&MF
,
1105 const TargetRegisterInfo
*TRI
,
1106 const TargetInstrInfo
*TII
) {
1107 SmallPtrSet
<MachineBasicBlock
*, 2> SinkableBBs
;
1108 // FIXME: For now, we sink only to a successor which has a single predecessor
1109 // so that we can directly sink COPY instructions to the successor without
1110 // adding any new block or branch instruction.
1111 for (MachineBasicBlock
*SI
: CurBB
.successors())
1112 if (!SI
->livein_empty() && SI
->pred_size() == 1)
1113 SinkableBBs
.insert(SI
);
1115 if (SinkableBBs
.empty())
1118 bool Changed
= false;
1120 // Track which registers have been modified and used between the end of the
1121 // block and the current instruction.
1122 ModifiedRegUnits
.clear();
1123 UsedRegUnits
.clear();
1124 SeenDbgInstrs
.clear();
1126 for (auto I
= CurBB
.rbegin(), E
= CurBB
.rend(); I
!= E
;) {
1127 MachineInstr
*MI
= &*I
;
1130 // Track the operand index for use in Copy.
1131 SmallVector
<unsigned, 2> UsedOpsInCopy
;
1132 // Track the register number defed in Copy.
1133 SmallVector
<unsigned, 2> DefedRegsInCopy
;
1135 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1136 // for DBG_VALUEs later, record them when they're encountered.
1137 if (MI
->isDebugValue()) {
1138 auto &MO
= MI
->getOperand(0);
1139 if (MO
.isReg() && Register::isPhysicalRegister(MO
.getReg())) {
1140 // Bail if we can already tell the sink would be rejected, rather
1141 // than needlessly accumulating lots of DBG_VALUEs.
1142 if (hasRegisterDependency(MI
, UsedOpsInCopy
, DefedRegsInCopy
,
1143 ModifiedRegUnits
, UsedRegUnits
))
1146 // Record debug use of each reg unit.
1147 SmallSet
<unsigned, 4> Units
= getRegUnits(MO
.getReg(), TRI
);
1148 for (unsigned Reg
: Units
)
1149 SeenDbgInstrs
[Reg
].push_back(MI
);
1154 if (MI
->isDebugInstr())
1157 // Do not move any instruction across function call.
1161 if (!MI
->isCopy() || !MI
->getOperand(0).isRenamable()) {
1162 LiveRegUnits::accumulateUsedDefed(*MI
, ModifiedRegUnits
, UsedRegUnits
,
1167 // Don't sink the COPY if it would violate a register dependency.
1168 if (hasRegisterDependency(MI
, UsedOpsInCopy
, DefedRegsInCopy
,
1169 ModifiedRegUnits
, UsedRegUnits
)) {
1170 LiveRegUnits::accumulateUsedDefed(*MI
, ModifiedRegUnits
, UsedRegUnits
,
1174 assert((!UsedOpsInCopy
.empty() && !DefedRegsInCopy
.empty()) &&
1175 "Unexpect SrcReg or DefReg");
1176 MachineBasicBlock
*SuccBB
=
1177 getSingleLiveInSuccBB(CurBB
, SinkableBBs
, DefedRegsInCopy
, TRI
);
1178 // Don't sink if we cannot find a single sinkable successor in which Reg
1181 LiveRegUnits::accumulateUsedDefed(*MI
, ModifiedRegUnits
, UsedRegUnits
,
1185 assert((SuccBB
->pred_size() == 1 && *SuccBB
->pred_begin() == &CurBB
) &&
1186 "Unexpected predecessor");
1188 // Collect DBG_VALUEs that must sink with this copy. We've previously
1189 // recorded which reg units that DBG_VALUEs read, if this instruction
1190 // writes any of those units then the corresponding DBG_VALUEs must sink.
1191 SetVector
<MachineInstr
*> DbgValsToSinkSet
;
1192 SmallVector
<MachineInstr
*, 4> DbgValsToSink
;
1193 for (auto &MO
: MI
->operands()) {
1194 if (!MO
.isReg() || !MO
.isDef())
1197 SmallSet
<unsigned, 4> Units
= getRegUnits(MO
.getReg(), TRI
);
1198 for (unsigned Reg
: Units
)
1199 for (auto *MI
: SeenDbgInstrs
.lookup(Reg
))
1200 DbgValsToSinkSet
.insert(MI
);
1202 DbgValsToSink
.insert(DbgValsToSink
.begin(), DbgValsToSinkSet
.begin(),
1203 DbgValsToSinkSet
.end());
1205 // Clear the kill flag if SrcReg is killed between MI and the end of the
1207 clearKillFlags(MI
, CurBB
, UsedOpsInCopy
, UsedRegUnits
, TRI
);
1208 MachineBasicBlock::iterator InsertPos
= SuccBB
->getFirstNonPHI();
1209 performSink(*MI
, *SuccBB
, InsertPos
, &DbgValsToSink
);
1210 updateLiveIn(MI
, SuccBB
, UsedOpsInCopy
, DefedRegsInCopy
);
1213 ++NumPostRACopySink
;
1218 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction
&MF
) {
1219 if (skipFunction(MF
.getFunction()))
1222 bool Changed
= false;
1223 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
1224 const TargetInstrInfo
*TII
= MF
.getSubtarget().getInstrInfo();
1226 ModifiedRegUnits
.init(*TRI
);
1227 UsedRegUnits
.init(*TRI
);
1229 Changed
|= tryToSinkCopy(BB
, MF
, TRI
, TII
);