[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / CodeGen / RegAllocGreedy.cpp
blobd27db678f02aa49d8a1fc42629b471cd90c05833
1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
12 //===----------------------------------------------------------------------===//
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "Spiller.h"
20 #include "SplitKit.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/BitVector.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/StringRef.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/CodeGen/CalcSpillWeights.h"
35 #include "llvm/CodeGen/EdgeBundles.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalUnion.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveRangeEdit.h"
40 #include "llvm/CodeGen/LiveRegMatrix.h"
41 #include "llvm/CodeGen/LiveStacks.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RegAllocRegistry.h"
54 #include "llvm/CodeGen/RegisterClassInfo.h"
55 #include "llvm/CodeGen/SlotIndexes.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <memory>
76 #include <queue>
77 #include <tuple>
78 #include <utility>
80 using namespace llvm;
82 #define DEBUG_TYPE "regalloc"
84 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
85 STATISTIC(NumLocalSplits, "Number of split local live ranges");
86 STATISTIC(NumEvicted, "Number of interferences evicted");
88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
89 "split-spill-mode", cl::Hidden,
90 cl::desc("Spill mode for splitting live ranges"),
91 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
92 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
93 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
94 cl::init(SplitEditor::SM_Speed));
96 static cl::opt<unsigned>
97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
98 cl::desc("Last chance recoloring max depth"),
99 cl::init(5));
101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
102 "lcr-max-interf", cl::Hidden,
103 cl::desc("Last chance recoloring maximum number of considered"
104 " interference at a time"),
105 cl::init(8));
107 static cl::opt<bool> ExhaustiveSearch(
108 "exhaustive-register-search", cl::NotHidden,
109 cl::desc("Exhaustive Search for registers bypassing the depth "
110 "and interference cutoffs of last chance recoloring"),
111 cl::Hidden);
113 static cl::opt<bool> EnableLocalReassignment(
114 "enable-local-reassign", cl::Hidden,
115 cl::desc("Local reassignment can yield better allocation decisions, but "
116 "may be compile time intensive"),
117 cl::init(false));
119 static cl::opt<bool> EnableDeferredSpilling(
120 "enable-deferred-spilling", cl::Hidden,
121 cl::desc("Instead of spilling a variable right away, defer the actual "
122 "code insertion to the end of the allocation. That way the "
123 "allocator might still find a suitable coloring for this "
124 "variable because of other evicted variables."),
125 cl::init(false));
127 static cl::opt<unsigned>
128 HugeSizeForSplit("huge-size-for-split", cl::Hidden,
129 cl::desc("A threshold of live range size which may cause "
130 "high compile time cost in global splitting."),
131 cl::init(5000));
133 // FIXME: Find a good default for this flag and remove the flag.
134 static cl::opt<unsigned>
135 CSRFirstTimeCost("regalloc-csr-first-time-cost",
136 cl::desc("Cost for first time use of callee-saved register."),
137 cl::init(0), cl::Hidden);
139 static cl::opt<bool> ConsiderLocalIntervalCost(
140 "consider-local-interval-cost", cl::Hidden,
141 cl::desc("Consider the cost of local intervals created by a split "
142 "candidate when choosing the best split candidate."),
143 cl::init(false));
145 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
146 createGreedyRegisterAllocator);
148 namespace {
150 class RAGreedy : public MachineFunctionPass,
151 public RegAllocBase,
152 private LiveRangeEdit::Delegate {
153 // Convenient shortcuts.
154 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
155 using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
156 using SmallVirtRegSet = SmallSet<unsigned, 16>;
158 // context
159 MachineFunction *MF;
161 // Shortcuts to some useful interface.
162 const TargetInstrInfo *TII;
163 const TargetRegisterInfo *TRI;
164 RegisterClassInfo RCI;
166 // analyses
167 SlotIndexes *Indexes;
168 MachineBlockFrequencyInfo *MBFI;
169 MachineDominatorTree *DomTree;
170 MachineLoopInfo *Loops;
171 MachineOptimizationRemarkEmitter *ORE;
172 EdgeBundles *Bundles;
173 SpillPlacement *SpillPlacer;
174 LiveDebugVariables *DebugVars;
175 AliasAnalysis *AA;
177 // state
178 std::unique_ptr<Spiller> SpillerInstance;
179 PQueue Queue;
180 unsigned NextCascade;
182 // Live ranges pass through a number of stages as we try to allocate them.
183 // Some of the stages may also create new live ranges:
185 // - Region splitting.
186 // - Per-block splitting.
187 // - Local splitting.
188 // - Spilling.
190 // Ranges produced by one of the stages skip the previous stages when they are
191 // dequeued. This improves performance because we can skip interference checks
192 // that are unlikely to give any results. It also guarantees that the live
193 // range splitting algorithm terminates, something that is otherwise hard to
194 // ensure.
195 enum LiveRangeStage {
196 /// Newly created live range that has never been queued.
197 RS_New,
199 /// Only attempt assignment and eviction. Then requeue as RS_Split.
200 RS_Assign,
202 /// Attempt live range splitting if assignment is impossible.
203 RS_Split,
205 /// Attempt more aggressive live range splitting that is guaranteed to make
206 /// progress. This is used for split products that may not be making
207 /// progress.
208 RS_Split2,
210 /// Live range will be spilled. No more splitting will be attempted.
211 RS_Spill,
214 /// Live range is in memory. Because of other evictions, it might get moved
215 /// in a register in the end.
216 RS_Memory,
218 /// There is nothing more we can do to this live range. Abort compilation
219 /// if it can't be assigned.
220 RS_Done
223 // Enum CutOffStage to keep a track whether the register allocation failed
224 // because of the cutoffs encountered in last chance recoloring.
225 // Note: This is used as bitmask. New value should be next power of 2.
226 enum CutOffStage {
227 // No cutoffs encountered
228 CO_None = 0,
230 // lcr-max-depth cutoff encountered
231 CO_Depth = 1,
233 // lcr-max-interf cutoff encountered
234 CO_Interf = 2
237 uint8_t CutOffInfo;
239 #ifndef NDEBUG
240 static const char *const StageName[];
241 #endif
243 // RegInfo - Keep additional information about each live range.
244 struct RegInfo {
245 LiveRangeStage Stage = RS_New;
247 // Cascade - Eviction loop prevention. See canEvictInterference().
248 unsigned Cascade = 0;
250 RegInfo() = default;
253 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
255 LiveRangeStage getStage(const LiveInterval &VirtReg) const {
256 return ExtraRegInfo[VirtReg.reg].Stage;
259 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
260 ExtraRegInfo.resize(MRI->getNumVirtRegs());
261 ExtraRegInfo[VirtReg.reg].Stage = Stage;
264 template<typename Iterator>
265 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
266 ExtraRegInfo.resize(MRI->getNumVirtRegs());
267 for (;Begin != End; ++Begin) {
268 unsigned Reg = *Begin;
269 if (ExtraRegInfo[Reg].Stage == RS_New)
270 ExtraRegInfo[Reg].Stage = NewStage;
274 /// Cost of evicting interference.
275 struct EvictionCost {
276 unsigned BrokenHints = 0; ///< Total number of broken hints.
277 float MaxWeight = 0; ///< Maximum spill weight evicted.
279 EvictionCost() = default;
281 bool isMax() const { return BrokenHints == ~0u; }
283 void setMax() { BrokenHints = ~0u; }
285 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
287 bool operator<(const EvictionCost &O) const {
288 return std::tie(BrokenHints, MaxWeight) <
289 std::tie(O.BrokenHints, O.MaxWeight);
293 /// EvictionTrack - Keeps track of past evictions in order to optimize region
294 /// split decision.
295 class EvictionTrack {
297 public:
298 using EvictorInfo =
299 std::pair<unsigned /* evictor */, unsigned /* physreg */>;
300 using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>;
302 private:
303 /// Each Vreg that has been evicted in the last stage of selectOrSplit will
304 /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
305 EvicteeInfo Evictees;
307 public:
308 /// Clear all eviction information.
309 void clear() { Evictees.clear(); }
311 /// Clear eviction information for the given evictee Vreg.
312 /// E.g. when Vreg get's a new allocation, the old eviction info is no
313 /// longer relevant.
314 /// \param Evictee The evictee Vreg for whom we want to clear collected
315 /// eviction info.
316 void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); }
318 /// Track new eviction.
319 /// The Evictor vreg has evicted the Evictee vreg from Physreg.
320 /// \param PhysReg The physical register Evictee was evicted from.
321 /// \param Evictor The evictor Vreg that evicted Evictee.
322 /// \param Evictee The evictee Vreg.
323 void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) {
324 Evictees[Evictee].first = Evictor;
325 Evictees[Evictee].second = PhysReg;
328 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
329 /// \param Evictee The evictee vreg.
330 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
331 /// nobody has evicted Evictee from PhysReg.
332 EvictorInfo getEvictor(unsigned Evictee) {
333 if (Evictees.count(Evictee)) {
334 return Evictees[Evictee];
337 return EvictorInfo(0, 0);
341 // Keeps track of past evictions in order to optimize region split decision.
342 EvictionTrack LastEvicted;
344 // splitting state.
345 std::unique_ptr<SplitAnalysis> SA;
346 std::unique_ptr<SplitEditor> SE;
348 /// Cached per-block interference maps
349 InterferenceCache IntfCache;
351 /// All basic blocks where the current register has uses.
352 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
354 /// Global live range splitting candidate info.
355 struct GlobalSplitCandidate {
356 // Register intended for assignment, or 0.
357 unsigned PhysReg;
359 // SplitKit interval index for this candidate.
360 unsigned IntvIdx;
362 // Interference for PhysReg.
363 InterferenceCache::Cursor Intf;
365 // Bundles where this candidate should be live.
366 BitVector LiveBundles;
367 SmallVector<unsigned, 8> ActiveBlocks;
369 void reset(InterferenceCache &Cache, unsigned Reg) {
370 PhysReg = Reg;
371 IntvIdx = 0;
372 Intf.setPhysReg(Cache, Reg);
373 LiveBundles.clear();
374 ActiveBlocks.clear();
377 // Set B[i] = C for every live bundle where B[i] was NoCand.
378 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
379 unsigned Count = 0;
380 for (unsigned i : LiveBundles.set_bits())
381 if (B[i] == NoCand) {
382 B[i] = C;
383 Count++;
385 return Count;
389 /// Candidate info for each PhysReg in AllocationOrder.
390 /// This vector never shrinks, but grows to the size of the largest register
391 /// class.
392 SmallVector<GlobalSplitCandidate, 32> GlobalCand;
394 enum : unsigned { NoCand = ~0u };
396 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
397 /// NoCand which indicates the stack interval.
398 SmallVector<unsigned, 32> BundleCand;
400 /// Callee-save register cost, calculated once per machine function.
401 BlockFrequency CSRCost;
403 /// Run or not the local reassignment heuristic. This information is
404 /// obtained from the TargetSubtargetInfo.
405 bool EnableLocalReassign;
407 /// Enable or not the consideration of the cost of local intervals created
408 /// by a split candidate when choosing the best split candidate.
409 bool EnableAdvancedRASplitCost;
411 /// Set of broken hints that may be reconciled later because of eviction.
412 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
414 public:
415 RAGreedy();
417 /// Return the pass name.
418 StringRef getPassName() const override { return "Greedy Register Allocator"; }
420 /// RAGreedy analysis usage.
421 void getAnalysisUsage(AnalysisUsage &AU) const override;
422 void releaseMemory() override;
423 Spiller &spiller() override { return *SpillerInstance; }
424 void enqueue(LiveInterval *LI) override;
425 LiveInterval *dequeue() override;
426 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
427 void aboutToRemoveInterval(LiveInterval &) override;
429 /// Perform register allocation.
430 bool runOnMachineFunction(MachineFunction &mf) override;
432 MachineFunctionProperties getRequiredProperties() const override {
433 return MachineFunctionProperties().set(
434 MachineFunctionProperties::Property::NoPHIs);
437 static char ID;
439 private:
440 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
441 SmallVirtRegSet &, unsigned = 0);
443 bool LRE_CanEraseVirtReg(unsigned) override;
444 void LRE_WillShrinkVirtReg(unsigned) override;
445 void LRE_DidCloneVirtReg(unsigned, unsigned) override;
446 void enqueue(PQueue &CurQueue, LiveInterval *LI);
447 LiveInterval *dequeue(PQueue &CurQueue);
449 BlockFrequency calcSpillCost();
450 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
451 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
452 bool growRegion(GlobalSplitCandidate &Cand);
453 bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand,
454 unsigned BBNumber,
455 const AllocationOrder &Order);
456 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
457 GlobalSplitCandidate &Cand, unsigned BBNumber,
458 const AllocationOrder &Order);
459 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
460 const AllocationOrder &Order,
461 bool *CanCauseEvictionChain);
462 bool calcCompactRegion(GlobalSplitCandidate&);
463 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
464 void calcGapWeights(unsigned, SmallVectorImpl<float>&);
465 unsigned canReassign(LiveInterval &VirtReg, unsigned PrevReg);
466 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
467 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&,
468 const SmallVirtRegSet&);
469 bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg,
470 SlotIndex Start, SlotIndex End,
471 EvictionCost &MaxCost);
472 unsigned getCheapestEvicteeWeight(const AllocationOrder &Order,
473 LiveInterval &VirtReg, SlotIndex Start,
474 SlotIndex End, float *BestEvictWeight);
475 void evictInterference(LiveInterval&, unsigned,
476 SmallVectorImpl<unsigned>&);
477 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
478 SmallLISet &RecoloringCandidates,
479 const SmallVirtRegSet &FixedRegisters);
481 unsigned tryAssign(LiveInterval&, AllocationOrder&,
482 SmallVectorImpl<unsigned>&,
483 const SmallVirtRegSet&);
484 unsigned tryEvict(LiveInterval&, AllocationOrder&,
485 SmallVectorImpl<unsigned>&, unsigned,
486 const SmallVirtRegSet&);
487 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
488 SmallVectorImpl<unsigned>&);
489 unsigned isSplitBenefitWorthCost(LiveInterval &VirtReg);
490 /// Calculate cost of region splitting.
491 unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
492 AllocationOrder &Order,
493 BlockFrequency &BestCost,
494 unsigned &NumCands, bool IgnoreCSR,
495 bool *CanCauseEvictionChain = nullptr);
496 /// Perform region splitting.
497 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
498 bool HasCompact,
499 SmallVectorImpl<unsigned> &NewVRegs);
500 /// Check other options before using a callee-saved register for the first
501 /// time.
502 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
503 unsigned PhysReg, unsigned &CostPerUseLimit,
504 SmallVectorImpl<unsigned> &NewVRegs);
505 void initializeCSRCost();
506 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
507 SmallVectorImpl<unsigned>&);
508 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
509 SmallVectorImpl<unsigned>&);
510 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
511 SmallVectorImpl<unsigned>&);
512 unsigned trySplit(LiveInterval&, AllocationOrder&,
513 SmallVectorImpl<unsigned>&,
514 const SmallVirtRegSet&);
515 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
516 SmallVectorImpl<unsigned> &,
517 SmallVirtRegSet &, unsigned);
518 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
519 SmallVirtRegSet &, unsigned);
520 void tryHintRecoloring(LiveInterval &);
521 void tryHintsRecoloring();
523 /// Model the information carried by one end of a copy.
524 struct HintInfo {
525 /// The frequency of the copy.
526 BlockFrequency Freq;
527 /// The virtual register or physical register.
528 unsigned Reg;
529 /// Its currently assigned register.
530 /// In case of a physical register Reg == PhysReg.
531 unsigned PhysReg;
533 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
534 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
536 using HintsInfo = SmallVector<HintInfo, 4>;
538 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
539 void collectHintInfo(unsigned, HintsInfo &);
541 bool isUnusedCalleeSavedReg(unsigned PhysReg) const;
543 /// Compute and report the number of spills and reloads for a loop.
544 void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
545 unsigned &FoldedReloads, unsigned &Spills,
546 unsigned &FoldedSpills);
548 /// Report the number of spills and reloads for each loop.
549 void reportNumberOfSplillsReloads() {
550 for (MachineLoop *L : *Loops) {
551 unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
552 reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
553 FoldedSpills);
558 } // end anonymous namespace
560 char RAGreedy::ID = 0;
561 char &llvm::RAGreedyID = RAGreedy::ID;
563 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
564 "Greedy Register Allocator", false, false)
565 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
566 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
567 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
568 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
569 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
570 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
571 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
572 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
573 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
574 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
575 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
576 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
577 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
578 INITIALIZE_PASS_END(RAGreedy, "greedy",
579 "Greedy Register Allocator", false, false)
581 #ifndef NDEBUG
582 const char *const RAGreedy::StageName[] = {
583 "RS_New",
584 "RS_Assign",
585 "RS_Split",
586 "RS_Split2",
587 "RS_Spill",
588 "RS_Memory",
589 "RS_Done"
591 #endif
593 // Hysteresis to use when comparing floats.
594 // This helps stabilize decisions based on float comparisons.
595 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
597 FunctionPass* llvm::createGreedyRegisterAllocator() {
598 return new RAGreedy();
601 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
604 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
605 AU.setPreservesCFG();
606 AU.addRequired<MachineBlockFrequencyInfo>();
607 AU.addPreserved<MachineBlockFrequencyInfo>();
608 AU.addRequired<AAResultsWrapperPass>();
609 AU.addPreserved<AAResultsWrapperPass>();
610 AU.addRequired<LiveIntervals>();
611 AU.addPreserved<LiveIntervals>();
612 AU.addRequired<SlotIndexes>();
613 AU.addPreserved<SlotIndexes>();
614 AU.addRequired<LiveDebugVariables>();
615 AU.addPreserved<LiveDebugVariables>();
616 AU.addRequired<LiveStacks>();
617 AU.addPreserved<LiveStacks>();
618 AU.addRequired<MachineDominatorTree>();
619 AU.addPreserved<MachineDominatorTree>();
620 AU.addRequired<MachineLoopInfo>();
621 AU.addPreserved<MachineLoopInfo>();
622 AU.addRequired<VirtRegMap>();
623 AU.addPreserved<VirtRegMap>();
624 AU.addRequired<LiveRegMatrix>();
625 AU.addPreserved<LiveRegMatrix>();
626 AU.addRequired<EdgeBundles>();
627 AU.addRequired<SpillPlacement>();
628 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
629 MachineFunctionPass::getAnalysisUsage(AU);
632 //===----------------------------------------------------------------------===//
633 // LiveRangeEdit delegate methods
634 //===----------------------------------------------------------------------===//
636 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
637 LiveInterval &LI = LIS->getInterval(VirtReg);
638 if (VRM->hasPhys(VirtReg)) {
639 Matrix->unassign(LI);
640 aboutToRemoveInterval(LI);
641 return true;
643 // Unassigned virtreg is probably in the priority queue.
644 // RegAllocBase will erase it after dequeueing.
645 // Nonetheless, clear the live-range so that the debug
646 // dump will show the right state for that VirtReg.
647 LI.clear();
648 return false;
651 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
652 if (!VRM->hasPhys(VirtReg))
653 return;
655 // Register is assigned, put it back on the queue for reassignment.
656 LiveInterval &LI = LIS->getInterval(VirtReg);
657 Matrix->unassign(LI);
658 enqueue(&LI);
661 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
662 // Cloning a register we haven't even heard about yet? Just ignore it.
663 if (!ExtraRegInfo.inBounds(Old))
664 return;
666 // LRE may clone a virtual register because dead code elimination causes it to
667 // be split into connected components. The new components are much smaller
668 // than the original, so they should get a new chance at being assigned.
669 // same stage as the parent.
670 ExtraRegInfo[Old].Stage = RS_Assign;
671 ExtraRegInfo.grow(New);
672 ExtraRegInfo[New] = ExtraRegInfo[Old];
675 void RAGreedy::releaseMemory() {
676 SpillerInstance.reset();
677 ExtraRegInfo.clear();
678 GlobalCand.clear();
681 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
683 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
684 // Prioritize live ranges by size, assigning larger ranges first.
685 // The queue holds (size, reg) pairs.
686 const unsigned Size = LI->getSize();
687 const unsigned Reg = LI->reg;
688 assert(Register::isVirtualRegister(Reg) &&
689 "Can only enqueue virtual registers");
690 unsigned Prio;
692 ExtraRegInfo.grow(Reg);
693 if (ExtraRegInfo[Reg].Stage == RS_New)
694 ExtraRegInfo[Reg].Stage = RS_Assign;
696 if (ExtraRegInfo[Reg].Stage == RS_Split) {
697 // Unsplit ranges that couldn't be allocated immediately are deferred until
698 // everything else has been allocated.
699 Prio = Size;
700 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
701 // Memory operand should be considered last.
702 // Change the priority such that Memory operand are assigned in
703 // the reverse order that they came in.
704 // TODO: Make this a member variable and probably do something about hints.
705 static unsigned MemOp = 0;
706 Prio = MemOp++;
707 } else {
708 // Giant live ranges fall back to the global assignment heuristic, which
709 // prevents excessive spilling in pathological cases.
710 bool ReverseLocal = TRI->reverseLocalAssignment();
711 const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
712 bool ForceGlobal = !ReverseLocal &&
713 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
715 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
716 LIS->intervalIsInOneMBB(*LI)) {
717 // Allocate original local ranges in linear instruction order. Since they
718 // are singly defined, this produces optimal coloring in the absence of
719 // global interference and other constraints.
720 if (!ReverseLocal)
721 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
722 else {
723 // Allocating bottom up may allow many short LRGs to be assigned first
724 // to one of the cheap registers. This could be much faster for very
725 // large blocks on targets with many physical registers.
726 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
728 Prio |= RC.AllocationPriority << 24;
729 } else {
730 // Allocate global and split ranges in long->short order. Long ranges that
731 // don't fit should be spilled (or split) ASAP so they don't create
732 // interference. Mark a bit to prioritize global above local ranges.
733 Prio = (1u << 29) + Size;
735 // Mark a higher bit to prioritize global and local above RS_Split.
736 Prio |= (1u << 31);
738 // Boost ranges that have a physical register hint.
739 if (VRM->hasKnownPreference(Reg))
740 Prio |= (1u << 30);
742 // The virtual register number is a tie breaker for same-sized ranges.
743 // Give lower vreg numbers higher priority to assign them first.
744 CurQueue.push(std::make_pair(Prio, ~Reg));
747 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
749 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
750 if (CurQueue.empty())
751 return nullptr;
752 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
753 CurQueue.pop();
754 return LI;
757 //===----------------------------------------------------------------------===//
758 // Direct Assignment
759 //===----------------------------------------------------------------------===//
761 /// tryAssign - Try to assign VirtReg to an available register.
762 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
763 AllocationOrder &Order,
764 SmallVectorImpl<unsigned> &NewVRegs,
765 const SmallVirtRegSet &FixedRegisters) {
766 Order.rewind();
767 unsigned PhysReg;
768 while ((PhysReg = Order.next()))
769 if (!Matrix->checkInterference(VirtReg, PhysReg))
770 break;
771 if (!PhysReg || Order.isHint())
772 return PhysReg;
774 // PhysReg is available, but there may be a better choice.
776 // If we missed a simple hint, try to cheaply evict interference from the
777 // preferred register.
778 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
779 if (Order.isHint(Hint)) {
780 LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n');
781 EvictionCost MaxCost;
782 MaxCost.setBrokenHints(1);
783 if (canEvictInterference(VirtReg, Hint, true, MaxCost, FixedRegisters)) {
784 evictInterference(VirtReg, Hint, NewVRegs);
785 return Hint;
787 // Record the missed hint, we may be able to recover
788 // at the end if the surrounding allocation changed.
789 SetOfBrokenHints.insert(&VirtReg);
792 // Try to evict interference from a cheaper alternative.
793 unsigned Cost = TRI->getCostPerUse(PhysReg);
795 // Most registers have 0 additional cost.
796 if (!Cost)
797 return PhysReg;
799 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
800 << Cost << '\n');
801 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
802 return CheapReg ? CheapReg : PhysReg;
805 //===----------------------------------------------------------------------===//
806 // Interference eviction
807 //===----------------------------------------------------------------------===//
809 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
810 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
811 unsigned PhysReg;
812 while ((PhysReg = Order.next())) {
813 if (PhysReg == PrevReg)
814 continue;
816 MCRegUnitIterator Units(PhysReg, TRI);
817 for (; Units.isValid(); ++Units) {
818 // Instantiate a "subquery", not to be confused with the Queries array.
819 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
820 if (subQ.checkInterference())
821 break;
823 // If no units have interference, break out with the current PhysReg.
824 if (!Units.isValid())
825 break;
827 if (PhysReg)
828 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
829 << printReg(PrevReg, TRI) << " to "
830 << printReg(PhysReg, TRI) << '\n');
831 return PhysReg;
834 /// shouldEvict - determine if A should evict the assigned live range B. The
835 /// eviction policy defined by this function together with the allocation order
836 /// defined by enqueue() decides which registers ultimately end up being split
837 /// and spilled.
839 /// Cascade numbers are used to prevent infinite loops if this function is a
840 /// cyclic relation.
842 /// @param A The live range to be assigned.
843 /// @param IsHint True when A is about to be assigned to its preferred
844 /// register.
845 /// @param B The live range to be evicted.
846 /// @param BreaksHint True when B is already assigned to its preferred register.
847 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
848 LiveInterval &B, bool BreaksHint) {
849 bool CanSplit = getStage(B) < RS_Spill;
851 // Be fairly aggressive about following hints as long as the evictee can be
852 // split.
853 if (CanSplit && IsHint && !BreaksHint)
854 return true;
856 if (A.weight > B.weight) {
857 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
858 return true;
860 return false;
863 /// canEvictInterference - Return true if all interferences between VirtReg and
864 /// PhysReg can be evicted.
866 /// @param VirtReg Live range that is about to be assigned.
867 /// @param PhysReg Desired register for assignment.
868 /// @param IsHint True when PhysReg is VirtReg's preferred register.
869 /// @param MaxCost Only look for cheaper candidates and update with new cost
870 /// when returning true.
871 /// @returns True when interference can be evicted cheaper than MaxCost.
872 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
873 bool IsHint, EvictionCost &MaxCost,
874 const SmallVirtRegSet &FixedRegisters) {
875 // It is only possible to evict virtual register interference.
876 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
877 return false;
879 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
881 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
882 // involved in an eviction before. If a cascade number was assigned, deny
883 // evicting anything with the same or a newer cascade number. This prevents
884 // infinite eviction loops.
886 // This works out so a register without a cascade number is allowed to evict
887 // anything, and it can be evicted by anything.
888 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
889 if (!Cascade)
890 Cascade = NextCascade;
892 EvictionCost Cost;
893 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
894 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
895 // If there is 10 or more interferences, chances are one is heavier.
896 if (Q.collectInterferingVRegs(10) >= 10)
897 return false;
899 // Check if any interfering live range is heavier than MaxWeight.
900 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
901 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
902 assert(Register::isVirtualRegister(Intf->reg) &&
903 "Only expecting virtual register interference from query");
905 // Do not allow eviction of a virtual register if we are in the middle
906 // of last-chance recoloring and this virtual register is one that we
907 // have scavenged a physical register for.
908 if (FixedRegisters.count(Intf->reg))
909 return false;
911 // Never evict spill products. They cannot split or spill.
912 if (getStage(*Intf) == RS_Done)
913 return false;
914 // Once a live range becomes small enough, it is urgent that we find a
915 // register for it. This is indicated by an infinite spill weight. These
916 // urgent live ranges get to evict almost anything.
918 // Also allow urgent evictions of unspillable ranges from a strictly
919 // larger allocation order.
920 bool Urgent = !VirtReg.isSpillable() &&
921 (Intf->isSpillable() ||
922 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
923 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
924 // Only evict older cascades or live ranges without a cascade.
925 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
926 if (Cascade <= IntfCascade) {
927 if (!Urgent)
928 return false;
929 // We permit breaking cascades for urgent evictions. It should be the
930 // last resort, though, so make it really expensive.
931 Cost.BrokenHints += 10;
933 // Would this break a satisfied hint?
934 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
935 // Update eviction cost.
936 Cost.BrokenHints += BreaksHint;
937 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
938 // Abort if this would be too expensive.
939 if (!(Cost < MaxCost))
940 return false;
941 if (Urgent)
942 continue;
943 // Apply the eviction policy for non-urgent evictions.
944 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
945 return false;
946 // If !MaxCost.isMax(), then we're just looking for a cheap register.
947 // Evicting another local live range in this case could lead to suboptimal
948 // coloring.
949 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
950 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
951 return false;
955 MaxCost = Cost;
956 return true;
959 /// Return true if all interferences between VirtReg and PhysReg between
960 /// Start and End can be evicted.
962 /// \param VirtReg Live range that is about to be assigned.
963 /// \param PhysReg Desired register for assignment.
964 /// \param Start Start of range to look for interferences.
965 /// \param End End of range to look for interferences.
966 /// \param MaxCost Only look for cheaper candidates and update with new cost
967 /// when returning true.
968 /// \return True when interference can be evicted cheaper than MaxCost.
969 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
970 unsigned PhysReg, SlotIndex Start,
971 SlotIndex End,
972 EvictionCost &MaxCost) {
973 EvictionCost Cost;
975 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
976 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
978 // Check if any interfering live range is heavier than MaxWeight.
979 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
980 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
982 // Check if interference overlast the segment in interest.
983 if (!Intf->overlaps(Start, End))
984 continue;
986 // Cannot evict non virtual reg interference.
987 if (!Register::isVirtualRegister(Intf->reg))
988 return false;
989 // Never evict spill products. They cannot split or spill.
990 if (getStage(*Intf) == RS_Done)
991 return false;
993 // Would this break a satisfied hint?
994 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
995 // Update eviction cost.
996 Cost.BrokenHints += BreaksHint;
997 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
998 // Abort if this would be too expensive.
999 if (!(Cost < MaxCost))
1000 return false;
1004 if (Cost.MaxWeight == 0)
1005 return false;
1007 MaxCost = Cost;
1008 return true;
1011 /// Return the physical register that will be best
1012 /// candidate for eviction by a local split interval that will be created
1013 /// between Start and End.
1015 /// \param Order The allocation order
1016 /// \param VirtReg Live range that is about to be assigned.
1017 /// \param Start Start of range to look for interferences
1018 /// \param End End of range to look for interferences
1019 /// \param BestEvictweight The eviction cost of that eviction
1020 /// \return The PhysReg which is the best candidate for eviction and the
1021 /// eviction cost in BestEvictweight
1022 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1023 LiveInterval &VirtReg,
1024 SlotIndex Start, SlotIndex End,
1025 float *BestEvictweight) {
1026 EvictionCost BestEvictCost;
1027 BestEvictCost.setMax();
1028 BestEvictCost.MaxWeight = VirtReg.weight;
1029 unsigned BestEvicteePhys = 0;
1031 // Go over all physical registers and find the best candidate for eviction
1032 for (auto PhysReg : Order.getOrder()) {
1034 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1035 BestEvictCost))
1036 continue;
1038 // Best so far.
1039 BestEvicteePhys = PhysReg;
1041 *BestEvictweight = BestEvictCost.MaxWeight;
1042 return BestEvicteePhys;
1045 /// evictInterference - Evict any interferring registers that prevent VirtReg
1046 /// from being assigned to Physreg. This assumes that canEvictInterference
1047 /// returned true.
1048 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
1049 SmallVectorImpl<unsigned> &NewVRegs) {
1050 // Make sure that VirtReg has a cascade number, and assign that cascade
1051 // number to every evicted register. These live ranges than then only be
1052 // evicted by a newer cascade, preventing infinite loops.
1053 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
1054 if (!Cascade)
1055 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
1057 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1058 << " interference: Cascade " << Cascade << '\n');
1060 // Collect all interfering virtregs first.
1061 SmallVector<LiveInterval*, 8> Intfs;
1062 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1063 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1064 // We usually have the interfering VRegs cached so collectInterferingVRegs()
1065 // should be fast, we may need to recalculate if when different physregs
1066 // overlap the same register unit so we had different SubRanges queried
1067 // against it.
1068 Q.collectInterferingVRegs();
1069 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1070 Intfs.append(IVR.begin(), IVR.end());
1073 // Evict them second. This will invalidate the queries.
1074 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
1075 LiveInterval *Intf = Intfs[i];
1076 // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1077 if (!VRM->hasPhys(Intf->reg))
1078 continue;
1080 LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg);
1082 Matrix->unassign(*Intf);
1083 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
1084 VirtReg.isSpillable() < Intf->isSpillable()) &&
1085 "Cannot decrease cascade number, illegal eviction");
1086 ExtraRegInfo[Intf->reg].Cascade = Cascade;
1087 ++NumEvicted;
1088 NewVRegs.push_back(Intf->reg);
1092 /// Returns true if the given \p PhysReg is a callee saved register and has not
1093 /// been used for allocation yet.
1094 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
1095 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1096 if (CSR == 0)
1097 return false;
1099 return !Matrix->isPhysRegUsed(PhysReg);
1102 /// tryEvict - Try to evict all interferences for a physreg.
1103 /// @param VirtReg Currently unassigned virtual register.
1104 /// @param Order Physregs to try.
1105 /// @return Physreg to assign VirtReg, or 0.
1106 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
1107 AllocationOrder &Order,
1108 SmallVectorImpl<unsigned> &NewVRegs,
1109 unsigned CostPerUseLimit,
1110 const SmallVirtRegSet &FixedRegisters) {
1111 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1112 TimePassesIsEnabled);
1114 // Keep track of the cheapest interference seen so far.
1115 EvictionCost BestCost;
1116 BestCost.setMax();
1117 unsigned BestPhys = 0;
1118 unsigned OrderLimit = Order.getOrder().size();
1120 // When we are just looking for a reduced cost per use, don't break any
1121 // hints, and only evict smaller spill weights.
1122 if (CostPerUseLimit < ~0u) {
1123 BestCost.BrokenHints = 0;
1124 BestCost.MaxWeight = VirtReg.weight;
1126 // Check of any registers in RC are below CostPerUseLimit.
1127 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
1128 unsigned MinCost = RegClassInfo.getMinCost(RC);
1129 if (MinCost >= CostPerUseLimit) {
1130 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1131 << MinCost << ", no cheaper registers to be found.\n");
1132 return 0;
1135 // It is normal for register classes to have a long tail of registers with
1136 // the same cost. We don't need to look at them if they're too expensive.
1137 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
1138 OrderLimit = RegClassInfo.getLastCostChange(RC);
1139 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1140 << " regs.\n");
1144 Order.rewind();
1145 while (unsigned PhysReg = Order.next(OrderLimit)) {
1146 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
1147 continue;
1148 // The first use of a callee-saved register in a function has cost 1.
1149 // Don't start using a CSR when the CostPerUseLimit is low.
1150 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1151 LLVM_DEBUG(
1152 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1153 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1154 << '\n');
1155 continue;
1158 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1159 FixedRegisters))
1160 continue;
1162 // Best so far.
1163 BestPhys = PhysReg;
1165 // Stop if the hint can be used.
1166 if (Order.isHint())
1167 break;
1170 if (!BestPhys)
1171 return 0;
1173 evictInterference(VirtReg, BestPhys, NewVRegs);
1174 return BestPhys;
1177 //===----------------------------------------------------------------------===//
1178 // Region Splitting
1179 //===----------------------------------------------------------------------===//
1181 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1182 /// interference pattern in Physreg and its aliases. Add the constraints to
1183 /// SpillPlacement and return the static cost of this split in Cost, assuming
1184 /// that all preferences in SplitConstraints are met.
1185 /// Return false if there are no bundles with positive bias.
1186 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1187 BlockFrequency &Cost) {
1188 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1190 // Reset interference dependent info.
1191 SplitConstraints.resize(UseBlocks.size());
1192 BlockFrequency StaticCost = 0;
1193 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1194 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1195 SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1197 BC.Number = BI.MBB->getNumber();
1198 Intf.moveToBlock(BC.Number);
1199 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1200 BC.Exit = (BI.LiveOut &&
1201 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1202 ? SpillPlacement::PrefReg
1203 : SpillPlacement::DontCare;
1204 BC.ChangesValue = BI.FirstDef.isValid();
1206 if (!Intf.hasInterference())
1207 continue;
1209 // Number of spill code instructions to insert.
1210 unsigned Ins = 0;
1212 // Interference for the live-in value.
1213 if (BI.LiveIn) {
1214 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1215 BC.Entry = SpillPlacement::MustSpill;
1216 ++Ins;
1217 } else if (Intf.first() < BI.FirstInstr) {
1218 BC.Entry = SpillPlacement::PrefSpill;
1219 ++Ins;
1220 } else if (Intf.first() < BI.LastInstr) {
1221 ++Ins;
1224 // Abort if the spill cannot be inserted at the MBB' start
1225 if (((BC.Entry == SpillPlacement::MustSpill) ||
1226 (BC.Entry == SpillPlacement::PrefSpill)) &&
1227 SlotIndex::isEarlierInstr(BI.FirstInstr,
1228 SA->getFirstSplitPoint(BC.Number)))
1229 return false;
1232 // Interference for the live-out value.
1233 if (BI.LiveOut) {
1234 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1235 BC.Exit = SpillPlacement::MustSpill;
1236 ++Ins;
1237 } else if (Intf.last() > BI.LastInstr) {
1238 BC.Exit = SpillPlacement::PrefSpill;
1239 ++Ins;
1240 } else if (Intf.last() > BI.FirstInstr) {
1241 ++Ins;
1245 // Accumulate the total frequency of inserted spill code.
1246 while (Ins--)
1247 StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1249 Cost = StaticCost;
1251 // Add constraints for use-blocks. Note that these are the only constraints
1252 // that may add a positive bias, it is downhill from here.
1253 SpillPlacer->addConstraints(SplitConstraints);
1254 return SpillPlacer->scanActiveBundles();
1257 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1258 /// live-through blocks in Blocks.
1259 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1260 ArrayRef<unsigned> Blocks) {
1261 const unsigned GroupSize = 8;
1262 SpillPlacement::BlockConstraint BCS[GroupSize];
1263 unsigned TBS[GroupSize];
1264 unsigned B = 0, T = 0;
1266 for (unsigned i = 0; i != Blocks.size(); ++i) {
1267 unsigned Number = Blocks[i];
1268 Intf.moveToBlock(Number);
1270 if (!Intf.hasInterference()) {
1271 assert(T < GroupSize && "Array overflow");
1272 TBS[T] = Number;
1273 if (++T == GroupSize) {
1274 SpillPlacer->addLinks(makeArrayRef(TBS, T));
1275 T = 0;
1277 continue;
1280 assert(B < GroupSize && "Array overflow");
1281 BCS[B].Number = Number;
1283 // Abort if the spill cannot be inserted at the MBB' start
1284 MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1285 if (!MBB->empty() &&
1286 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()),
1287 SA->getFirstSplitPoint(Number)))
1288 return false;
1289 // Interference for the live-in value.
1290 if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1291 BCS[B].Entry = SpillPlacement::MustSpill;
1292 else
1293 BCS[B].Entry = SpillPlacement::PrefSpill;
1295 // Interference for the live-out value.
1296 if (Intf.last() >= SA->getLastSplitPoint(Number))
1297 BCS[B].Exit = SpillPlacement::MustSpill;
1298 else
1299 BCS[B].Exit = SpillPlacement::PrefSpill;
1301 if (++B == GroupSize) {
1302 SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1303 B = 0;
1307 SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1308 SpillPlacer->addLinks(makeArrayRef(TBS, T));
1309 return true;
1312 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1313 // Keep track of through blocks that have not been added to SpillPlacer.
1314 BitVector Todo = SA->getThroughBlocks();
1315 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1316 unsigned AddedTo = 0;
1317 #ifndef NDEBUG
1318 unsigned Visited = 0;
1319 #endif
1321 while (true) {
1322 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1323 // Find new through blocks in the periphery of PrefRegBundles.
1324 for (int i = 0, e = NewBundles.size(); i != e; ++i) {
1325 unsigned Bundle = NewBundles[i];
1326 // Look at all blocks connected to Bundle in the full graph.
1327 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1328 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1329 I != E; ++I) {
1330 unsigned Block = *I;
1331 if (!Todo.test(Block))
1332 continue;
1333 Todo.reset(Block);
1334 // This is a new through block. Add it to SpillPlacer later.
1335 ActiveBlocks.push_back(Block);
1336 #ifndef NDEBUG
1337 ++Visited;
1338 #endif
1341 // Any new blocks to add?
1342 if (ActiveBlocks.size() == AddedTo)
1343 break;
1345 // Compute through constraints from the interference, or assume that all
1346 // through blocks prefer spilling when forming compact regions.
1347 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1348 if (Cand.PhysReg) {
1349 if (!addThroughConstraints(Cand.Intf, NewBlocks))
1350 return false;
1351 } else
1352 // Provide a strong negative bias on through blocks to prevent unwanted
1353 // liveness on loop backedges.
1354 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1355 AddedTo = ActiveBlocks.size();
1357 // Perhaps iterating can enable more bundles?
1358 SpillPlacer->iterate();
1360 LLVM_DEBUG(dbgs() << ", v=" << Visited);
1361 return true;
1364 /// calcCompactRegion - Compute the set of edge bundles that should be live
1365 /// when splitting the current live range into compact regions. Compact
1366 /// regions can be computed without looking at interference. They are the
1367 /// regions formed by removing all the live-through blocks from the live range.
1369 /// Returns false if the current live range is already compact, or if the
1370 /// compact regions would form single block regions anyway.
1371 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1372 // Without any through blocks, the live range is already compact.
1373 if (!SA->getNumThroughBlocks())
1374 return false;
1376 // Compact regions don't correspond to any physreg.
1377 Cand.reset(IntfCache, 0);
1379 LLVM_DEBUG(dbgs() << "Compact region bundles");
1381 // Use the spill placer to determine the live bundles. GrowRegion pretends
1382 // that all the through blocks have interference when PhysReg is unset.
1383 SpillPlacer->prepare(Cand.LiveBundles);
1385 // The static split cost will be zero since Cand.Intf reports no interference.
1386 BlockFrequency Cost;
1387 if (!addSplitConstraints(Cand.Intf, Cost)) {
1388 LLVM_DEBUG(dbgs() << ", none.\n");
1389 return false;
1392 if (!growRegion(Cand)) {
1393 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1394 return false;
1397 SpillPlacer->finish();
1399 if (!Cand.LiveBundles.any()) {
1400 LLVM_DEBUG(dbgs() << ", none.\n");
1401 return false;
1404 LLVM_DEBUG({
1405 for (int i : Cand.LiveBundles.set_bits())
1406 dbgs() << " EB#" << i;
1407 dbgs() << ".\n";
1409 return true;
1412 /// calcSpillCost - Compute how expensive it would be to split the live range in
1413 /// SA around all use blocks instead of forming bundle regions.
1414 BlockFrequency RAGreedy::calcSpillCost() {
1415 BlockFrequency Cost = 0;
1416 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1417 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1418 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1419 unsigned Number = BI.MBB->getNumber();
1420 // We normally only need one spill instruction - a load or a store.
1421 Cost += SpillPlacer->getBlockFrequency(Number);
1423 // Unless the value is redefined in the block.
1424 if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1425 Cost += SpillPlacer->getBlockFrequency(Number);
1427 return Cost;
1430 /// Check if splitting Evictee will create a local split interval in
1431 /// basic block number BBNumber that may cause a bad eviction chain. This is
1432 /// intended to prevent bad eviction sequences like:
1433 /// movl %ebp, 8(%esp) # 4-byte Spill
1434 /// movl %ecx, %ebp
1435 /// movl %ebx, %ecx
1436 /// movl %edi, %ebx
1437 /// movl %edx, %edi
1438 /// cltd
1439 /// idivl %esi
1440 /// movl %edi, %edx
1441 /// movl %ebx, %edi
1442 /// movl %ecx, %ebx
1443 /// movl %ebp, %ecx
1444 /// movl 16(%esp), %ebp # 4 - byte Reload
1446 /// Such sequences are created in 2 scenarios:
1448 /// Scenario #1:
1449 /// %0 is evicted from physreg0 by %1.
1450 /// Evictee %0 is intended for region splitting with split candidate
1451 /// physreg0 (the reg %0 was evicted from).
1452 /// Region splitting creates a local interval because of interference with the
1453 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1454 /// and "by stack" intervals and local interval created when interference
1455 /// occurs).
1456 /// One of the split intervals ends up evicting %2 from physreg1.
1457 /// Evictee %2 is intended for region splitting with split candidate
1458 /// physreg1.
1459 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1461 /// Scenario #2
1462 /// %0 is evicted from physreg0 by %1.
1463 /// %2 is evicted from physreg2 by %3 etc.
1464 /// Evictee %0 is intended for region splitting with split candidate
1465 /// physreg1.
1466 /// Region splitting creates a local interval because of interference with the
1467 /// evictor %1.
1468 /// One of the split intervals ends up evicting back original evictor %1
1469 /// from physreg0 (the reg %0 was evicted from).
1470 /// Another evictee %2 is intended for region splitting with split candidate
1471 /// physreg1.
1472 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1474 /// \param Evictee The register considered to be split.
1475 /// \param Cand The split candidate that determines the physical register
1476 /// we are splitting for and the interferences.
1477 /// \param BBNumber The number of a BB for which the region split process will
1478 /// create a local split interval.
1479 /// \param Order The physical registers that may get evicted by a split
1480 /// artifact of Evictee.
1481 /// \return True if splitting Evictee may cause a bad eviction chain, false
1482 /// otherwise.
1483 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee,
1484 GlobalSplitCandidate &Cand,
1485 unsigned BBNumber,
1486 const AllocationOrder &Order) {
1487 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1488 unsigned Evictor = VregEvictorInfo.first;
1489 unsigned PhysReg = VregEvictorInfo.second;
1491 // No actual evictor.
1492 if (!Evictor || !PhysReg)
1493 return false;
1495 float MaxWeight = 0;
1496 unsigned FutureEvictedPhysReg =
1497 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1498 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1500 // The bad eviction chain occurs when either the split candidate is the
1501 // evicting reg or one of the split artifact will evict the evicting reg.
1502 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1503 return false;
1505 Cand.Intf.moveToBlock(BBNumber);
1507 // Check to see if the Evictor contains interference (with Evictee) in the
1508 // given BB. If so, this interference caused the eviction of Evictee from
1509 // PhysReg. This suggest that we will create a local interval during the
1510 // region split to avoid this interference This local interval may cause a bad
1511 // eviction chain.
1512 if (!LIS->hasInterval(Evictor))
1513 return false;
1514 LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1515 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1516 return false;
1518 // Now, check to see if the local interval we will create is going to be
1519 // expensive enough to evict somebody If so, this may cause a bad eviction
1520 // chain.
1521 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1522 float splitArtifactWeight =
1523 VRAI.futureWeight(LIS->getInterval(Evictee),
1524 Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1525 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1526 return false;
1528 return true;
1531 /// Check if splitting VirtRegToSplit will create a local split interval
1532 /// in basic block number BBNumber that may cause a spill.
1534 /// \param VirtRegToSplit The register considered to be split.
1535 /// \param Cand The split candidate that determines the physical
1536 /// register we are splitting for and the interferences.
1537 /// \param BBNumber The number of a BB for which the region split process
1538 /// will create a local split interval.
1539 /// \param Order The physical registers that may get evicted by a
1540 /// split artifact of VirtRegToSplit.
1541 /// \return True if splitting VirtRegToSplit may cause a spill, false
1542 /// otherwise.
1543 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1544 GlobalSplitCandidate &Cand,
1545 unsigned BBNumber,
1546 const AllocationOrder &Order) {
1547 Cand.Intf.moveToBlock(BBNumber);
1549 // Check if the local interval will find a non interfereing assignment.
1550 for (auto PhysReg : Order.getOrder()) {
1551 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1552 Cand.Intf.last(), PhysReg))
1553 return false;
1556 // Check if the local interval will evict a cheaper interval.
1557 float CheapestEvictWeight = 0;
1558 unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight(
1559 Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
1560 Cand.Intf.last(), &CheapestEvictWeight);
1562 // Have we found an interval that can be evicted?
1563 if (FutureEvictedPhysReg) {
1564 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1565 float splitArtifactWeight =
1566 VRAI.futureWeight(LIS->getInterval(VirtRegToSplit),
1567 Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1568 // Will the weight of the local interval be higher than the cheapest evictee
1569 // weight? If so it will evict it and will not cause a spill.
1570 if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
1571 return false;
1574 // The local interval is not able to find non interferencing assignment and
1575 // not able to evict a less worthy interval, therfore, it can cause a spill.
1576 return true;
1579 /// calcGlobalSplitCost - Return the global split cost of following the split
1580 /// pattern in LiveBundles. This cost should be added to the local cost of the
1581 /// interference pattern in SplitConstraints.
1583 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1584 const AllocationOrder &Order,
1585 bool *CanCauseEvictionChain) {
1586 BlockFrequency GlobalCost = 0;
1587 const BitVector &LiveBundles = Cand.LiveBundles;
1588 unsigned VirtRegToSplit = SA->getParent().reg;
1589 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1590 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1591 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1592 SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1593 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)];
1594 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1595 unsigned Ins = 0;
1597 Cand.Intf.moveToBlock(BC.Number);
1598 // Check wheather a local interval is going to be created during the region
1599 // split. Calculate adavanced spilt cost (cost of local intervals) if option
1600 // is enabled.
1601 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1602 BI.LiveOut && RegIn && RegOut) {
1604 if (CanCauseEvictionChain &&
1605 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1606 // This interference causes our eviction from this assignment, we might
1607 // evict somebody else and eventually someone will spill, add that cost.
1608 // See splitCanCauseEvictionChain for detailed description of scenarios.
1609 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1610 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1612 *CanCauseEvictionChain = true;
1614 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1615 Order)) {
1616 // This interference causes local interval to spill, add that cost.
1617 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1618 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1622 if (BI.LiveIn)
1623 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1624 if (BI.LiveOut)
1625 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1626 while (Ins--)
1627 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1630 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1631 unsigned Number = Cand.ActiveBlocks[i];
1632 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)];
1633 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1634 if (!RegIn && !RegOut)
1635 continue;
1636 if (RegIn && RegOut) {
1637 // We need double spill code if this block has interference.
1638 Cand.Intf.moveToBlock(Number);
1639 if (Cand.Intf.hasInterference()) {
1640 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1641 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1643 // Check wheather a local interval is going to be created during the
1644 // region split.
1645 if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1646 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1647 // This interference cause our eviction from this assignment, we might
1648 // evict somebody else, add that cost.
1649 // See splitCanCauseEvictionChain for detailed description of
1650 // scenarios.
1651 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1652 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1654 *CanCauseEvictionChain = true;
1657 continue;
1659 // live-in / stack-out or stack-in live-out.
1660 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1662 return GlobalCost;
1665 /// splitAroundRegion - Split the current live range around the regions
1666 /// determined by BundleCand and GlobalCand.
1668 /// Before calling this function, GlobalCand and BundleCand must be initialized
1669 /// so each bundle is assigned to a valid candidate, or NoCand for the
1670 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
1671 /// objects must be initialized for the current live range, and intervals
1672 /// created for the used candidates.
1674 /// @param LREdit The LiveRangeEdit object handling the current split.
1675 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1676 /// must appear in this list.
1677 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1678 ArrayRef<unsigned> UsedCands) {
1679 // These are the intervals created for new global ranges. We may create more
1680 // intervals for local ranges.
1681 const unsigned NumGlobalIntvs = LREdit.size();
1682 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1683 << " globals.\n");
1684 assert(NumGlobalIntvs && "No global intervals configured");
1686 // Isolate even single instructions when dealing with a proper sub-class.
1687 // That guarantees register class inflation for the stack interval because it
1688 // is all copies.
1689 unsigned Reg = SA->getParent().reg;
1690 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1692 // First handle all the blocks with uses.
1693 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1694 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1695 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1696 unsigned Number = BI.MBB->getNumber();
1697 unsigned IntvIn = 0, IntvOut = 0;
1698 SlotIndex IntfIn, IntfOut;
1699 if (BI.LiveIn) {
1700 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1701 if (CandIn != NoCand) {
1702 GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1703 IntvIn = Cand.IntvIdx;
1704 Cand.Intf.moveToBlock(Number);
1705 IntfIn = Cand.Intf.first();
1708 if (BI.LiveOut) {
1709 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1710 if (CandOut != NoCand) {
1711 GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1712 IntvOut = Cand.IntvIdx;
1713 Cand.Intf.moveToBlock(Number);
1714 IntfOut = Cand.Intf.last();
1718 // Create separate intervals for isolated blocks with multiple uses.
1719 if (!IntvIn && !IntvOut) {
1720 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1721 if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1722 SE->splitSingleBlock(BI);
1723 continue;
1726 if (IntvIn && IntvOut)
1727 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1728 else if (IntvIn)
1729 SE->splitRegInBlock(BI, IntvIn, IntfIn);
1730 else
1731 SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1734 // Handle live-through blocks. The relevant live-through blocks are stored in
1735 // the ActiveBlocks list with each candidate. We need to filter out
1736 // duplicates.
1737 BitVector Todo = SA->getThroughBlocks();
1738 for (unsigned c = 0; c != UsedCands.size(); ++c) {
1739 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1740 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1741 unsigned Number = Blocks[i];
1742 if (!Todo.test(Number))
1743 continue;
1744 Todo.reset(Number);
1746 unsigned IntvIn = 0, IntvOut = 0;
1747 SlotIndex IntfIn, IntfOut;
1749 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1750 if (CandIn != NoCand) {
1751 GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1752 IntvIn = Cand.IntvIdx;
1753 Cand.Intf.moveToBlock(Number);
1754 IntfIn = Cand.Intf.first();
1757 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1758 if (CandOut != NoCand) {
1759 GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1760 IntvOut = Cand.IntvIdx;
1761 Cand.Intf.moveToBlock(Number);
1762 IntfOut = Cand.Intf.last();
1764 if (!IntvIn && !IntvOut)
1765 continue;
1766 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1770 ++NumGlobalSplits;
1772 SmallVector<unsigned, 8> IntvMap;
1773 SE->finish(&IntvMap);
1774 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1776 ExtraRegInfo.resize(MRI->getNumVirtRegs());
1777 unsigned OrigBlocks = SA->getNumLiveBlocks();
1779 // Sort out the new intervals created by splitting. We get four kinds:
1780 // - Remainder intervals should not be split again.
1781 // - Candidate intervals can be assigned to Cand.PhysReg.
1782 // - Block-local splits are candidates for local splitting.
1783 // - DCE leftovers should go back on the queue.
1784 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1785 LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1787 // Ignore old intervals from DCE.
1788 if (getStage(Reg) != RS_New)
1789 continue;
1791 // Remainder interval. Don't try splitting again, spill if it doesn't
1792 // allocate.
1793 if (IntvMap[i] == 0) {
1794 setStage(Reg, RS_Spill);
1795 continue;
1798 // Global intervals. Allow repeated splitting as long as the number of live
1799 // blocks is strictly decreasing.
1800 if (IntvMap[i] < NumGlobalIntvs) {
1801 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1802 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1803 << " blocks as original.\n");
1804 // Don't allow repeated splitting as a safe guard against looping.
1805 setStage(Reg, RS_Split2);
1807 continue;
1810 // Other intervals are treated as new. This includes local intervals created
1811 // for blocks with multiple uses, and anything created by DCE.
1814 if (VerifyEnabled)
1815 MF->verify(this, "After splitting live range around region");
1818 // Global split has high compile time cost especially for large live range.
1819 // Return false for the case here where the potential benefit will never
1820 // worth the cost.
1821 unsigned RAGreedy::isSplitBenefitWorthCost(LiveInterval &VirtReg) {
1822 MachineInstr *MI = MRI->getUniqueVRegDef(VirtReg.reg);
1823 if (MI && TII->isTriviallyReMaterializable(*MI, AA) &&
1824 VirtReg.size() > HugeSizeForSplit)
1825 return false;
1826 return true;
1829 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1830 SmallVectorImpl<unsigned> &NewVRegs) {
1831 if (!isSplitBenefitWorthCost(VirtReg))
1832 return 0;
1833 unsigned NumCands = 0;
1834 BlockFrequency SpillCost = calcSpillCost();
1835 BlockFrequency BestCost;
1837 // Check if we can split this live range around a compact region.
1838 bool HasCompact = calcCompactRegion(GlobalCand.front());
1839 if (HasCompact) {
1840 // Yes, keep GlobalCand[0] as the compact region candidate.
1841 NumCands = 1;
1842 BestCost = BlockFrequency::getMaxFrequency();
1843 } else {
1844 // No benefit from the compact region, our fallback will be per-block
1845 // splitting. Make sure we find a solution that is cheaper than spilling.
1846 BestCost = SpillCost;
1847 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1848 MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1851 bool CanCauseEvictionChain = false;
1852 unsigned BestCand =
1853 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1854 false /*IgnoreCSR*/, &CanCauseEvictionChain);
1856 // Split candidates with compact regions can cause a bad eviction sequence.
1857 // See splitCanCauseEvictionChain for detailed description of scenarios.
1858 // To avoid it, we need to comapre the cost with the spill cost and not the
1859 // current max frequency.
1860 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1861 CanCauseEvictionChain) {
1862 return 0;
1865 // No solutions found, fall back to single block splitting.
1866 if (!HasCompact && BestCand == NoCand)
1867 return 0;
1869 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1872 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1873 AllocationOrder &Order,
1874 BlockFrequency &BestCost,
1875 unsigned &NumCands, bool IgnoreCSR,
1876 bool *CanCauseEvictionChain) {
1877 unsigned BestCand = NoCand;
1878 Order.rewind();
1879 while (unsigned PhysReg = Order.next()) {
1880 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1881 continue;
1883 // Discard bad candidates before we run out of interference cache cursors.
1884 // This will only affect register classes with a lot of registers (>32).
1885 if (NumCands == IntfCache.getMaxCursors()) {
1886 unsigned WorstCount = ~0u;
1887 unsigned Worst = 0;
1888 for (unsigned i = 0; i != NumCands; ++i) {
1889 if (i == BestCand || !GlobalCand[i].PhysReg)
1890 continue;
1891 unsigned Count = GlobalCand[i].LiveBundles.count();
1892 if (Count < WorstCount) {
1893 Worst = i;
1894 WorstCount = Count;
1897 --NumCands;
1898 GlobalCand[Worst] = GlobalCand[NumCands];
1899 if (BestCand == NumCands)
1900 BestCand = Worst;
1903 if (GlobalCand.size() <= NumCands)
1904 GlobalCand.resize(NumCands+1);
1905 GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1906 Cand.reset(IntfCache, PhysReg);
1908 SpillPlacer->prepare(Cand.LiveBundles);
1909 BlockFrequency Cost;
1910 if (!addSplitConstraints(Cand.Intf, Cost)) {
1911 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1912 continue;
1914 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1915 MBFI->printBlockFreq(dbgs(), Cost));
1916 if (Cost >= BestCost) {
1917 LLVM_DEBUG({
1918 if (BestCand == NoCand)
1919 dbgs() << " worse than no bundles\n";
1920 else
1921 dbgs() << " worse than "
1922 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1924 continue;
1926 if (!growRegion(Cand)) {
1927 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1928 continue;
1931 SpillPlacer->finish();
1933 // No live bundles, defer to splitSingleBlocks().
1934 if (!Cand.LiveBundles.any()) {
1935 LLVM_DEBUG(dbgs() << " no bundles.\n");
1936 continue;
1939 bool HasEvictionChain = false;
1940 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1941 LLVM_DEBUG({
1942 dbgs() << ", total = ";
1943 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1944 for (int i : Cand.LiveBundles.set_bits())
1945 dbgs() << " EB#" << i;
1946 dbgs() << ".\n";
1948 if (Cost < BestCost) {
1949 BestCand = NumCands;
1950 BestCost = Cost;
1951 // See splitCanCauseEvictionChain for detailed description of bad
1952 // eviction chain scenarios.
1953 if (CanCauseEvictionChain)
1954 *CanCauseEvictionChain = HasEvictionChain;
1956 ++NumCands;
1959 if (CanCauseEvictionChain && BestCand != NoCand) {
1960 // See splitCanCauseEvictionChain for detailed description of bad
1961 // eviction chain scenarios.
1962 LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1963 << printReg(VirtReg.reg, TRI) << " may ");
1964 if (!(*CanCauseEvictionChain))
1965 LLVM_DEBUG(dbgs() << "not ");
1966 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1969 return BestCand;
1972 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1973 bool HasCompact,
1974 SmallVectorImpl<unsigned> &NewVRegs) {
1975 SmallVector<unsigned, 8> UsedCands;
1976 // Prepare split editor.
1977 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1978 SE->reset(LREdit, SplitSpillMode);
1980 // Assign all edge bundles to the preferred candidate, or NoCand.
1981 BundleCand.assign(Bundles->getNumBundles(), NoCand);
1983 // Assign bundles for the best candidate region.
1984 if (BestCand != NoCand) {
1985 GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1986 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1987 UsedCands.push_back(BestCand);
1988 Cand.IntvIdx = SE->openIntv();
1989 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1990 << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1991 (void)B;
1995 // Assign bundles for the compact region.
1996 if (HasCompact) {
1997 GlobalSplitCandidate &Cand = GlobalCand.front();
1998 assert(!Cand.PhysReg && "Compact region has no physreg");
1999 if (unsigned B = Cand.getBundles(BundleCand, 0)) {
2000 UsedCands.push_back(0);
2001 Cand.IntvIdx = SE->openIntv();
2002 LLVM_DEBUG(dbgs() << "Split for compact region in " << B
2003 << " bundles, intv " << Cand.IntvIdx << ".\n");
2004 (void)B;
2008 splitAroundRegion(LREdit, UsedCands);
2009 return 0;
2012 //===----------------------------------------------------------------------===//
2013 // Per-Block Splitting
2014 //===----------------------------------------------------------------------===//
2016 /// tryBlockSplit - Split a global live range around every block with uses. This
2017 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2018 /// they don't allocate.
2019 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2020 SmallVectorImpl<unsigned> &NewVRegs) {
2021 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
2022 unsigned Reg = VirtReg.reg;
2023 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
2024 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2025 SE->reset(LREdit, SplitSpillMode);
2026 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2027 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
2028 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
2029 if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2030 SE->splitSingleBlock(BI);
2032 // No blocks were split.
2033 if (LREdit.empty())
2034 return 0;
2036 // We did split for some blocks.
2037 SmallVector<unsigned, 8> IntvMap;
2038 SE->finish(&IntvMap);
2040 // Tell LiveDebugVariables about the new ranges.
2041 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2043 ExtraRegInfo.resize(MRI->getNumVirtRegs());
2045 // Sort out the new intervals created by splitting. The remainder interval
2046 // goes straight to spilling, the new local ranges get to stay RS_New.
2047 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
2048 LiveInterval &LI = LIS->getInterval(LREdit.get(i));
2049 if (getStage(LI) == RS_New && IntvMap[i] == 0)
2050 setStage(LI, RS_Spill);
2053 if (VerifyEnabled)
2054 MF->verify(this, "After splitting live range around basic blocks");
2055 return 0;
2058 //===----------------------------------------------------------------------===//
2059 // Per-Instruction Splitting
2060 //===----------------------------------------------------------------------===//
2062 /// Get the number of allocatable registers that match the constraints of \p Reg
2063 /// on \p MI and that are also in \p SuperRC.
2064 static unsigned getNumAllocatableRegsForConstraints(
2065 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
2066 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2067 const RegisterClassInfo &RCI) {
2068 assert(SuperRC && "Invalid register class");
2070 const TargetRegisterClass *ConstrainedRC =
2071 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2072 /* ExploreBundle */ true);
2073 if (!ConstrainedRC)
2074 return 0;
2075 return RCI.getNumAllocatableRegs(ConstrainedRC);
2078 /// tryInstructionSplit - Split a live range around individual instructions.
2079 /// This is normally not worthwhile since the spiller is doing essentially the
2080 /// same thing. However, when the live range is in a constrained register
2081 /// class, it may help to insert copies such that parts of the live range can
2082 /// be moved to a larger register class.
2084 /// This is similar to spilling to a larger register class.
2085 unsigned
2086 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2087 SmallVectorImpl<unsigned> &NewVRegs) {
2088 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2089 // There is no point to this if there are no larger sub-classes.
2090 if (!RegClassInfo.isProperSubClass(CurRC))
2091 return 0;
2093 // Always enable split spill mode, since we're effectively spilling to a
2094 // register.
2095 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2096 SE->reset(LREdit, SplitEditor::SM_Size);
2098 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2099 if (Uses.size() <= 1)
2100 return 0;
2102 LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2103 << " individual instrs.\n");
2105 const TargetRegisterClass *SuperRC =
2106 TRI->getLargestLegalSuperClass(CurRC, *MF);
2107 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2108 // Split around every non-copy instruction if this split will relax
2109 // the constraints on the virtual register.
2110 // Otherwise, splitting just inserts uncoalescable copies that do not help
2111 // the allocation.
2112 for (unsigned i = 0; i != Uses.size(); ++i) {
2113 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
2114 if (MI->isFullCopy() ||
2115 SuperRCNumAllocatableRegs ==
2116 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
2117 TRI, RCI)) {
2118 LLVM_DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI);
2119 continue;
2121 SE->openIntv();
2122 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
2123 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]);
2124 SE->useIntv(SegStart, SegStop);
2127 if (LREdit.empty()) {
2128 LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2129 return 0;
2132 SmallVector<unsigned, 8> IntvMap;
2133 SE->finish(&IntvMap);
2134 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
2135 ExtraRegInfo.resize(MRI->getNumVirtRegs());
2137 // Assign all new registers to RS_Spill. This was the last chance.
2138 setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2139 return 0;
2142 //===----------------------------------------------------------------------===//
2143 // Local Splitting
2144 //===----------------------------------------------------------------------===//
2146 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2147 /// in order to use PhysReg between two entries in SA->UseSlots.
2149 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
2151 void RAGreedy::calcGapWeights(unsigned PhysReg,
2152 SmallVectorImpl<float> &GapWeight) {
2153 assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2154 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2155 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2156 const unsigned NumGaps = Uses.size()-1;
2158 // Start and end points for the interference check.
2159 SlotIndex StartIdx =
2160 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2161 SlotIndex StopIdx =
2162 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2164 GapWeight.assign(NumGaps, 0.0f);
2166 // Add interference from each overlapping register.
2167 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2168 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2169 .checkInterference())
2170 continue;
2172 // We know that VirtReg is a continuous interval from FirstInstr to
2173 // LastInstr, so we don't need InterferenceQuery.
2175 // Interference that overlaps an instruction is counted in both gaps
2176 // surrounding the instruction. The exception is interference before
2177 // StartIdx and after StopIdx.
2179 LiveIntervalUnion::SegmentIter IntI =
2180 Matrix->getLiveUnions()[*Units] .find(StartIdx);
2181 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2182 // Skip the gaps before IntI.
2183 while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2184 if (++Gap == NumGaps)
2185 break;
2186 if (Gap == NumGaps)
2187 break;
2189 // Update the gaps covered by IntI.
2190 const float weight = IntI.value()->weight;
2191 for (; Gap != NumGaps; ++Gap) {
2192 GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2193 if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2194 break;
2196 if (Gap == NumGaps)
2197 break;
2201 // Add fixed interference.
2202 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2203 const LiveRange &LR = LIS->getRegUnit(*Units);
2204 LiveRange::const_iterator I = LR.find(StartIdx);
2205 LiveRange::const_iterator E = LR.end();
2207 // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2208 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2209 while (Uses[Gap+1].getBoundaryIndex() < I->start)
2210 if (++Gap == NumGaps)
2211 break;
2212 if (Gap == NumGaps)
2213 break;
2215 for (; Gap != NumGaps; ++Gap) {
2216 GapWeight[Gap] = huge_valf;
2217 if (Uses[Gap+1].getBaseIndex() >= I->end)
2218 break;
2220 if (Gap == NumGaps)
2221 break;
2226 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2227 /// basic block.
2229 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2230 SmallVectorImpl<unsigned> &NewVRegs) {
2231 // TODO: the function currently only handles a single UseBlock; it should be
2232 // possible to generalize.
2233 if (SA->getUseBlocks().size() != 1)
2234 return 0;
2236 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2238 // Note that it is possible to have an interval that is live-in or live-out
2239 // while only covering a single block - A phi-def can use undef values from
2240 // predecessors, and the block could be a single-block loop.
2241 // We don't bother doing anything clever about such a case, we simply assume
2242 // that the interval is continuous from FirstInstr to LastInstr. We should
2243 // make sure that we don't do anything illegal to such an interval, though.
2245 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2246 if (Uses.size() <= 2)
2247 return 0;
2248 const unsigned NumGaps = Uses.size()-1;
2250 LLVM_DEBUG({
2251 dbgs() << "tryLocalSplit: ";
2252 for (unsigned i = 0, e = Uses.size(); i != e; ++i)
2253 dbgs() << ' ' << Uses[i];
2254 dbgs() << '\n';
2257 // If VirtReg is live across any register mask operands, compute a list of
2258 // gaps with register masks.
2259 SmallVector<unsigned, 8> RegMaskGaps;
2260 if (Matrix->checkRegMaskInterference(VirtReg)) {
2261 // Get regmask slots for the whole block.
2262 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2263 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2264 // Constrain to VirtReg's live range.
2265 unsigned ri =
2266 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
2267 unsigned re = RMS.size();
2268 for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
2269 // Look for Uses[i] <= RMS <= Uses[i+1].
2270 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
2271 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
2272 continue;
2273 // Skip a regmask on the same instruction as the last use. It doesn't
2274 // overlap the live range.
2275 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
2276 break;
2277 LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-'
2278 << Uses[i + 1]);
2279 RegMaskGaps.push_back(i);
2280 // Advance ri to the next gap. A regmask on one of the uses counts in
2281 // both gaps.
2282 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
2283 ++ri;
2285 LLVM_DEBUG(dbgs() << '\n');
2288 // Since we allow local split results to be split again, there is a risk of
2289 // creating infinite loops. It is tempting to require that the new live
2290 // ranges have less instructions than the original. That would guarantee
2291 // convergence, but it is too strict. A live range with 3 instructions can be
2292 // split 2+3 (including the COPY), and we want to allow that.
2294 // Instead we use these rules:
2296 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2297 // noop split, of course).
2298 // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2299 // the new ranges must have fewer instructions than before the split.
2300 // 3. New ranges with the same number of instructions are marked RS_Split2,
2301 // smaller ranges are marked RS_New.
2303 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2304 // excessive splitting and infinite loops.
2306 bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2308 // Best split candidate.
2309 unsigned BestBefore = NumGaps;
2310 unsigned BestAfter = 0;
2311 float BestDiff = 0;
2313 const float blockFreq =
2314 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2315 (1.0f / MBFI->getEntryFreq());
2316 SmallVector<float, 8> GapWeight;
2318 Order.rewind();
2319 while (unsigned PhysReg = Order.next()) {
2320 // Keep track of the largest spill weight that would need to be evicted in
2321 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
2322 calcGapWeights(PhysReg, GapWeight);
2324 // Remove any gaps with regmask clobbers.
2325 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2326 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
2327 GapWeight[RegMaskGaps[i]] = huge_valf;
2329 // Try to find the best sequence of gaps to close.
2330 // The new spill weight must be larger than any gap interference.
2332 // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2333 unsigned SplitBefore = 0, SplitAfter = 1;
2335 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2336 // It is the spill weight that needs to be evicted.
2337 float MaxGap = GapWeight[0];
2339 while (true) {
2340 // Live before/after split?
2341 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2342 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2344 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2345 << '-' << Uses[SplitAfter] << " i=" << MaxGap);
2347 // Stop before the interval gets so big we wouldn't be making progress.
2348 if (!LiveBefore && !LiveAfter) {
2349 LLVM_DEBUG(dbgs() << " all\n");
2350 break;
2352 // Should the interval be extended or shrunk?
2353 bool Shrink = true;
2355 // How many gaps would the new range have?
2356 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2358 // Legally, without causing looping?
2359 bool Legal = !ProgressRequired || NewGaps < NumGaps;
2361 if (Legal && MaxGap < huge_valf) {
2362 // Estimate the new spill weight. Each instruction reads or writes the
2363 // register. Conservatively assume there are no read-modify-write
2364 // instructions.
2366 // Try to guess the size of the new interval.
2367 const float EstWeight = normalizeSpillWeight(
2368 blockFreq * (NewGaps + 1),
2369 Uses[SplitBefore].distance(Uses[SplitAfter]) +
2370 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2372 // Would this split be possible to allocate?
2373 // Never allocate all gaps, we wouldn't be making progress.
2374 LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2375 if (EstWeight * Hysteresis >= MaxGap) {
2376 Shrink = false;
2377 float Diff = EstWeight - MaxGap;
2378 if (Diff > BestDiff) {
2379 LLVM_DEBUG(dbgs() << " (best)");
2380 BestDiff = Hysteresis * Diff;
2381 BestBefore = SplitBefore;
2382 BestAfter = SplitAfter;
2387 // Try to shrink.
2388 if (Shrink) {
2389 if (++SplitBefore < SplitAfter) {
2390 LLVM_DEBUG(dbgs() << " shrink\n");
2391 // Recompute the max when necessary.
2392 if (GapWeight[SplitBefore - 1] >= MaxGap) {
2393 MaxGap = GapWeight[SplitBefore];
2394 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
2395 MaxGap = std::max(MaxGap, GapWeight[i]);
2397 continue;
2399 MaxGap = 0;
2402 // Try to extend the interval.
2403 if (SplitAfter >= NumGaps) {
2404 LLVM_DEBUG(dbgs() << " end\n");
2405 break;
2408 LLVM_DEBUG(dbgs() << " extend\n");
2409 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2413 // Didn't find any candidates?
2414 if (BestBefore == NumGaps)
2415 return 0;
2417 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2418 << Uses[BestAfter] << ", " << BestDiff << ", "
2419 << (BestAfter - BestBefore + 1) << " instrs\n");
2421 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2422 SE->reset(LREdit);
2424 SE->openIntv();
2425 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2426 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
2427 SE->useIntv(SegStart, SegStop);
2428 SmallVector<unsigned, 8> IntvMap;
2429 SE->finish(&IntvMap);
2430 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
2432 // If the new range has the same number of instructions as before, mark it as
2433 // RS_Split2 so the next split will be forced to make progress. Otherwise,
2434 // leave the new intervals as RS_New so they can compete.
2435 bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2436 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2437 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2438 if (NewGaps >= NumGaps) {
2439 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2440 assert(!ProgressRequired && "Didn't make progress when it was required.");
2441 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
2442 if (IntvMap[i] == 1) {
2443 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
2444 LLVM_DEBUG(dbgs() << printReg(LREdit.get(i)));
2446 LLVM_DEBUG(dbgs() << '\n');
2448 ++NumLocalSplits;
2450 return 0;
2453 //===----------------------------------------------------------------------===//
2454 // Live Range Splitting
2455 //===----------------------------------------------------------------------===//
2457 /// trySplit - Try to split VirtReg or one of its interferences, making it
2458 /// assignable.
2459 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2460 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2461 SmallVectorImpl<unsigned>&NewVRegs,
2462 const SmallVirtRegSet &FixedRegisters) {
2463 // Ranges must be Split2 or less.
2464 if (getStage(VirtReg) >= RS_Spill)
2465 return 0;
2467 // Local intervals are handled separately.
2468 if (LIS->intervalIsInOneMBB(VirtReg)) {
2469 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2470 TimerGroupDescription, TimePassesIsEnabled);
2471 SA->analyze(&VirtReg);
2472 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2473 if (PhysReg || !NewVRegs.empty())
2474 return PhysReg;
2475 return tryInstructionSplit(VirtReg, Order, NewVRegs);
2478 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2479 TimerGroupDescription, TimePassesIsEnabled);
2481 SA->analyze(&VirtReg);
2483 // FIXME: SplitAnalysis may repair broken live ranges coming from the
2484 // coalescer. That may cause the range to become allocatable which means that
2485 // tryRegionSplit won't be making progress. This check should be replaced with
2486 // an assertion when the coalescer is fixed.
2487 if (SA->didRepairRange()) {
2488 // VirtReg has changed, so all cached queries are invalid.
2489 Matrix->invalidateVirtRegs();
2490 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters))
2491 return PhysReg;
2494 // First try to split around a region spanning multiple blocks. RS_Split2
2495 // ranges already made dubious progress with region splitting, so they go
2496 // straight to single block splitting.
2497 if (getStage(VirtReg) < RS_Split2) {
2498 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2499 if (PhysReg || !NewVRegs.empty())
2500 return PhysReg;
2503 // Then isolate blocks.
2504 return tryBlockSplit(VirtReg, Order, NewVRegs);
2507 //===----------------------------------------------------------------------===//
2508 // Last Chance Recoloring
2509 //===----------------------------------------------------------------------===//
2511 /// Return true if \p reg has any tied def operand.
2512 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2513 for (const MachineOperand &MO : MRI->def_operands(reg))
2514 if (MO.isTied())
2515 return true;
2517 return false;
2520 /// mayRecolorAllInterferences - Check if the virtual registers that
2521 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2522 /// recolored to free \p PhysReg.
2523 /// When true is returned, \p RecoloringCandidates has been augmented with all
2524 /// the live intervals that need to be recolored in order to free \p PhysReg
2525 /// for \p VirtReg.
2526 /// \p FixedRegisters contains all the virtual registers that cannot be
2527 /// recolored.
2528 bool
2529 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2530 SmallLISet &RecoloringCandidates,
2531 const SmallVirtRegSet &FixedRegisters) {
2532 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2534 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2535 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2536 // If there is LastChanceRecoloringMaxInterference or more interferences,
2537 // chances are one would not be recolorable.
2538 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2539 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2540 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2541 CutOffInfo |= CO_Interf;
2542 return false;
2544 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
2545 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
2546 // If Intf is done and sit on the same register class as VirtReg,
2547 // it would not be recolorable as it is in the same state as VirtReg.
2548 // However, if VirtReg has tied defs and Intf doesn't, then
2549 // there is still a point in examining if it can be recolorable.
2550 if (((getStage(*Intf) == RS_Done &&
2551 MRI->getRegClass(Intf->reg) == CurRC) &&
2552 !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) ||
2553 FixedRegisters.count(Intf->reg)) {
2554 LLVM_DEBUG(
2555 dbgs() << "Early abort: the interference is not recolorable.\n");
2556 return false;
2558 RecoloringCandidates.insert(Intf);
2561 return true;
2564 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2565 /// its interferences.
2566 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2567 /// virtual register that was using it. The recoloring process may recursively
2568 /// use the last chance recoloring. Therefore, when a virtual register has been
2569 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2570 /// be last-chance-recolored again during this recoloring "session".
2571 /// E.g.,
2572 /// Let
2573 /// vA can use {R1, R2 }
2574 /// vB can use { R2, R3}
2575 /// vC can use {R1 }
2576 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2577 /// instance) and they all interfere.
2579 /// vA is assigned R1
2580 /// vB is assigned R2
2581 /// vC tries to evict vA but vA is already done.
2582 /// Regular register allocation fails.
2584 /// Last chance recoloring kicks in:
2585 /// vC does as if vA was evicted => vC uses R1.
2586 /// vC is marked as fixed.
2587 /// vA needs to find a color.
2588 /// None are available.
2589 /// vA cannot evict vC: vC is a fixed virtual register now.
2590 /// vA does as if vB was evicted => vA uses R2.
2591 /// vB needs to find a color.
2592 /// R3 is available.
2593 /// Recoloring => vC = R1, vA = R2, vB = R3
2595 /// \p Order defines the preferred allocation order for \p VirtReg.
2596 /// \p NewRegs will contain any new virtual register that have been created
2597 /// (split, spill) during the process and that must be assigned.
2598 /// \p FixedRegisters contains all the virtual registers that cannot be
2599 /// recolored.
2600 /// \p Depth gives the current depth of the last chance recoloring.
2601 /// \return a physical register that can be used for VirtReg or ~0u if none
2602 /// exists.
2603 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2604 AllocationOrder &Order,
2605 SmallVectorImpl<unsigned> &NewVRegs,
2606 SmallVirtRegSet &FixedRegisters,
2607 unsigned Depth) {
2608 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2609 // Ranges must be Done.
2610 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2611 "Last chance recoloring should really be last chance");
2612 // Set the max depth to LastChanceRecoloringMaxDepth.
2613 // We may want to reconsider that if we end up with a too large search space
2614 // for target with hundreds of registers.
2615 // Indeed, in that case we may want to cut the search space earlier.
2616 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2617 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2618 CutOffInfo |= CO_Depth;
2619 return ~0u;
2622 // Set of Live intervals that will need to be recolored.
2623 SmallLISet RecoloringCandidates;
2624 // Record the original mapping virtual register to physical register in case
2625 // the recoloring fails.
2626 DenseMap<unsigned, unsigned> VirtRegToPhysReg;
2627 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2628 // this recoloring "session".
2629 assert(!FixedRegisters.count(VirtReg.reg));
2630 FixedRegisters.insert(VirtReg.reg);
2631 SmallVector<unsigned, 4> CurrentNewVRegs;
2633 Order.rewind();
2634 while (unsigned PhysReg = Order.next()) {
2635 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2636 << printReg(PhysReg, TRI) << '\n');
2637 RecoloringCandidates.clear();
2638 VirtRegToPhysReg.clear();
2639 CurrentNewVRegs.clear();
2641 // It is only possible to recolor virtual register interference.
2642 if (Matrix->checkInterference(VirtReg, PhysReg) >
2643 LiveRegMatrix::IK_VirtReg) {
2644 LLVM_DEBUG(
2645 dbgs() << "Some interferences are not with virtual registers.\n");
2647 continue;
2650 // Early give up on this PhysReg if it is obvious we cannot recolor all
2651 // the interferences.
2652 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2653 FixedRegisters)) {
2654 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2655 continue;
2658 // RecoloringCandidates contains all the virtual registers that interfer
2659 // with VirtReg on PhysReg (or one of its aliases).
2660 // Enqueue them for recoloring and perform the actual recoloring.
2661 PQueue RecoloringQueue;
2662 for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2663 EndIt = RecoloringCandidates.end();
2664 It != EndIt; ++It) {
2665 unsigned ItVirtReg = (*It)->reg;
2666 enqueue(RecoloringQueue, *It);
2667 assert(VRM->hasPhys(ItVirtReg) &&
2668 "Interferences are supposed to be with allocated variables");
2670 // Record the current allocation.
2671 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2672 // unset the related struct.
2673 Matrix->unassign(**It);
2676 // Do as if VirtReg was assigned to PhysReg so that the underlying
2677 // recoloring has the right information about the interferes and
2678 // available colors.
2679 Matrix->assign(VirtReg, PhysReg);
2681 // Save the current recoloring state.
2682 // If we cannot recolor all the interferences, we will have to start again
2683 // at this point for the next physical register.
2684 SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2685 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2686 FixedRegisters, Depth)) {
2687 // Push the queued vregs into the main queue.
2688 for (unsigned NewVReg : CurrentNewVRegs)
2689 NewVRegs.push_back(NewVReg);
2690 // Do not mess up with the global assignment process.
2691 // I.e., VirtReg must be unassigned.
2692 Matrix->unassign(VirtReg);
2693 return PhysReg;
2696 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2697 << printReg(PhysReg, TRI) << '\n');
2699 // The recoloring attempt failed, undo the changes.
2700 FixedRegisters = SaveFixedRegisters;
2701 Matrix->unassign(VirtReg);
2703 // For a newly created vreg which is also in RecoloringCandidates,
2704 // don't add it to NewVRegs because its physical register will be restored
2705 // below. Other vregs in CurrentNewVRegs are created by calling
2706 // selectOrSplit and should be added into NewVRegs.
2707 for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(),
2708 End = CurrentNewVRegs.end();
2709 Next != End; ++Next) {
2710 if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2711 continue;
2712 NewVRegs.push_back(*Next);
2715 for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2716 EndIt = RecoloringCandidates.end();
2717 It != EndIt; ++It) {
2718 unsigned ItVirtReg = (*It)->reg;
2719 if (VRM->hasPhys(ItVirtReg))
2720 Matrix->unassign(**It);
2721 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2722 Matrix->assign(**It, ItPhysReg);
2726 // Last chance recoloring did not worked either, give up.
2727 return ~0u;
2730 /// tryRecoloringCandidates - Try to assign a new color to every register
2731 /// in \RecoloringQueue.
2732 /// \p NewRegs will contain any new virtual register created during the
2733 /// recoloring process.
2734 /// \p FixedRegisters[in/out] contains all the registers that have been
2735 /// recolored.
2736 /// \return true if all virtual registers in RecoloringQueue were successfully
2737 /// recolored, false otherwise.
2738 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2739 SmallVectorImpl<unsigned> &NewVRegs,
2740 SmallVirtRegSet &FixedRegisters,
2741 unsigned Depth) {
2742 while (!RecoloringQueue.empty()) {
2743 LiveInterval *LI = dequeue(RecoloringQueue);
2744 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2745 unsigned PhysReg;
2746 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2747 // When splitting happens, the live-range may actually be empty.
2748 // In that case, this is okay to continue the recoloring even
2749 // if we did not find an alternative color for it. Indeed,
2750 // there will not be anything to color for LI in the end.
2751 if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2752 return false;
2754 if (!PhysReg) {
2755 assert(LI->empty() && "Only empty live-range do not require a register");
2756 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2757 << " succeeded. Empty LI.\n");
2758 continue;
2760 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2761 << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2763 Matrix->assign(*LI, PhysReg);
2764 FixedRegisters.insert(LI->reg);
2766 return true;
2769 //===----------------------------------------------------------------------===//
2770 // Main Entry Point
2771 //===----------------------------------------------------------------------===//
2773 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2774 SmallVectorImpl<unsigned> &NewVRegs) {
2775 CutOffInfo = CO_None;
2776 LLVMContext &Ctx = MF->getFunction().getContext();
2777 SmallVirtRegSet FixedRegisters;
2778 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2779 if (Reg == ~0U && (CutOffInfo != CO_None)) {
2780 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2781 if (CutOffEncountered == CO_Depth)
2782 Ctx.emitError("register allocation failed: maximum depth for recoloring "
2783 "reached. Use -fexhaustive-register-search to skip "
2784 "cutoffs");
2785 else if (CutOffEncountered == CO_Interf)
2786 Ctx.emitError("register allocation failed: maximum interference for "
2787 "recoloring reached. Use -fexhaustive-register-search "
2788 "to skip cutoffs");
2789 else if (CutOffEncountered == (CO_Depth | CO_Interf))
2790 Ctx.emitError("register allocation failed: maximum interference and "
2791 "depth for recoloring reached. Use "
2792 "-fexhaustive-register-search to skip cutoffs");
2794 return Reg;
2797 /// Using a CSR for the first time has a cost because it causes push|pop
2798 /// to be added to prologue|epilogue. Splitting a cold section of the live
2799 /// range can have lower cost than using the CSR for the first time;
2800 /// Spilling a live range in the cold path can have lower cost than using
2801 /// the CSR for the first time. Returns the physical register if we decide
2802 /// to use the CSR; otherwise return 0.
2803 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2804 AllocationOrder &Order,
2805 unsigned PhysReg,
2806 unsigned &CostPerUseLimit,
2807 SmallVectorImpl<unsigned> &NewVRegs) {
2808 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2809 // We choose spill over using the CSR for the first time if the spill cost
2810 // is lower than CSRCost.
2811 SA->analyze(&VirtReg);
2812 if (calcSpillCost() >= CSRCost)
2813 return PhysReg;
2815 // We are going to spill, set CostPerUseLimit to 1 to make sure that
2816 // we will not use a callee-saved register in tryEvict.
2817 CostPerUseLimit = 1;
2818 return 0;
2820 if (getStage(VirtReg) < RS_Split) {
2821 // We choose pre-splitting over using the CSR for the first time if
2822 // the cost of splitting is lower than CSRCost.
2823 SA->analyze(&VirtReg);
2824 unsigned NumCands = 0;
2825 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2826 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2827 NumCands, true /*IgnoreCSR*/);
2828 if (BestCand == NoCand)
2829 // Use the CSR if we can't find a region split below CSRCost.
2830 return PhysReg;
2832 // Perform the actual pre-splitting.
2833 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2834 return 0;
2836 return PhysReg;
2839 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2840 // Do not keep invalid information around.
2841 SetOfBrokenHints.remove(&LI);
2844 void RAGreedy::initializeCSRCost() {
2845 // We use the larger one out of the command-line option and the value report
2846 // by TRI.
2847 CSRCost = BlockFrequency(
2848 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2849 if (!CSRCost.getFrequency())
2850 return;
2852 // Raw cost is relative to Entry == 2^14; scale it appropriately.
2853 uint64_t ActualEntry = MBFI->getEntryFreq();
2854 if (!ActualEntry) {
2855 CSRCost = 0;
2856 return;
2858 uint64_t FixedEntry = 1 << 14;
2859 if (ActualEntry < FixedEntry)
2860 CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2861 else if (ActualEntry <= UINT32_MAX)
2862 // Invert the fraction and divide.
2863 CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2864 else
2865 // Can't use BranchProbability in general, since it takes 32-bit numbers.
2866 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2869 /// Collect the hint info for \p Reg.
2870 /// The results are stored into \p Out.
2871 /// \p Out is not cleared before being populated.
2872 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2873 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2874 if (!Instr.isFullCopy())
2875 continue;
2876 // Look for the other end of the copy.
2877 Register OtherReg = Instr.getOperand(0).getReg();
2878 if (OtherReg == Reg) {
2879 OtherReg = Instr.getOperand(1).getReg();
2880 if (OtherReg == Reg)
2881 continue;
2883 // Get the current assignment.
2884 Register OtherPhysReg = Register::isPhysicalRegister(OtherReg)
2885 ? OtherReg
2886 : VRM->getPhys(OtherReg);
2887 // Push the collected information.
2888 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2889 OtherPhysReg));
2893 /// Using the given \p List, compute the cost of the broken hints if
2894 /// \p PhysReg was used.
2895 /// \return The cost of \p List for \p PhysReg.
2896 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2897 unsigned PhysReg) {
2898 BlockFrequency Cost = 0;
2899 for (const HintInfo &Info : List) {
2900 if (Info.PhysReg != PhysReg)
2901 Cost += Info.Freq;
2903 return Cost;
2906 /// Using the register assigned to \p VirtReg, try to recolor
2907 /// all the live ranges that are copy-related with \p VirtReg.
2908 /// The recoloring is then propagated to all the live-ranges that have
2909 /// been recolored and so on, until no more copies can be coalesced or
2910 /// it is not profitable.
2911 /// For a given live range, profitability is determined by the sum of the
2912 /// frequencies of the non-identity copies it would introduce with the old
2913 /// and new register.
2914 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2915 // We have a broken hint, check if it is possible to fix it by
2916 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2917 // some register and PhysReg may be available for the other live-ranges.
2918 SmallSet<unsigned, 4> Visited;
2919 SmallVector<unsigned, 2> RecoloringCandidates;
2920 HintsInfo Info;
2921 unsigned Reg = VirtReg.reg;
2922 Register PhysReg = VRM->getPhys(Reg);
2923 // Start the recoloring algorithm from the input live-interval, then
2924 // it will propagate to the ones that are copy-related with it.
2925 Visited.insert(Reg);
2926 RecoloringCandidates.push_back(Reg);
2928 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2929 << '(' << printReg(PhysReg, TRI) << ")\n");
2931 do {
2932 Reg = RecoloringCandidates.pop_back_val();
2934 // We cannot recolor physical register.
2935 if (Register::isPhysicalRegister(Reg))
2936 continue;
2938 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2940 // Get the live interval mapped with this virtual register to be able
2941 // to check for the interference with the new color.
2942 LiveInterval &LI = LIS->getInterval(Reg);
2943 Register CurrPhys = VRM->getPhys(Reg);
2944 // Check that the new color matches the register class constraints and
2945 // that it is free for this live range.
2946 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2947 Matrix->checkInterference(LI, PhysReg)))
2948 continue;
2950 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2951 << ") is recolorable.\n");
2953 // Gather the hint info.
2954 Info.clear();
2955 collectHintInfo(Reg, Info);
2956 // Check if recoloring the live-range will increase the cost of the
2957 // non-identity copies.
2958 if (CurrPhys != PhysReg) {
2959 LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2960 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2961 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2962 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2963 << "\nNew Cost: " << NewCopiesCost.getFrequency()
2964 << '\n');
2965 if (OldCopiesCost < NewCopiesCost) {
2966 LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2967 continue;
2969 // At this point, the cost is either cheaper or equal. If it is
2970 // equal, we consider this is profitable because it may expose
2971 // more recoloring opportunities.
2972 LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2973 // Recolor the live-range.
2974 Matrix->unassign(LI);
2975 Matrix->assign(LI, PhysReg);
2977 // Push all copy-related live-ranges to keep reconciling the broken
2978 // hints.
2979 for (const HintInfo &HI : Info) {
2980 if (Visited.insert(HI.Reg).second)
2981 RecoloringCandidates.push_back(HI.Reg);
2983 } while (!RecoloringCandidates.empty());
2986 /// Try to recolor broken hints.
2987 /// Broken hints may be repaired by recoloring when an evicted variable
2988 /// freed up a register for a larger live-range.
2989 /// Consider the following example:
2990 /// BB1:
2991 /// a =
2992 /// b =
2993 /// BB2:
2994 /// ...
2995 /// = b
2996 /// = a
2997 /// Let us assume b gets split:
2998 /// BB1:
2999 /// a =
3000 /// b =
3001 /// BB2:
3002 /// c = b
3003 /// ...
3004 /// d = c
3005 /// = d
3006 /// = a
3007 /// Because of how the allocation work, b, c, and d may be assigned different
3008 /// colors. Now, if a gets evicted later:
3009 /// BB1:
3010 /// a =
3011 /// st a, SpillSlot
3012 /// b =
3013 /// BB2:
3014 /// c = b
3015 /// ...
3016 /// d = c
3017 /// = d
3018 /// e = ld SpillSlot
3019 /// = e
3020 /// This is likely that we can assign the same register for b, c, and d,
3021 /// getting rid of 2 copies.
3022 void RAGreedy::tryHintsRecoloring() {
3023 for (LiveInterval *LI : SetOfBrokenHints) {
3024 assert(Register::isVirtualRegister(LI->reg) &&
3025 "Recoloring is possible only for virtual registers");
3026 // Some dead defs may be around (e.g., because of debug uses).
3027 // Ignore those.
3028 if (!VRM->hasPhys(LI->reg))
3029 continue;
3030 tryHintRecoloring(*LI);
3034 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3035 SmallVectorImpl<unsigned> &NewVRegs,
3036 SmallVirtRegSet &FixedRegisters,
3037 unsigned Depth) {
3038 unsigned CostPerUseLimit = ~0u;
3039 // First try assigning a free register.
3040 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
3041 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
3042 // If VirtReg got an assignment, the eviction info is no longre relevant.
3043 LastEvicted.clearEvicteeInfo(VirtReg.reg);
3044 // When NewVRegs is not empty, we may have made decisions such as evicting
3045 // a virtual register, go with the earlier decisions and use the physical
3046 // register.
3047 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3048 NewVRegs.empty()) {
3049 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3050 CostPerUseLimit, NewVRegs);
3051 if (CSRReg || !NewVRegs.empty())
3052 // Return now if we decide to use a CSR or create new vregs due to
3053 // pre-splitting.
3054 return CSRReg;
3055 } else
3056 return PhysReg;
3059 LiveRangeStage Stage = getStage(VirtReg);
3060 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3061 << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
3063 // Try to evict a less worthy live range, but only for ranges from the primary
3064 // queue. The RS_Split ranges already failed to do this, and they should not
3065 // get a second chance until they have been split.
3066 if (Stage != RS_Split)
3067 if (unsigned PhysReg =
3068 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3069 FixedRegisters)) {
3070 unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
3071 // If VirtReg has a hint and that hint is broken record this
3072 // virtual register as a recoloring candidate for broken hint.
3073 // Indeed, since we evicted a variable in its neighborhood it is
3074 // likely we can at least partially recolor some of the
3075 // copy-related live-ranges.
3076 if (Hint && Hint != PhysReg)
3077 SetOfBrokenHints.insert(&VirtReg);
3078 // If VirtReg eviction someone, the eviction info for it as an evictee is
3079 // no longre relevant.
3080 LastEvicted.clearEvicteeInfo(VirtReg.reg);
3081 return PhysReg;
3084 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3086 // The first time we see a live range, don't try to split or spill.
3087 // Wait until the second time, when all smaller ranges have been allocated.
3088 // This gives a better picture of the interference to split around.
3089 if (Stage < RS_Split) {
3090 setStage(VirtReg, RS_Split);
3091 LLVM_DEBUG(dbgs() << "wait for second round\n");
3092 NewVRegs.push_back(VirtReg.reg);
3093 return 0;
3096 if (Stage < RS_Spill) {
3097 // Try splitting VirtReg or interferences.
3098 unsigned NewVRegSizeBefore = NewVRegs.size();
3099 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
3100 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3101 // If VirtReg got split, the eviction info is no longre relevant.
3102 LastEvicted.clearEvicteeInfo(VirtReg.reg);
3103 return PhysReg;
3107 // If we couldn't allocate a register from spilling, there is probably some
3108 // invalid inline assembly. The base class will report it.
3109 if (Stage >= RS_Done || !VirtReg.isSpillable())
3110 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3111 Depth);
3113 // Finally spill VirtReg itself.
3114 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
3115 // TODO: This is experimental and in particular, we do not model
3116 // the live range splitting done by spilling correctly.
3117 // We would need a deep integration with the spiller to do the
3118 // right thing here. Anyway, that is still good for early testing.
3119 setStage(VirtReg, RS_Memory);
3120 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3121 NewVRegs.push_back(VirtReg.reg);
3122 } else {
3123 NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3124 TimerGroupDescription, TimePassesIsEnabled);
3125 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3126 spiller().spill(LRE);
3127 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3129 if (VerifyEnabled)
3130 MF->verify(this, "After spilling");
3133 // The live virtual register requesting allocation was spilled, so tell
3134 // the caller not to allocate anything during this round.
3135 return 0;
3138 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
3139 unsigned &FoldedReloads,
3140 unsigned &Spills,
3141 unsigned &FoldedSpills) {
3142 Reloads = 0;
3143 FoldedReloads = 0;
3144 Spills = 0;
3145 FoldedSpills = 0;
3147 // Sum up the spill and reloads in subloops.
3148 for (MachineLoop *SubLoop : *L) {
3149 unsigned SubReloads;
3150 unsigned SubFoldedReloads;
3151 unsigned SubSpills;
3152 unsigned SubFoldedSpills;
3154 reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
3155 SubSpills, SubFoldedSpills);
3156 Reloads += SubReloads;
3157 FoldedReloads += SubFoldedReloads;
3158 Spills += SubSpills;
3159 FoldedSpills += SubFoldedSpills;
3162 const MachineFrameInfo &MFI = MF->getFrameInfo();
3163 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
3164 int FI;
3166 for (MachineBasicBlock *MBB : L->getBlocks())
3167 // Handle blocks that were not included in subloops.
3168 if (Loops->getLoopFor(MBB) == L)
3169 for (MachineInstr &MI : *MBB) {
3170 SmallVector<const MachineMemOperand *, 2> Accesses;
3171 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3172 return MFI.isSpillSlotObjectIndex(
3173 cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
3174 ->getFrameIndex());
3177 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
3178 ++Reloads;
3179 else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3180 llvm::any_of(Accesses, isSpillSlotAccess))
3181 ++FoldedReloads;
3182 else if (TII->isStoreToStackSlot(MI, FI) &&
3183 MFI.isSpillSlotObjectIndex(FI))
3184 ++Spills;
3185 else if (TII->hasStoreToStackSlot(MI, Accesses) &&
3186 llvm::any_of(Accesses, isSpillSlotAccess))
3187 ++FoldedSpills;
3190 if (Reloads || FoldedReloads || Spills || FoldedSpills) {
3191 using namespace ore;
3193 ORE->emit([&]() {
3194 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
3195 L->getStartLoc(), L->getHeader());
3196 if (Spills)
3197 R << NV("NumSpills", Spills) << " spills ";
3198 if (FoldedSpills)
3199 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3200 if (Reloads)
3201 R << NV("NumReloads", Reloads) << " reloads ";
3202 if (FoldedReloads)
3203 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3204 R << "generated in loop";
3205 return R;
3210 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3211 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3212 << "********** Function: " << mf.getName() << '\n');
3214 MF = &mf;
3215 TRI = MF->getSubtarget().getRegisterInfo();
3216 TII = MF->getSubtarget().getInstrInfo();
3217 RCI.runOnMachineFunction(mf);
3219 EnableLocalReassign = EnableLocalReassignment ||
3220 MF->getSubtarget().enableRALocalReassignment(
3221 MF->getTarget().getOptLevel());
3223 EnableAdvancedRASplitCost = ConsiderLocalIntervalCost ||
3224 MF->getSubtarget().enableAdvancedRASplitCost();
3226 if (VerifyEnabled)
3227 MF->verify(this, "Before greedy register allocator");
3229 RegAllocBase::init(getAnalysis<VirtRegMap>(),
3230 getAnalysis<LiveIntervals>(),
3231 getAnalysis<LiveRegMatrix>());
3232 Indexes = &getAnalysis<SlotIndexes>();
3233 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3234 DomTree = &getAnalysis<MachineDominatorTree>();
3235 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3236 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
3237 Loops = &getAnalysis<MachineLoopInfo>();
3238 Bundles = &getAnalysis<EdgeBundles>();
3239 SpillPlacer = &getAnalysis<SpillPlacement>();
3240 DebugVars = &getAnalysis<LiveDebugVariables>();
3241 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3243 initializeCSRCost();
3245 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
3247 LLVM_DEBUG(LIS->dump());
3249 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3250 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
3251 ExtraRegInfo.clear();
3252 ExtraRegInfo.resize(MRI->getNumVirtRegs());
3253 NextCascade = 1;
3254 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3255 GlobalCand.resize(32); // This will grow as needed.
3256 SetOfBrokenHints.clear();
3257 LastEvicted.clear();
3259 allocatePhysRegs();
3260 tryHintsRecoloring();
3261 postOptimization();
3262 reportNumberOfSplillsReloads();
3264 releaseMemory();
3265 return true;