[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / CodeGen / SelectionDAG / FastISel.cpp
blob6d7260d7aee5c4dd9c853af969b045c1ae8b6f1f
1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the FastISel class.
11 // "Fast" instruction selection is designed to emit very poor code quickly.
12 // Also, it is not designed to be able to do much lowering, so most illegal
13 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
14 // also not intended to be able to do much optimization, except in a few cases
15 // where doing optimizations reduces overall compile time. For example, folding
16 // constants into immediate fields is often done, because it's cheap and it
17 // reduces the number of instructions later phases have to examine.
19 // "Fast" instruction selection is able to fail gracefully and transfer
20 // control to the SelectionDAG selector for operations that it doesn't
21 // support. In many cases, this allows us to avoid duplicating a lot of
22 // the complicated lowering logic that SelectionDAG currently has.
24 // The intended use for "fast" instruction selection is "-O0" mode
25 // compilation, where the quality of the generated code is irrelevant when
26 // weighed against the speed at which the code can be generated. Also,
27 // at -O0, the LLVM optimizers are not running, and this makes the
28 // compile time of codegen a much higher portion of the overall compile
29 // time. Despite its limitations, "fast" instruction selection is able to
30 // handle enough code on its own to provide noticeable overall speedups
31 // in -O0 compiles.
33 // Basic operations are supported in a target-independent way, by reading
34 // the same instruction descriptions that the SelectionDAG selector reads,
35 // and identifying simple arithmetic operations that can be directly selected
36 // from simple operators. More complicated operations currently require
37 // target-specific code.
39 //===----------------------------------------------------------------------===//
41 #include "llvm/CodeGen/FastISel.h"
42 #include "llvm/ADT/APFloat.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/Optional.h"
46 #include "llvm/ADT/SmallPtrSet.h"
47 #include "llvm/ADT/SmallString.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/Analysis/BranchProbabilityInfo.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/CodeGen/Analysis.h"
53 #include "llvm/CodeGen/FunctionLoweringInfo.h"
54 #include "llvm/CodeGen/ISDOpcodes.h"
55 #include "llvm/CodeGen/MachineBasicBlock.h"
56 #include "llvm/CodeGen/MachineFrameInfo.h"
57 #include "llvm/CodeGen/MachineInstr.h"
58 #include "llvm/CodeGen/MachineInstrBuilder.h"
59 #include "llvm/CodeGen/MachineMemOperand.h"
60 #include "llvm/CodeGen/MachineModuleInfo.h"
61 #include "llvm/CodeGen/MachineOperand.h"
62 #include "llvm/CodeGen/MachineRegisterInfo.h"
63 #include "llvm/CodeGen/StackMaps.h"
64 #include "llvm/CodeGen/TargetInstrInfo.h"
65 #include "llvm/CodeGen/TargetLowering.h"
66 #include "llvm/CodeGen/TargetSubtargetInfo.h"
67 #include "llvm/CodeGen/ValueTypes.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CallSite.h"
72 #include "llvm/IR/CallingConv.h"
73 #include "llvm/IR/Constant.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfo.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/GlobalValue.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstrTypes.h"
84 #include "llvm/IR/Instruction.h"
85 #include "llvm/IR/Instructions.h"
86 #include "llvm/IR/IntrinsicInst.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Mangler.h"
89 #include "llvm/IR/Metadata.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCInstrDesc.h"
97 #include "llvm/MC/MCRegisterInfo.h"
98 #include "llvm/Support/Casting.h"
99 #include "llvm/Support/Debug.h"
100 #include "llvm/Support/ErrorHandling.h"
101 #include "llvm/Support/MachineValueType.h"
102 #include "llvm/Support/MathExtras.h"
103 #include "llvm/Support/raw_ostream.h"
104 #include "llvm/Target/TargetMachine.h"
105 #include "llvm/Target/TargetOptions.h"
106 #include <algorithm>
107 #include <cassert>
108 #include <cstdint>
109 #include <iterator>
110 #include <utility>
112 using namespace llvm;
113 using namespace PatternMatch;
115 #define DEBUG_TYPE "isel"
117 // FIXME: Remove this after the feature has proven reliable.
118 static cl::opt<bool> SinkLocalValues("fast-isel-sink-local-values",
119 cl::init(true), cl::Hidden,
120 cl::desc("Sink local values in FastISel"));
122 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
123 "target-independent selector");
124 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
125 "target-specific selector");
126 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
128 /// Set the current block to which generated machine instructions will be
129 /// appended.
130 void FastISel::startNewBlock() {
131 assert(LocalValueMap.empty() &&
132 "local values should be cleared after finishing a BB");
134 // Instructions are appended to FuncInfo.MBB. If the basic block already
135 // contains labels or copies, use the last instruction as the last local
136 // value.
137 EmitStartPt = nullptr;
138 if (!FuncInfo.MBB->empty())
139 EmitStartPt = &FuncInfo.MBB->back();
140 LastLocalValue = EmitStartPt;
143 /// Flush the local CSE map and sink anything we can.
144 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
146 bool FastISel::lowerArguments() {
147 if (!FuncInfo.CanLowerReturn)
148 // Fallback to SDISel argument lowering code to deal with sret pointer
149 // parameter.
150 return false;
152 if (!fastLowerArguments())
153 return false;
155 // Enter arguments into ValueMap for uses in non-entry BBs.
156 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
157 E = FuncInfo.Fn->arg_end();
158 I != E; ++I) {
159 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I);
160 assert(VI != LocalValueMap.end() && "Missed an argument?");
161 FuncInfo.ValueMap[&*I] = VI->second;
163 return true;
166 /// Return the defined register if this instruction defines exactly one
167 /// virtual register and uses no other virtual registers. Otherwise return 0.
168 static unsigned findSinkableLocalRegDef(MachineInstr &MI) {
169 unsigned RegDef = 0;
170 for (const MachineOperand &MO : MI.operands()) {
171 if (!MO.isReg())
172 continue;
173 if (MO.isDef()) {
174 if (RegDef)
175 return 0;
176 RegDef = MO.getReg();
177 } else if (Register::isVirtualRegister(MO.getReg())) {
178 // This is another use of a vreg. Don't try to sink it.
179 return 0;
182 return RegDef;
185 void FastISel::flushLocalValueMap() {
186 // Try to sink local values down to their first use so that we can give them a
187 // better debug location. This has the side effect of shrinking local value
188 // live ranges, which helps out fast regalloc.
189 if (SinkLocalValues && LastLocalValue != EmitStartPt) {
190 // Sink local value materialization instructions between EmitStartPt and
191 // LastLocalValue. Visit them bottom-up, starting from LastLocalValue, to
192 // avoid inserting into the range that we're iterating over.
193 MachineBasicBlock::reverse_iterator RE =
194 EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
195 : FuncInfo.MBB->rend();
196 MachineBasicBlock::reverse_iterator RI(LastLocalValue);
198 InstOrderMap OrderMap;
199 for (; RI != RE;) {
200 MachineInstr &LocalMI = *RI;
201 ++RI;
202 bool Store = true;
203 if (!LocalMI.isSafeToMove(nullptr, Store))
204 continue;
205 unsigned DefReg = findSinkableLocalRegDef(LocalMI);
206 if (DefReg == 0)
207 continue;
209 sinkLocalValueMaterialization(LocalMI, DefReg, OrderMap);
213 LocalValueMap.clear();
214 LastLocalValue = EmitStartPt;
215 recomputeInsertPt();
216 SavedInsertPt = FuncInfo.InsertPt;
217 LastFlushPoint = FuncInfo.InsertPt;
220 static bool isRegUsedByPhiNodes(unsigned DefReg,
221 FunctionLoweringInfo &FuncInfo) {
222 for (auto &P : FuncInfo.PHINodesToUpdate)
223 if (P.second == DefReg)
224 return true;
225 return false;
228 /// Build a map of instruction orders. Return the first terminator and its
229 /// order. Consider EH_LABEL instructions to be terminators as well, since local
230 /// values for phis after invokes must be materialized before the call.
231 void FastISel::InstOrderMap::initialize(
232 MachineBasicBlock *MBB, MachineBasicBlock::iterator LastFlushPoint) {
233 unsigned Order = 0;
234 for (MachineInstr &I : *MBB) {
235 if (!FirstTerminator &&
236 (I.isTerminator() || (I.isEHLabel() && &I != &MBB->front()))) {
237 FirstTerminator = &I;
238 FirstTerminatorOrder = Order;
240 Orders[&I] = Order++;
242 // We don't need to order instructions past the last flush point.
243 if (I.getIterator() == LastFlushPoint)
244 break;
248 void FastISel::sinkLocalValueMaterialization(MachineInstr &LocalMI,
249 unsigned DefReg,
250 InstOrderMap &OrderMap) {
251 // If this register is used by a register fixup, MRI will not contain all
252 // the uses until after register fixups, so don't attempt to sink or DCE
253 // this instruction. Register fixups typically come from no-op cast
254 // instructions, which replace the cast instruction vreg with the local
255 // value vreg.
256 if (FuncInfo.RegsWithFixups.count(DefReg))
257 return;
259 // We can DCE this instruction if there are no uses and it wasn't a
260 // materialized for a successor PHI node.
261 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
262 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
263 if (EmitStartPt == &LocalMI)
264 EmitStartPt = EmitStartPt->getPrevNode();
265 LLVM_DEBUG(dbgs() << "removing dead local value materialization "
266 << LocalMI);
267 OrderMap.Orders.erase(&LocalMI);
268 LocalMI.eraseFromParent();
269 return;
272 // Number the instructions if we haven't yet so we can efficiently find the
273 // earliest use.
274 if (OrderMap.Orders.empty())
275 OrderMap.initialize(FuncInfo.MBB, LastFlushPoint);
277 // Find the first user in the BB.
278 MachineInstr *FirstUser = nullptr;
279 unsigned FirstOrder = std::numeric_limits<unsigned>::max();
280 for (MachineInstr &UseInst : MRI.use_nodbg_instructions(DefReg)) {
281 auto I = OrderMap.Orders.find(&UseInst);
282 assert(I != OrderMap.Orders.end() &&
283 "local value used by instruction outside local region");
284 unsigned UseOrder = I->second;
285 if (UseOrder < FirstOrder) {
286 FirstOrder = UseOrder;
287 FirstUser = &UseInst;
291 // The insertion point will be the first terminator or the first user,
292 // whichever came first. If there was no terminator, this must be a
293 // fallthrough block and the insertion point is the end of the block.
294 MachineBasicBlock::instr_iterator SinkPos;
295 if (UsedByPHI && OrderMap.FirstTerminatorOrder < FirstOrder) {
296 FirstOrder = OrderMap.FirstTerminatorOrder;
297 SinkPos = OrderMap.FirstTerminator->getIterator();
298 } else if (FirstUser) {
299 SinkPos = FirstUser->getIterator();
300 } else {
301 assert(UsedByPHI && "must be users if not used by a phi");
302 SinkPos = FuncInfo.MBB->instr_end();
305 // Collect all DBG_VALUEs before the new insertion position so that we can
306 // sink them.
307 SmallVector<MachineInstr *, 1> DbgValues;
308 for (MachineInstr &DbgVal : MRI.use_instructions(DefReg)) {
309 if (!DbgVal.isDebugValue())
310 continue;
311 unsigned UseOrder = OrderMap.Orders[&DbgVal];
312 if (UseOrder < FirstOrder)
313 DbgValues.push_back(&DbgVal);
316 // Sink LocalMI before SinkPos and assign it the same DebugLoc.
317 LLVM_DEBUG(dbgs() << "sinking local value to first use " << LocalMI);
318 FuncInfo.MBB->remove(&LocalMI);
319 FuncInfo.MBB->insert(SinkPos, &LocalMI);
320 if (SinkPos != FuncInfo.MBB->end())
321 LocalMI.setDebugLoc(SinkPos->getDebugLoc());
323 // Sink any debug values that we've collected.
324 for (MachineInstr *DI : DbgValues) {
325 FuncInfo.MBB->remove(DI);
326 FuncInfo.MBB->insert(SinkPos, DI);
330 bool FastISel::hasTrivialKill(const Value *V) {
331 // Don't consider constants or arguments to have trivial kills.
332 const Instruction *I = dyn_cast<Instruction>(V);
333 if (!I)
334 return false;
336 // No-op casts are trivially coalesced by fast-isel.
337 if (const auto *Cast = dyn_cast<CastInst>(I))
338 if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0)))
339 return false;
341 // Even the value might have only one use in the LLVM IR, it is possible that
342 // FastISel might fold the use into another instruction and now there is more
343 // than one use at the Machine Instruction level.
344 unsigned Reg = lookUpRegForValue(V);
345 if (Reg && !MRI.use_empty(Reg))
346 return false;
348 // GEPs with all zero indices are trivially coalesced by fast-isel.
349 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
350 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
351 return false;
353 // Only instructions with a single use in the same basic block are considered
354 // to have trivial kills.
355 return I->hasOneUse() &&
356 !(I->getOpcode() == Instruction::BitCast ||
357 I->getOpcode() == Instruction::PtrToInt ||
358 I->getOpcode() == Instruction::IntToPtr) &&
359 cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
362 unsigned FastISel::getRegForValue(const Value *V) {
363 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
364 // Don't handle non-simple values in FastISel.
365 if (!RealVT.isSimple())
366 return 0;
368 // Ignore illegal types. We must do this before looking up the value
369 // in ValueMap because Arguments are given virtual registers regardless
370 // of whether FastISel can handle them.
371 MVT VT = RealVT.getSimpleVT();
372 if (!TLI.isTypeLegal(VT)) {
373 // Handle integer promotions, though, because they're common and easy.
374 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
375 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
376 else
377 return 0;
380 // Look up the value to see if we already have a register for it.
381 unsigned Reg = lookUpRegForValue(V);
382 if (Reg)
383 return Reg;
385 // In bottom-up mode, just create the virtual register which will be used
386 // to hold the value. It will be materialized later.
387 if (isa<Instruction>(V) &&
388 (!isa<AllocaInst>(V) ||
389 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
390 return FuncInfo.InitializeRegForValue(V);
392 SavePoint SaveInsertPt = enterLocalValueArea();
394 // Materialize the value in a register. Emit any instructions in the
395 // local value area.
396 Reg = materializeRegForValue(V, VT);
398 leaveLocalValueArea(SaveInsertPt);
400 return Reg;
403 unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
404 unsigned Reg = 0;
405 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
406 if (CI->getValue().getActiveBits() <= 64)
407 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
408 } else if (isa<AllocaInst>(V))
409 Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
410 else if (isa<ConstantPointerNull>(V))
411 // Translate this as an integer zero so that it can be
412 // local-CSE'd with actual integer zeros.
413 Reg = getRegForValue(
414 Constant::getNullValue(DL.getIntPtrType(V->getContext())));
415 else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
416 if (CF->isNullValue())
417 Reg = fastMaterializeFloatZero(CF);
418 else
419 // Try to emit the constant directly.
420 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
422 if (!Reg) {
423 // Try to emit the constant by using an integer constant with a cast.
424 const APFloat &Flt = CF->getValueAPF();
425 EVT IntVT = TLI.getPointerTy(DL);
426 uint32_t IntBitWidth = IntVT.getSizeInBits();
427 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
428 bool isExact;
429 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
430 if (isExact) {
431 unsigned IntegerReg =
432 getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
433 if (IntegerReg != 0)
434 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
435 /*Kill=*/false);
438 } else if (const auto *Op = dyn_cast<Operator>(V)) {
439 if (!selectOperator(Op, Op->getOpcode()))
440 if (!isa<Instruction>(Op) ||
441 !fastSelectInstruction(cast<Instruction>(Op)))
442 return 0;
443 Reg = lookUpRegForValue(Op);
444 } else if (isa<UndefValue>(V)) {
445 Reg = createResultReg(TLI.getRegClassFor(VT));
446 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
447 TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
449 return Reg;
452 /// Helper for getRegForValue. This function is called when the value isn't
453 /// already available in a register and must be materialized with new
454 /// instructions.
455 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
456 unsigned Reg = 0;
457 // Give the target-specific code a try first.
458 if (isa<Constant>(V))
459 Reg = fastMaterializeConstant(cast<Constant>(V));
461 // If target-specific code couldn't or didn't want to handle the value, then
462 // give target-independent code a try.
463 if (!Reg)
464 Reg = materializeConstant(V, VT);
466 // Don't cache constant materializations in the general ValueMap.
467 // To do so would require tracking what uses they dominate.
468 if (Reg) {
469 LocalValueMap[V] = Reg;
470 LastLocalValue = MRI.getVRegDef(Reg);
472 return Reg;
475 unsigned FastISel::lookUpRegForValue(const Value *V) {
476 // Look up the value to see if we already have a register for it. We
477 // cache values defined by Instructions across blocks, and other values
478 // only locally. This is because Instructions already have the SSA
479 // def-dominates-use requirement enforced.
480 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
481 if (I != FuncInfo.ValueMap.end())
482 return I->second;
483 return LocalValueMap[V];
486 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
487 if (!isa<Instruction>(I)) {
488 LocalValueMap[I] = Reg;
489 return;
492 unsigned &AssignedReg = FuncInfo.ValueMap[I];
493 if (AssignedReg == 0)
494 // Use the new register.
495 AssignedReg = Reg;
496 else if (Reg != AssignedReg) {
497 // Arrange for uses of AssignedReg to be replaced by uses of Reg.
498 for (unsigned i = 0; i < NumRegs; i++) {
499 FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
500 FuncInfo.RegsWithFixups.insert(Reg + i);
503 AssignedReg = Reg;
507 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
508 unsigned IdxN = getRegForValue(Idx);
509 if (IdxN == 0)
510 // Unhandled operand. Halt "fast" selection and bail.
511 return std::pair<unsigned, bool>(0, false);
513 bool IdxNIsKill = hasTrivialKill(Idx);
515 // If the index is smaller or larger than intptr_t, truncate or extend it.
516 MVT PtrVT = TLI.getPointerTy(DL);
517 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
518 if (IdxVT.bitsLT(PtrVT)) {
519 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
520 IdxNIsKill);
521 IdxNIsKill = true;
522 } else if (IdxVT.bitsGT(PtrVT)) {
523 IdxN =
524 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
525 IdxNIsKill = true;
527 return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
530 void FastISel::recomputeInsertPt() {
531 if (getLastLocalValue()) {
532 FuncInfo.InsertPt = getLastLocalValue();
533 FuncInfo.MBB = FuncInfo.InsertPt->getParent();
534 ++FuncInfo.InsertPt;
535 } else
536 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
538 // Now skip past any EH_LABELs, which must remain at the beginning.
539 while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
540 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
541 ++FuncInfo.InsertPt;
544 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
545 MachineBasicBlock::iterator E) {
546 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
547 "Invalid iterator!");
548 while (I != E) {
549 if (LastFlushPoint == I)
550 LastFlushPoint = E;
551 if (SavedInsertPt == I)
552 SavedInsertPt = E;
553 if (EmitStartPt == I)
554 EmitStartPt = E.isValid() ? &*E : nullptr;
555 if (LastLocalValue == I)
556 LastLocalValue = E.isValid() ? &*E : nullptr;
558 MachineInstr *Dead = &*I;
559 ++I;
560 Dead->eraseFromParent();
561 ++NumFastIselDead;
563 recomputeInsertPt();
566 FastISel::SavePoint FastISel::enterLocalValueArea() {
567 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
568 DebugLoc OldDL = DbgLoc;
569 recomputeInsertPt();
570 DbgLoc = DebugLoc();
571 SavePoint SP = {OldInsertPt, OldDL};
572 return SP;
575 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
576 if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
577 LastLocalValue = &*std::prev(FuncInfo.InsertPt);
579 // Restore the previous insert position.
580 FuncInfo.InsertPt = OldInsertPt.InsertPt;
581 DbgLoc = OldInsertPt.DL;
584 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
585 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
586 if (VT == MVT::Other || !VT.isSimple())
587 // Unhandled type. Halt "fast" selection and bail.
588 return false;
590 // We only handle legal types. For example, on x86-32 the instruction
591 // selector contains all of the 64-bit instructions from x86-64,
592 // under the assumption that i64 won't be used if the target doesn't
593 // support it.
594 if (!TLI.isTypeLegal(VT)) {
595 // MVT::i1 is special. Allow AND, OR, or XOR because they
596 // don't require additional zeroing, which makes them easy.
597 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
598 ISDOpcode == ISD::XOR))
599 VT = TLI.getTypeToTransformTo(I->getContext(), VT);
600 else
601 return false;
604 // Check if the first operand is a constant, and handle it as "ri". At -O0,
605 // we don't have anything that canonicalizes operand order.
606 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
607 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
608 unsigned Op1 = getRegForValue(I->getOperand(1));
609 if (!Op1)
610 return false;
611 bool Op1IsKill = hasTrivialKill(I->getOperand(1));
613 unsigned ResultReg =
614 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
615 CI->getZExtValue(), VT.getSimpleVT());
616 if (!ResultReg)
617 return false;
619 // We successfully emitted code for the given LLVM Instruction.
620 updateValueMap(I, ResultReg);
621 return true;
624 unsigned Op0 = getRegForValue(I->getOperand(0));
625 if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
626 return false;
627 bool Op0IsKill = hasTrivialKill(I->getOperand(0));
629 // Check if the second operand is a constant and handle it appropriately.
630 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
631 uint64_t Imm = CI->getSExtValue();
633 // Transform "sdiv exact X, 8" -> "sra X, 3".
634 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
635 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
636 Imm = Log2_64(Imm);
637 ISDOpcode = ISD::SRA;
640 // Transform "urem x, pow2" -> "and x, pow2-1".
641 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
642 isPowerOf2_64(Imm)) {
643 --Imm;
644 ISDOpcode = ISD::AND;
647 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
648 Op0IsKill, Imm, VT.getSimpleVT());
649 if (!ResultReg)
650 return false;
652 // We successfully emitted code for the given LLVM Instruction.
653 updateValueMap(I, ResultReg);
654 return true;
657 unsigned Op1 = getRegForValue(I->getOperand(1));
658 if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
659 return false;
660 bool Op1IsKill = hasTrivialKill(I->getOperand(1));
662 // Now we have both operands in registers. Emit the instruction.
663 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
664 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
665 if (!ResultReg)
666 // Target-specific code wasn't able to find a machine opcode for
667 // the given ISD opcode and type. Halt "fast" selection and bail.
668 return false;
670 // We successfully emitted code for the given LLVM Instruction.
671 updateValueMap(I, ResultReg);
672 return true;
675 bool FastISel::selectGetElementPtr(const User *I) {
676 unsigned N = getRegForValue(I->getOperand(0));
677 if (!N) // Unhandled operand. Halt "fast" selection and bail.
678 return false;
679 bool NIsKill = hasTrivialKill(I->getOperand(0));
681 // Keep a running tab of the total offset to coalesce multiple N = N + Offset
682 // into a single N = N + TotalOffset.
683 uint64_t TotalOffs = 0;
684 // FIXME: What's a good SWAG number for MaxOffs?
685 uint64_t MaxOffs = 2048;
686 MVT VT = TLI.getPointerTy(DL);
687 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
688 GTI != E; ++GTI) {
689 const Value *Idx = GTI.getOperand();
690 if (StructType *StTy = GTI.getStructTypeOrNull()) {
691 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
692 if (Field) {
693 // N = N + Offset
694 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
695 if (TotalOffs >= MaxOffs) {
696 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
697 if (!N) // Unhandled operand. Halt "fast" selection and bail.
698 return false;
699 NIsKill = true;
700 TotalOffs = 0;
703 } else {
704 Type *Ty = GTI.getIndexedType();
706 // If this is a constant subscript, handle it quickly.
707 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
708 if (CI->isZero())
709 continue;
710 // N = N + Offset
711 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
712 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
713 if (TotalOffs >= MaxOffs) {
714 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
715 if (!N) // Unhandled operand. Halt "fast" selection and bail.
716 return false;
717 NIsKill = true;
718 TotalOffs = 0;
720 continue;
722 if (TotalOffs) {
723 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
724 if (!N) // Unhandled operand. Halt "fast" selection and bail.
725 return false;
726 NIsKill = true;
727 TotalOffs = 0;
730 // N = N + Idx * ElementSize;
731 uint64_t ElementSize = DL.getTypeAllocSize(Ty);
732 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
733 unsigned IdxN = Pair.first;
734 bool IdxNIsKill = Pair.second;
735 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
736 return false;
738 if (ElementSize != 1) {
739 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
740 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
741 return false;
742 IdxNIsKill = true;
744 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
745 if (!N) // Unhandled operand. Halt "fast" selection and bail.
746 return false;
749 if (TotalOffs) {
750 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
751 if (!N) // Unhandled operand. Halt "fast" selection and bail.
752 return false;
755 // We successfully emitted code for the given LLVM Instruction.
756 updateValueMap(I, N);
757 return true;
760 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
761 const CallInst *CI, unsigned StartIdx) {
762 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
763 Value *Val = CI->getArgOperand(i);
764 // Check for constants and encode them with a StackMaps::ConstantOp prefix.
765 if (const auto *C = dyn_cast<ConstantInt>(Val)) {
766 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
767 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
768 } else if (isa<ConstantPointerNull>(Val)) {
769 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
770 Ops.push_back(MachineOperand::CreateImm(0));
771 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
772 // Values coming from a stack location also require a special encoding,
773 // but that is added later on by the target specific frame index
774 // elimination implementation.
775 auto SI = FuncInfo.StaticAllocaMap.find(AI);
776 if (SI != FuncInfo.StaticAllocaMap.end())
777 Ops.push_back(MachineOperand::CreateFI(SI->second));
778 else
779 return false;
780 } else {
781 unsigned Reg = getRegForValue(Val);
782 if (!Reg)
783 return false;
784 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
787 return true;
790 bool FastISel::selectStackmap(const CallInst *I) {
791 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
792 // [live variables...])
793 assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
794 "Stackmap cannot return a value.");
796 // The stackmap intrinsic only records the live variables (the arguments
797 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
798 // intrinsic, this won't be lowered to a function call. This means we don't
799 // have to worry about calling conventions and target-specific lowering code.
800 // Instead we perform the call lowering right here.
802 // CALLSEQ_START(0, 0...)
803 // STACKMAP(id, nbytes, ...)
804 // CALLSEQ_END(0, 0)
806 SmallVector<MachineOperand, 32> Ops;
808 // Add the <id> and <numBytes> constants.
809 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
810 "Expected a constant integer.");
811 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
812 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
814 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
815 "Expected a constant integer.");
816 const auto *NumBytes =
817 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
818 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
820 // Push live variables for the stack map (skipping the first two arguments
821 // <id> and <numBytes>).
822 if (!addStackMapLiveVars(Ops, I, 2))
823 return false;
825 // We are not adding any register mask info here, because the stackmap doesn't
826 // clobber anything.
828 // Add scratch registers as implicit def and early clobber.
829 CallingConv::ID CC = I->getCallingConv();
830 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
831 for (unsigned i = 0; ScratchRegs[i]; ++i)
832 Ops.push_back(MachineOperand::CreateReg(
833 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
834 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
836 // Issue CALLSEQ_START
837 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
838 auto Builder =
839 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
840 const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
841 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
842 Builder.addImm(0);
844 // Issue STACKMAP.
845 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
846 TII.get(TargetOpcode::STACKMAP));
847 for (auto const &MO : Ops)
848 MIB.add(MO);
850 // Issue CALLSEQ_END
851 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
852 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
853 .addImm(0)
854 .addImm(0);
856 // Inform the Frame Information that we have a stackmap in this function.
857 FuncInfo.MF->getFrameInfo().setHasStackMap();
859 return true;
862 /// Lower an argument list according to the target calling convention.
864 /// This is a helper for lowering intrinsics that follow a target calling
865 /// convention or require stack pointer adjustment. Only a subset of the
866 /// intrinsic's operands need to participate in the calling convention.
867 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
868 unsigned NumArgs, const Value *Callee,
869 bool ForceRetVoidTy, CallLoweringInfo &CLI) {
870 ArgListTy Args;
871 Args.reserve(NumArgs);
873 // Populate the argument list.
874 ImmutableCallSite CS(CI);
875 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
876 Value *V = CI->getOperand(ArgI);
878 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
880 ArgListEntry Entry;
881 Entry.Val = V;
882 Entry.Ty = V->getType();
883 Entry.setAttributes(&CS, ArgI);
884 Args.push_back(Entry);
887 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
888 : CI->getType();
889 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
891 return lowerCallTo(CLI);
894 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
895 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
896 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
897 SmallString<32> MangledName;
898 Mangler::getNameWithPrefix(MangledName, Target, DL);
899 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
900 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
903 bool FastISel::selectPatchpoint(const CallInst *I) {
904 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
905 // i32 <numBytes>,
906 // i8* <target>,
907 // i32 <numArgs>,
908 // [Args...],
909 // [live variables...])
910 CallingConv::ID CC = I->getCallingConv();
911 bool IsAnyRegCC = CC == CallingConv::AnyReg;
912 bool HasDef = !I->getType()->isVoidTy();
913 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
915 // Get the real number of arguments participating in the call <numArgs>
916 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
917 "Expected a constant integer.");
918 const auto *NumArgsVal =
919 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
920 unsigned NumArgs = NumArgsVal->getZExtValue();
922 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
923 // This includes all meta-operands up to but not including CC.
924 unsigned NumMetaOpers = PatchPointOpers::CCPos;
925 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
926 "Not enough arguments provided to the patchpoint intrinsic");
928 // For AnyRegCC the arguments are lowered later on manually.
929 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
930 CallLoweringInfo CLI;
931 CLI.setIsPatchPoint();
932 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
933 return false;
935 assert(CLI.Call && "No call instruction specified.");
937 SmallVector<MachineOperand, 32> Ops;
939 // Add an explicit result reg if we use the anyreg calling convention.
940 if (IsAnyRegCC && HasDef) {
941 assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
942 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
943 CLI.NumResultRegs = 1;
944 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
947 // Add the <id> and <numBytes> constants.
948 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
949 "Expected a constant integer.");
950 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
951 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
953 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
954 "Expected a constant integer.");
955 const auto *NumBytes =
956 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
957 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
959 // Add the call target.
960 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
961 uint64_t CalleeConstAddr =
962 cast<ConstantInt>(C->getOperand(0))->getZExtValue();
963 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
964 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
965 if (C->getOpcode() == Instruction::IntToPtr) {
966 uint64_t CalleeConstAddr =
967 cast<ConstantInt>(C->getOperand(0))->getZExtValue();
968 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
969 } else
970 llvm_unreachable("Unsupported ConstantExpr.");
971 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
972 Ops.push_back(MachineOperand::CreateGA(GV, 0));
973 } else if (isa<ConstantPointerNull>(Callee))
974 Ops.push_back(MachineOperand::CreateImm(0));
975 else
976 llvm_unreachable("Unsupported callee address.");
978 // Adjust <numArgs> to account for any arguments that have been passed on
979 // the stack instead.
980 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
981 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
983 // Add the calling convention
984 Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
986 // Add the arguments we omitted previously. The register allocator should
987 // place these in any free register.
988 if (IsAnyRegCC) {
989 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
990 unsigned Reg = getRegForValue(I->getArgOperand(i));
991 if (!Reg)
992 return false;
993 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
997 // Push the arguments from the call instruction.
998 for (auto Reg : CLI.OutRegs)
999 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1001 // Push live variables for the stack map.
1002 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
1003 return false;
1005 // Push the register mask info.
1006 Ops.push_back(MachineOperand::CreateRegMask(
1007 TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
1009 // Add scratch registers as implicit def and early clobber.
1010 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
1011 for (unsigned i = 0; ScratchRegs[i]; ++i)
1012 Ops.push_back(MachineOperand::CreateReg(
1013 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
1014 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
1016 // Add implicit defs (return values).
1017 for (auto Reg : CLI.InRegs)
1018 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
1019 /*isImp=*/true));
1021 // Insert the patchpoint instruction before the call generated by the target.
1022 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
1023 TII.get(TargetOpcode::PATCHPOINT));
1025 for (auto &MO : Ops)
1026 MIB.add(MO);
1028 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1030 // Delete the original call instruction.
1031 CLI.Call->eraseFromParent();
1033 // Inform the Frame Information that we have a patchpoint in this function.
1034 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
1036 if (CLI.NumResultRegs)
1037 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
1038 return true;
1041 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
1042 const auto &Triple = TM.getTargetTriple();
1043 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
1044 return true; // don't do anything to this instruction.
1045 SmallVector<MachineOperand, 8> Ops;
1046 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
1047 /*isDef=*/false));
1048 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
1049 /*isDef=*/false));
1050 MachineInstrBuilder MIB =
1051 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1052 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
1053 for (auto &MO : Ops)
1054 MIB.add(MO);
1056 // Insert the Patchable Event Call instruction, that gets lowered properly.
1057 return true;
1060 bool FastISel::selectXRayTypedEvent(const CallInst *I) {
1061 const auto &Triple = TM.getTargetTriple();
1062 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
1063 return true; // don't do anything to this instruction.
1064 SmallVector<MachineOperand, 8> Ops;
1065 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
1066 /*isDef=*/false));
1067 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
1068 /*isDef=*/false));
1069 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
1070 /*isDef=*/false));
1071 MachineInstrBuilder MIB =
1072 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1073 TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
1074 for (auto &MO : Ops)
1075 MIB.add(MO);
1077 // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
1078 return true;
1081 /// Returns an AttributeList representing the attributes applied to the return
1082 /// value of the given call.
1083 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
1084 SmallVector<Attribute::AttrKind, 2> Attrs;
1085 if (CLI.RetSExt)
1086 Attrs.push_back(Attribute::SExt);
1087 if (CLI.RetZExt)
1088 Attrs.push_back(Attribute::ZExt);
1089 if (CLI.IsInReg)
1090 Attrs.push_back(Attribute::InReg);
1092 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
1093 Attrs);
1096 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
1097 unsigned NumArgs) {
1098 MCContext &Ctx = MF->getContext();
1099 SmallString<32> MangledName;
1100 Mangler::getNameWithPrefix(MangledName, SymName, DL);
1101 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
1102 return lowerCallTo(CI, Sym, NumArgs);
1105 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
1106 unsigned NumArgs) {
1107 ImmutableCallSite CS(CI);
1109 FunctionType *FTy = CS.getFunctionType();
1110 Type *RetTy = CS.getType();
1112 ArgListTy Args;
1113 Args.reserve(NumArgs);
1115 // Populate the argument list.
1116 // Attributes for args start at offset 1, after the return attribute.
1117 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
1118 Value *V = CI->getOperand(ArgI);
1120 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
1122 ArgListEntry Entry;
1123 Entry.Val = V;
1124 Entry.Ty = V->getType();
1125 Entry.setAttributes(&CS, ArgI);
1126 Args.push_back(Entry);
1128 TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args);
1130 CallLoweringInfo CLI;
1131 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs);
1133 return lowerCallTo(CLI);
1136 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
1137 // Handle the incoming return values from the call.
1138 CLI.clearIns();
1139 SmallVector<EVT, 4> RetTys;
1140 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
1142 SmallVector<ISD::OutputArg, 4> Outs;
1143 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1145 bool CanLowerReturn = TLI.CanLowerReturn(
1146 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
1148 // FIXME: sret demotion isn't supported yet - bail out.
1149 if (!CanLowerReturn)
1150 return false;
1152 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
1153 EVT VT = RetTys[I];
1154 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1155 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1156 for (unsigned i = 0; i != NumRegs; ++i) {
1157 ISD::InputArg MyFlags;
1158 MyFlags.VT = RegisterVT;
1159 MyFlags.ArgVT = VT;
1160 MyFlags.Used = CLI.IsReturnValueUsed;
1161 if (CLI.RetSExt)
1162 MyFlags.Flags.setSExt();
1163 if (CLI.RetZExt)
1164 MyFlags.Flags.setZExt();
1165 if (CLI.IsInReg)
1166 MyFlags.Flags.setInReg();
1167 CLI.Ins.push_back(MyFlags);
1171 // Handle all of the outgoing arguments.
1172 CLI.clearOuts();
1173 for (auto &Arg : CLI.getArgs()) {
1174 Type *FinalType = Arg.Ty;
1175 if (Arg.IsByVal)
1176 FinalType = cast<PointerType>(Arg.Ty)->getElementType();
1177 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1178 FinalType, CLI.CallConv, CLI.IsVarArg);
1180 ISD::ArgFlagsTy Flags;
1181 if (Arg.IsZExt)
1182 Flags.setZExt();
1183 if (Arg.IsSExt)
1184 Flags.setSExt();
1185 if (Arg.IsInReg)
1186 Flags.setInReg();
1187 if (Arg.IsSRet)
1188 Flags.setSRet();
1189 if (Arg.IsSwiftSelf)
1190 Flags.setSwiftSelf();
1191 if (Arg.IsSwiftError)
1192 Flags.setSwiftError();
1193 if (Arg.IsByVal)
1194 Flags.setByVal();
1195 if (Arg.IsInAlloca) {
1196 Flags.setInAlloca();
1197 // Set the byval flag for CCAssignFn callbacks that don't know about
1198 // inalloca. This way we can know how many bytes we should've allocated
1199 // and how many bytes a callee cleanup function will pop. If we port
1200 // inalloca to more targets, we'll have to add custom inalloca handling in
1201 // the various CC lowering callbacks.
1202 Flags.setByVal();
1204 if (Arg.IsByVal || Arg.IsInAlloca) {
1205 PointerType *Ty = cast<PointerType>(Arg.Ty);
1206 Type *ElementTy = Ty->getElementType();
1207 unsigned FrameSize =
1208 DL.getTypeAllocSize(Arg.ByValType ? Arg.ByValType : ElementTy);
1210 // For ByVal, alignment should come from FE. BE will guess if this info
1211 // is not there, but there are cases it cannot get right.
1212 unsigned FrameAlign = Arg.Alignment;
1213 if (!FrameAlign)
1214 FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL);
1215 Flags.setByValSize(FrameSize);
1216 Flags.setByValAlign(Align(FrameAlign));
1218 if (Arg.IsNest)
1219 Flags.setNest();
1220 if (NeedsRegBlock)
1221 Flags.setInConsecutiveRegs();
1222 Flags.setOrigAlign(Align(DL.getABITypeAlignment(Arg.Ty)));
1224 CLI.OutVals.push_back(Arg.Val);
1225 CLI.OutFlags.push_back(Flags);
1228 if (!fastLowerCall(CLI))
1229 return false;
1231 // Set all unused physreg defs as dead.
1232 assert(CLI.Call && "No call instruction specified.");
1233 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1235 if (CLI.NumResultRegs && CLI.CS)
1236 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
1238 // Set labels for heapallocsite call.
1239 if (CLI.CS && CLI.CS->getInstruction()->hasMetadata("heapallocsite")) {
1240 const MDNode *MD = CLI.CS->getInstruction()->getMetadata("heapallocsite");
1241 MF->addCodeViewHeapAllocSite(CLI.Call, MD);
1244 return true;
1247 bool FastISel::lowerCall(const CallInst *CI) {
1248 ImmutableCallSite CS(CI);
1250 FunctionType *FuncTy = CS.getFunctionType();
1251 Type *RetTy = CS.getType();
1253 ArgListTy Args;
1254 ArgListEntry Entry;
1255 Args.reserve(CS.arg_size());
1257 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1258 i != e; ++i) {
1259 Value *V = *i;
1261 // Skip empty types
1262 if (V->getType()->isEmptyTy())
1263 continue;
1265 Entry.Val = V;
1266 Entry.Ty = V->getType();
1268 // Skip the first return-type Attribute to get to params.
1269 Entry.setAttributes(&CS, i - CS.arg_begin());
1270 Args.push_back(Entry);
1273 // Check if target-independent constraints permit a tail call here.
1274 // Target-dependent constraints are checked within fastLowerCall.
1275 bool IsTailCall = CI->isTailCall();
1276 if (IsTailCall && !isInTailCallPosition(CS, TM))
1277 IsTailCall = false;
1279 CallLoweringInfo CLI;
1280 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
1281 .setTailCall(IsTailCall);
1283 return lowerCallTo(CLI);
1286 bool FastISel::selectCall(const User *I) {
1287 const CallInst *Call = cast<CallInst>(I);
1289 // Handle simple inline asms.
1290 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
1291 // If the inline asm has side effects, then make sure that no local value
1292 // lives across by flushing the local value map.
1293 if (IA->hasSideEffects())
1294 flushLocalValueMap();
1296 // Don't attempt to handle constraints.
1297 if (!IA->getConstraintString().empty())
1298 return false;
1300 unsigned ExtraInfo = 0;
1301 if (IA->hasSideEffects())
1302 ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1303 if (IA->isAlignStack())
1304 ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1305 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
1307 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1308 TII.get(TargetOpcode::INLINEASM))
1309 .addExternalSymbol(IA->getAsmString().c_str())
1310 .addImm(ExtraInfo);
1311 return true;
1314 // Handle intrinsic function calls.
1315 if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1316 return selectIntrinsicCall(II);
1318 // Usually, it does not make sense to initialize a value,
1319 // make an unrelated function call and use the value, because
1320 // it tends to be spilled on the stack. So, we move the pointer
1321 // to the last local value to the beginning of the block, so that
1322 // all the values which have already been materialized,
1323 // appear after the call. It also makes sense to skip intrinsics
1324 // since they tend to be inlined.
1325 flushLocalValueMap();
1327 return lowerCall(Call);
1330 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1331 switch (II->getIntrinsicID()) {
1332 default:
1333 break;
1334 // At -O0 we don't care about the lifetime intrinsics.
1335 case Intrinsic::lifetime_start:
1336 case Intrinsic::lifetime_end:
1337 // The donothing intrinsic does, well, nothing.
1338 case Intrinsic::donothing:
1339 // Neither does the sideeffect intrinsic.
1340 case Intrinsic::sideeffect:
1341 // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1342 case Intrinsic::assume:
1343 return true;
1344 case Intrinsic::dbg_declare: {
1345 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1346 assert(DI->getVariable() && "Missing variable");
1347 if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1348 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1349 return true;
1352 const Value *Address = DI->getAddress();
1353 if (!Address || isa<UndefValue>(Address)) {
1354 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1355 return true;
1358 // Byval arguments with frame indices were already handled after argument
1359 // lowering and before isel.
1360 const auto *Arg =
1361 dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
1362 if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
1363 return true;
1365 Optional<MachineOperand> Op;
1366 if (unsigned Reg = lookUpRegForValue(Address))
1367 Op = MachineOperand::CreateReg(Reg, false);
1369 // If we have a VLA that has a "use" in a metadata node that's then used
1370 // here but it has no other uses, then we have a problem. E.g.,
1372 // int foo (const int *x) {
1373 // char a[*x];
1374 // return 0;
1375 // }
1377 // If we assign 'a' a vreg and fast isel later on has to use the selection
1378 // DAG isel, it will want to copy the value to the vreg. However, there are
1379 // no uses, which goes counter to what selection DAG isel expects.
1380 if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1381 (!isa<AllocaInst>(Address) ||
1382 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1383 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1384 false);
1386 if (Op) {
1387 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1388 "Expected inlined-at fields to agree");
1389 // A dbg.declare describes the address of a source variable, so lower it
1390 // into an indirect DBG_VALUE.
1391 auto *Expr = DI->getExpression();
1392 Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref});
1393 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1394 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ false,
1395 *Op, DI->getVariable(), Expr);
1396 } else {
1397 // We can't yet handle anything else here because it would require
1398 // generating code, thus altering codegen because of debug info.
1399 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1401 return true;
1403 case Intrinsic::dbg_value: {
1404 // This form of DBG_VALUE is target-independent.
1405 const DbgValueInst *DI = cast<DbgValueInst>(II);
1406 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1407 const Value *V = DI->getValue();
1408 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1409 "Expected inlined-at fields to agree");
1410 if (!V) {
1411 // Currently the optimizer can produce this; insert an undef to
1412 // help debugging. Probably the optimizer should not do this.
1413 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
1414 DI->getVariable(), DI->getExpression());
1415 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1416 if (CI->getBitWidth() > 64)
1417 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1418 .addCImm(CI)
1419 .addReg(0U)
1420 .addMetadata(DI->getVariable())
1421 .addMetadata(DI->getExpression());
1422 else
1423 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1424 .addImm(CI->getZExtValue())
1425 .addReg(0U)
1426 .addMetadata(DI->getVariable())
1427 .addMetadata(DI->getExpression());
1428 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1429 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1430 .addFPImm(CF)
1431 .addReg(0U)
1432 .addMetadata(DI->getVariable())
1433 .addMetadata(DI->getExpression());
1434 } else if (unsigned Reg = lookUpRegForValue(V)) {
1435 // FIXME: This does not handle register-indirect values at offset 0.
1436 bool IsIndirect = false;
1437 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1438 DI->getVariable(), DI->getExpression());
1439 } else {
1440 // We can't yet handle anything else here because it would require
1441 // generating code, thus altering codegen because of debug info.
1442 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1444 return true;
1446 case Intrinsic::dbg_label: {
1447 const DbgLabelInst *DI = cast<DbgLabelInst>(II);
1448 assert(DI->getLabel() && "Missing label");
1449 if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1450 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1451 return true;
1454 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1455 TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
1456 return true;
1458 case Intrinsic::objectsize:
1459 llvm_unreachable("llvm.objectsize.* should have been lowered already");
1461 case Intrinsic::is_constant:
1462 llvm_unreachable("llvm.is.constant.* should have been lowered already");
1464 case Intrinsic::launder_invariant_group:
1465 case Intrinsic::strip_invariant_group:
1466 case Intrinsic::expect: {
1467 unsigned ResultReg = getRegForValue(II->getArgOperand(0));
1468 if (!ResultReg)
1469 return false;
1470 updateValueMap(II, ResultReg);
1471 return true;
1473 case Intrinsic::experimental_stackmap:
1474 return selectStackmap(II);
1475 case Intrinsic::experimental_patchpoint_void:
1476 case Intrinsic::experimental_patchpoint_i64:
1477 return selectPatchpoint(II);
1479 case Intrinsic::xray_customevent:
1480 return selectXRayCustomEvent(II);
1481 case Intrinsic::xray_typedevent:
1482 return selectXRayTypedEvent(II);
1485 return fastLowerIntrinsicCall(II);
1488 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1489 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1490 EVT DstVT = TLI.getValueType(DL, I->getType());
1492 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1493 !DstVT.isSimple())
1494 // Unhandled type. Halt "fast" selection and bail.
1495 return false;
1497 // Check if the destination type is legal.
1498 if (!TLI.isTypeLegal(DstVT))
1499 return false;
1501 // Check if the source operand is legal.
1502 if (!TLI.isTypeLegal(SrcVT))
1503 return false;
1505 unsigned InputReg = getRegForValue(I->getOperand(0));
1506 if (!InputReg)
1507 // Unhandled operand. Halt "fast" selection and bail.
1508 return false;
1510 bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
1512 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1513 Opcode, InputReg, InputRegIsKill);
1514 if (!ResultReg)
1515 return false;
1517 updateValueMap(I, ResultReg);
1518 return true;
1521 bool FastISel::selectBitCast(const User *I) {
1522 // If the bitcast doesn't change the type, just use the operand value.
1523 if (I->getType() == I->getOperand(0)->getType()) {
1524 unsigned Reg = getRegForValue(I->getOperand(0));
1525 if (!Reg)
1526 return false;
1527 updateValueMap(I, Reg);
1528 return true;
1531 // Bitcasts of other values become reg-reg copies or BITCAST operators.
1532 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1533 EVT DstEVT = TLI.getValueType(DL, I->getType());
1534 if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1535 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1536 // Unhandled type. Halt "fast" selection and bail.
1537 return false;
1539 MVT SrcVT = SrcEVT.getSimpleVT();
1540 MVT DstVT = DstEVT.getSimpleVT();
1541 unsigned Op0 = getRegForValue(I->getOperand(0));
1542 if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1543 return false;
1544 bool Op0IsKill = hasTrivialKill(I->getOperand(0));
1546 // First, try to perform the bitcast by inserting a reg-reg copy.
1547 unsigned ResultReg = 0;
1548 if (SrcVT == DstVT) {
1549 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1550 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1551 // Don't attempt a cross-class copy. It will likely fail.
1552 if (SrcClass == DstClass) {
1553 ResultReg = createResultReg(DstClass);
1554 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1555 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1559 // If the reg-reg copy failed, select a BITCAST opcode.
1560 if (!ResultReg)
1561 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
1563 if (!ResultReg)
1564 return false;
1566 updateValueMap(I, ResultReg);
1567 return true;
1570 // Remove local value instructions starting from the instruction after
1571 // SavedLastLocalValue to the current function insert point.
1572 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1574 MachineInstr *CurLastLocalValue = getLastLocalValue();
1575 if (CurLastLocalValue != SavedLastLocalValue) {
1576 // Find the first local value instruction to be deleted.
1577 // This is the instruction after SavedLastLocalValue if it is non-NULL.
1578 // Otherwise it's the first instruction in the block.
1579 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1580 if (SavedLastLocalValue)
1581 ++FirstDeadInst;
1582 else
1583 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1584 setLastLocalValue(SavedLastLocalValue);
1585 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1589 bool FastISel::selectInstruction(const Instruction *I) {
1590 MachineInstr *SavedLastLocalValue = getLastLocalValue();
1591 // Just before the terminator instruction, insert instructions to
1592 // feed PHI nodes in successor blocks.
1593 if (I->isTerminator()) {
1594 if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1595 // PHI node handling may have generated local value instructions,
1596 // even though it failed to handle all PHI nodes.
1597 // We remove these instructions because SelectionDAGISel will generate
1598 // them again.
1599 removeDeadLocalValueCode(SavedLastLocalValue);
1600 return false;
1604 // FastISel does not handle any operand bundles except OB_funclet.
1605 if (ImmutableCallSite CS = ImmutableCallSite(I))
1606 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i)
1607 if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1608 return false;
1610 DbgLoc = I->getDebugLoc();
1612 SavedInsertPt = FuncInfo.InsertPt;
1614 if (const auto *Call = dyn_cast<CallInst>(I)) {
1615 const Function *F = Call->getCalledFunction();
1616 LibFunc Func;
1618 // As a special case, don't handle calls to builtin library functions that
1619 // may be translated directly to target instructions.
1620 if (F && !F->hasLocalLinkage() && F->hasName() &&
1621 LibInfo->getLibFunc(F->getName(), Func) &&
1622 LibInfo->hasOptimizedCodeGen(Func))
1623 return false;
1625 // Don't handle Intrinsic::trap if a trap function is specified.
1626 if (F && F->getIntrinsicID() == Intrinsic::trap &&
1627 Call->hasFnAttr("trap-func-name"))
1628 return false;
1631 // First, try doing target-independent selection.
1632 if (!SkipTargetIndependentISel) {
1633 if (selectOperator(I, I->getOpcode())) {
1634 ++NumFastIselSuccessIndependent;
1635 DbgLoc = DebugLoc();
1636 return true;
1638 // Remove dead code.
1639 recomputeInsertPt();
1640 if (SavedInsertPt != FuncInfo.InsertPt)
1641 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1642 SavedInsertPt = FuncInfo.InsertPt;
1644 // Next, try calling the target to attempt to handle the instruction.
1645 if (fastSelectInstruction(I)) {
1646 ++NumFastIselSuccessTarget;
1647 DbgLoc = DebugLoc();
1648 return true;
1650 // Remove dead code.
1651 recomputeInsertPt();
1652 if (SavedInsertPt != FuncInfo.InsertPt)
1653 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1655 DbgLoc = DebugLoc();
1656 // Undo phi node updates, because they will be added again by SelectionDAG.
1657 if (I->isTerminator()) {
1658 // PHI node handling may have generated local value instructions.
1659 // We remove them because SelectionDAGISel will generate them again.
1660 removeDeadLocalValueCode(SavedLastLocalValue);
1661 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1663 return false;
1666 /// Emit an unconditional branch to the given block, unless it is the immediate
1667 /// (fall-through) successor, and update the CFG.
1668 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1669 const DebugLoc &DbgLoc) {
1670 if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 &&
1671 FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1672 // For more accurate line information if this is the only non-debug
1673 // instruction in the block then emit it, otherwise we have the
1674 // unconditional fall-through case, which needs no instructions.
1675 } else {
1676 // The unconditional branch case.
1677 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1678 SmallVector<MachineOperand, 0>(), DbgLoc);
1680 if (FuncInfo.BPI) {
1681 auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1682 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1683 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1684 } else
1685 FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1688 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1689 MachineBasicBlock *TrueMBB,
1690 MachineBasicBlock *FalseMBB) {
1691 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1692 // happen in degenerate IR and MachineIR forbids to have a block twice in the
1693 // successor/predecessor lists.
1694 if (TrueMBB != FalseMBB) {
1695 if (FuncInfo.BPI) {
1696 auto BranchProbability =
1697 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1698 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1699 } else
1700 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1703 fastEmitBranch(FalseMBB, DbgLoc);
1706 /// Emit an FNeg operation.
1707 bool FastISel::selectFNeg(const User *I, const Value *In) {
1708 unsigned OpReg = getRegForValue(In);
1709 if (!OpReg)
1710 return false;
1711 bool OpRegIsKill = hasTrivialKill(In);
1713 // If the target has ISD::FNEG, use it.
1714 EVT VT = TLI.getValueType(DL, I->getType());
1715 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1716 OpReg, OpRegIsKill);
1717 if (ResultReg) {
1718 updateValueMap(I, ResultReg);
1719 return true;
1722 // Bitcast the value to integer, twiddle the sign bit with xor,
1723 // and then bitcast it back to floating-point.
1724 if (VT.getSizeInBits() > 64)
1725 return false;
1726 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1727 if (!TLI.isTypeLegal(IntVT))
1728 return false;
1730 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1731 ISD::BITCAST, OpReg, OpRegIsKill);
1732 if (!IntReg)
1733 return false;
1735 unsigned IntResultReg = fastEmit_ri_(
1736 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
1737 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1738 if (!IntResultReg)
1739 return false;
1741 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1742 IntResultReg, /*IsKill=*/true);
1743 if (!ResultReg)
1744 return false;
1746 updateValueMap(I, ResultReg);
1747 return true;
1750 bool FastISel::selectExtractValue(const User *U) {
1751 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1752 if (!EVI)
1753 return false;
1755 // Make sure we only try to handle extracts with a legal result. But also
1756 // allow i1 because it's easy.
1757 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1758 if (!RealVT.isSimple())
1759 return false;
1760 MVT VT = RealVT.getSimpleVT();
1761 if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1762 return false;
1764 const Value *Op0 = EVI->getOperand(0);
1765 Type *AggTy = Op0->getType();
1767 // Get the base result register.
1768 unsigned ResultReg;
1769 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
1770 if (I != FuncInfo.ValueMap.end())
1771 ResultReg = I->second;
1772 else if (isa<Instruction>(Op0))
1773 ResultReg = FuncInfo.InitializeRegForValue(Op0);
1774 else
1775 return false; // fast-isel can't handle aggregate constants at the moment
1777 // Get the actual result register, which is an offset from the base register.
1778 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1780 SmallVector<EVT, 4> AggValueVTs;
1781 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1783 for (unsigned i = 0; i < VTIndex; i++)
1784 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1786 updateValueMap(EVI, ResultReg);
1787 return true;
1790 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1791 switch (Opcode) {
1792 case Instruction::Add:
1793 return selectBinaryOp(I, ISD::ADD);
1794 case Instruction::FAdd:
1795 return selectBinaryOp(I, ISD::FADD);
1796 case Instruction::Sub:
1797 return selectBinaryOp(I, ISD::SUB);
1798 case Instruction::FSub: {
1799 // FNeg is currently represented in LLVM IR as a special case of FSub.
1800 Value *X;
1801 if (match(I, m_FNeg(m_Value(X))))
1802 return selectFNeg(I, X);
1803 return selectBinaryOp(I, ISD::FSUB);
1805 case Instruction::Mul:
1806 return selectBinaryOp(I, ISD::MUL);
1807 case Instruction::FMul:
1808 return selectBinaryOp(I, ISD::FMUL);
1809 case Instruction::SDiv:
1810 return selectBinaryOp(I, ISD::SDIV);
1811 case Instruction::UDiv:
1812 return selectBinaryOp(I, ISD::UDIV);
1813 case Instruction::FDiv:
1814 return selectBinaryOp(I, ISD::FDIV);
1815 case Instruction::SRem:
1816 return selectBinaryOp(I, ISD::SREM);
1817 case Instruction::URem:
1818 return selectBinaryOp(I, ISD::UREM);
1819 case Instruction::FRem:
1820 return selectBinaryOp(I, ISD::FREM);
1821 case Instruction::Shl:
1822 return selectBinaryOp(I, ISD::SHL);
1823 case Instruction::LShr:
1824 return selectBinaryOp(I, ISD::SRL);
1825 case Instruction::AShr:
1826 return selectBinaryOp(I, ISD::SRA);
1827 case Instruction::And:
1828 return selectBinaryOp(I, ISD::AND);
1829 case Instruction::Or:
1830 return selectBinaryOp(I, ISD::OR);
1831 case Instruction::Xor:
1832 return selectBinaryOp(I, ISD::XOR);
1834 case Instruction::FNeg:
1835 return selectFNeg(I, I->getOperand(0));
1837 case Instruction::GetElementPtr:
1838 return selectGetElementPtr(I);
1840 case Instruction::Br: {
1841 const BranchInst *BI = cast<BranchInst>(I);
1843 if (BI->isUnconditional()) {
1844 const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1845 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1846 fastEmitBranch(MSucc, BI->getDebugLoc());
1847 return true;
1850 // Conditional branches are not handed yet.
1851 // Halt "fast" selection and bail.
1852 return false;
1855 case Instruction::Unreachable:
1856 if (TM.Options.TrapUnreachable)
1857 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1858 else
1859 return true;
1861 case Instruction::Alloca:
1862 // FunctionLowering has the static-sized case covered.
1863 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1864 return true;
1866 // Dynamic-sized alloca is not handled yet.
1867 return false;
1869 case Instruction::Call:
1870 // On AIX, call lowering uses the DAG-ISEL path currently so that the
1871 // callee of the direct function call instruction will be mapped to the
1872 // symbol for the function's entry point, which is distinct from the
1873 // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1874 // name is the C-linkage name of the source level function.
1875 if (TM.getTargetTriple().isOSAIX())
1876 return false;
1877 return selectCall(I);
1879 case Instruction::BitCast:
1880 return selectBitCast(I);
1882 case Instruction::FPToSI:
1883 return selectCast(I, ISD::FP_TO_SINT);
1884 case Instruction::ZExt:
1885 return selectCast(I, ISD::ZERO_EXTEND);
1886 case Instruction::SExt:
1887 return selectCast(I, ISD::SIGN_EXTEND);
1888 case Instruction::Trunc:
1889 return selectCast(I, ISD::TRUNCATE);
1890 case Instruction::SIToFP:
1891 return selectCast(I, ISD::SINT_TO_FP);
1893 case Instruction::IntToPtr: // Deliberate fall-through.
1894 case Instruction::PtrToInt: {
1895 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1896 EVT DstVT = TLI.getValueType(DL, I->getType());
1897 if (DstVT.bitsGT(SrcVT))
1898 return selectCast(I, ISD::ZERO_EXTEND);
1899 if (DstVT.bitsLT(SrcVT))
1900 return selectCast(I, ISD::TRUNCATE);
1901 unsigned Reg = getRegForValue(I->getOperand(0));
1902 if (!Reg)
1903 return false;
1904 updateValueMap(I, Reg);
1905 return true;
1908 case Instruction::ExtractValue:
1909 return selectExtractValue(I);
1911 case Instruction::PHI:
1912 llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1914 default:
1915 // Unhandled instruction. Halt "fast" selection and bail.
1916 return false;
1920 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1921 const TargetLibraryInfo *LibInfo,
1922 bool SkipTargetIndependentISel)
1923 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1924 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1925 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1926 TII(*MF->getSubtarget().getInstrInfo()),
1927 TLI(*MF->getSubtarget().getTargetLowering()),
1928 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1929 SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1931 FastISel::~FastISel() = default;
1933 bool FastISel::fastLowerArguments() { return false; }
1935 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1937 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1938 return false;
1941 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1943 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
1944 bool /*Op0IsKill*/) {
1945 return 0;
1948 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1949 bool /*Op0IsKill*/, unsigned /*Op1*/,
1950 bool /*Op1IsKill*/) {
1951 return 0;
1954 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1955 return 0;
1958 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1959 const ConstantFP * /*FPImm*/) {
1960 return 0;
1963 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1964 bool /*Op0IsKill*/, uint64_t /*Imm*/) {
1965 return 0;
1968 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1969 /// instruction with an immediate operand using fastEmit_ri.
1970 /// If that fails, it materializes the immediate into a register and try
1971 /// fastEmit_rr instead.
1972 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1973 bool Op0IsKill, uint64_t Imm, MVT ImmType) {
1974 // If this is a multiply by a power of two, emit this as a shift left.
1975 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1976 Opcode = ISD::SHL;
1977 Imm = Log2_64(Imm);
1978 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1979 // div x, 8 -> srl x, 3
1980 Opcode = ISD::SRL;
1981 Imm = Log2_64(Imm);
1984 // Horrible hack (to be removed), check to make sure shift amounts are
1985 // in-range.
1986 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1987 Imm >= VT.getSizeInBits())
1988 return 0;
1990 // First check if immediate type is legal. If not, we can't use the ri form.
1991 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1992 if (ResultReg)
1993 return ResultReg;
1994 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1995 bool IsImmKill = true;
1996 if (!MaterialReg) {
1997 // This is a bit ugly/slow, but failing here means falling out of
1998 // fast-isel, which would be very slow.
1999 IntegerType *ITy =
2000 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
2001 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
2002 if (!MaterialReg)
2003 return 0;
2004 // FIXME: If the materialized register here has no uses yet then this
2005 // will be the first use and we should be able to mark it as killed.
2006 // However, the local value area for materialising constant expressions
2007 // grows down, not up, which means that any constant expressions we generate
2008 // later which also use 'Imm' could be after this instruction and therefore
2009 // after this kill.
2010 IsImmKill = false;
2012 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill);
2015 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
2016 return MRI.createVirtualRegister(RC);
2019 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
2020 unsigned OpNum) {
2021 if (Register::isVirtualRegister(Op)) {
2022 const TargetRegisterClass *RegClass =
2023 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
2024 if (!MRI.constrainRegClass(Op, RegClass)) {
2025 // If it's not legal to COPY between the register classes, something
2026 // has gone very wrong before we got here.
2027 unsigned NewOp = createResultReg(RegClass);
2028 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2029 TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
2030 return NewOp;
2033 return Op;
2036 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
2037 const TargetRegisterClass *RC) {
2038 unsigned ResultReg = createResultReg(RC);
2039 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2041 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
2042 return ResultReg;
2045 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2046 const TargetRegisterClass *RC, unsigned Op0,
2047 bool Op0IsKill) {
2048 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2050 unsigned ResultReg = createResultReg(RC);
2051 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2053 if (II.getNumDefs() >= 1)
2054 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2055 .addReg(Op0, getKillRegState(Op0IsKill));
2056 else {
2057 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2058 .addReg(Op0, getKillRegState(Op0IsKill));
2059 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2060 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2063 return ResultReg;
2066 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2067 const TargetRegisterClass *RC, unsigned Op0,
2068 bool Op0IsKill, unsigned Op1,
2069 bool Op1IsKill) {
2070 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2072 unsigned ResultReg = createResultReg(RC);
2073 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2074 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2076 if (II.getNumDefs() >= 1)
2077 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2078 .addReg(Op0, getKillRegState(Op0IsKill))
2079 .addReg(Op1, getKillRegState(Op1IsKill));
2080 else {
2081 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2082 .addReg(Op0, getKillRegState(Op0IsKill))
2083 .addReg(Op1, getKillRegState(Op1IsKill));
2084 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2085 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2087 return ResultReg;
2090 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
2091 const TargetRegisterClass *RC, unsigned Op0,
2092 bool Op0IsKill, unsigned Op1,
2093 bool Op1IsKill, unsigned Op2,
2094 bool Op2IsKill) {
2095 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2097 unsigned ResultReg = createResultReg(RC);
2098 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2099 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2100 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
2102 if (II.getNumDefs() >= 1)
2103 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2104 .addReg(Op0, getKillRegState(Op0IsKill))
2105 .addReg(Op1, getKillRegState(Op1IsKill))
2106 .addReg(Op2, getKillRegState(Op2IsKill));
2107 else {
2108 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2109 .addReg(Op0, getKillRegState(Op0IsKill))
2110 .addReg(Op1, getKillRegState(Op1IsKill))
2111 .addReg(Op2, getKillRegState(Op2IsKill));
2112 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2113 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2115 return ResultReg;
2118 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2119 const TargetRegisterClass *RC, unsigned Op0,
2120 bool Op0IsKill, uint64_t Imm) {
2121 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2123 unsigned ResultReg = createResultReg(RC);
2124 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2126 if (II.getNumDefs() >= 1)
2127 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2128 .addReg(Op0, getKillRegState(Op0IsKill))
2129 .addImm(Imm);
2130 else {
2131 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2132 .addReg(Op0, getKillRegState(Op0IsKill))
2133 .addImm(Imm);
2134 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2135 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2137 return ResultReg;
2140 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2141 const TargetRegisterClass *RC, unsigned Op0,
2142 bool Op0IsKill, uint64_t Imm1,
2143 uint64_t Imm2) {
2144 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2146 unsigned ResultReg = createResultReg(RC);
2147 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2149 if (II.getNumDefs() >= 1)
2150 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2151 .addReg(Op0, getKillRegState(Op0IsKill))
2152 .addImm(Imm1)
2153 .addImm(Imm2);
2154 else {
2155 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2156 .addReg(Op0, getKillRegState(Op0IsKill))
2157 .addImm(Imm1)
2158 .addImm(Imm2);
2159 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2160 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2162 return ResultReg;
2165 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2166 const TargetRegisterClass *RC,
2167 const ConstantFP *FPImm) {
2168 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2170 unsigned ResultReg = createResultReg(RC);
2172 if (II.getNumDefs() >= 1)
2173 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2174 .addFPImm(FPImm);
2175 else {
2176 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2177 .addFPImm(FPImm);
2178 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2179 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2181 return ResultReg;
2184 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2185 const TargetRegisterClass *RC, unsigned Op0,
2186 bool Op0IsKill, unsigned Op1,
2187 bool Op1IsKill, uint64_t Imm) {
2188 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2190 unsigned ResultReg = createResultReg(RC);
2191 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2192 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2194 if (II.getNumDefs() >= 1)
2195 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2196 .addReg(Op0, getKillRegState(Op0IsKill))
2197 .addReg(Op1, getKillRegState(Op1IsKill))
2198 .addImm(Imm);
2199 else {
2200 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2201 .addReg(Op0, getKillRegState(Op0IsKill))
2202 .addReg(Op1, getKillRegState(Op1IsKill))
2203 .addImm(Imm);
2204 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2205 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2207 return ResultReg;
2210 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2211 const TargetRegisterClass *RC, uint64_t Imm) {
2212 unsigned ResultReg = createResultReg(RC);
2213 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2215 if (II.getNumDefs() >= 1)
2216 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2217 .addImm(Imm);
2218 else {
2219 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
2220 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2221 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2223 return ResultReg;
2226 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2227 bool Op0IsKill, uint32_t Idx) {
2228 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2229 assert(Register::isVirtualRegister(Op0) &&
2230 "Cannot yet extract from physregs");
2231 const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2232 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2233 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
2234 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
2235 return ResultReg;
2238 /// Emit MachineInstrs to compute the value of Op with all but the least
2239 /// significant bit set to zero.
2240 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
2241 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
2244 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2245 /// Emit code to ensure constants are copied into registers when needed.
2246 /// Remember the virtual registers that need to be added to the Machine PHI
2247 /// nodes as input. We cannot just directly add them, because expansion
2248 /// might result in multiple MBB's for one BB. As such, the start of the
2249 /// BB might correspond to a different MBB than the end.
2250 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2251 const Instruction *TI = LLVMBB->getTerminator();
2253 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2254 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2256 // Check successor nodes' PHI nodes that expect a constant to be available
2257 // from this block.
2258 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2259 const BasicBlock *SuccBB = TI->getSuccessor(succ);
2260 if (!isa<PHINode>(SuccBB->begin()))
2261 continue;
2262 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2264 // If this terminator has multiple identical successors (common for
2265 // switches), only handle each succ once.
2266 if (!SuccsHandled.insert(SuccMBB).second)
2267 continue;
2269 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2271 // At this point we know that there is a 1-1 correspondence between LLVM PHI
2272 // nodes and Machine PHI nodes, but the incoming operands have not been
2273 // emitted yet.
2274 for (const PHINode &PN : SuccBB->phis()) {
2275 // Ignore dead phi's.
2276 if (PN.use_empty())
2277 continue;
2279 // Only handle legal types. Two interesting things to note here. First,
2280 // by bailing out early, we may leave behind some dead instructions,
2281 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2282 // own moves. Second, this check is necessary because FastISel doesn't
2283 // use CreateRegs to create registers, so it always creates
2284 // exactly one register for each non-void instruction.
2285 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2286 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2287 // Handle integer promotions, though, because they're common and easy.
2288 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2289 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2290 return false;
2294 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2296 // Set the DebugLoc for the copy. Prefer the location of the operand
2297 // if there is one; use the location of the PHI otherwise.
2298 DbgLoc = PN.getDebugLoc();
2299 if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2300 DbgLoc = Inst->getDebugLoc();
2302 unsigned Reg = getRegForValue(PHIOp);
2303 if (!Reg) {
2304 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2305 return false;
2307 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2308 DbgLoc = DebugLoc();
2312 return true;
2315 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2316 assert(LI->hasOneUse() &&
2317 "tryToFoldLoad expected a LoadInst with a single use");
2318 // We know that the load has a single use, but don't know what it is. If it
2319 // isn't one of the folded instructions, then we can't succeed here. Handle
2320 // this by scanning the single-use users of the load until we get to FoldInst.
2321 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2323 const Instruction *TheUser = LI->user_back();
2324 while (TheUser != FoldInst && // Scan up until we find FoldInst.
2325 // Stay in the right block.
2326 TheUser->getParent() == FoldInst->getParent() &&
2327 --MaxUsers) { // Don't scan too far.
2328 // If there are multiple or no uses of this instruction, then bail out.
2329 if (!TheUser->hasOneUse())
2330 return false;
2332 TheUser = TheUser->user_back();
2335 // If we didn't find the fold instruction, then we failed to collapse the
2336 // sequence.
2337 if (TheUser != FoldInst)
2338 return false;
2340 // Don't try to fold volatile loads. Target has to deal with alignment
2341 // constraints.
2342 if (LI->isVolatile())
2343 return false;
2345 // Figure out which vreg this is going into. If there is no assigned vreg yet
2346 // then there actually was no reference to it. Perhaps the load is referenced
2347 // by a dead instruction.
2348 unsigned LoadReg = getRegForValue(LI);
2349 if (!LoadReg)
2350 return false;
2352 // We can't fold if this vreg has no uses or more than one use. Multiple uses
2353 // may mean that the instruction got lowered to multiple MIs, or the use of
2354 // the loaded value ended up being multiple operands of the result.
2355 if (!MRI.hasOneUse(LoadReg))
2356 return false;
2358 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2359 MachineInstr *User = RI->getParent();
2361 // Set the insertion point properly. Folding the load can cause generation of
2362 // other random instructions (like sign extends) for addressing modes; make
2363 // sure they get inserted in a logical place before the new instruction.
2364 FuncInfo.InsertPt = User;
2365 FuncInfo.MBB = User->getParent();
2367 // Ask the target to try folding the load.
2368 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2371 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2372 // Must be an add.
2373 if (!isa<AddOperator>(Add))
2374 return false;
2375 // Type size needs to match.
2376 if (DL.getTypeSizeInBits(GEP->getType()) !=
2377 DL.getTypeSizeInBits(Add->getType()))
2378 return false;
2379 // Must be in the same basic block.
2380 if (isa<Instruction>(Add) &&
2381 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2382 return false;
2383 // Must have a constant operand.
2384 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2387 MachineMemOperand *
2388 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2389 const Value *Ptr;
2390 Type *ValTy;
2391 unsigned Alignment;
2392 MachineMemOperand::Flags Flags;
2393 bool IsVolatile;
2395 if (const auto *LI = dyn_cast<LoadInst>(I)) {
2396 Alignment = LI->getAlignment();
2397 IsVolatile = LI->isVolatile();
2398 Flags = MachineMemOperand::MOLoad;
2399 Ptr = LI->getPointerOperand();
2400 ValTy = LI->getType();
2401 } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2402 Alignment = SI->getAlignment();
2403 IsVolatile = SI->isVolatile();
2404 Flags = MachineMemOperand::MOStore;
2405 Ptr = SI->getPointerOperand();
2406 ValTy = SI->getValueOperand()->getType();
2407 } else
2408 return nullptr;
2410 bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
2411 bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
2412 bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
2413 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2415 AAMDNodes AAInfo;
2416 I->getAAMetadata(AAInfo);
2418 if (Alignment == 0) // Ensure that codegen never sees alignment 0.
2419 Alignment = DL.getABITypeAlignment(ValTy);
2421 unsigned Size = DL.getTypeStoreSize(ValTy);
2423 if (IsVolatile)
2424 Flags |= MachineMemOperand::MOVolatile;
2425 if (IsNonTemporal)
2426 Flags |= MachineMemOperand::MONonTemporal;
2427 if (IsDereferenceable)
2428 Flags |= MachineMemOperand::MODereferenceable;
2429 if (IsInvariant)
2430 Flags |= MachineMemOperand::MOInvariant;
2432 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2433 Alignment, AAInfo, Ranges);
2436 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2437 // If both operands are the same, then try to optimize or fold the cmp.
2438 CmpInst::Predicate Predicate = CI->getPredicate();
2439 if (CI->getOperand(0) != CI->getOperand(1))
2440 return Predicate;
2442 switch (Predicate) {
2443 default: llvm_unreachable("Invalid predicate!");
2444 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2445 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break;
2446 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break;
2447 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break;
2448 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break;
2449 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break;
2450 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break;
2451 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break;
2452 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break;
2453 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break;
2454 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break;
2455 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
2456 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break;
2457 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
2458 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break;
2459 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break;
2461 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break;
2462 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break;
2463 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break;
2464 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
2465 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break;
2466 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
2467 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break;
2468 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break;
2469 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break;
2470 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break;
2473 return Predicate;