[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / CodeGen / SelectionDAG / SelectionDAGBuilder.h
blobbfcf30b430b6d41a567c5e3dca56e674d82b2882
1 //===- SelectionDAGBuilder.h - Selection-DAG building -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
14 #define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
16 #include "StatepointLowering.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/ISDOpcodes.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/SelectionDAGNodes.h"
26 #include "llvm/CodeGen/SwitchLoweringUtils.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/ValueTypes.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/DebugLoc.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Statepoint.h"
33 #include "llvm/Support/BranchProbability.h"
34 #include "llvm/Support/CodeGen.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MachineValueType.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 #include <utility>
41 #include <vector>
43 namespace llvm {
45 class AllocaInst;
46 class AtomicCmpXchgInst;
47 class AtomicRMWInst;
48 class BasicBlock;
49 class BranchInst;
50 class CallInst;
51 class CallBrInst;
52 class CatchPadInst;
53 class CatchReturnInst;
54 class CatchSwitchInst;
55 class CleanupPadInst;
56 class CleanupReturnInst;
57 class Constant;
58 class ConstantInt;
59 class ConstrainedFPIntrinsic;
60 class DbgValueInst;
61 class DataLayout;
62 class DIExpression;
63 class DILocalVariable;
64 class DILocation;
65 class FenceInst;
66 class FunctionLoweringInfo;
67 class GCFunctionInfo;
68 class GCRelocateInst;
69 class GCResultInst;
70 class IndirectBrInst;
71 class InvokeInst;
72 class LandingPadInst;
73 class LLVMContext;
74 class LoadInst;
75 class MachineBasicBlock;
76 class PHINode;
77 class ResumeInst;
78 class ReturnInst;
79 class SDDbgValue;
80 class StoreInst;
81 class SwiftErrorValueTracking;
82 class SwitchInst;
83 class TargetLibraryInfo;
84 class TargetMachine;
85 class Type;
86 class VAArgInst;
87 class UnreachableInst;
88 class Use;
89 class User;
90 class Value;
92 //===----------------------------------------------------------------------===//
93 /// SelectionDAGBuilder - This is the common target-independent lowering
94 /// implementation that is parameterized by a TargetLowering object.
95 ///
96 class SelectionDAGBuilder {
97 /// The current instruction being visited.
98 const Instruction *CurInst = nullptr;
100 DenseMap<const Value*, SDValue> NodeMap;
102 /// Maps argument value for unused arguments. This is used
103 /// to preserve debug information for incoming arguments.
104 DenseMap<const Value*, SDValue> UnusedArgNodeMap;
106 /// Helper type for DanglingDebugInfoMap.
107 class DanglingDebugInfo {
108 const DbgValueInst* DI = nullptr;
109 DebugLoc dl;
110 unsigned SDNodeOrder = 0;
112 public:
113 DanglingDebugInfo() = default;
114 DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO)
115 : DI(di), dl(std::move(DL)), SDNodeOrder(SDNO) {}
117 const DbgValueInst* getDI() { return DI; }
118 DebugLoc getdl() { return dl; }
119 unsigned getSDNodeOrder() { return SDNodeOrder; }
122 /// Helper type for DanglingDebugInfoMap.
123 typedef std::vector<DanglingDebugInfo> DanglingDebugInfoVector;
125 /// Keeps track of dbg_values for which we have not yet seen the referent.
126 /// We defer handling these until we do see it.
127 MapVector<const Value*, DanglingDebugInfoVector> DanglingDebugInfoMap;
129 public:
130 /// Loads are not emitted to the program immediately. We bunch them up and
131 /// then emit token factor nodes when possible. This allows us to get simple
132 /// disambiguation between loads without worrying about alias analysis.
133 SmallVector<SDValue, 8> PendingLoads;
135 /// State used while lowering a statepoint sequence (gc_statepoint,
136 /// gc_relocate, and gc_result). See StatepointLowering.hpp/cpp for details.
137 StatepointLoweringState StatepointLowering;
139 private:
140 /// CopyToReg nodes that copy values to virtual registers for export to other
141 /// blocks need to be emitted before any terminator instruction, but they have
142 /// no other ordering requirements. We bunch them up and the emit a single
143 /// tokenfactor for them just before terminator instructions.
144 SmallVector<SDValue, 8> PendingExports;
146 /// A unique monotonically increasing number used to order the SDNodes we
147 /// create.
148 unsigned SDNodeOrder;
150 /// Determine the rank by weight of CC in [First,Last]. If CC has more weight
151 /// than each cluster in the range, its rank is 0.
152 unsigned caseClusterRank(const SwitchCG::CaseCluster &CC,
153 SwitchCG::CaseClusterIt First,
154 SwitchCG::CaseClusterIt Last);
156 /// Emit comparison and split W into two subtrees.
157 void splitWorkItem(SwitchCG::SwitchWorkList &WorkList,
158 const SwitchCG::SwitchWorkListItem &W, Value *Cond,
159 MachineBasicBlock *SwitchMBB);
161 /// Lower W.
162 void lowerWorkItem(SwitchCG::SwitchWorkListItem W, Value *Cond,
163 MachineBasicBlock *SwitchMBB,
164 MachineBasicBlock *DefaultMBB);
166 /// Peel the top probability case if it exceeds the threshold
167 MachineBasicBlock *
168 peelDominantCaseCluster(const SwitchInst &SI,
169 SwitchCG::CaseClusterVector &Clusters,
170 BranchProbability &PeeledCaseProb);
172 /// A class which encapsulates all of the information needed to generate a
173 /// stack protector check and signals to isel via its state being initialized
174 /// that a stack protector needs to be generated.
176 /// *NOTE* The following is a high level documentation of SelectionDAG Stack
177 /// Protector Generation. The reason that it is placed here is for a lack of
178 /// other good places to stick it.
180 /// High Level Overview of SelectionDAG Stack Protector Generation:
182 /// Previously, generation of stack protectors was done exclusively in the
183 /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
184 /// splitting basic blocks at the IR level to create the success/failure basic
185 /// blocks in the tail of the basic block in question. As a result of this,
186 /// calls that would have qualified for the sibling call optimization were no
187 /// longer eligible for optimization since said calls were no longer right in
188 /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
189 /// instruction).
191 /// Then it was noticed that since the sibling call optimization causes the
192 /// callee to reuse the caller's stack, if we could delay the generation of
193 /// the stack protector check until later in CodeGen after the sibling call
194 /// decision was made, we get both the tail call optimization and the stack
195 /// protector check!
197 /// A few goals in solving this problem were:
199 /// 1. Preserve the architecture independence of stack protector generation.
201 /// 2. Preserve the normal IR level stack protector check for platforms like
202 /// OpenBSD for which we support platform-specific stack protector
203 /// generation.
205 /// The main problem that guided the present solution is that one can not
206 /// solve this problem in an architecture independent manner at the IR level
207 /// only. This is because:
209 /// 1. The decision on whether or not to perform a sibling call on certain
210 /// platforms (for instance i386) requires lower level information
211 /// related to available registers that can not be known at the IR level.
213 /// 2. Even if the previous point were not true, the decision on whether to
214 /// perform a tail call is done in LowerCallTo in SelectionDAG which
215 /// occurs after the Stack Protector Pass. As a result, one would need to
216 /// put the relevant callinst into the stack protector check success
217 /// basic block (where the return inst is placed) and then move it back
218 /// later at SelectionDAG/MI time before the stack protector check if the
219 /// tail call optimization failed. The MI level option was nixed
220 /// immediately since it would require platform-specific pattern
221 /// matching. The SelectionDAG level option was nixed because
222 /// SelectionDAG only processes one IR level basic block at a time
223 /// implying one could not create a DAG Combine to move the callinst.
225 /// To get around this problem a few things were realized:
227 /// 1. While one can not handle multiple IR level basic blocks at the
228 /// SelectionDAG Level, one can generate multiple machine basic blocks
229 /// for one IR level basic block. This is how we handle bit tests and
230 /// switches.
232 /// 2. At the MI level, tail calls are represented via a special return
233 /// MIInst called "tcreturn". Thus if we know the basic block in which we
234 /// wish to insert the stack protector check, we get the correct behavior
235 /// by always inserting the stack protector check right before the return
236 /// statement. This is a "magical transformation" since no matter where
237 /// the stack protector check intrinsic is, we always insert the stack
238 /// protector check code at the end of the BB.
240 /// Given the aforementioned constraints, the following solution was devised:
242 /// 1. On platforms that do not support SelectionDAG stack protector check
243 /// generation, allow for the normal IR level stack protector check
244 /// generation to continue.
246 /// 2. On platforms that do support SelectionDAG stack protector check
247 /// generation:
249 /// a. Use the IR level stack protector pass to decide if a stack
250 /// protector is required/which BB we insert the stack protector check
251 /// in by reusing the logic already therein. If we wish to generate a
252 /// stack protector check in a basic block, we place a special IR
253 /// intrinsic called llvm.stackprotectorcheck right before the BB's
254 /// returninst or if there is a callinst that could potentially be
255 /// sibling call optimized, before the call inst.
257 /// b. Then when a BB with said intrinsic is processed, we codegen the BB
258 /// normally via SelectBasicBlock. In said process, when we visit the
259 /// stack protector check, we do not actually emit anything into the
260 /// BB. Instead, we just initialize the stack protector descriptor
261 /// class (which involves stashing information/creating the success
262 /// mbbb and the failure mbb if we have not created one for this
263 /// function yet) and export the guard variable that we are going to
264 /// compare.
266 /// c. After we finish selecting the basic block, in FinishBasicBlock if
267 /// the StackProtectorDescriptor attached to the SelectionDAGBuilder is
268 /// initialized, we produce the validation code with one of these
269 /// techniques:
270 /// 1) with a call to a guard check function
271 /// 2) with inlined instrumentation
273 /// 1) We insert a call to the check function before the terminator.
275 /// 2) We first find a splice point in the parent basic block
276 /// before the terminator and then splice the terminator of said basic
277 /// block into the success basic block. Then we code-gen a new tail for
278 /// the parent basic block consisting of the two loads, the comparison,
279 /// and finally two branches to the success/failure basic blocks. We
280 /// conclude by code-gening the failure basic block if we have not
281 /// code-gened it already (all stack protector checks we generate in
282 /// the same function, use the same failure basic block).
283 class StackProtectorDescriptor {
284 public:
285 StackProtectorDescriptor() = default;
287 /// Returns true if all fields of the stack protector descriptor are
288 /// initialized implying that we should/are ready to emit a stack protector.
289 bool shouldEmitStackProtector() const {
290 return ParentMBB && SuccessMBB && FailureMBB;
293 bool shouldEmitFunctionBasedCheckStackProtector() const {
294 return ParentMBB && !SuccessMBB && !FailureMBB;
297 /// Initialize the stack protector descriptor structure for a new basic
298 /// block.
299 void initialize(const BasicBlock *BB, MachineBasicBlock *MBB,
300 bool FunctionBasedInstrumentation) {
301 // Make sure we are not initialized yet.
302 assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
303 "already initialized!");
304 ParentMBB = MBB;
305 if (!FunctionBasedInstrumentation) {
306 SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true);
307 FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB);
311 /// Reset state that changes when we handle different basic blocks.
313 /// This currently includes:
315 /// 1. The specific basic block we are generating a
316 /// stack protector for (ParentMBB).
318 /// 2. The successor machine basic block that will contain the tail of
319 /// parent mbb after we create the stack protector check (SuccessMBB). This
320 /// BB is visited only on stack protector check success.
321 void resetPerBBState() {
322 ParentMBB = nullptr;
323 SuccessMBB = nullptr;
326 /// Reset state that only changes when we switch functions.
328 /// This currently includes:
330 /// 1. FailureMBB since we reuse the failure code path for all stack
331 /// protector checks created in an individual function.
333 /// 2.The guard variable since the guard variable we are checking against is
334 /// always the same.
335 void resetPerFunctionState() {
336 FailureMBB = nullptr;
339 MachineBasicBlock *getParentMBB() { return ParentMBB; }
340 MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
341 MachineBasicBlock *getFailureMBB() { return FailureMBB; }
343 private:
344 /// The basic block for which we are generating the stack protector.
346 /// As a result of stack protector generation, we will splice the
347 /// terminators of this basic block into the successor mbb SuccessMBB and
348 /// replace it with a compare/branch to the successor mbbs
349 /// SuccessMBB/FailureMBB depending on whether or not the stack protector
350 /// was violated.
351 MachineBasicBlock *ParentMBB = nullptr;
353 /// A basic block visited on stack protector check success that contains the
354 /// terminators of ParentMBB.
355 MachineBasicBlock *SuccessMBB = nullptr;
357 /// This basic block visited on stack protector check failure that will
358 /// contain a call to __stack_chk_fail().
359 MachineBasicBlock *FailureMBB = nullptr;
361 /// Add a successor machine basic block to ParentMBB. If the successor mbb
362 /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
363 /// block will be created. Assign a large weight if IsLikely is true.
364 MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
365 MachineBasicBlock *ParentMBB,
366 bool IsLikely,
367 MachineBasicBlock *SuccMBB = nullptr);
370 private:
371 const TargetMachine &TM;
373 public:
374 /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling
375 /// nodes without a corresponding SDNode.
376 static const unsigned LowestSDNodeOrder = 1;
378 SelectionDAG &DAG;
379 const DataLayout *DL = nullptr;
380 AliasAnalysis *AA = nullptr;
381 const TargetLibraryInfo *LibInfo;
383 class SDAGSwitchLowering : public SwitchCG::SwitchLowering {
384 public:
385 SDAGSwitchLowering(SelectionDAGBuilder *sdb, FunctionLoweringInfo &funcinfo)
386 : SwitchCG::SwitchLowering(funcinfo), SDB(sdb) {}
388 virtual void addSuccessorWithProb(
389 MachineBasicBlock *Src, MachineBasicBlock *Dst,
390 BranchProbability Prob = BranchProbability::getUnknown()) override {
391 SDB->addSuccessorWithProb(Src, Dst, Prob);
394 private:
395 SelectionDAGBuilder *SDB;
398 std::unique_ptr<SDAGSwitchLowering> SL;
400 /// A StackProtectorDescriptor structure used to communicate stack protector
401 /// information in between SelectBasicBlock and FinishBasicBlock.
402 StackProtectorDescriptor SPDescriptor;
404 // Emit PHI-node-operand constants only once even if used by multiple
405 // PHI nodes.
406 DenseMap<const Constant *, unsigned> ConstantsOut;
408 /// Information about the function as a whole.
409 FunctionLoweringInfo &FuncInfo;
411 /// Information about the swifterror values used throughout the function.
412 SwiftErrorValueTracking &SwiftError;
414 /// Garbage collection metadata for the function.
415 GCFunctionInfo *GFI;
417 /// Map a landing pad to the call site indexes.
418 DenseMap<MachineBasicBlock *, SmallVector<unsigned, 4>> LPadToCallSiteMap;
420 /// This is set to true if a call in the current block has been translated as
421 /// a tail call. In this case, no subsequent DAG nodes should be created.
422 bool HasTailCall = false;
424 LLVMContext *Context;
426 SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
427 SwiftErrorValueTracking &swifterror, CodeGenOpt::Level ol)
428 : SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()), DAG(dag),
429 SL(std::make_unique<SDAGSwitchLowering>(this, funcinfo)), FuncInfo(funcinfo),
430 SwiftError(swifterror) {}
432 void init(GCFunctionInfo *gfi, AliasAnalysis *AA,
433 const TargetLibraryInfo *li);
435 /// Clear out the current SelectionDAG and the associated state and prepare
436 /// this SelectionDAGBuilder object to be used for a new block. This doesn't
437 /// clear out information about additional blocks that are needed to complete
438 /// switch lowering or PHI node updating; that information is cleared out as
439 /// it is consumed.
440 void clear();
442 /// Clear the dangling debug information map. This function is separated from
443 /// the clear so that debug information that is dangling in a basic block can
444 /// be properly resolved in a different basic block. This allows the
445 /// SelectionDAG to resolve dangling debug information attached to PHI nodes.
446 void clearDanglingDebugInfo();
448 /// Return the current virtual root of the Selection DAG, flushing any
449 /// PendingLoad items. This must be done before emitting a store or any other
450 /// node that may need to be ordered after any prior load instructions.
451 SDValue getRoot();
453 /// Similar to getRoot, but instead of flushing all the PendingLoad items,
454 /// flush all the PendingExports items. It is necessary to do this before
455 /// emitting a terminator instruction.
456 SDValue getControlRoot();
458 SDLoc getCurSDLoc() const {
459 return SDLoc(CurInst, SDNodeOrder);
462 DebugLoc getCurDebugLoc() const {
463 return CurInst ? CurInst->getDebugLoc() : DebugLoc();
466 void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
468 void visit(const Instruction &I);
470 void visit(unsigned Opcode, const User &I);
472 /// If there was virtual register allocated for the value V emit CopyFromReg
473 /// of the specified type Ty. Return empty SDValue() otherwise.
474 SDValue getCopyFromRegs(const Value *V, Type *Ty);
476 /// If we have dangling debug info that describes \p Variable, or an
477 /// overlapping part of variable considering the \p Expr, then this method
478 /// will drop that debug info as it isn't valid any longer.
479 void dropDanglingDebugInfo(const DILocalVariable *Variable,
480 const DIExpression *Expr);
482 /// If we saw an earlier dbg_value referring to V, generate the debug data
483 /// structures now that we've seen its definition.
484 void resolveDanglingDebugInfo(const Value *V, SDValue Val);
486 /// For the given dangling debuginfo record, perform last-ditch efforts to
487 /// resolve the debuginfo to something that is represented in this DAG. If
488 /// this cannot be done, produce an Undef debug value record.
489 void salvageUnresolvedDbgValue(DanglingDebugInfo &DDI);
491 /// For a given Value, attempt to create and record a SDDbgValue in the
492 /// SelectionDAG.
493 bool handleDebugValue(const Value *V, DILocalVariable *Var,
494 DIExpression *Expr, DebugLoc CurDL,
495 DebugLoc InstDL, unsigned Order);
497 /// Evict any dangling debug information, attempting to salvage it first.
498 void resolveOrClearDbgInfo();
500 SDValue getValue(const Value *V);
501 bool findValue(const Value *V) const;
503 /// Return the SDNode for the specified IR value if it exists.
504 SDNode *getNodeForIRValue(const Value *V) {
505 if (NodeMap.find(V) == NodeMap.end())
506 return nullptr;
507 return NodeMap[V].getNode();
510 SDValue getNonRegisterValue(const Value *V);
511 SDValue getValueImpl(const Value *V);
513 void setValue(const Value *V, SDValue NewN) {
514 SDValue &N = NodeMap[V];
515 assert(!N.getNode() && "Already set a value for this node!");
516 N = NewN;
519 void setUnusedArgValue(const Value *V, SDValue NewN) {
520 SDValue &N = UnusedArgNodeMap[V];
521 assert(!N.getNode() && "Already set a value for this node!");
522 N = NewN;
525 void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
526 MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
527 MachineBasicBlock *SwitchBB,
528 Instruction::BinaryOps Opc, BranchProbability TProb,
529 BranchProbability FProb, bool InvertCond);
530 void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
531 MachineBasicBlock *FBB,
532 MachineBasicBlock *CurBB,
533 MachineBasicBlock *SwitchBB,
534 BranchProbability TProb, BranchProbability FProb,
535 bool InvertCond);
536 bool ShouldEmitAsBranches(const std::vector<SwitchCG::CaseBlock> &Cases);
537 bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
538 void CopyToExportRegsIfNeeded(const Value *V);
539 void ExportFromCurrentBlock(const Value *V);
540 void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
541 const BasicBlock *EHPadBB = nullptr);
543 // Lower range metadata from 0 to N to assert zext to an integer of nearest
544 // floor power of two.
545 SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I,
546 SDValue Op);
548 void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI,
549 const CallBase *Call, unsigned ArgIdx,
550 unsigned NumArgs, SDValue Callee,
551 Type *ReturnTy, bool IsPatchPoint);
553 std::pair<SDValue, SDValue>
554 lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
555 const BasicBlock *EHPadBB = nullptr);
557 /// When an MBB was split during scheduling, update the
558 /// references that need to refer to the last resulting block.
559 void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
561 /// Describes a gc.statepoint or a gc.statepoint like thing for the purposes
562 /// of lowering into a STATEPOINT node.
563 struct StatepointLoweringInfo {
564 /// Bases[i] is the base pointer for Ptrs[i]. Together they denote the set
565 /// of gc pointers this STATEPOINT has to relocate.
566 SmallVector<const Value *, 16> Bases;
567 SmallVector<const Value *, 16> Ptrs;
569 /// The set of gc.relocate calls associated with this gc.statepoint.
570 SmallVector<const GCRelocateInst *, 16> GCRelocates;
572 /// The full list of gc arguments to the gc.statepoint being lowered.
573 ArrayRef<const Use> GCArgs;
575 /// The gc.statepoint instruction.
576 const Instruction *StatepointInstr = nullptr;
578 /// The list of gc transition arguments present in the gc.statepoint being
579 /// lowered.
580 ArrayRef<const Use> GCTransitionArgs;
582 /// The ID that the resulting STATEPOINT instruction has to report.
583 unsigned ID = -1;
585 /// Information regarding the underlying call instruction.
586 TargetLowering::CallLoweringInfo CLI;
588 /// The deoptimization state associated with this gc.statepoint call, if
589 /// any.
590 ArrayRef<const Use> DeoptState;
592 /// Flags associated with the meta arguments being lowered.
593 uint64_t StatepointFlags = -1;
595 /// The number of patchable bytes the call needs to get lowered into.
596 unsigned NumPatchBytes = -1;
598 /// The exception handling unwind destination, in case this represents an
599 /// invoke of gc.statepoint.
600 const BasicBlock *EHPadBB = nullptr;
602 explicit StatepointLoweringInfo(SelectionDAG &DAG) : CLI(DAG) {}
605 /// Lower \p SLI into a STATEPOINT instruction.
606 SDValue LowerAsSTATEPOINT(StatepointLoweringInfo &SI);
608 // This function is responsible for the whole statepoint lowering process.
609 // It uniformly handles invoke and call statepoints.
610 void LowerStatepoint(ImmutableStatepoint ISP,
611 const BasicBlock *EHPadBB = nullptr);
613 void LowerCallSiteWithDeoptBundle(const CallBase *Call, SDValue Callee,
614 const BasicBlock *EHPadBB);
616 void LowerDeoptimizeCall(const CallInst *CI);
617 void LowerDeoptimizingReturn();
619 void LowerCallSiteWithDeoptBundleImpl(const CallBase *Call, SDValue Callee,
620 const BasicBlock *EHPadBB,
621 bool VarArgDisallowed,
622 bool ForceVoidReturnTy);
624 /// Returns the type of FrameIndex and TargetFrameIndex nodes.
625 MVT getFrameIndexTy() {
626 return DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout());
629 private:
630 // Terminator instructions.
631 void visitRet(const ReturnInst &I);
632 void visitBr(const BranchInst &I);
633 void visitSwitch(const SwitchInst &I);
634 void visitIndirectBr(const IndirectBrInst &I);
635 void visitUnreachable(const UnreachableInst &I);
636 void visitCleanupRet(const CleanupReturnInst &I);
637 void visitCatchSwitch(const CatchSwitchInst &I);
638 void visitCatchRet(const CatchReturnInst &I);
639 void visitCatchPad(const CatchPadInst &I);
640 void visitCleanupPad(const CleanupPadInst &CPI);
642 BranchProbability getEdgeProbability(const MachineBasicBlock *Src,
643 const MachineBasicBlock *Dst) const;
644 void addSuccessorWithProb(
645 MachineBasicBlock *Src, MachineBasicBlock *Dst,
646 BranchProbability Prob = BranchProbability::getUnknown());
648 public:
649 void visitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB);
650 void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
651 MachineBasicBlock *ParentBB);
652 void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
653 void visitBitTestHeader(SwitchCG::BitTestBlock &B,
654 MachineBasicBlock *SwitchBB);
655 void visitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB,
656 BranchProbability BranchProbToNext, unsigned Reg,
657 SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB);
658 void visitJumpTable(SwitchCG::JumpTable &JT);
659 void visitJumpTableHeader(SwitchCG::JumpTable &JT,
660 SwitchCG::JumpTableHeader &JTH,
661 MachineBasicBlock *SwitchBB);
663 private:
664 // These all get lowered before this pass.
665 void visitInvoke(const InvokeInst &I);
666 void visitCallBr(const CallBrInst &I);
667 void visitResume(const ResumeInst &I);
669 void visitUnary(const User &I, unsigned Opcode);
670 void visitFNeg(const User &I) { visitUnary(I, ISD::FNEG); }
672 void visitBinary(const User &I, unsigned Opcode);
673 void visitShift(const User &I, unsigned Opcode);
674 void visitAdd(const User &I) { visitBinary(I, ISD::ADD); }
675 void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
676 void visitSub(const User &I) { visitBinary(I, ISD::SUB); }
677 void visitFSub(const User &I);
678 void visitMul(const User &I) { visitBinary(I, ISD::MUL); }
679 void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
680 void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
681 void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
682 void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
683 void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
684 void visitSDiv(const User &I);
685 void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
686 void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
687 void visitOr (const User &I) { visitBinary(I, ISD::OR); }
688 void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
689 void visitShl (const User &I) { visitShift(I, ISD::SHL); }
690 void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
691 void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
692 void visitICmp(const User &I);
693 void visitFCmp(const User &I);
694 // Visit the conversion instructions
695 void visitTrunc(const User &I);
696 void visitZExt(const User &I);
697 void visitSExt(const User &I);
698 void visitFPTrunc(const User &I);
699 void visitFPExt(const User &I);
700 void visitFPToUI(const User &I);
701 void visitFPToSI(const User &I);
702 void visitUIToFP(const User &I);
703 void visitSIToFP(const User &I);
704 void visitPtrToInt(const User &I);
705 void visitIntToPtr(const User &I);
706 void visitBitCast(const User &I);
707 void visitAddrSpaceCast(const User &I);
709 void visitExtractElement(const User &I);
710 void visitInsertElement(const User &I);
711 void visitShuffleVector(const User &I);
713 void visitExtractValue(const User &I);
714 void visitInsertValue(const User &I);
715 void visitLandingPad(const LandingPadInst &LP);
717 void visitGetElementPtr(const User &I);
718 void visitSelect(const User &I);
720 void visitAlloca(const AllocaInst &I);
721 void visitLoad(const LoadInst &I);
722 void visitStore(const StoreInst &I);
723 void visitMaskedLoad(const CallInst &I, bool IsExpanding = false);
724 void visitMaskedStore(const CallInst &I, bool IsCompressing = false);
725 void visitMaskedGather(const CallInst &I);
726 void visitMaskedScatter(const CallInst &I);
727 void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
728 void visitAtomicRMW(const AtomicRMWInst &I);
729 void visitFence(const FenceInst &I);
730 void visitPHI(const PHINode &I);
731 void visitCall(const CallInst &I);
732 bool visitMemCmpCall(const CallInst &I);
733 bool visitMemPCpyCall(const CallInst &I);
734 bool visitMemChrCall(const CallInst &I);
735 bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
736 bool visitStrCmpCall(const CallInst &I);
737 bool visitStrLenCall(const CallInst &I);
738 bool visitStrNLenCall(const CallInst &I);
739 bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
740 bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode);
741 void visitAtomicLoad(const LoadInst &I);
742 void visitAtomicStore(const StoreInst &I);
743 void visitLoadFromSwiftError(const LoadInst &I);
744 void visitStoreToSwiftError(const StoreInst &I);
746 void visitInlineAsm(ImmutableCallSite CS);
747 void visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
748 void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
749 void visitConstrainedFPIntrinsic(const ConstrainedFPIntrinsic &FPI);
751 void visitVAStart(const CallInst &I);
752 void visitVAArg(const VAArgInst &I);
753 void visitVAEnd(const CallInst &I);
754 void visitVACopy(const CallInst &I);
755 void visitStackmap(const CallInst &I);
756 void visitPatchpoint(ImmutableCallSite CS,
757 const BasicBlock *EHPadBB = nullptr);
759 // These two are implemented in StatepointLowering.cpp
760 void visitGCRelocate(const GCRelocateInst &Relocate);
761 void visitGCResult(const GCResultInst &I);
763 void visitVectorReduce(const CallInst &I, unsigned Intrinsic);
765 void visitUserOp1(const Instruction &I) {
766 llvm_unreachable("UserOp1 should not exist at instruction selection time!");
768 void visitUserOp2(const Instruction &I) {
769 llvm_unreachable("UserOp2 should not exist at instruction selection time!");
772 void processIntegerCallValue(const Instruction &I,
773 SDValue Value, bool IsSigned);
775 void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
777 void emitInlineAsmError(ImmutableCallSite CS, const Twine &Message);
779 /// If V is an function argument then create corresponding DBG_VALUE machine
780 /// instruction for it now. At the end of instruction selection, they will be
781 /// inserted to the entry BB.
782 bool EmitFuncArgumentDbgValue(const Value *V, DILocalVariable *Variable,
783 DIExpression *Expr, DILocation *DL,
784 bool IsDbgDeclare, const SDValue &N);
786 /// Return the next block after MBB, or nullptr if there is none.
787 MachineBasicBlock *NextBlock(MachineBasicBlock *MBB);
789 /// Update the DAG and DAG builder with the relevant information after
790 /// a new root node has been created which could be a tail call.
791 void updateDAGForMaybeTailCall(SDValue MaybeTC);
793 /// Return the appropriate SDDbgValue based on N.
794 SDDbgValue *getDbgValue(SDValue N, DILocalVariable *Variable,
795 DIExpression *Expr, const DebugLoc &dl,
796 unsigned DbgSDNodeOrder);
798 /// Lowers CallInst to an external symbol.
799 void lowerCallToExternalSymbol(const CallInst &I, const char *FunctionName);
802 /// This struct represents the registers (physical or virtual)
803 /// that a particular set of values is assigned, and the type information about
804 /// the value. The most common situation is to represent one value at a time,
805 /// but struct or array values are handled element-wise as multiple values. The
806 /// splitting of aggregates is performed recursively, so that we never have
807 /// aggregate-typed registers. The values at this point do not necessarily have
808 /// legal types, so each value may require one or more registers of some legal
809 /// type.
811 struct RegsForValue {
812 /// The value types of the values, which may not be legal, and
813 /// may need be promoted or synthesized from one or more registers.
814 SmallVector<EVT, 4> ValueVTs;
816 /// The value types of the registers. This is the same size as ValueVTs and it
817 /// records, for each value, what the type of the assigned register or
818 /// registers are. (Individual values are never synthesized from more than one
819 /// type of register.)
821 /// With virtual registers, the contents of RegVTs is redundant with TLI's
822 /// getRegisterType member function, however when with physical registers
823 /// it is necessary to have a separate record of the types.
824 SmallVector<MVT, 4> RegVTs;
826 /// This list holds the registers assigned to the values.
827 /// Each legal or promoted value requires one register, and each
828 /// expanded value requires multiple registers.
829 SmallVector<unsigned, 4> Regs;
831 /// This list holds the number of registers for each value.
832 SmallVector<unsigned, 4> RegCount;
834 /// Records if this value needs to be treated in an ABI dependant manner,
835 /// different to normal type legalization.
836 Optional<CallingConv::ID> CallConv;
838 RegsForValue() = default;
839 RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt, EVT valuevt,
840 Optional<CallingConv::ID> CC = None);
841 RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
842 const DataLayout &DL, unsigned Reg, Type *Ty,
843 Optional<CallingConv::ID> CC);
845 bool isABIMangled() const {
846 return CallConv.hasValue();
849 /// Add the specified values to this one.
850 void append(const RegsForValue &RHS) {
851 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
852 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
853 Regs.append(RHS.Regs.begin(), RHS.Regs.end());
854 RegCount.push_back(RHS.Regs.size());
857 /// Emit a series of CopyFromReg nodes that copies from this value and returns
858 /// the result as a ValueVTs value. This uses Chain/Flag as the input and
859 /// updates them for the output Chain/Flag. If the Flag pointer is NULL, no
860 /// flag is used.
861 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
862 const SDLoc &dl, SDValue &Chain, SDValue *Flag,
863 const Value *V = nullptr) const;
865 /// Emit a series of CopyToReg nodes that copies the specified value into the
866 /// registers specified by this object. This uses Chain/Flag as the input and
867 /// updates them for the output Chain/Flag. If the Flag pointer is nullptr, no
868 /// flag is used. If V is not nullptr, then it is used in printing better
869 /// diagnostic messages on error.
870 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl,
871 SDValue &Chain, SDValue *Flag, const Value *V = nullptr,
872 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;
874 /// Add this value to the specified inlineasm node operand list. This adds the
875 /// code marker, matching input operand index (if applicable), and includes
876 /// the number of values added into it.
877 void AddInlineAsmOperands(unsigned Code, bool HasMatching,
878 unsigned MatchingIdx, const SDLoc &dl,
879 SelectionDAG &DAG, std::vector<SDValue> &Ops) const;
881 /// Check if the total RegCount is greater than one.
882 bool occupiesMultipleRegs() const {
883 return std::accumulate(RegCount.begin(), RegCount.end(), 0) > 1;
886 /// Return a list of registers and their sizes.
887 SmallVector<std::pair<unsigned, unsigned>, 4> getRegsAndSizes() const;
890 } // end namespace llvm
892 #endif // LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H