[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / CodeGen / ScheduleDAGInstrs.cpp
blob96a1f86c3e042077d354dad8d4d977f8fb806e1a
1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This implements the ScheduleDAGInstrs class, which implements
10 /// re-scheduling of MachineInstrs.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
15 #include "llvm/ADT/IntEqClasses.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBundle.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/PseudoSourceValue.h"
33 #include "llvm/CodeGen/RegisterPressure.h"
34 #include "llvm/CodeGen/ScheduleDAG.h"
35 #include "llvm/CodeGen/ScheduleDFS.h"
36 #include "llvm/CodeGen/SlotIndexes.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/MC/LaneBitmask.h"
48 #include "llvm/MC/MCRegisterInfo.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/Format.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <iterator>
59 #include <string>
60 #include <utility>
61 #include <vector>
63 using namespace llvm;
65 #define DEBUG_TYPE "machine-scheduler"
67 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
68 cl::ZeroOrMore, cl::init(false),
69 cl::desc("Enable use of AA during MI DAG construction"));
71 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
72 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
74 // Note: the two options below might be used in tuning compile time vs
75 // output quality. Setting HugeRegion so large that it will never be
76 // reached means best-effort, but may be slow.
78 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
79 // together hold this many SUs, a reduction of maps will be done.
80 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
81 cl::init(1000), cl::desc("The limit to use while constructing the DAG "
82 "prior to scheduling, at which point a trade-off "
83 "is made to avoid excessive compile time."));
85 static cl::opt<unsigned> ReductionSize(
86 "dag-maps-reduction-size", cl::Hidden,
87 cl::desc("A huge scheduling region will have maps reduced by this many "
88 "nodes at a time. Defaults to HugeRegion / 2."));
90 static unsigned getReductionSize() {
91 // Always reduce a huge region with half of the elements, except
92 // when user sets this number explicitly.
93 if (ReductionSize.getNumOccurrences() == 0)
94 return HugeRegion / 2;
95 return ReductionSize;
98 static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
99 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
100 dbgs() << "{ ";
101 for (const SUnit *su : L) {
102 dbgs() << "SU(" << su->NodeNum << ")";
103 if (su != L.back())
104 dbgs() << ", ";
106 dbgs() << "}\n";
107 #endif
110 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
111 const MachineLoopInfo *mli,
112 bool RemoveKillFlags)
113 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
114 RemoveKillFlags(RemoveKillFlags),
115 UnknownValue(UndefValue::get(
116 Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) {
117 DbgValues.clear();
119 const TargetSubtargetInfo &ST = mf.getSubtarget();
120 SchedModel.init(&ST);
123 /// If this machine instr has memory reference information and it can be
124 /// tracked to a normal reference to a known object, return the Value
125 /// for that object. This function returns false the memory location is
126 /// unknown or may alias anything.
127 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI,
128 const MachineFrameInfo &MFI,
129 UnderlyingObjectsVector &Objects,
130 const DataLayout &DL) {
131 auto allMMOsOkay = [&]() {
132 for (const MachineMemOperand *MMO : MI->memoperands()) {
133 // TODO: Figure out whether isAtomic is really necessary (see D57601).
134 if (MMO->isVolatile() || MMO->isAtomic())
135 return false;
137 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
138 // Function that contain tail calls don't have unique PseudoSourceValue
139 // objects. Two PseudoSourceValues might refer to the same or
140 // overlapping locations. The client code calling this function assumes
141 // this is not the case. So return a conservative answer of no known
142 // object.
143 if (MFI.hasTailCall())
144 return false;
146 // For now, ignore PseudoSourceValues which may alias LLVM IR values
147 // because the code that uses this function has no way to cope with
148 // such aliases.
149 if (PSV->isAliased(&MFI))
150 return false;
152 bool MayAlias = PSV->mayAlias(&MFI);
153 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
154 } else if (const Value *V = MMO->getValue()) {
155 SmallVector<Value *, 4> Objs;
156 if (!getUnderlyingObjectsForCodeGen(V, Objs, DL))
157 return false;
159 for (Value *V : Objs) {
160 assert(isIdentifiedObject(V));
161 Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
163 } else
164 return false;
166 return true;
169 if (!allMMOsOkay()) {
170 Objects.clear();
171 return false;
174 return true;
177 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
178 BB = bb;
181 void ScheduleDAGInstrs::finishBlock() {
182 // Subclasses should no longer refer to the old block.
183 BB = nullptr;
186 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
187 MachineBasicBlock::iterator begin,
188 MachineBasicBlock::iterator end,
189 unsigned regioninstrs) {
190 assert(bb == BB && "startBlock should set BB");
191 RegionBegin = begin;
192 RegionEnd = end;
193 NumRegionInstrs = regioninstrs;
196 void ScheduleDAGInstrs::exitRegion() {
197 // Nothing to do.
200 void ScheduleDAGInstrs::addSchedBarrierDeps() {
201 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
202 ExitSU.setInstr(ExitMI);
203 // Add dependencies on the defs and uses of the instruction.
204 if (ExitMI) {
205 for (const MachineOperand &MO : ExitMI->operands()) {
206 if (!MO.isReg() || MO.isDef()) continue;
207 Register Reg = MO.getReg();
208 if (Register::isPhysicalRegister(Reg)) {
209 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
210 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) {
211 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO));
215 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) {
216 // For others, e.g. fallthrough, conditional branch, assume the exit
217 // uses all the registers that are livein to the successor blocks.
218 for (const MachineBasicBlock *Succ : BB->successors()) {
219 for (const auto &LI : Succ->liveins()) {
220 if (!Uses.contains(LI.PhysReg))
221 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
227 /// MO is an operand of SU's instruction that defines a physical register. Adds
228 /// data dependencies from SU to any uses of the physical register.
229 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
230 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
231 assert(MO.isDef() && "expect physreg def");
233 // Ask the target if address-backscheduling is desirable, and if so how much.
234 const TargetSubtargetInfo &ST = MF.getSubtarget();
236 // Only use any non-zero latency for real defs/uses, in contrast to
237 // "fake" operands added by regalloc.
238 const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc();
239 bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() &&
240 !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg()));
241 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
242 Alias.isValid(); ++Alias) {
243 if (!Uses.contains(*Alias))
244 continue;
245 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
246 SUnit *UseSU = I->SU;
247 if (UseSU == SU)
248 continue;
250 // Adjust the dependence latency using operand def/use information,
251 // then allow the target to perform its own adjustments.
252 int UseOp = I->OpIdx;
253 MachineInstr *RegUse = nullptr;
254 SDep Dep;
255 if (UseOp < 0)
256 Dep = SDep(SU, SDep::Artificial);
257 else {
258 // Set the hasPhysRegDefs only for physreg defs that have a use within
259 // the scheduling region.
260 SU->hasPhysRegDefs = true;
261 Dep = SDep(SU, SDep::Data, *Alias);
262 RegUse = UseSU->getInstr();
264 const MCInstrDesc *UseMIDesc =
265 (RegUse ? &UseSU->getInstr()->getDesc() : nullptr);
266 bool ImplicitPseudoUse =
267 (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) &&
268 !UseMIDesc->hasImplicitUseOfPhysReg(*Alias));
269 if (!ImplicitPseudoDef && !ImplicitPseudoUse) {
270 Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
271 RegUse, UseOp));
272 ST.adjustSchedDependency(SU, UseSU, Dep);
273 } else
274 Dep.setLatency(0);
276 UseSU->addPred(Dep);
281 /// Adds register dependencies (data, anti, and output) from this SUnit
282 /// to following instructions in the same scheduling region that depend the
283 /// physical register referenced at OperIdx.
284 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
285 MachineInstr *MI = SU->getInstr();
286 MachineOperand &MO = MI->getOperand(OperIdx);
287 Register Reg = MO.getReg();
288 // We do not need to track any dependencies for constant registers.
289 if (MRI.isConstantPhysReg(Reg))
290 return;
292 // Optionally add output and anti dependencies. For anti
293 // dependencies we use a latency of 0 because for a multi-issue
294 // target we want to allow the defining instruction to issue
295 // in the same cycle as the using instruction.
296 // TODO: Using a latency of 1 here for output dependencies assumes
297 // there's no cost for reusing registers.
298 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
299 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
300 if (!Defs.contains(*Alias))
301 continue;
302 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
303 SUnit *DefSU = I->SU;
304 if (DefSU == &ExitSU)
305 continue;
306 if (DefSU != SU &&
307 (Kind != SDep::Output || !MO.isDead() ||
308 !DefSU->getInstr()->registerDefIsDead(*Alias))) {
309 if (Kind == SDep::Anti)
310 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
311 else {
312 SDep Dep(SU, Kind, /*Reg=*/*Alias);
313 Dep.setLatency(
314 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
315 DefSU->addPred(Dep);
321 if (!MO.isDef()) {
322 SU->hasPhysRegUses = true;
323 // Either insert a new Reg2SUnits entry with an empty SUnits list, or
324 // retrieve the existing SUnits list for this register's uses.
325 // Push this SUnit on the use list.
326 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg));
327 if (RemoveKillFlags)
328 MO.setIsKill(false);
329 } else {
330 addPhysRegDataDeps(SU, OperIdx);
332 // Clear previous uses and defs of this register and its subergisters.
333 for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) {
334 if (Uses.contains(*SubReg))
335 Uses.eraseAll(*SubReg);
336 if (!MO.isDead())
337 Defs.eraseAll(*SubReg);
339 if (MO.isDead() && SU->isCall) {
340 // Calls will not be reordered because of chain dependencies (see
341 // below). Since call operands are dead, calls may continue to be added
342 // to the DefList making dependence checking quadratic in the size of
343 // the block. Instead, we leave only one call at the back of the
344 // DefList.
345 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
346 Reg2SUnitsMap::iterator B = P.first;
347 Reg2SUnitsMap::iterator I = P.second;
348 for (bool isBegin = I == B; !isBegin; /* empty */) {
349 isBegin = (--I) == B;
350 if (!I->SU->isCall)
351 break;
352 I = Defs.erase(I);
356 // Defs are pushed in the order they are visited and never reordered.
357 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
361 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
363 Register Reg = MO.getReg();
364 // No point in tracking lanemasks if we don't have interesting subregisters.
365 const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
366 if (!RC.HasDisjunctSubRegs)
367 return LaneBitmask::getAll();
369 unsigned SubReg = MO.getSubReg();
370 if (SubReg == 0)
371 return RC.getLaneMask();
372 return TRI->getSubRegIndexLaneMask(SubReg);
375 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) {
376 auto RegUse = CurrentVRegUses.find(MO.getReg());
377 if (RegUse == CurrentVRegUses.end())
378 return true;
379 return (RegUse->LaneMask & getLaneMaskForMO(MO)).none();
382 /// Adds register output and data dependencies from this SUnit to instructions
383 /// that occur later in the same scheduling region if they read from or write to
384 /// the virtual register defined at OperIdx.
386 /// TODO: Hoist loop induction variable increments. This has to be
387 /// reevaluated. Generally, IV scheduling should be done before coalescing.
388 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
389 MachineInstr *MI = SU->getInstr();
390 MachineOperand &MO = MI->getOperand(OperIdx);
391 Register Reg = MO.getReg();
393 LaneBitmask DefLaneMask;
394 LaneBitmask KillLaneMask;
395 if (TrackLaneMasks) {
396 bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
397 DefLaneMask = getLaneMaskForMO(MO);
398 // If we have a <read-undef> flag, none of the lane values comes from an
399 // earlier instruction.
400 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask;
402 if (MO.getSubReg() != 0 && MO.isUndef()) {
403 // There may be other subregister defs on the same instruction of the same
404 // register in later operands. The lanes of other defs will now be live
405 // after this instruction, so these should not be treated as killed by the
406 // instruction even though they appear to be killed in this one operand.
407 for (int I = OperIdx + 1, E = MI->getNumOperands(); I != E; ++I) {
408 const MachineOperand &OtherMO = MI->getOperand(I);
409 if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg)
410 KillLaneMask &= ~getLaneMaskForMO(OtherMO);
414 // Clear undef flag, we'll re-add it later once we know which subregister
415 // Def is first.
416 MO.setIsUndef(false);
417 } else {
418 DefLaneMask = LaneBitmask::getAll();
419 KillLaneMask = LaneBitmask::getAll();
422 if (MO.isDead()) {
423 assert(deadDefHasNoUse(MO) && "Dead defs should have no uses");
424 } else {
425 // Add data dependence to all uses we found so far.
426 const TargetSubtargetInfo &ST = MF.getSubtarget();
427 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
428 E = CurrentVRegUses.end(); I != E; /*empty*/) {
429 LaneBitmask LaneMask = I->LaneMask;
430 // Ignore uses of other lanes.
431 if ((LaneMask & KillLaneMask).none()) {
432 ++I;
433 continue;
436 if ((LaneMask & DefLaneMask).any()) {
437 SUnit *UseSU = I->SU;
438 MachineInstr *Use = UseSU->getInstr();
439 SDep Dep(SU, SDep::Data, Reg);
440 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
441 I->OperandIndex));
442 ST.adjustSchedDependency(SU, UseSU, Dep);
443 UseSU->addPred(Dep);
446 LaneMask &= ~KillLaneMask;
447 // If we found a Def for all lanes of this use, remove it from the list.
448 if (LaneMask.any()) {
449 I->LaneMask = LaneMask;
450 ++I;
451 } else
452 I = CurrentVRegUses.erase(I);
456 // Shortcut: Singly defined vregs do not have output/anti dependencies.
457 if (MRI.hasOneDef(Reg))
458 return;
460 // Add output dependence to the next nearest defs of this vreg.
462 // Unless this definition is dead, the output dependence should be
463 // transitively redundant with antidependencies from this definition's
464 // uses. We're conservative for now until we have a way to guarantee the uses
465 // are not eliminated sometime during scheduling. The output dependence edge
466 // is also useful if output latency exceeds def-use latency.
467 LaneBitmask LaneMask = DefLaneMask;
468 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
469 CurrentVRegDefs.end())) {
470 // Ignore defs for other lanes.
471 if ((V2SU.LaneMask & LaneMask).none())
472 continue;
473 // Add an output dependence.
474 SUnit *DefSU = V2SU.SU;
475 // Ignore additional defs of the same lanes in one instruction. This can
476 // happen because lanemasks are shared for targets with too many
477 // subregisters. We also use some representration tricks/hacks where we
478 // add super-register defs/uses, to imply that although we only access parts
479 // of the reg we care about the full one.
480 if (DefSU == SU)
481 continue;
482 SDep Dep(SU, SDep::Output, Reg);
483 Dep.setLatency(
484 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
485 DefSU->addPred(Dep);
487 // Update current definition. This can get tricky if the def was about a
488 // bigger lanemask before. We then have to shrink it and create a new
489 // VReg2SUnit for the non-overlapping part.
490 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
491 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
492 V2SU.SU = SU;
493 V2SU.LaneMask = OverlapMask;
494 if (NonOverlapMask.any())
495 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
497 // If there was no CurrentVRegDefs entry for some lanes yet, create one.
498 if (LaneMask.any())
499 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
502 /// Adds a register data dependency if the instruction that defines the
503 /// virtual register used at OperIdx is mapped to an SUnit. Add a register
504 /// antidependency from this SUnit to instructions that occur later in the same
505 /// scheduling region if they write the virtual register.
507 /// TODO: Handle ExitSU "uses" properly.
508 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
509 const MachineInstr *MI = SU->getInstr();
510 const MachineOperand &MO = MI->getOperand(OperIdx);
511 Register Reg = MO.getReg();
513 // Remember the use. Data dependencies will be added when we find the def.
514 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO)
515 : LaneBitmask::getAll();
516 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
518 // Add antidependences to the following defs of the vreg.
519 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
520 CurrentVRegDefs.end())) {
521 // Ignore defs for unrelated lanes.
522 LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
523 if ((PrevDefLaneMask & LaneMask).none())
524 continue;
525 if (V2SU.SU == SU)
526 continue;
528 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
532 /// Returns true if MI is an instruction we are unable to reason about
533 /// (like a call or something with unmodeled side effects).
534 static inline bool isGlobalMemoryObject(AAResults *AA, MachineInstr *MI) {
535 return MI->isCall() || MI->hasUnmodeledSideEffects() ||
536 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA));
539 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
540 unsigned Latency) {
541 if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) {
542 SDep Dep(SUa, SDep::MayAliasMem);
543 Dep.setLatency(Latency);
544 SUb->addPred(Dep);
548 /// Creates an SUnit for each real instruction, numbered in top-down
549 /// topological order. The instruction order A < B, implies that no edge exists
550 /// from B to A.
552 /// Map each real instruction to its SUnit.
554 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
555 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
556 /// instead of pointers.
558 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
559 /// the original instruction list.
560 void ScheduleDAGInstrs::initSUnits() {
561 // We'll be allocating one SUnit for each real instruction in the region,
562 // which is contained within a basic block.
563 SUnits.reserve(NumRegionInstrs);
565 for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) {
566 if (MI.isDebugInstr())
567 continue;
569 SUnit *SU = newSUnit(&MI);
570 MISUnitMap[&MI] = SU;
572 SU->isCall = MI.isCall();
573 SU->isCommutable = MI.isCommutable();
575 // Assign the Latency field of SU using target-provided information.
576 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
578 // If this SUnit uses a reserved or unbuffered resource, mark it as such.
580 // Reserved resources block an instruction from issuing and stall the
581 // entire pipeline. These are identified by BufferSize=0.
583 // Unbuffered resources prevent execution of subsequent instructions that
584 // require the same resources. This is used for in-order execution pipelines
585 // within an out-of-order core. These are identified by BufferSize=1.
586 if (SchedModel.hasInstrSchedModel()) {
587 const MCSchedClassDesc *SC = getSchedClass(SU);
588 for (const MCWriteProcResEntry &PRE :
589 make_range(SchedModel.getWriteProcResBegin(SC),
590 SchedModel.getWriteProcResEnd(SC))) {
591 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) {
592 case 0:
593 SU->hasReservedResource = true;
594 break;
595 case 1:
596 SU->isUnbuffered = true;
597 break;
598 default:
599 break;
606 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
607 /// Current total number of SUs in map.
608 unsigned NumNodes = 0;
610 /// 1 for loads, 0 for stores. (see comment in SUList)
611 unsigned TrueMemOrderLatency;
613 public:
614 Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {}
616 /// To keep NumNodes up to date, insert() is used instead of
617 /// this operator w/ push_back().
618 ValueType &operator[](const SUList &Key) {
619 llvm_unreachable("Don't use. Use insert() instead."); };
621 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
622 /// reduce().
623 void inline insert(SUnit *SU, ValueType V) {
624 MapVector::operator[](V).push_back(SU);
625 NumNodes++;
628 /// Clears the list of SUs mapped to V.
629 void inline clearList(ValueType V) {
630 iterator Itr = find(V);
631 if (Itr != end()) {
632 assert(NumNodes >= Itr->second.size());
633 NumNodes -= Itr->second.size();
635 Itr->second.clear();
639 /// Clears map from all contents.
640 void clear() {
641 MapVector<ValueType, SUList>::clear();
642 NumNodes = 0;
645 unsigned inline size() const { return NumNodes; }
647 /// Counts the number of SUs in this map after a reduction.
648 void reComputeSize() {
649 NumNodes = 0;
650 for (auto &I : *this)
651 NumNodes += I.second.size();
654 unsigned inline getTrueMemOrderLatency() const {
655 return TrueMemOrderLatency;
658 void dump();
661 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
662 Value2SUsMap &Val2SUsMap) {
663 for (auto &I : Val2SUsMap)
664 addChainDependencies(SU, I.second,
665 Val2SUsMap.getTrueMemOrderLatency());
668 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
669 Value2SUsMap &Val2SUsMap,
670 ValueType V) {
671 Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
672 if (Itr != Val2SUsMap.end())
673 addChainDependencies(SU, Itr->second,
674 Val2SUsMap.getTrueMemOrderLatency());
677 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
678 assert(BarrierChain != nullptr);
680 for (auto &I : map) {
681 SUList &sus = I.second;
682 for (auto *SU : sus)
683 SU->addPredBarrier(BarrierChain);
685 map.clear();
688 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
689 assert(BarrierChain != nullptr);
691 // Go through all lists of SUs.
692 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
693 Value2SUsMap::iterator CurrItr = I++;
694 SUList &sus = CurrItr->second;
695 SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
696 for (; SUItr != SUEE; ++SUItr) {
697 // Stop on BarrierChain or any instruction above it.
698 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
699 break;
701 (*SUItr)->addPredBarrier(BarrierChain);
704 // Remove also the BarrierChain from list if present.
705 if (SUItr != SUEE && *SUItr == BarrierChain)
706 SUItr++;
708 // Remove all SUs that are now successors of BarrierChain.
709 if (SUItr != sus.begin())
710 sus.erase(sus.begin(), SUItr);
713 // Remove all entries with empty su lists.
714 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
715 return (mapEntry.second.empty()); });
717 // Recompute the size of the map (NumNodes).
718 map.reComputeSize();
721 void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA,
722 RegPressureTracker *RPTracker,
723 PressureDiffs *PDiffs,
724 LiveIntervals *LIS,
725 bool TrackLaneMasks) {
726 const TargetSubtargetInfo &ST = MF.getSubtarget();
727 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
728 : ST.useAA();
729 AAForDep = UseAA ? AA : nullptr;
731 BarrierChain = nullptr;
733 this->TrackLaneMasks = TrackLaneMasks;
734 MISUnitMap.clear();
735 ScheduleDAG::clearDAG();
737 // Create an SUnit for each real instruction.
738 initSUnits();
740 if (PDiffs)
741 PDiffs->init(SUnits.size());
743 // We build scheduling units by walking a block's instruction list
744 // from bottom to top.
746 // Each MIs' memory operand(s) is analyzed to a list of underlying
747 // objects. The SU is then inserted in the SUList(s) mapped from the
748 // Value(s). Each Value thus gets mapped to lists of SUs depending
749 // on it, stores and loads kept separately. Two SUs are trivially
750 // non-aliasing if they both depend on only identified Values and do
751 // not share any common Value.
752 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
754 // Certain memory accesses are known to not alias any SU in Stores
755 // or Loads, and have therefore their own 'NonAlias'
756 // domain. E.g. spill / reload instructions never alias LLVM I/R
757 // Values. It would be nice to assume that this type of memory
758 // accesses always have a proper memory operand modelling, and are
759 // therefore never unanalyzable, but this is conservatively not
760 // done.
761 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
763 // Track all instructions that may raise floating-point exceptions.
764 // These do not depend on one other (or normal loads or stores), but
765 // must not be rescheduled across global barriers. Note that we don't
766 // really need a "map" here since we don't track those MIs by value;
767 // using the same Value2SUsMap data type here is simply a matter of
768 // convenience.
769 Value2SUsMap FPExceptions;
771 // Remove any stale debug info; sometimes BuildSchedGraph is called again
772 // without emitting the info from the previous call.
773 DbgValues.clear();
774 FirstDbgValue = nullptr;
776 assert(Defs.empty() && Uses.empty() &&
777 "Only BuildGraph should update Defs/Uses");
778 Defs.setUniverse(TRI->getNumRegs());
779 Uses.setUniverse(TRI->getNumRegs());
781 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
782 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
783 unsigned NumVirtRegs = MRI.getNumVirtRegs();
784 CurrentVRegDefs.setUniverse(NumVirtRegs);
785 CurrentVRegUses.setUniverse(NumVirtRegs);
787 // Model data dependencies between instructions being scheduled and the
788 // ExitSU.
789 addSchedBarrierDeps();
791 // Walk the list of instructions, from bottom moving up.
792 MachineInstr *DbgMI = nullptr;
793 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
794 MII != MIE; --MII) {
795 MachineInstr &MI = *std::prev(MII);
796 if (DbgMI) {
797 DbgValues.push_back(std::make_pair(DbgMI, &MI));
798 DbgMI = nullptr;
801 if (MI.isDebugValue()) {
802 DbgMI = &MI;
803 continue;
805 if (MI.isDebugLabel())
806 continue;
808 SUnit *SU = MISUnitMap[&MI];
809 assert(SU && "No SUnit mapped to this MI");
811 if (RPTracker) {
812 RegisterOperands RegOpers;
813 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
814 if (TrackLaneMasks) {
815 SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
816 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
818 if (PDiffs != nullptr)
819 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
821 if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI)
822 RPTracker->recedeSkipDebugValues();
823 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
824 RPTracker->recede(RegOpers);
827 assert(
828 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
829 "Cannot schedule terminators or labels!");
831 // Add register-based dependencies (data, anti, and output).
832 // For some instructions (calls, returns, inline-asm, etc.) there can
833 // be explicit uses and implicit defs, in which case the use will appear
834 // on the operand list before the def. Do two passes over the operand
835 // list to make sure that defs are processed before any uses.
836 bool HasVRegDef = false;
837 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
838 const MachineOperand &MO = MI.getOperand(j);
839 if (!MO.isReg() || !MO.isDef())
840 continue;
841 Register Reg = MO.getReg();
842 if (Register::isPhysicalRegister(Reg)) {
843 addPhysRegDeps(SU, j);
844 } else if (Register::isVirtualRegister(Reg)) {
845 HasVRegDef = true;
846 addVRegDefDeps(SU, j);
849 // Now process all uses.
850 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
851 const MachineOperand &MO = MI.getOperand(j);
852 // Only look at use operands.
853 // We do not need to check for MO.readsReg() here because subsequent
854 // subregister defs will get output dependence edges and need no
855 // additional use dependencies.
856 if (!MO.isReg() || !MO.isUse())
857 continue;
858 Register Reg = MO.getReg();
859 if (Register::isPhysicalRegister(Reg)) {
860 addPhysRegDeps(SU, j);
861 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) {
862 addVRegUseDeps(SU, j);
866 // If we haven't seen any uses in this scheduling region, create a
867 // dependence edge to ExitSU to model the live-out latency. This is required
868 // for vreg defs with no in-region use, and prefetches with no vreg def.
870 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
871 // check currently relies on being called before adding chain deps.
872 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
873 SDep Dep(SU, SDep::Artificial);
874 Dep.setLatency(SU->Latency - 1);
875 ExitSU.addPred(Dep);
878 // Add memory dependencies (Note: isStoreToStackSlot and
879 // isLoadFromStackSLot are not usable after stack slots are lowered to
880 // actual addresses).
882 // This is a barrier event that acts as a pivotal node in the DAG.
883 if (isGlobalMemoryObject(AA, &MI)) {
885 // Become the barrier chain.
886 if (BarrierChain)
887 BarrierChain->addPredBarrier(SU);
888 BarrierChain = SU;
890 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
891 << BarrierChain->NodeNum << ").\n";);
893 // Add dependencies against everything below it and clear maps.
894 addBarrierChain(Stores);
895 addBarrierChain(Loads);
896 addBarrierChain(NonAliasStores);
897 addBarrierChain(NonAliasLoads);
898 addBarrierChain(FPExceptions);
900 continue;
903 // Instructions that may raise FP exceptions may not be moved
904 // across any global barriers.
905 if (MI.mayRaiseFPException()) {
906 if (BarrierChain)
907 BarrierChain->addPredBarrier(SU);
909 FPExceptions.insert(SU, UnknownValue);
911 if (FPExceptions.size() >= HugeRegion) {
912 LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";);
913 Value2SUsMap empty;
914 reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize());
918 // If it's not a store or a variant load, we're done.
919 if (!MI.mayStore() &&
920 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)))
921 continue;
923 // Always add dependecy edge to BarrierChain if present.
924 if (BarrierChain)
925 BarrierChain->addPredBarrier(SU);
927 // Find the underlying objects for MI. The Objs vector is either
928 // empty, or filled with the Values of memory locations which this
929 // SU depends on.
930 UnderlyingObjectsVector Objs;
931 bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs,
932 MF.getDataLayout());
934 if (MI.mayStore()) {
935 if (!ObjsFound) {
936 // An unknown store depends on all stores and loads.
937 addChainDependencies(SU, Stores);
938 addChainDependencies(SU, NonAliasStores);
939 addChainDependencies(SU, Loads);
940 addChainDependencies(SU, NonAliasLoads);
942 // Map this store to 'UnknownValue'.
943 Stores.insert(SU, UnknownValue);
944 } else {
945 // Add precise dependencies against all previously seen memory
946 // accesses mapped to the same Value(s).
947 for (const UnderlyingObject &UnderlObj : Objs) {
948 ValueType V = UnderlObj.getValue();
949 bool ThisMayAlias = UnderlObj.mayAlias();
951 // Add dependencies to previous stores and loads mapped to V.
952 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
953 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
955 // Update the store map after all chains have been added to avoid adding
956 // self-loop edge if multiple underlying objects are present.
957 for (const UnderlyingObject &UnderlObj : Objs) {
958 ValueType V = UnderlObj.getValue();
959 bool ThisMayAlias = UnderlObj.mayAlias();
961 // Map this store to V.
962 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
964 // The store may have dependencies to unanalyzable loads and
965 // stores.
966 addChainDependencies(SU, Loads, UnknownValue);
967 addChainDependencies(SU, Stores, UnknownValue);
969 } else { // SU is a load.
970 if (!ObjsFound) {
971 // An unknown load depends on all stores.
972 addChainDependencies(SU, Stores);
973 addChainDependencies(SU, NonAliasStores);
975 Loads.insert(SU, UnknownValue);
976 } else {
977 for (const UnderlyingObject &UnderlObj : Objs) {
978 ValueType V = UnderlObj.getValue();
979 bool ThisMayAlias = UnderlObj.mayAlias();
981 // Add precise dependencies against all previously seen stores
982 // mapping to the same Value(s).
983 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
985 // Map this load to V.
986 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
988 // The load may have dependencies to unanalyzable stores.
989 addChainDependencies(SU, Stores, UnknownValue);
993 // Reduce maps if they grow huge.
994 if (Stores.size() + Loads.size() >= HugeRegion) {
995 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
996 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
998 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
999 LLVM_DEBUG(
1000 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
1001 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
1005 if (DbgMI)
1006 FirstDbgValue = DbgMI;
1008 Defs.clear();
1009 Uses.clear();
1010 CurrentVRegDefs.clear();
1011 CurrentVRegUses.clear();
1013 Topo.MarkDirty();
1016 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
1017 PSV->printCustom(OS);
1018 return OS;
1021 void ScheduleDAGInstrs::Value2SUsMap::dump() {
1022 for (auto &Itr : *this) {
1023 if (Itr.first.is<const Value*>()) {
1024 const Value *V = Itr.first.get<const Value*>();
1025 if (isa<UndefValue>(V))
1026 dbgs() << "Unknown";
1027 else
1028 V->printAsOperand(dbgs());
1030 else if (Itr.first.is<const PseudoSourceValue*>())
1031 dbgs() << Itr.first.get<const PseudoSourceValue*>();
1032 else
1033 llvm_unreachable("Unknown Value type.");
1035 dbgs() << " : ";
1036 dumpSUList(Itr.second);
1040 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
1041 Value2SUsMap &loads, unsigned N) {
1042 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump();
1043 dbgs() << "Loading SUnits:\n"; loads.dump());
1045 // Insert all SU's NodeNums into a vector and sort it.
1046 std::vector<unsigned> NodeNums;
1047 NodeNums.reserve(stores.size() + loads.size());
1048 for (auto &I : stores)
1049 for (auto *SU : I.second)
1050 NodeNums.push_back(SU->NodeNum);
1051 for (auto &I : loads)
1052 for (auto *SU : I.second)
1053 NodeNums.push_back(SU->NodeNum);
1054 llvm::sort(NodeNums);
1056 // The N last elements in NodeNums will be removed, and the SU with
1057 // the lowest NodeNum of them will become the new BarrierChain to
1058 // let the not yet seen SUs have a dependency to the removed SUs.
1059 assert(N <= NodeNums.size());
1060 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
1061 if (BarrierChain) {
1062 // The aliasing and non-aliasing maps reduce independently of each
1063 // other, but share a common BarrierChain. Check if the
1064 // newBarrierChain is above the former one. If it is not, it may
1065 // introduce a loop to use newBarrierChain, so keep the old one.
1066 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
1067 BarrierChain->addPredBarrier(newBarrierChain);
1068 BarrierChain = newBarrierChain;
1069 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU("
1070 << BarrierChain->NodeNum << ").\n";);
1072 else
1073 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU("
1074 << BarrierChain->NodeNum << ").\n";);
1076 else
1077 BarrierChain = newBarrierChain;
1079 insertBarrierChain(stores);
1080 insertBarrierChain(loads);
1082 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump();
1083 dbgs() << "Loading SUnits:\n"; loads.dump());
1086 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs,
1087 MachineInstr &MI, bool addToLiveRegs) {
1088 for (MachineOperand &MO : MI.operands()) {
1089 if (!MO.isReg() || !MO.readsReg())
1090 continue;
1091 Register Reg = MO.getReg();
1092 if (!Reg)
1093 continue;
1095 // Things that are available after the instruction are killed by it.
1096 bool IsKill = LiveRegs.available(MRI, Reg);
1097 MO.setIsKill(IsKill);
1098 if (addToLiveRegs)
1099 LiveRegs.addReg(Reg);
1103 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) {
1104 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n');
1106 LiveRegs.init(*TRI);
1107 LiveRegs.addLiveOuts(MBB);
1109 // Examine block from end to start...
1110 for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) {
1111 if (MI.isDebugInstr())
1112 continue;
1114 // Update liveness. Registers that are defed but not used in this
1115 // instruction are now dead. Mark register and all subregs as they
1116 // are completely defined.
1117 for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
1118 const MachineOperand &MO = *O;
1119 if (MO.isReg()) {
1120 if (!MO.isDef())
1121 continue;
1122 Register Reg = MO.getReg();
1123 if (!Reg)
1124 continue;
1125 LiveRegs.removeReg(Reg);
1126 } else if (MO.isRegMask()) {
1127 LiveRegs.removeRegsInMask(MO);
1131 // If there is a bundle header fix it up first.
1132 if (!MI.isBundled()) {
1133 toggleKills(MRI, LiveRegs, MI, true);
1134 } else {
1135 MachineBasicBlock::instr_iterator Bundle = MI.getIterator();
1136 if (MI.isBundle())
1137 toggleKills(MRI, LiveRegs, MI, false);
1139 // Some targets make the (questionable) assumtion that the instructions
1140 // inside the bundle are ordered and consequently only the last use of
1141 // a register inside the bundle can kill it.
1142 MachineBasicBlock::instr_iterator I = std::next(Bundle);
1143 while (I->isBundledWithSucc())
1144 ++I;
1145 do {
1146 if (!I->isDebugInstr())
1147 toggleKills(MRI, LiveRegs, *I, true);
1148 --I;
1149 } while (I != Bundle);
1154 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const {
1155 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1156 dumpNodeName(SU);
1157 dbgs() << ": ";
1158 SU.getInstr()->dump();
1159 #endif
1162 void ScheduleDAGInstrs::dump() const {
1163 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1164 if (EntrySU.getInstr() != nullptr)
1165 dumpNodeAll(EntrySU);
1166 for (const SUnit &SU : SUnits)
1167 dumpNodeAll(SU);
1168 if (ExitSU.getInstr() != nullptr)
1169 dumpNodeAll(ExitSU);
1170 #endif
1173 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1174 std::string s;
1175 raw_string_ostream oss(s);
1176 if (SU == &EntrySU)
1177 oss << "<entry>";
1178 else if (SU == &ExitSU)
1179 oss << "<exit>";
1180 else
1181 SU->getInstr()->print(oss, /*SkipOpers=*/true);
1182 return oss.str();
1185 /// Return the basic block label. It is not necessarilly unique because a block
1186 /// contains multiple scheduling regions. But it is fine for visualization.
1187 std::string ScheduleDAGInstrs::getDAGName() const {
1188 return "dag." + BB->getFullName();
1191 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
1192 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
1195 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) {
1196 if (SuccSU != &ExitSU) {
1197 // Do not use WillCreateCycle, it assumes SD scheduling.
1198 // If Pred is reachable from Succ, then the edge creates a cycle.
1199 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
1200 return false;
1201 Topo.AddPredQueued(SuccSU, PredDep.getSUnit());
1203 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
1204 // Return true regardless of whether a new edge needed to be inserted.
1205 return true;
1208 //===----------------------------------------------------------------------===//
1209 // SchedDFSResult Implementation
1210 //===----------------------------------------------------------------------===//
1212 namespace llvm {
1214 /// Internal state used to compute SchedDFSResult.
1215 class SchedDFSImpl {
1216 SchedDFSResult &R;
1218 /// Join DAG nodes into equivalence classes by their subtree.
1219 IntEqClasses SubtreeClasses;
1220 /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1221 std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs;
1223 struct RootData {
1224 unsigned NodeID;
1225 unsigned ParentNodeID; ///< Parent node (member of the parent subtree).
1226 unsigned SubInstrCount = 0; ///< Instr count in this tree only, not
1227 /// children.
1229 RootData(unsigned id): NodeID(id),
1230 ParentNodeID(SchedDFSResult::InvalidSubtreeID) {}
1232 unsigned getSparseSetIndex() const { return NodeID; }
1235 SparseSet<RootData> RootSet;
1237 public:
1238 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1239 RootSet.setUniverse(R.DFSNodeData.size());
1242 /// Returns true if this node been visited by the DFS traversal.
1244 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1245 /// ID. Later, SubtreeID is updated but remains valid.
1246 bool isVisited(const SUnit *SU) const {
1247 return R.DFSNodeData[SU->NodeNum].SubtreeID
1248 != SchedDFSResult::InvalidSubtreeID;
1251 /// Initializes this node's instruction count. We don't need to flag the node
1252 /// visited until visitPostorder because the DAG cannot have cycles.
1253 void visitPreorder(const SUnit *SU) {
1254 R.DFSNodeData[SU->NodeNum].InstrCount =
1255 SU->getInstr()->isTransient() ? 0 : 1;
1258 /// Called once for each node after all predecessors are visited. Revisit this
1259 /// node's predecessors and potentially join them now that we know the ILP of
1260 /// the other predecessors.
1261 void visitPostorderNode(const SUnit *SU) {
1262 // Mark this node as the root of a subtree. It may be joined with its
1263 // successors later.
1264 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1265 RootData RData(SU->NodeNum);
1266 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1268 // If any predecessors are still in their own subtree, they either cannot be
1269 // joined or are large enough to remain separate. If this parent node's
1270 // total instruction count is not greater than a child subtree by at least
1271 // the subtree limit, then try to join it now since splitting subtrees is
1272 // only useful if multiple high-pressure paths are possible.
1273 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1274 for (const SDep &PredDep : SU->Preds) {
1275 if (PredDep.getKind() != SDep::Data)
1276 continue;
1277 unsigned PredNum = PredDep.getSUnit()->NodeNum;
1278 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1279 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false);
1281 // Either link or merge the TreeData entry from the child to the parent.
1282 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1283 // If the predecessor's parent is invalid, this is a tree edge and the
1284 // current node is the parent.
1285 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1286 RootSet[PredNum].ParentNodeID = SU->NodeNum;
1288 else if (RootSet.count(PredNum)) {
1289 // The predecessor is not a root, but is still in the root set. This
1290 // must be the new parent that it was just joined to. Note that
1291 // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1292 // set to the original parent.
1293 RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1294 RootSet.erase(PredNum);
1297 RootSet[SU->NodeNum] = RData;
1300 /// Called once for each tree edge after calling visitPostOrderNode on
1301 /// the predecessor. Increment the parent node's instruction count and
1302 /// preemptively join this subtree to its parent's if it is small enough.
1303 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1304 R.DFSNodeData[Succ->NodeNum].InstrCount
1305 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1306 joinPredSubtree(PredDep, Succ);
1309 /// Adds a connection for cross edges.
1310 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1311 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1314 /// Sets each node's subtree ID to the representative ID and record
1315 /// connections between trees.
1316 void finalize() {
1317 SubtreeClasses.compress();
1318 R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1319 assert(SubtreeClasses.getNumClasses() == RootSet.size()
1320 && "number of roots should match trees");
1321 for (const RootData &Root : RootSet) {
1322 unsigned TreeID = SubtreeClasses[Root.NodeID];
1323 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1324 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID];
1325 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount;
1326 // Note that SubInstrCount may be greater than InstrCount if we joined
1327 // subtrees across a cross edge. InstrCount will be attributed to the
1328 // original parent, while SubInstrCount will be attributed to the joined
1329 // parent.
1331 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1332 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1333 LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1334 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1335 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1336 LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree "
1337 << R.DFSNodeData[Idx].SubtreeID << '\n');
1339 for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) {
1340 unsigned PredTree = SubtreeClasses[P.first->NodeNum];
1341 unsigned SuccTree = SubtreeClasses[P.second->NodeNum];
1342 if (PredTree == SuccTree)
1343 continue;
1344 unsigned Depth = P.first->getDepth();
1345 addConnection(PredTree, SuccTree, Depth);
1346 addConnection(SuccTree, PredTree, Depth);
1350 protected:
1351 /// Joins the predecessor subtree with the successor that is its DFS parent.
1352 /// Applies some heuristics before joining.
1353 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1354 bool CheckLimit = true) {
1355 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1357 // Check if the predecessor is already joined.
1358 const SUnit *PredSU = PredDep.getSUnit();
1359 unsigned PredNum = PredSU->NodeNum;
1360 if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1361 return false;
1363 // Four is the magic number of successors before a node is considered a
1364 // pinch point.
1365 unsigned NumDataSucs = 0;
1366 for (const SDep &SuccDep : PredSU->Succs) {
1367 if (SuccDep.getKind() == SDep::Data) {
1368 if (++NumDataSucs >= 4)
1369 return false;
1372 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1373 return false;
1374 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1375 SubtreeClasses.join(Succ->NodeNum, PredNum);
1376 return true;
1379 /// Called by finalize() to record a connection between trees.
1380 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1381 if (!Depth)
1382 return;
1384 do {
1385 SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1386 R.SubtreeConnections[FromTree];
1387 for (SchedDFSResult::Connection &C : Connections) {
1388 if (C.TreeID == ToTree) {
1389 C.Level = std::max(C.Level, Depth);
1390 return;
1393 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1394 FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1395 } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1399 } // end namespace llvm
1401 namespace {
1403 /// Manage the stack used by a reverse depth-first search over the DAG.
1404 class SchedDAGReverseDFS {
1405 std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack;
1407 public:
1408 bool isComplete() const { return DFSStack.empty(); }
1410 void follow(const SUnit *SU) {
1411 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1413 void advance() { ++DFSStack.back().second; }
1415 const SDep *backtrack() {
1416 DFSStack.pop_back();
1417 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1420 const SUnit *getCurr() const { return DFSStack.back().first; }
1422 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1424 SUnit::const_pred_iterator getPredEnd() const {
1425 return getCurr()->Preds.end();
1429 } // end anonymous namespace
1431 static bool hasDataSucc(const SUnit *SU) {
1432 for (const SDep &SuccDep : SU->Succs) {
1433 if (SuccDep.getKind() == SDep::Data &&
1434 !SuccDep.getSUnit()->isBoundaryNode())
1435 return true;
1437 return false;
1440 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
1441 /// search from this root.
1442 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1443 if (!IsBottomUp)
1444 llvm_unreachable("Top-down ILP metric is unimplemented");
1446 SchedDFSImpl Impl(*this);
1447 for (const SUnit &SU : SUnits) {
1448 if (Impl.isVisited(&SU) || hasDataSucc(&SU))
1449 continue;
1451 SchedDAGReverseDFS DFS;
1452 Impl.visitPreorder(&SU);
1453 DFS.follow(&SU);
1454 while (true) {
1455 // Traverse the leftmost path as far as possible.
1456 while (DFS.getPred() != DFS.getPredEnd()) {
1457 const SDep &PredDep = *DFS.getPred();
1458 DFS.advance();
1459 // Ignore non-data edges.
1460 if (PredDep.getKind() != SDep::Data
1461 || PredDep.getSUnit()->isBoundaryNode()) {
1462 continue;
1464 // An already visited edge is a cross edge, assuming an acyclic DAG.
1465 if (Impl.isVisited(PredDep.getSUnit())) {
1466 Impl.visitCrossEdge(PredDep, DFS.getCurr());
1467 continue;
1469 Impl.visitPreorder(PredDep.getSUnit());
1470 DFS.follow(PredDep.getSUnit());
1472 // Visit the top of the stack in postorder and backtrack.
1473 const SUnit *Child = DFS.getCurr();
1474 const SDep *PredDep = DFS.backtrack();
1475 Impl.visitPostorderNode(Child);
1476 if (PredDep)
1477 Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1478 if (DFS.isComplete())
1479 break;
1482 Impl.finalize();
1485 /// The root of the given SubtreeID was just scheduled. For all subtrees
1486 /// connected to this tree, record the depth of the connection so that the
1487 /// nearest connected subtrees can be prioritized.
1488 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1489 for (const Connection &C : SubtreeConnections[SubtreeID]) {
1490 SubtreeConnectLevels[C.TreeID] =
1491 std::max(SubtreeConnectLevels[C.TreeID], C.Level);
1492 LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @"
1493 << SubtreeConnectLevels[C.TreeID] << '\n');
1497 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1498 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const {
1499 OS << InstrCount << " / " << Length << " = ";
1500 if (!Length)
1501 OS << "BADILP";
1502 else
1503 OS << format("%g", ((double)InstrCount / Length));
1506 LLVM_DUMP_METHOD void ILPValue::dump() const {
1507 dbgs() << *this << '\n';
1510 namespace llvm {
1512 LLVM_DUMP_METHOD
1513 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1514 Val.print(OS);
1515 return OS;
1518 } // end namespace llvm
1520 #endif