[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / CodeGen / SelectionDAG / SelectionDAGISel.cpp
blob1f07a241a8242d37b135443dd6b71c5cfa535631
1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAGISel class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineMemOperand.h"
45 #include "llvm/CodeGen/MachineModuleInfo.h"
46 #include "llvm/CodeGen/MachineOperand.h"
47 #include "llvm/CodeGen/MachinePassRegistry.h"
48 #include "llvm/CodeGen/MachineRegisterInfo.h"
49 #include "llvm/CodeGen/SchedulerRegistry.h"
50 #include "llvm/CodeGen/SelectionDAG.h"
51 #include "llvm/CodeGen/SelectionDAGNodes.h"
52 #include "llvm/CodeGen/StackProtector.h"
53 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetLowering.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/CodeGen/ValueTypes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugInfoMetadata.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/IR/DiagnosticInfo.h"
65 #include "llvm/IR/Dominators.h"
66 #include "llvm/IR/Function.h"
67 #include "llvm/IR/InlineAsm.h"
68 #include "llvm/IR/InstIterator.h"
69 #include "llvm/IR/InstrTypes.h"
70 #include "llvm/IR/Instruction.h"
71 #include "llvm/IR/Instructions.h"
72 #include "llvm/IR/IntrinsicInst.h"
73 #include "llvm/IR/Intrinsics.h"
74 #include "llvm/IR/Metadata.h"
75 #include "llvm/IR/Type.h"
76 #include "llvm/IR/User.h"
77 #include "llvm/IR/Value.h"
78 #include "llvm/MC/MCInstrDesc.h"
79 #include "llvm/MC/MCRegisterInfo.h"
80 #include "llvm/Pass.h"
81 #include "llvm/Support/BranchProbability.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/CodeGen.h"
84 #include "llvm/Support/CommandLine.h"
85 #include "llvm/Support/Compiler.h"
86 #include "llvm/Support/Debug.h"
87 #include "llvm/Support/ErrorHandling.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/Timer.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetIntrinsicInfo.h"
93 #include "llvm/Target/TargetMachine.h"
94 #include "llvm/Target/TargetOptions.h"
95 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
96 #include <algorithm>
97 #include <cassert>
98 #include <cstdint>
99 #include <iterator>
100 #include <limits>
101 #include <memory>
102 #include <string>
103 #include <utility>
104 #include <vector>
106 using namespace llvm;
108 #define DEBUG_TYPE "isel"
110 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
111 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
112 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
113 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
114 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
115 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
116 STATISTIC(NumFastIselFailLowerArguments,
117 "Number of entry blocks where fast isel failed to lower arguments");
119 static cl::opt<int> EnableFastISelAbort(
120 "fast-isel-abort", cl::Hidden,
121 cl::desc("Enable abort calls when \"fast\" instruction selection "
122 "fails to lower an instruction: 0 disable the abort, 1 will "
123 "abort but for args, calls and terminators, 2 will also "
124 "abort for argument lowering, and 3 will never fallback "
125 "to SelectionDAG."));
127 static cl::opt<bool> EnableFastISelFallbackReport(
128 "fast-isel-report-on-fallback", cl::Hidden,
129 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
130 "falls back to SelectionDAG."));
132 static cl::opt<bool>
133 UseMBPI("use-mbpi",
134 cl::desc("use Machine Branch Probability Info"),
135 cl::init(true), cl::Hidden);
137 #ifndef NDEBUG
138 static cl::opt<std::string>
139 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
140 cl::desc("Only display the basic block whose name "
141 "matches this for all view-*-dags options"));
142 static cl::opt<bool>
143 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
144 cl::desc("Pop up a window to show dags before the first "
145 "dag combine pass"));
146 static cl::opt<bool>
147 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
148 cl::desc("Pop up a window to show dags before legalize types"));
149 static cl::opt<bool>
150 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
151 cl::desc("Pop up a window to show dags before legalize"));
152 static cl::opt<bool>
153 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
154 cl::desc("Pop up a window to show dags before the second "
155 "dag combine pass"));
156 static cl::opt<bool>
157 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
158 cl::desc("Pop up a window to show dags before the post legalize types"
159 " dag combine pass"));
160 static cl::opt<bool>
161 ViewISelDAGs("view-isel-dags", cl::Hidden,
162 cl::desc("Pop up a window to show isel dags as they are selected"));
163 static cl::opt<bool>
164 ViewSchedDAGs("view-sched-dags", cl::Hidden,
165 cl::desc("Pop up a window to show sched dags as they are processed"));
166 static cl::opt<bool>
167 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
168 cl::desc("Pop up a window to show SUnit dags after they are processed"));
169 #else
170 static const bool ViewDAGCombine1 = false,
171 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
172 ViewDAGCombine2 = false,
173 ViewDAGCombineLT = false,
174 ViewISelDAGs = false, ViewSchedDAGs = false,
175 ViewSUnitDAGs = false;
176 #endif
178 //===---------------------------------------------------------------------===//
180 /// RegisterScheduler class - Track the registration of instruction schedulers.
182 //===---------------------------------------------------------------------===//
183 MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
184 RegisterScheduler::Registry;
186 //===---------------------------------------------------------------------===//
188 /// ISHeuristic command line option for instruction schedulers.
190 //===---------------------------------------------------------------------===//
191 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
192 RegisterPassParser<RegisterScheduler>>
193 ISHeuristic("pre-RA-sched",
194 cl::init(&createDefaultScheduler), cl::Hidden,
195 cl::desc("Instruction schedulers available (before register"
196 " allocation):"));
198 static RegisterScheduler
199 defaultListDAGScheduler("default", "Best scheduler for the target",
200 createDefaultScheduler);
202 namespace llvm {
204 //===--------------------------------------------------------------------===//
205 /// This class is used by SelectionDAGISel to temporarily override
206 /// the optimization level on a per-function basis.
207 class OptLevelChanger {
208 SelectionDAGISel &IS;
209 CodeGenOpt::Level SavedOptLevel;
210 bool SavedFastISel;
212 public:
213 OptLevelChanger(SelectionDAGISel &ISel,
214 CodeGenOpt::Level NewOptLevel) : IS(ISel) {
215 SavedOptLevel = IS.OptLevel;
216 if (NewOptLevel == SavedOptLevel)
217 return;
218 IS.OptLevel = NewOptLevel;
219 IS.TM.setOptLevel(NewOptLevel);
220 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
221 << IS.MF->getFunction().getName() << "\n");
222 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
223 << NewOptLevel << "\n");
224 SavedFastISel = IS.TM.Options.EnableFastISel;
225 if (NewOptLevel == CodeGenOpt::None) {
226 IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
227 LLVM_DEBUG(
228 dbgs() << "\tFastISel is "
229 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
230 << "\n");
234 ~OptLevelChanger() {
235 if (IS.OptLevel == SavedOptLevel)
236 return;
237 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
238 << IS.MF->getFunction().getName() << "\n");
239 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
240 << SavedOptLevel << "\n");
241 IS.OptLevel = SavedOptLevel;
242 IS.TM.setOptLevel(SavedOptLevel);
243 IS.TM.setFastISel(SavedFastISel);
247 //===--------------------------------------------------------------------===//
248 /// createDefaultScheduler - This creates an instruction scheduler appropriate
249 /// for the target.
250 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
251 CodeGenOpt::Level OptLevel) {
252 const TargetLowering *TLI = IS->TLI;
253 const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
255 // Try first to see if the Target has its own way of selecting a scheduler
256 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
257 return SchedulerCtor(IS, OptLevel);
260 if (OptLevel == CodeGenOpt::None ||
261 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
262 TLI->getSchedulingPreference() == Sched::Source)
263 return createSourceListDAGScheduler(IS, OptLevel);
264 if (TLI->getSchedulingPreference() == Sched::RegPressure)
265 return createBURRListDAGScheduler(IS, OptLevel);
266 if (TLI->getSchedulingPreference() == Sched::Hybrid)
267 return createHybridListDAGScheduler(IS, OptLevel);
268 if (TLI->getSchedulingPreference() == Sched::VLIW)
269 return createVLIWDAGScheduler(IS, OptLevel);
270 assert(TLI->getSchedulingPreference() == Sched::ILP &&
271 "Unknown sched type!");
272 return createILPListDAGScheduler(IS, OptLevel);
275 } // end namespace llvm
277 // EmitInstrWithCustomInserter - This method should be implemented by targets
278 // that mark instructions with the 'usesCustomInserter' flag. These
279 // instructions are special in various ways, which require special support to
280 // insert. The specified MachineInstr is created but not inserted into any
281 // basic blocks, and this method is called to expand it into a sequence of
282 // instructions, potentially also creating new basic blocks and control flow.
283 // When new basic blocks are inserted and the edges from MBB to its successors
284 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
285 // DenseMap.
286 MachineBasicBlock *
287 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
288 MachineBasicBlock *MBB) const {
289 #ifndef NDEBUG
290 dbgs() << "If a target marks an instruction with "
291 "'usesCustomInserter', it must implement "
292 "TargetLowering::EmitInstrWithCustomInserter!";
293 #endif
294 llvm_unreachable(nullptr);
297 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
298 SDNode *Node) const {
299 assert(!MI.hasPostISelHook() &&
300 "If a target marks an instruction with 'hasPostISelHook', "
301 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
304 //===----------------------------------------------------------------------===//
305 // SelectionDAGISel code
306 //===----------------------------------------------------------------------===//
308 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
309 CodeGenOpt::Level OL) :
310 MachineFunctionPass(ID), TM(tm),
311 FuncInfo(new FunctionLoweringInfo()),
312 SwiftError(new SwiftErrorValueTracking()),
313 CurDAG(new SelectionDAG(tm, OL)),
314 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, *SwiftError, OL)),
315 AA(), GFI(),
316 OptLevel(OL),
317 DAGSize(0) {
318 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
319 initializeBranchProbabilityInfoWrapperPassPass(
320 *PassRegistry::getPassRegistry());
321 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
322 initializeTargetLibraryInfoWrapperPassPass(
323 *PassRegistry::getPassRegistry());
326 SelectionDAGISel::~SelectionDAGISel() {
327 delete SDB;
328 delete CurDAG;
329 delete FuncInfo;
330 delete SwiftError;
333 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
334 if (OptLevel != CodeGenOpt::None)
335 AU.addRequired<AAResultsWrapperPass>();
336 AU.addRequired<GCModuleInfo>();
337 AU.addRequired<StackProtector>();
338 AU.addPreserved<GCModuleInfo>();
339 AU.addRequired<TargetLibraryInfoWrapperPass>();
340 AU.addRequired<TargetTransformInfoWrapperPass>();
341 if (UseMBPI && OptLevel != CodeGenOpt::None)
342 AU.addRequired<BranchProbabilityInfoWrapperPass>();
343 MachineFunctionPass::getAnalysisUsage(AU);
346 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
347 /// may trap on it. In this case we have to split the edge so that the path
348 /// through the predecessor block that doesn't go to the phi block doesn't
349 /// execute the possibly trapping instruction. If available, we pass domtree
350 /// and loop info to be updated when we split critical edges. This is because
351 /// SelectionDAGISel preserves these analyses.
352 /// This is required for correctness, so it must be done at -O0.
354 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
355 LoopInfo *LI) {
356 // Loop for blocks with phi nodes.
357 for (BasicBlock &BB : Fn) {
358 PHINode *PN = dyn_cast<PHINode>(BB.begin());
359 if (!PN) continue;
361 ReprocessBlock:
362 // For each block with a PHI node, check to see if any of the input values
363 // are potentially trapping constant expressions. Constant expressions are
364 // the only potentially trapping value that can occur as the argument to a
365 // PHI.
366 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
367 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
368 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
369 if (!CE || !CE->canTrap()) continue;
371 // The only case we have to worry about is when the edge is critical.
372 // Since this block has a PHI Node, we assume it has multiple input
373 // edges: check to see if the pred has multiple successors.
374 BasicBlock *Pred = PN->getIncomingBlock(i);
375 if (Pred->getTerminator()->getNumSuccessors() == 1)
376 continue;
378 // Okay, we have to split this edge.
379 SplitCriticalEdge(
380 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
381 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
382 goto ReprocessBlock;
387 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
388 MachineModuleInfo &MMI) {
389 // Only needed for MSVC
390 if (!TT.isWindowsMSVCEnvironment())
391 return;
393 // If it's already set, nothing to do.
394 if (MMI.usesMSVCFloatingPoint())
395 return;
397 for (const Instruction &I : instructions(F)) {
398 if (I.getType()->isFPOrFPVectorTy()) {
399 MMI.setUsesMSVCFloatingPoint(true);
400 return;
402 for (const auto &Op : I.operands()) {
403 if (Op->getType()->isFPOrFPVectorTy()) {
404 MMI.setUsesMSVCFloatingPoint(true);
405 return;
411 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
412 // If we already selected that function, we do not need to run SDISel.
413 if (mf.getProperties().hasProperty(
414 MachineFunctionProperties::Property::Selected))
415 return false;
416 // Do some sanity-checking on the command-line options.
417 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
418 "-fast-isel-abort > 0 requires -fast-isel");
420 const Function &Fn = mf.getFunction();
421 MF = &mf;
423 // Reset the target options before resetting the optimization
424 // level below.
425 // FIXME: This is a horrible hack and should be processed via
426 // codegen looking at the optimization level explicitly when
427 // it wants to look at it.
428 TM.resetTargetOptions(Fn);
429 // Reset OptLevel to None for optnone functions.
430 CodeGenOpt::Level NewOptLevel = OptLevel;
431 if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
432 NewOptLevel = CodeGenOpt::None;
433 OptLevelChanger OLC(*this, NewOptLevel);
435 TII = MF->getSubtarget().getInstrInfo();
436 TLI = MF->getSubtarget().getTargetLowering();
437 RegInfo = &MF->getRegInfo();
438 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
439 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
440 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
441 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
442 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
443 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
444 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
446 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
448 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
450 CurDAG->init(*MF, *ORE, this, LibInfo,
451 getAnalysisIfAvailable<LegacyDivergenceAnalysis>());
452 FuncInfo->set(Fn, *MF, CurDAG);
453 SwiftError->setFunction(*MF);
455 // Now get the optional analyzes if we want to.
456 // This is based on the possibly changed OptLevel (after optnone is taken
457 // into account). That's unfortunate but OK because it just means we won't
458 // ask for passes that have been required anyway.
460 if (UseMBPI && OptLevel != CodeGenOpt::None)
461 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
462 else
463 FuncInfo->BPI = nullptr;
465 if (OptLevel != CodeGenOpt::None)
466 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
467 else
468 AA = nullptr;
470 SDB->init(GFI, AA, LibInfo);
472 MF->setHasInlineAsm(false);
474 FuncInfo->SplitCSR = false;
476 // We split CSR if the target supports it for the given function
477 // and the function has only return exits.
478 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
479 FuncInfo->SplitCSR = true;
481 // Collect all the return blocks.
482 for (const BasicBlock &BB : Fn) {
483 if (!succ_empty(&BB))
484 continue;
486 const Instruction *Term = BB.getTerminator();
487 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
488 continue;
490 // Bail out if the exit block is not Return nor Unreachable.
491 FuncInfo->SplitCSR = false;
492 break;
496 MachineBasicBlock *EntryMBB = &MF->front();
497 if (FuncInfo->SplitCSR)
498 // This performs initialization so lowering for SplitCSR will be correct.
499 TLI->initializeSplitCSR(EntryMBB);
501 SelectAllBasicBlocks(Fn);
502 if (FastISelFailed && EnableFastISelFallbackReport) {
503 DiagnosticInfoISelFallback DiagFallback(Fn);
504 Fn.getContext().diagnose(DiagFallback);
507 // Replace forward-declared registers with the registers containing
508 // the desired value.
509 // Note: it is important that this happens **before** the call to
510 // EmitLiveInCopies, since implementations can skip copies of unused
511 // registers. If we don't apply the reg fixups before, some registers may
512 // appear as unused and will be skipped, resulting in bad MI.
513 MachineRegisterInfo &MRI = MF->getRegInfo();
514 for (DenseMap<unsigned, unsigned>::iterator I = FuncInfo->RegFixups.begin(),
515 E = FuncInfo->RegFixups.end();
516 I != E; ++I) {
517 unsigned From = I->first;
518 unsigned To = I->second;
519 // If To is also scheduled to be replaced, find what its ultimate
520 // replacement is.
521 while (true) {
522 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
523 if (J == E)
524 break;
525 To = J->second;
527 // Make sure the new register has a sufficiently constrained register class.
528 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
529 MRI.constrainRegClass(To, MRI.getRegClass(From));
530 // Replace it.
532 // Replacing one register with another won't touch the kill flags.
533 // We need to conservatively clear the kill flags as a kill on the old
534 // register might dominate existing uses of the new register.
535 if (!MRI.use_empty(To))
536 MRI.clearKillFlags(From);
537 MRI.replaceRegWith(From, To);
540 // If the first basic block in the function has live ins that need to be
541 // copied into vregs, emit the copies into the top of the block before
542 // emitting the code for the block.
543 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
544 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
546 // Insert copies in the entry block and the return blocks.
547 if (FuncInfo->SplitCSR) {
548 SmallVector<MachineBasicBlock*, 4> Returns;
549 // Collect all the return blocks.
550 for (MachineBasicBlock &MBB : mf) {
551 if (!MBB.succ_empty())
552 continue;
554 MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
555 if (Term != MBB.end() && Term->isReturn()) {
556 Returns.push_back(&MBB);
557 continue;
560 TLI->insertCopiesSplitCSR(EntryMBB, Returns);
563 DenseMap<unsigned, unsigned> LiveInMap;
564 if (!FuncInfo->ArgDbgValues.empty())
565 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
566 if (LI.second)
567 LiveInMap.insert(LI);
569 // Insert DBG_VALUE instructions for function arguments to the entry block.
570 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
571 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
572 bool hasFI = MI->getOperand(0).isFI();
573 Register Reg =
574 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
575 if (Register::isPhysicalRegister(Reg))
576 EntryMBB->insert(EntryMBB->begin(), MI);
577 else {
578 MachineInstr *Def = RegInfo->getVRegDef(Reg);
579 if (Def) {
580 MachineBasicBlock::iterator InsertPos = Def;
581 // FIXME: VR def may not be in entry block.
582 Def->getParent()->insert(std::next(InsertPos), MI);
583 } else
584 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
585 << Register::virtReg2Index(Reg) << "\n");
588 // If Reg is live-in then update debug info to track its copy in a vreg.
589 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
590 if (LDI != LiveInMap.end()) {
591 assert(!hasFI && "There's no handling of frame pointer updating here yet "
592 "- add if needed");
593 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
594 MachineBasicBlock::iterator InsertPos = Def;
595 const MDNode *Variable = MI->getDebugVariable();
596 const MDNode *Expr = MI->getDebugExpression();
597 DebugLoc DL = MI->getDebugLoc();
598 bool IsIndirect = MI->isIndirectDebugValue();
599 if (IsIndirect)
600 assert(MI->getOperand(1).getImm() == 0 &&
601 "DBG_VALUE with nonzero offset");
602 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
603 "Expected inlined-at fields to agree");
604 // Def is never a terminator here, so it is ok to increment InsertPos.
605 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
606 IsIndirect, LDI->second, Variable, Expr);
608 // If this vreg is directly copied into an exported register then
609 // that COPY instructions also need DBG_VALUE, if it is the only
610 // user of LDI->second.
611 MachineInstr *CopyUseMI = nullptr;
612 for (MachineRegisterInfo::use_instr_iterator
613 UI = RegInfo->use_instr_begin(LDI->second),
614 E = RegInfo->use_instr_end(); UI != E; ) {
615 MachineInstr *UseMI = &*(UI++);
616 if (UseMI->isDebugValue()) continue;
617 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
618 CopyUseMI = UseMI; continue;
620 // Otherwise this is another use or second copy use.
621 CopyUseMI = nullptr; break;
623 if (CopyUseMI) {
624 // Use MI's debug location, which describes where Variable was
625 // declared, rather than whatever is attached to CopyUseMI.
626 MachineInstr *NewMI =
627 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
628 CopyUseMI->getOperand(0).getReg(), Variable, Expr);
629 MachineBasicBlock::iterator Pos = CopyUseMI;
630 EntryMBB->insertAfter(Pos, NewMI);
635 // Determine if there are any calls in this machine function.
636 MachineFrameInfo &MFI = MF->getFrameInfo();
637 for (const auto &MBB : *MF) {
638 if (MFI.hasCalls() && MF->hasInlineAsm())
639 break;
641 for (const auto &MI : MBB) {
642 const MCInstrDesc &MCID = TII->get(MI.getOpcode());
643 if ((MCID.isCall() && !MCID.isReturn()) ||
644 MI.isStackAligningInlineAsm()) {
645 MFI.setHasCalls(true);
647 if (MI.isInlineAsm()) {
648 MF->setHasInlineAsm(true);
653 // Determine if there is a call to setjmp in the machine function.
654 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
656 // Determine if floating point is used for msvc
657 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
659 // Replace forward-declared registers with the registers containing
660 // the desired value.
661 for (DenseMap<unsigned, unsigned>::iterator
662 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
663 I != E; ++I) {
664 unsigned From = I->first;
665 unsigned To = I->second;
666 // If To is also scheduled to be replaced, find what its ultimate
667 // replacement is.
668 while (true) {
669 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
670 if (J == E) break;
671 To = J->second;
673 // Make sure the new register has a sufficiently constrained register class.
674 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
675 MRI.constrainRegClass(To, MRI.getRegClass(From));
676 // Replace it.
679 // Replacing one register with another won't touch the kill flags.
680 // We need to conservatively clear the kill flags as a kill on the old
681 // register might dominate existing uses of the new register.
682 if (!MRI.use_empty(To))
683 MRI.clearKillFlags(From);
684 MRI.replaceRegWith(From, To);
687 TLI->finalizeLowering(*MF);
689 // Release function-specific state. SDB and CurDAG are already cleared
690 // at this point.
691 FuncInfo->clear();
693 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
694 LLVM_DEBUG(MF->print(dbgs()));
696 return true;
699 static void reportFastISelFailure(MachineFunction &MF,
700 OptimizationRemarkEmitter &ORE,
701 OptimizationRemarkMissed &R,
702 bool ShouldAbort) {
703 // Print the function name explicitly if we don't have a debug location (which
704 // makes the diagnostic less useful) or if we're going to emit a raw error.
705 if (!R.getLocation().isValid() || ShouldAbort)
706 R << (" (in function: " + MF.getName() + ")").str();
708 if (ShouldAbort)
709 report_fatal_error(R.getMsg());
711 ORE.emit(R);
714 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
715 BasicBlock::const_iterator End,
716 bool &HadTailCall) {
717 // Allow creating illegal types during DAG building for the basic block.
718 CurDAG->NewNodesMustHaveLegalTypes = false;
720 // Lower the instructions. If a call is emitted as a tail call, cease emitting
721 // nodes for this block.
722 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
723 if (!ElidedArgCopyInstrs.count(&*I))
724 SDB->visit(*I);
727 // Make sure the root of the DAG is up-to-date.
728 CurDAG->setRoot(SDB->getControlRoot());
729 HadTailCall = SDB->HasTailCall;
730 SDB->resolveOrClearDbgInfo();
731 SDB->clear();
733 // Final step, emit the lowered DAG as machine code.
734 CodeGenAndEmitDAG();
737 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
738 SmallPtrSet<SDNode*, 16> VisitedNodes;
739 SmallVector<SDNode*, 128> Worklist;
741 Worklist.push_back(CurDAG->getRoot().getNode());
743 KnownBits Known;
745 do {
746 SDNode *N = Worklist.pop_back_val();
748 // If we've already seen this node, ignore it.
749 if (!VisitedNodes.insert(N).second)
750 continue;
752 // Otherwise, add all chain operands to the worklist.
753 for (const SDValue &Op : N->op_values())
754 if (Op.getValueType() == MVT::Other)
755 Worklist.push_back(Op.getNode());
757 // If this is a CopyToReg with a vreg dest, process it.
758 if (N->getOpcode() != ISD::CopyToReg)
759 continue;
761 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
762 if (!Register::isVirtualRegister(DestReg))
763 continue;
765 // Ignore non-integer values.
766 SDValue Src = N->getOperand(2);
767 EVT SrcVT = Src.getValueType();
768 if (!SrcVT.isInteger())
769 continue;
771 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
772 Known = CurDAG->computeKnownBits(Src);
773 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
774 } while (!Worklist.empty());
777 void SelectionDAGISel::CodeGenAndEmitDAG() {
778 StringRef GroupName = "sdag";
779 StringRef GroupDescription = "Instruction Selection and Scheduling";
780 std::string BlockName;
781 bool MatchFilterBB = false; (void)MatchFilterBB;
782 #ifndef NDEBUG
783 TargetTransformInfo &TTI =
784 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
785 #endif
787 // Pre-type legalization allow creation of any node types.
788 CurDAG->NewNodesMustHaveLegalTypes = false;
790 #ifndef NDEBUG
791 MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
792 FilterDAGBasicBlockName ==
793 FuncInfo->MBB->getBasicBlock()->getName());
794 #endif
795 #ifdef NDEBUG
796 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
797 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
798 ViewSUnitDAGs)
799 #endif
801 BlockName =
802 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
804 LLVM_DEBUG(dbgs() << "Initial selection DAG: "
805 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
806 << "'\n";
807 CurDAG->dump());
809 if (ViewDAGCombine1 && MatchFilterBB)
810 CurDAG->viewGraph("dag-combine1 input for " + BlockName);
812 // Run the DAG combiner in pre-legalize mode.
814 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
815 GroupDescription, TimePassesIsEnabled);
816 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
819 #ifndef NDEBUG
820 if (TTI.hasBranchDivergence())
821 CurDAG->VerifyDAGDiverence();
822 #endif
824 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
825 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
826 << "'\n";
827 CurDAG->dump());
829 // Second step, hack on the DAG until it only uses operations and types that
830 // the target supports.
831 if (ViewLegalizeTypesDAGs && MatchFilterBB)
832 CurDAG->viewGraph("legalize-types input for " + BlockName);
834 bool Changed;
836 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
837 GroupDescription, TimePassesIsEnabled);
838 Changed = CurDAG->LegalizeTypes();
841 #ifndef NDEBUG
842 if (TTI.hasBranchDivergence())
843 CurDAG->VerifyDAGDiverence();
844 #endif
846 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
847 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
848 << "'\n";
849 CurDAG->dump());
851 // Only allow creation of legal node types.
852 CurDAG->NewNodesMustHaveLegalTypes = true;
854 if (Changed) {
855 if (ViewDAGCombineLT && MatchFilterBB)
856 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
858 // Run the DAG combiner in post-type-legalize mode.
860 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
861 GroupName, GroupDescription, TimePassesIsEnabled);
862 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
865 #ifndef NDEBUG
866 if (TTI.hasBranchDivergence())
867 CurDAG->VerifyDAGDiverence();
868 #endif
870 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
871 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
872 << "'\n";
873 CurDAG->dump());
877 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
878 GroupDescription, TimePassesIsEnabled);
879 Changed = CurDAG->LegalizeVectors();
882 if (Changed) {
883 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
884 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
885 << "'\n";
886 CurDAG->dump());
889 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
890 GroupDescription, TimePassesIsEnabled);
891 CurDAG->LegalizeTypes();
894 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
895 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
896 << "'\n";
897 CurDAG->dump());
899 if (ViewDAGCombineLT && MatchFilterBB)
900 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
902 // Run the DAG combiner in post-type-legalize mode.
904 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
905 GroupName, GroupDescription, TimePassesIsEnabled);
906 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
909 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
910 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
911 << "'\n";
912 CurDAG->dump());
914 #ifndef NDEBUG
915 if (TTI.hasBranchDivergence())
916 CurDAG->VerifyDAGDiverence();
917 #endif
920 if (ViewLegalizeDAGs && MatchFilterBB)
921 CurDAG->viewGraph("legalize input for " + BlockName);
924 NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
925 GroupDescription, TimePassesIsEnabled);
926 CurDAG->Legalize();
929 #ifndef NDEBUG
930 if (TTI.hasBranchDivergence())
931 CurDAG->VerifyDAGDiverence();
932 #endif
934 LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
935 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
936 << "'\n";
937 CurDAG->dump());
939 if (ViewDAGCombine2 && MatchFilterBB)
940 CurDAG->viewGraph("dag-combine2 input for " + BlockName);
942 // Run the DAG combiner in post-legalize mode.
944 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
945 GroupDescription, TimePassesIsEnabled);
946 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
949 #ifndef NDEBUG
950 if (TTI.hasBranchDivergence())
951 CurDAG->VerifyDAGDiverence();
952 #endif
954 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
955 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
956 << "'\n";
957 CurDAG->dump());
959 if (OptLevel != CodeGenOpt::None)
960 ComputeLiveOutVRegInfo();
962 if (ViewISelDAGs && MatchFilterBB)
963 CurDAG->viewGraph("isel input for " + BlockName);
965 // Third, instruction select all of the operations to machine code, adding the
966 // code to the MachineBasicBlock.
968 NamedRegionTimer T("isel", "Instruction Selection", GroupName,
969 GroupDescription, TimePassesIsEnabled);
970 DoInstructionSelection();
973 LLVM_DEBUG(dbgs() << "Selected selection DAG: "
974 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
975 << "'\n";
976 CurDAG->dump());
978 if (ViewSchedDAGs && MatchFilterBB)
979 CurDAG->viewGraph("scheduler input for " + BlockName);
981 // Schedule machine code.
982 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
984 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
985 GroupDescription, TimePassesIsEnabled);
986 Scheduler->Run(CurDAG, FuncInfo->MBB);
989 if (ViewSUnitDAGs && MatchFilterBB)
990 Scheduler->viewGraph();
992 // Emit machine code to BB. This can change 'BB' to the last block being
993 // inserted into.
994 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
996 NamedRegionTimer T("emit", "Instruction Creation", GroupName,
997 GroupDescription, TimePassesIsEnabled);
999 // FuncInfo->InsertPt is passed by reference and set to the end of the
1000 // scheduled instructions.
1001 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
1004 // If the block was split, make sure we update any references that are used to
1005 // update PHI nodes later on.
1006 if (FirstMBB != LastMBB)
1007 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
1009 // Free the scheduler state.
1011 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
1012 GroupDescription, TimePassesIsEnabled);
1013 delete Scheduler;
1016 // Free the SelectionDAG state, now that we're finished with it.
1017 CurDAG->clear();
1020 namespace {
1022 /// ISelUpdater - helper class to handle updates of the instruction selection
1023 /// graph.
1024 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
1025 SelectionDAG::allnodes_iterator &ISelPosition;
1027 public:
1028 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
1029 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
1031 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1032 /// deleted is the current ISelPosition node, update ISelPosition.
1034 void NodeDeleted(SDNode *N, SDNode *E) override {
1035 if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1036 ++ISelPosition;
1040 } // end anonymous namespace
1042 // This function is used to enforce the topological node id property
1043 // property leveraged during Instruction selection. Before selection all
1044 // nodes are given a non-negative id such that all nodes have a larger id than
1045 // their operands. As this holds transitively we can prune checks that a node N
1046 // is a predecessor of M another by not recursively checking through M's
1047 // operands if N's ID is larger than M's ID. This is significantly improves
1048 // performance of for various legality checks (e.g. IsLegalToFold /
1049 // UpdateChains).
1051 // However, when we fuse multiple nodes into a single node
1052 // during selection we may induce a predecessor relationship between inputs and
1053 // outputs of distinct nodes being merged violating the topological property.
1054 // Should a fused node have a successor which has yet to be selected, our
1055 // legality checks would be incorrect. To avoid this we mark all unselected
1056 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
1057 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1058 // We use bit-negation to more clearly enforce that node id -1 can only be
1059 // achieved by selected nodes). As the conversion is reversable the original Id,
1060 // topological pruning can still be leveraged when looking for unselected nodes.
1061 // This method is call internally in all ISel replacement calls.
1062 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1063 SmallVector<SDNode *, 4> Nodes;
1064 Nodes.push_back(Node);
1066 while (!Nodes.empty()) {
1067 SDNode *N = Nodes.pop_back_val();
1068 for (auto *U : N->uses()) {
1069 auto UId = U->getNodeId();
1070 if (UId > 0) {
1071 InvalidateNodeId(U);
1072 Nodes.push_back(U);
1078 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
1079 // NodeId with the equivalent node id which is invalid for topological
1080 // pruning.
1081 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1082 int InvalidId = -(N->getNodeId() + 1);
1083 N->setNodeId(InvalidId);
1086 // getUninvalidatedNodeId - get original uninvalidated node id.
1087 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1088 int Id = N->getNodeId();
1089 if (Id < -1)
1090 return -(Id + 1);
1091 return Id;
1094 void SelectionDAGISel::DoInstructionSelection() {
1095 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1096 << printMBBReference(*FuncInfo->MBB) << " '"
1097 << FuncInfo->MBB->getName() << "'\n");
1099 PreprocessISelDAG();
1101 // Select target instructions for the DAG.
1103 // Number all nodes with a topological order and set DAGSize.
1104 DAGSize = CurDAG->AssignTopologicalOrder();
1106 // Create a dummy node (which is not added to allnodes), that adds
1107 // a reference to the root node, preventing it from being deleted,
1108 // and tracking any changes of the root.
1109 HandleSDNode Dummy(CurDAG->getRoot());
1110 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1111 ++ISelPosition;
1113 // Make sure that ISelPosition gets properly updated when nodes are deleted
1114 // in calls made from this function.
1115 ISelUpdater ISU(*CurDAG, ISelPosition);
1117 // The AllNodes list is now topological-sorted. Visit the
1118 // nodes by starting at the end of the list (the root of the
1119 // graph) and preceding back toward the beginning (the entry
1120 // node).
1121 while (ISelPosition != CurDAG->allnodes_begin()) {
1122 SDNode *Node = &*--ISelPosition;
1123 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1124 // but there are currently some corner cases that it misses. Also, this
1125 // makes it theoretically possible to disable the DAGCombiner.
1126 if (Node->use_empty())
1127 continue;
1129 #ifndef NDEBUG
1130 SmallVector<SDNode *, 4> Nodes;
1131 Nodes.push_back(Node);
1133 while (!Nodes.empty()) {
1134 auto N = Nodes.pop_back_val();
1135 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1136 continue;
1137 for (const SDValue &Op : N->op_values()) {
1138 if (Op->getOpcode() == ISD::TokenFactor)
1139 Nodes.push_back(Op.getNode());
1140 else {
1141 // We rely on topological ordering of node ids for checking for
1142 // cycles when fusing nodes during selection. All unselected nodes
1143 // successors of an already selected node should have a negative id.
1144 // This assertion will catch such cases. If this assertion triggers
1145 // it is likely you using DAG-level Value/Node replacement functions
1146 // (versus equivalent ISEL replacement) in backend-specific
1147 // selections. See comment in EnforceNodeIdInvariant for more
1148 // details.
1149 assert(Op->getNodeId() != -1 &&
1150 "Node has already selected predecessor node");
1154 #endif
1156 // When we are using non-default rounding modes or FP exception behavior
1157 // FP operations are represented by StrictFP pseudo-operations. For
1158 // targets that do not (yet) understand strict FP operations directly,
1159 // we convert them to normal FP opcodes instead at this point. This
1160 // will allow them to be handled by existing target-specific instruction
1161 // selectors.
1162 if (Node->isStrictFPOpcode() &&
1163 (TLI->getOperationAction(Node->getOpcode(), Node->getValueType(0))
1164 != TargetLowering::Legal))
1165 Node = CurDAG->mutateStrictFPToFP(Node);
1167 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1168 Node->dump(CurDAG));
1170 Select(Node);
1173 CurDAG->setRoot(Dummy.getValue());
1176 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1178 PostprocessISelDAG();
1181 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1182 for (const User *U : CPI->users()) {
1183 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1184 Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1185 if (IID == Intrinsic::eh_exceptionpointer ||
1186 IID == Intrinsic::eh_exceptioncode)
1187 return true;
1190 return false;
1193 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1194 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1195 // and store the mapping in the function.
1196 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1197 const CatchPadInst *CPI) {
1198 MachineFunction *MF = MBB->getParent();
1199 // In case of single catch (...), we don't emit LSDA, so we don't need
1200 // this information.
1201 bool IsSingleCatchAllClause =
1202 CPI->getNumArgOperands() == 1 &&
1203 cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1204 if (!IsSingleCatchAllClause) {
1205 // Create a mapping from landing pad label to landing pad index.
1206 bool IntrFound = false;
1207 for (const User *U : CPI->users()) {
1208 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1209 Intrinsic::ID IID = Call->getIntrinsicID();
1210 if (IID == Intrinsic::wasm_landingpad_index) {
1211 Value *IndexArg = Call->getArgOperand(1);
1212 int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1213 MF->setWasmLandingPadIndex(MBB, Index);
1214 IntrFound = true;
1215 break;
1219 assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1220 (void)IntrFound;
1224 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1225 /// do other setup for EH landing-pad blocks.
1226 bool SelectionDAGISel::PrepareEHLandingPad() {
1227 MachineBasicBlock *MBB = FuncInfo->MBB;
1228 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1229 const BasicBlock *LLVMBB = MBB->getBasicBlock();
1230 const TargetRegisterClass *PtrRC =
1231 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1233 auto Pers = classifyEHPersonality(PersonalityFn);
1235 // Catchpads have one live-in register, which typically holds the exception
1236 // pointer or code.
1237 if (isFuncletEHPersonality(Pers)) {
1238 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1239 if (hasExceptionPointerOrCodeUser(CPI)) {
1240 // Get or create the virtual register to hold the pointer or code. Mark
1241 // the live in physreg and copy into the vreg.
1242 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1243 assert(EHPhysReg && "target lacks exception pointer register");
1244 MBB->addLiveIn(EHPhysReg);
1245 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1246 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1247 TII->get(TargetOpcode::COPY), VReg)
1248 .addReg(EHPhysReg, RegState::Kill);
1251 return true;
1254 // Add a label to mark the beginning of the landing pad. Deletion of the
1255 // landing pad can thus be detected via the MachineModuleInfo.
1256 MCSymbol *Label = MF->addLandingPad(MBB);
1258 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1259 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1260 .addSym(Label);
1262 if (Pers == EHPersonality::Wasm_CXX) {
1263 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1264 mapWasmLandingPadIndex(MBB, CPI);
1265 } else {
1266 // Assign the call site to the landing pad's begin label.
1267 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1268 // Mark exception register as live in.
1269 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1270 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1271 // Mark exception selector register as live in.
1272 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1273 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1276 return true;
1279 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1280 /// side-effect free and is either dead or folded into a generated instruction.
1281 /// Return false if it needs to be emitted.
1282 static bool isFoldedOrDeadInstruction(const Instruction *I,
1283 FunctionLoweringInfo *FuncInfo) {
1284 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1285 !I->isTerminator() && // Terminators aren't folded.
1286 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1287 !I->isEHPad() && // EH pad instructions aren't folded.
1288 !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
1291 /// Collect llvm.dbg.declare information. This is done after argument lowering
1292 /// in case the declarations refer to arguments.
1293 static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) {
1294 MachineFunction *MF = FuncInfo->MF;
1295 const DataLayout &DL = MF->getDataLayout();
1296 for (const BasicBlock &BB : *FuncInfo->Fn) {
1297 for (const Instruction &I : BB) {
1298 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1299 if (!DI)
1300 continue;
1302 assert(DI->getVariable() && "Missing variable");
1303 assert(DI->getDebugLoc() && "Missing location");
1304 const Value *Address = DI->getAddress();
1305 if (!Address)
1306 continue;
1308 // Look through casts and constant offset GEPs. These mostly come from
1309 // inalloca.
1310 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1311 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1313 // Check if the variable is a static alloca or a byval or inalloca
1314 // argument passed in memory. If it is not, then we will ignore this
1315 // intrinsic and handle this during isel like dbg.value.
1316 int FI = std::numeric_limits<int>::max();
1317 if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1318 auto SI = FuncInfo->StaticAllocaMap.find(AI);
1319 if (SI != FuncInfo->StaticAllocaMap.end())
1320 FI = SI->second;
1321 } else if (const auto *Arg = dyn_cast<Argument>(Address))
1322 FI = FuncInfo->getArgumentFrameIndex(Arg);
1324 if (FI == std::numeric_limits<int>::max())
1325 continue;
1327 DIExpression *Expr = DI->getExpression();
1328 if (Offset.getBoolValue())
1329 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1330 Offset.getZExtValue());
1331 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1336 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1337 FastISelFailed = false;
1338 // Initialize the Fast-ISel state, if needed.
1339 FastISel *FastIS = nullptr;
1340 if (TM.Options.EnableFastISel) {
1341 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1342 FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1345 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1347 // Lower arguments up front. An RPO iteration always visits the entry block
1348 // first.
1349 assert(*RPOT.begin() == &Fn.getEntryBlock());
1350 ++NumEntryBlocks;
1352 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1353 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1354 FuncInfo->InsertPt = FuncInfo->MBB->begin();
1356 CurDAG->setFunctionLoweringInfo(FuncInfo);
1358 if (!FastIS) {
1359 LowerArguments(Fn);
1360 } else {
1361 // See if fast isel can lower the arguments.
1362 FastIS->startNewBlock();
1363 if (!FastIS->lowerArguments()) {
1364 FastISelFailed = true;
1365 // Fast isel failed to lower these arguments
1366 ++NumFastIselFailLowerArguments;
1368 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1369 Fn.getSubprogram(),
1370 &Fn.getEntryBlock());
1371 R << "FastISel didn't lower all arguments: "
1372 << ore::NV("Prototype", Fn.getType());
1373 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1375 // Use SelectionDAG argument lowering
1376 LowerArguments(Fn);
1377 CurDAG->setRoot(SDB->getControlRoot());
1378 SDB->clear();
1379 CodeGenAndEmitDAG();
1382 // If we inserted any instructions at the beginning, make a note of
1383 // where they are, so we can be sure to emit subsequent instructions
1384 // after them.
1385 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1386 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1387 else
1388 FastIS->setLastLocalValue(nullptr);
1391 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1393 if (FastIS && Inserted)
1394 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1396 processDbgDeclares(FuncInfo);
1398 // Iterate over all basic blocks in the function.
1399 StackProtector &SP = getAnalysis<StackProtector>();
1400 for (const BasicBlock *LLVMBB : RPOT) {
1401 if (OptLevel != CodeGenOpt::None) {
1402 bool AllPredsVisited = true;
1403 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1404 PI != PE; ++PI) {
1405 if (!FuncInfo->VisitedBBs.count(*PI)) {
1406 AllPredsVisited = false;
1407 break;
1411 if (AllPredsVisited) {
1412 for (const PHINode &PN : LLVMBB->phis())
1413 FuncInfo->ComputePHILiveOutRegInfo(&PN);
1414 } else {
1415 for (const PHINode &PN : LLVMBB->phis())
1416 FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1419 FuncInfo->VisitedBBs.insert(LLVMBB);
1422 BasicBlock::const_iterator const Begin =
1423 LLVMBB->getFirstNonPHI()->getIterator();
1424 BasicBlock::const_iterator const End = LLVMBB->end();
1425 BasicBlock::const_iterator BI = End;
1427 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1428 if (!FuncInfo->MBB)
1429 continue; // Some blocks like catchpads have no code or MBB.
1431 // Insert new instructions after any phi or argument setup code.
1432 FuncInfo->InsertPt = FuncInfo->MBB->end();
1434 // Setup an EH landing-pad block.
1435 FuncInfo->ExceptionPointerVirtReg = 0;
1436 FuncInfo->ExceptionSelectorVirtReg = 0;
1437 if (LLVMBB->isEHPad())
1438 if (!PrepareEHLandingPad())
1439 continue;
1441 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1442 if (FastIS) {
1443 if (LLVMBB != &Fn.getEntryBlock())
1444 FastIS->startNewBlock();
1446 unsigned NumFastIselRemaining = std::distance(Begin, End);
1448 // Pre-assign swifterror vregs.
1449 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1451 // Do FastISel on as many instructions as possible.
1452 for (; BI != Begin; --BI) {
1453 const Instruction *Inst = &*std::prev(BI);
1455 // If we no longer require this instruction, skip it.
1456 if (isFoldedOrDeadInstruction(Inst, FuncInfo) ||
1457 ElidedArgCopyInstrs.count(Inst)) {
1458 --NumFastIselRemaining;
1459 continue;
1462 // Bottom-up: reset the insert pos at the top, after any local-value
1463 // instructions.
1464 FastIS->recomputeInsertPt();
1466 // Try to select the instruction with FastISel.
1467 if (FastIS->selectInstruction(Inst)) {
1468 --NumFastIselRemaining;
1469 ++NumFastIselSuccess;
1470 // If fast isel succeeded, skip over all the folded instructions, and
1471 // then see if there is a load right before the selected instructions.
1472 // Try to fold the load if so.
1473 const Instruction *BeforeInst = Inst;
1474 while (BeforeInst != &*Begin) {
1475 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1476 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1477 break;
1479 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1480 BeforeInst->hasOneUse() &&
1481 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1482 // If we succeeded, don't re-select the load.
1483 BI = std::next(BasicBlock::const_iterator(BeforeInst));
1484 --NumFastIselRemaining;
1485 ++NumFastIselSuccess;
1487 continue;
1490 FastISelFailed = true;
1492 // Then handle certain instructions as single-LLVM-Instruction blocks.
1493 // We cannot separate out GCrelocates to their own blocks since we need
1494 // to keep track of gc-relocates for a particular gc-statepoint. This is
1495 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1496 // visitGCRelocate.
1497 if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst) &&
1498 !isGCResult(Inst)) {
1499 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1500 Inst->getDebugLoc(), LLVMBB);
1502 R << "FastISel missed call";
1504 if (R.isEnabled() || EnableFastISelAbort) {
1505 std::string InstStrStorage;
1506 raw_string_ostream InstStr(InstStrStorage);
1507 InstStr << *Inst;
1509 R << ": " << InstStr.str();
1512 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1514 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1515 !Inst->use_empty()) {
1516 unsigned &R = FuncInfo->ValueMap[Inst];
1517 if (!R)
1518 R = FuncInfo->CreateRegs(Inst);
1521 bool HadTailCall = false;
1522 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1523 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1525 // If the call was emitted as a tail call, we're done with the block.
1526 // We also need to delete any previously emitted instructions.
1527 if (HadTailCall) {
1528 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1529 --BI;
1530 break;
1533 // Recompute NumFastIselRemaining as Selection DAG instruction
1534 // selection may have handled the call, input args, etc.
1535 unsigned RemainingNow = std::distance(Begin, BI);
1536 NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1537 NumFastIselRemaining = RemainingNow;
1538 continue;
1541 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1542 Inst->getDebugLoc(), LLVMBB);
1544 bool ShouldAbort = EnableFastISelAbort;
1545 if (Inst->isTerminator()) {
1546 // Use a different message for terminator misses.
1547 R << "FastISel missed terminator";
1548 // Don't abort for terminator unless the level is really high
1549 ShouldAbort = (EnableFastISelAbort > 2);
1550 } else {
1551 R << "FastISel missed";
1554 if (R.isEnabled() || EnableFastISelAbort) {
1555 std::string InstStrStorage;
1556 raw_string_ostream InstStr(InstStrStorage);
1557 InstStr << *Inst;
1558 R << ": " << InstStr.str();
1561 reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1563 NumFastIselFailures += NumFastIselRemaining;
1564 break;
1567 FastIS->recomputeInsertPt();
1570 if (SP.shouldEmitSDCheck(*LLVMBB)) {
1571 bool FunctionBasedInstrumentation =
1572 TLI->getSSPStackGuardCheck(*Fn.getParent());
1573 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1574 FunctionBasedInstrumentation);
1577 if (Begin != BI)
1578 ++NumDAGBlocks;
1579 else
1580 ++NumFastIselBlocks;
1582 if (Begin != BI) {
1583 // Run SelectionDAG instruction selection on the remainder of the block
1584 // not handled by FastISel. If FastISel is not run, this is the entire
1585 // block.
1586 bool HadTailCall;
1587 SelectBasicBlock(Begin, BI, HadTailCall);
1589 // But if FastISel was run, we already selected some of the block.
1590 // If we emitted a tail-call, we need to delete any previously emitted
1591 // instruction that follows it.
1592 if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1593 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1596 if (FastIS)
1597 FastIS->finishBasicBlock();
1598 FinishBasicBlock();
1599 FuncInfo->PHINodesToUpdate.clear();
1600 ElidedArgCopyInstrs.clear();
1603 SP.copyToMachineFrameInfo(MF->getFrameInfo());
1605 SwiftError->propagateVRegs();
1607 delete FastIS;
1608 SDB->clearDanglingDebugInfo();
1609 SDB->SPDescriptor.resetPerFunctionState();
1612 /// Given that the input MI is before a partial terminator sequence TSeq, return
1613 /// true if M + TSeq also a partial terminator sequence.
1615 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1616 /// lowering copy vregs into physical registers, which are then passed into
1617 /// terminator instructors so we can satisfy ABI constraints. A partial
1618 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1619 /// may be the whole terminator sequence).
1620 static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1621 // If we do not have a copy or an implicit def, we return true if and only if
1622 // MI is a debug value.
1623 if (!MI.isCopy() && !MI.isImplicitDef())
1624 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1625 // physical registers if there is debug info associated with the terminator
1626 // of our mbb. We want to include said debug info in our terminator
1627 // sequence, so we return true in that case.
1628 return MI.isDebugValue();
1630 // We have left the terminator sequence if we are not doing one of the
1631 // following:
1633 // 1. Copying a vreg into a physical register.
1634 // 2. Copying a vreg into a vreg.
1635 // 3. Defining a register via an implicit def.
1637 // OPI should always be a register definition...
1638 MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1639 if (!OPI->isReg() || !OPI->isDef())
1640 return false;
1642 // Defining any register via an implicit def is always ok.
1643 if (MI.isImplicitDef())
1644 return true;
1646 // Grab the copy source...
1647 MachineInstr::const_mop_iterator OPI2 = OPI;
1648 ++OPI2;
1649 assert(OPI2 != MI.operands_end()
1650 && "Should have a copy implying we should have 2 arguments.");
1652 // Make sure that the copy dest is not a vreg when the copy source is a
1653 // physical register.
1654 if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) &&
1655 Register::isPhysicalRegister(OPI2->getReg())))
1656 return false;
1658 return true;
1661 /// Find the split point at which to splice the end of BB into its success stack
1662 /// protector check machine basic block.
1664 /// On many platforms, due to ABI constraints, terminators, even before register
1665 /// allocation, use physical registers. This creates an issue for us since
1666 /// physical registers at this point can not travel across basic
1667 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1668 /// when they enter functions and moves them through a sequence of copies back
1669 /// into the physical registers right before the terminator creating a
1670 /// ``Terminator Sequence''. This function is searching for the beginning of the
1671 /// terminator sequence so that we can ensure that we splice off not just the
1672 /// terminator, but additionally the copies that move the vregs into the
1673 /// physical registers.
1674 static MachineBasicBlock::iterator
1675 FindSplitPointForStackProtector(MachineBasicBlock *BB) {
1676 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1678 if (SplitPoint == BB->begin())
1679 return SplitPoint;
1681 MachineBasicBlock::iterator Start = BB->begin();
1682 MachineBasicBlock::iterator Previous = SplitPoint;
1683 --Previous;
1685 while (MIIsInTerminatorSequence(*Previous)) {
1686 SplitPoint = Previous;
1687 if (Previous == Start)
1688 break;
1689 --Previous;
1692 return SplitPoint;
1695 void
1696 SelectionDAGISel::FinishBasicBlock() {
1697 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1698 << FuncInfo->PHINodesToUpdate.size() << "\n";
1699 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1700 ++i) dbgs()
1701 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1702 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1704 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1705 // PHI nodes in successors.
1706 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1707 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1708 assert(PHI->isPHI() &&
1709 "This is not a machine PHI node that we are updating!");
1710 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1711 continue;
1712 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1715 // Handle stack protector.
1716 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1717 // The target provides a guard check function. There is no need to
1718 // generate error handling code or to split current basic block.
1719 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1721 // Add load and check to the basicblock.
1722 FuncInfo->MBB = ParentMBB;
1723 FuncInfo->InsertPt =
1724 FindSplitPointForStackProtector(ParentMBB);
1725 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1726 CurDAG->setRoot(SDB->getRoot());
1727 SDB->clear();
1728 CodeGenAndEmitDAG();
1730 // Clear the Per-BB State.
1731 SDB->SPDescriptor.resetPerBBState();
1732 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1733 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1734 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1736 // Find the split point to split the parent mbb. At the same time copy all
1737 // physical registers used in the tail of parent mbb into virtual registers
1738 // before the split point and back into physical registers after the split
1739 // point. This prevents us needing to deal with Live-ins and many other
1740 // register allocation issues caused by us splitting the parent mbb. The
1741 // register allocator will clean up said virtual copies later on.
1742 MachineBasicBlock::iterator SplitPoint =
1743 FindSplitPointForStackProtector(ParentMBB);
1745 // Splice the terminator of ParentMBB into SuccessMBB.
1746 SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1747 SplitPoint,
1748 ParentMBB->end());
1750 // Add compare/jump on neq/jump to the parent BB.
1751 FuncInfo->MBB = ParentMBB;
1752 FuncInfo->InsertPt = ParentMBB->end();
1753 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1754 CurDAG->setRoot(SDB->getRoot());
1755 SDB->clear();
1756 CodeGenAndEmitDAG();
1758 // CodeGen Failure MBB if we have not codegened it yet.
1759 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1760 if (FailureMBB->empty()) {
1761 FuncInfo->MBB = FailureMBB;
1762 FuncInfo->InsertPt = FailureMBB->end();
1763 SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1764 CurDAG->setRoot(SDB->getRoot());
1765 SDB->clear();
1766 CodeGenAndEmitDAG();
1769 // Clear the Per-BB State.
1770 SDB->SPDescriptor.resetPerBBState();
1773 // Lower each BitTestBlock.
1774 for (auto &BTB : SDB->SL->BitTestCases) {
1775 // Lower header first, if it wasn't already lowered
1776 if (!BTB.Emitted) {
1777 // Set the current basic block to the mbb we wish to insert the code into
1778 FuncInfo->MBB = BTB.Parent;
1779 FuncInfo->InsertPt = FuncInfo->MBB->end();
1780 // Emit the code
1781 SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1782 CurDAG->setRoot(SDB->getRoot());
1783 SDB->clear();
1784 CodeGenAndEmitDAG();
1787 BranchProbability UnhandledProb = BTB.Prob;
1788 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1789 UnhandledProb -= BTB.Cases[j].ExtraProb;
1790 // Set the current basic block to the mbb we wish to insert the code into
1791 FuncInfo->MBB = BTB.Cases[j].ThisBB;
1792 FuncInfo->InsertPt = FuncInfo->MBB->end();
1793 // Emit the code
1795 // If all cases cover a contiguous range, it is not necessary to jump to
1796 // the default block after the last bit test fails. This is because the
1797 // range check during bit test header creation has guaranteed that every
1798 // case here doesn't go outside the range. In this case, there is no need
1799 // to perform the last bit test, as it will always be true. Instead, make
1800 // the second-to-last bit-test fall through to the target of the last bit
1801 // test, and delete the last bit test.
1803 MachineBasicBlock *NextMBB;
1804 if (BTB.ContiguousRange && j + 2 == ej) {
1805 // Second-to-last bit-test with contiguous range: fall through to the
1806 // target of the final bit test.
1807 NextMBB = BTB.Cases[j + 1].TargetBB;
1808 } else if (j + 1 == ej) {
1809 // For the last bit test, fall through to Default.
1810 NextMBB = BTB.Default;
1811 } else {
1812 // Otherwise, fall through to the next bit test.
1813 NextMBB = BTB.Cases[j + 1].ThisBB;
1816 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1817 FuncInfo->MBB);
1819 CurDAG->setRoot(SDB->getRoot());
1820 SDB->clear();
1821 CodeGenAndEmitDAG();
1823 if (BTB.ContiguousRange && j + 2 == ej) {
1824 // Since we're not going to use the final bit test, remove it.
1825 BTB.Cases.pop_back();
1826 break;
1830 // Update PHI Nodes
1831 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1832 pi != pe; ++pi) {
1833 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1834 MachineBasicBlock *PHIBB = PHI->getParent();
1835 assert(PHI->isPHI() &&
1836 "This is not a machine PHI node that we are updating!");
1837 // This is "default" BB. We have two jumps to it. From "header" BB and
1838 // from last "case" BB, unless the latter was skipped.
1839 if (PHIBB == BTB.Default) {
1840 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
1841 if (!BTB.ContiguousRange) {
1842 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1843 .addMBB(BTB.Cases.back().ThisBB);
1846 // One of "cases" BB.
1847 for (unsigned j = 0, ej = BTB.Cases.size();
1848 j != ej; ++j) {
1849 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
1850 if (cBB->isSuccessor(PHIBB))
1851 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1855 SDB->SL->BitTestCases.clear();
1857 // If the JumpTable record is filled in, then we need to emit a jump table.
1858 // Updating the PHI nodes is tricky in this case, since we need to determine
1859 // whether the PHI is a successor of the range check MBB or the jump table MBB
1860 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
1861 // Lower header first, if it wasn't already lowered
1862 if (!SDB->SL->JTCases[i].first.Emitted) {
1863 // Set the current basic block to the mbb we wish to insert the code into
1864 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
1865 FuncInfo->InsertPt = FuncInfo->MBB->end();
1866 // Emit the code
1867 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
1868 SDB->SL->JTCases[i].first, FuncInfo->MBB);
1869 CurDAG->setRoot(SDB->getRoot());
1870 SDB->clear();
1871 CodeGenAndEmitDAG();
1874 // Set the current basic block to the mbb we wish to insert the code into
1875 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
1876 FuncInfo->InsertPt = FuncInfo->MBB->end();
1877 // Emit the code
1878 SDB->visitJumpTable(SDB->SL->JTCases[i].second);
1879 CurDAG->setRoot(SDB->getRoot());
1880 SDB->clear();
1881 CodeGenAndEmitDAG();
1883 // Update PHI Nodes
1884 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1885 pi != pe; ++pi) {
1886 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1887 MachineBasicBlock *PHIBB = PHI->getParent();
1888 assert(PHI->isPHI() &&
1889 "This is not a machine PHI node that we are updating!");
1890 // "default" BB. We can go there only from header BB.
1891 if (PHIBB == SDB->SL->JTCases[i].second.Default)
1892 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1893 .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
1894 // JT BB. Just iterate over successors here
1895 if (FuncInfo->MBB->isSuccessor(PHIBB))
1896 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1899 SDB->SL->JTCases.clear();
1901 // If we generated any switch lowering information, build and codegen any
1902 // additional DAGs necessary.
1903 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
1904 // Set the current basic block to the mbb we wish to insert the code into
1905 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
1906 FuncInfo->InsertPt = FuncInfo->MBB->end();
1908 // Determine the unique successors.
1909 SmallVector<MachineBasicBlock *, 2> Succs;
1910 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
1911 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
1912 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
1914 // Emit the code. Note that this could result in FuncInfo->MBB being split.
1915 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
1916 CurDAG->setRoot(SDB->getRoot());
1917 SDB->clear();
1918 CodeGenAndEmitDAG();
1920 // Remember the last block, now that any splitting is done, for use in
1921 // populating PHI nodes in successors.
1922 MachineBasicBlock *ThisBB = FuncInfo->MBB;
1924 // Handle any PHI nodes in successors of this chunk, as if we were coming
1925 // from the original BB before switch expansion. Note that PHI nodes can
1926 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1927 // handle them the right number of times.
1928 for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1929 FuncInfo->MBB = Succs[i];
1930 FuncInfo->InsertPt = FuncInfo->MBB->end();
1931 // FuncInfo->MBB may have been removed from the CFG if a branch was
1932 // constant folded.
1933 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1934 for (MachineBasicBlock::iterator
1935 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1936 MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1937 MachineInstrBuilder PHI(*MF, MBBI);
1938 // This value for this PHI node is recorded in PHINodesToUpdate.
1939 for (unsigned pn = 0; ; ++pn) {
1940 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1941 "Didn't find PHI entry!");
1942 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1943 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1944 break;
1951 SDB->SL->SwitchCases.clear();
1954 /// Create the scheduler. If a specific scheduler was specified
1955 /// via the SchedulerRegistry, use it, otherwise select the
1956 /// one preferred by the target.
1958 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1959 return ISHeuristic(this, OptLevel);
1962 //===----------------------------------------------------------------------===//
1963 // Helper functions used by the generated instruction selector.
1964 //===----------------------------------------------------------------------===//
1965 // Calls to these methods are generated by tblgen.
1967 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1968 /// the dag combiner simplified the 255, we still want to match. RHS is the
1969 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1970 /// specified in the .td file (e.g. 255).
1971 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1972 int64_t DesiredMaskS) const {
1973 const APInt &ActualMask = RHS->getAPIntValue();
1974 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1976 // If the actual mask exactly matches, success!
1977 if (ActualMask == DesiredMask)
1978 return true;
1980 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1981 if (!ActualMask.isSubsetOf(DesiredMask))
1982 return false;
1984 // Otherwise, the DAG Combiner may have proven that the value coming in is
1985 // either already zero or is not demanded. Check for known zero input bits.
1986 APInt NeededMask = DesiredMask & ~ActualMask;
1987 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1988 return true;
1990 // TODO: check to see if missing bits are just not demanded.
1992 // Otherwise, this pattern doesn't match.
1993 return false;
1996 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
1997 /// the dag combiner simplified the 255, we still want to match. RHS is the
1998 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1999 /// specified in the .td file (e.g. 255).
2000 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
2001 int64_t DesiredMaskS) const {
2002 const APInt &ActualMask = RHS->getAPIntValue();
2003 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2005 // If the actual mask exactly matches, success!
2006 if (ActualMask == DesiredMask)
2007 return true;
2009 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2010 if (!ActualMask.isSubsetOf(DesiredMask))
2011 return false;
2013 // Otherwise, the DAG Combiner may have proven that the value coming in is
2014 // either already zero or is not demanded. Check for known zero input bits.
2015 APInt NeededMask = DesiredMask & ~ActualMask;
2016 KnownBits Known = CurDAG->computeKnownBits(LHS);
2018 // If all the missing bits in the or are already known to be set, match!
2019 if (NeededMask.isSubsetOf(Known.One))
2020 return true;
2022 // TODO: check to see if missing bits are just not demanded.
2024 // Otherwise, this pattern doesn't match.
2025 return false;
2028 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2029 /// by tblgen. Others should not call it.
2030 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2031 const SDLoc &DL) {
2032 std::vector<SDValue> InOps;
2033 std::swap(InOps, Ops);
2035 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2036 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
2037 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
2038 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
2040 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2041 if (InOps[e-1].getValueType() == MVT::Glue)
2042 --e; // Don't process a glue operand if it is here.
2044 while (i != e) {
2045 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2046 if (!InlineAsm::isMemKind(Flags)) {
2047 // Just skip over this operand, copying the operands verbatim.
2048 Ops.insert(Ops.end(), InOps.begin()+i,
2049 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2050 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2051 } else {
2052 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2053 "Memory operand with multiple values?");
2055 unsigned TiedToOperand;
2056 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2057 // We need the constraint ID from the operand this is tied to.
2058 unsigned CurOp = InlineAsm::Op_FirstOperand;
2059 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2060 for (; TiedToOperand; --TiedToOperand) {
2061 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2062 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2066 // Otherwise, this is a memory operand. Ask the target to select it.
2067 std::vector<SDValue> SelOps;
2068 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2069 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2070 report_fatal_error("Could not match memory address. Inline asm"
2071 " failure!");
2073 // Add this to the output node.
2074 unsigned NewFlags =
2075 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2076 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2077 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2078 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2079 i += 2;
2083 // Add the glue input back if present.
2084 if (e != InOps.size())
2085 Ops.push_back(InOps.back());
2088 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2089 /// SDNode.
2091 static SDNode *findGlueUse(SDNode *N) {
2092 unsigned FlagResNo = N->getNumValues()-1;
2093 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2094 SDUse &Use = I.getUse();
2095 if (Use.getResNo() == FlagResNo)
2096 return Use.getUser();
2098 return nullptr;
2101 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2102 /// beyond "ImmedUse". We may ignore chains as they are checked separately.
2103 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2104 bool IgnoreChains) {
2105 SmallPtrSet<const SDNode *, 16> Visited;
2106 SmallVector<const SDNode *, 16> WorkList;
2107 // Only check if we have non-immediate uses of Def.
2108 if (ImmedUse->isOnlyUserOf(Def))
2109 return false;
2111 // We don't care about paths to Def that go through ImmedUse so mark it
2112 // visited and mark non-def operands as used.
2113 Visited.insert(ImmedUse);
2114 for (const SDValue &Op : ImmedUse->op_values()) {
2115 SDNode *N = Op.getNode();
2116 // Ignore chain deps (they are validated by
2117 // HandleMergeInputChains) and immediate uses
2118 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2119 continue;
2120 if (!Visited.insert(N).second)
2121 continue;
2122 WorkList.push_back(N);
2125 // Initialize worklist to operands of Root.
2126 if (Root != ImmedUse) {
2127 for (const SDValue &Op : Root->op_values()) {
2128 SDNode *N = Op.getNode();
2129 // Ignore chains (they are validated by HandleMergeInputChains)
2130 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2131 continue;
2132 if (!Visited.insert(N).second)
2133 continue;
2134 WorkList.push_back(N);
2138 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2141 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2142 /// operand node N of U during instruction selection that starts at Root.
2143 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2144 SDNode *Root) const {
2145 if (OptLevel == CodeGenOpt::None) return false;
2146 return N.hasOneUse();
2149 /// IsLegalToFold - Returns true if the specific operand node N of
2150 /// U can be folded during instruction selection that starts at Root.
2151 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2152 CodeGenOpt::Level OptLevel,
2153 bool IgnoreChains) {
2154 if (OptLevel == CodeGenOpt::None) return false;
2156 // If Root use can somehow reach N through a path that that doesn't contain
2157 // U then folding N would create a cycle. e.g. In the following
2158 // diagram, Root can reach N through X. If N is folded into Root, then
2159 // X is both a predecessor and a successor of U.
2161 // [N*] //
2162 // ^ ^ //
2163 // / \ //
2164 // [U*] [X]? //
2165 // ^ ^ //
2166 // \ / //
2167 // \ / //
2168 // [Root*] //
2170 // * indicates nodes to be folded together.
2172 // If Root produces glue, then it gets (even more) interesting. Since it
2173 // will be "glued" together with its glue use in the scheduler, we need to
2174 // check if it might reach N.
2176 // [N*] //
2177 // ^ ^ //
2178 // / \ //
2179 // [U*] [X]? //
2180 // ^ ^ //
2181 // \ \ //
2182 // \ | //
2183 // [Root*] | //
2184 // ^ | //
2185 // f | //
2186 // | / //
2187 // [Y] / //
2188 // ^ / //
2189 // f / //
2190 // | / //
2191 // [GU] //
2193 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2194 // (call it Fold), then X is a predecessor of GU and a successor of
2195 // Fold. But since Fold and GU are glued together, this will create
2196 // a cycle in the scheduling graph.
2198 // If the node has glue, walk down the graph to the "lowest" node in the
2199 // glueged set.
2200 EVT VT = Root->getValueType(Root->getNumValues()-1);
2201 while (VT == MVT::Glue) {
2202 SDNode *GU = findGlueUse(Root);
2203 if (!GU)
2204 break;
2205 Root = GU;
2206 VT = Root->getValueType(Root->getNumValues()-1);
2208 // If our query node has a glue result with a use, we've walked up it. If
2209 // the user (which has already been selected) has a chain or indirectly uses
2210 // the chain, HandleMergeInputChains will not consider it. Because of
2211 // this, we cannot ignore chains in this predicate.
2212 IgnoreChains = false;
2215 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2218 void SelectionDAGISel::Select_INLINEASM(SDNode *N, bool Branch) {
2219 SDLoc DL(N);
2221 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2222 SelectInlineAsmMemoryOperands(Ops, DL);
2224 const EVT VTs[] = {MVT::Other, MVT::Glue};
2225 SDValue New = CurDAG->getNode(Branch ? ISD::INLINEASM_BR : ISD::INLINEASM, DL, VTs, Ops);
2226 New->setNodeId(-1);
2227 ReplaceUses(N, New.getNode());
2228 CurDAG->RemoveDeadNode(N);
2231 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2232 SDLoc dl(Op);
2233 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2234 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2235 Register Reg =
2236 TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
2237 CurDAG->getMachineFunction());
2238 SDValue New = CurDAG->getCopyFromReg(
2239 Op->getOperand(0), dl, Reg, Op->getValueType(0));
2240 New->setNodeId(-1);
2241 ReplaceUses(Op, New.getNode());
2242 CurDAG->RemoveDeadNode(Op);
2245 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2246 SDLoc dl(Op);
2247 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2248 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2249 Register Reg = TLI->getRegisterByName(RegStr->getString().data(),
2250 Op->getOperand(2).getValueType(),
2251 CurDAG->getMachineFunction());
2252 SDValue New = CurDAG->getCopyToReg(
2253 Op->getOperand(0), dl, Reg, Op->getOperand(2));
2254 New->setNodeId(-1);
2255 ReplaceUses(Op, New.getNode());
2256 CurDAG->RemoveDeadNode(Op);
2259 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2260 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2263 /// GetVBR - decode a vbr encoding whose top bit is set.
2264 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
2265 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2266 assert(Val >= 128 && "Not a VBR");
2267 Val &= 127; // Remove first vbr bit.
2269 unsigned Shift = 7;
2270 uint64_t NextBits;
2271 do {
2272 NextBits = MatcherTable[Idx++];
2273 Val |= (NextBits&127) << Shift;
2274 Shift += 7;
2275 } while (NextBits & 128);
2277 return Val;
2280 /// When a match is complete, this method updates uses of interior chain results
2281 /// to use the new results.
2282 void SelectionDAGISel::UpdateChains(
2283 SDNode *NodeToMatch, SDValue InputChain,
2284 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2285 SmallVector<SDNode*, 4> NowDeadNodes;
2287 // Now that all the normal results are replaced, we replace the chain and
2288 // glue results if present.
2289 if (!ChainNodesMatched.empty()) {
2290 assert(InputChain.getNode() &&
2291 "Matched input chains but didn't produce a chain");
2292 // Loop over all of the nodes we matched that produced a chain result.
2293 // Replace all the chain results with the final chain we ended up with.
2294 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2295 SDNode *ChainNode = ChainNodesMatched[i];
2296 // If ChainNode is null, it's because we replaced it on a previous
2297 // iteration and we cleared it out of the map. Just skip it.
2298 if (!ChainNode)
2299 continue;
2301 assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2302 "Deleted node left in chain");
2304 // Don't replace the results of the root node if we're doing a
2305 // MorphNodeTo.
2306 if (ChainNode == NodeToMatch && isMorphNodeTo)
2307 continue;
2309 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2310 if (ChainVal.getValueType() == MVT::Glue)
2311 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2312 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2313 SelectionDAG::DAGNodeDeletedListener NDL(
2314 *CurDAG, [&](SDNode *N, SDNode *E) {
2315 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2316 static_cast<SDNode *>(nullptr));
2318 if (ChainNode->getOpcode() != ISD::TokenFactor)
2319 ReplaceUses(ChainVal, InputChain);
2321 // If the node became dead and we haven't already seen it, delete it.
2322 if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2323 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2324 NowDeadNodes.push_back(ChainNode);
2328 if (!NowDeadNodes.empty())
2329 CurDAG->RemoveDeadNodes(NowDeadNodes);
2331 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2334 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2335 /// operation for when the pattern matched at least one node with a chains. The
2336 /// input vector contains a list of all of the chained nodes that we match. We
2337 /// must determine if this is a valid thing to cover (i.e. matching it won't
2338 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2339 /// be used as the input node chain for the generated nodes.
2340 static SDValue
2341 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2342 SelectionDAG *CurDAG) {
2344 SmallPtrSet<const SDNode *, 16> Visited;
2345 SmallVector<const SDNode *, 8> Worklist;
2346 SmallVector<SDValue, 3> InputChains;
2347 unsigned int Max = 8192;
2349 // Quick exit on trivial merge.
2350 if (ChainNodesMatched.size() == 1)
2351 return ChainNodesMatched[0]->getOperand(0);
2353 // Add chains that aren't already added (internal). Peek through
2354 // token factors.
2355 std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2356 if (V.getValueType() != MVT::Other)
2357 return;
2358 if (V->getOpcode() == ISD::EntryToken)
2359 return;
2360 if (!Visited.insert(V.getNode()).second)
2361 return;
2362 if (V->getOpcode() == ISD::TokenFactor) {
2363 for (const SDValue &Op : V->op_values())
2364 AddChains(Op);
2365 } else
2366 InputChains.push_back(V);
2369 for (auto *N : ChainNodesMatched) {
2370 Worklist.push_back(N);
2371 Visited.insert(N);
2374 while (!Worklist.empty())
2375 AddChains(Worklist.pop_back_val()->getOperand(0));
2377 // Skip the search if there are no chain dependencies.
2378 if (InputChains.size() == 0)
2379 return CurDAG->getEntryNode();
2381 // If one of these chains is a successor of input, we must have a
2382 // node that is both the predecessor and successor of the
2383 // to-be-merged nodes. Fail.
2384 Visited.clear();
2385 for (SDValue V : InputChains)
2386 Worklist.push_back(V.getNode());
2388 for (auto *N : ChainNodesMatched)
2389 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2390 return SDValue();
2392 // Return merged chain.
2393 if (InputChains.size() == 1)
2394 return InputChains[0];
2395 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2396 MVT::Other, InputChains);
2399 /// MorphNode - Handle morphing a node in place for the selector.
2400 SDNode *SelectionDAGISel::
2401 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2402 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2403 // It is possible we're using MorphNodeTo to replace a node with no
2404 // normal results with one that has a normal result (or we could be
2405 // adding a chain) and the input could have glue and chains as well.
2406 // In this case we need to shift the operands down.
2407 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2408 // than the old isel though.
2409 int OldGlueResultNo = -1, OldChainResultNo = -1;
2411 unsigned NTMNumResults = Node->getNumValues();
2412 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2413 OldGlueResultNo = NTMNumResults-1;
2414 if (NTMNumResults != 1 &&
2415 Node->getValueType(NTMNumResults-2) == MVT::Other)
2416 OldChainResultNo = NTMNumResults-2;
2417 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2418 OldChainResultNo = NTMNumResults-1;
2420 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2421 // that this deletes operands of the old node that become dead.
2422 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2424 // MorphNodeTo can operate in two ways: if an existing node with the
2425 // specified operands exists, it can just return it. Otherwise, it
2426 // updates the node in place to have the requested operands.
2427 if (Res == Node) {
2428 // If we updated the node in place, reset the node ID. To the isel,
2429 // this should be just like a newly allocated machine node.
2430 Res->setNodeId(-1);
2433 unsigned ResNumResults = Res->getNumValues();
2434 // Move the glue if needed.
2435 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2436 (unsigned)OldGlueResultNo != ResNumResults-1)
2437 ReplaceUses(SDValue(Node, OldGlueResultNo),
2438 SDValue(Res, ResNumResults - 1));
2440 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2441 --ResNumResults;
2443 // Move the chain reference if needed.
2444 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2445 (unsigned)OldChainResultNo != ResNumResults-1)
2446 ReplaceUses(SDValue(Node, OldChainResultNo),
2447 SDValue(Res, ResNumResults - 1));
2449 // Otherwise, no replacement happened because the node already exists. Replace
2450 // Uses of the old node with the new one.
2451 if (Res != Node) {
2452 ReplaceNode(Node, Res);
2453 } else {
2454 EnforceNodeIdInvariant(Res);
2457 return Res;
2460 /// CheckSame - Implements OP_CheckSame.
2461 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2462 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2463 SDValue N,
2464 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2465 // Accept if it is exactly the same as a previously recorded node.
2466 unsigned RecNo = MatcherTable[MatcherIndex++];
2467 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2468 return N == RecordedNodes[RecNo].first;
2471 /// CheckChildSame - Implements OP_CheckChildXSame.
2472 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2473 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2474 SDValue N,
2475 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
2476 unsigned ChildNo) {
2477 if (ChildNo >= N.getNumOperands())
2478 return false; // Match fails if out of range child #.
2479 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2480 RecordedNodes);
2483 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2484 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2485 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2486 const SelectionDAGISel &SDISel) {
2487 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2490 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2491 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2492 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2493 const SelectionDAGISel &SDISel, SDNode *N) {
2494 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2497 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2498 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2499 SDNode *N) {
2500 uint16_t Opc = MatcherTable[MatcherIndex++];
2501 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2502 return N->getOpcode() == Opc;
2505 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2506 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2507 const TargetLowering *TLI, const DataLayout &DL) {
2508 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2509 if (N.getValueType() == VT) return true;
2511 // Handle the case when VT is iPTR.
2512 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2515 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2516 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2517 SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2518 unsigned ChildNo) {
2519 if (ChildNo >= N.getNumOperands())
2520 return false; // Match fails if out of range child #.
2521 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2522 DL);
2525 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2526 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2527 SDValue N) {
2528 return cast<CondCodeSDNode>(N)->get() ==
2529 (ISD::CondCode)MatcherTable[MatcherIndex++];
2532 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2533 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2534 SDValue N) {
2535 if (2 >= N.getNumOperands())
2536 return false;
2537 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2540 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2541 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2542 SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2543 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2544 if (cast<VTSDNode>(N)->getVT() == VT)
2545 return true;
2547 // Handle the case when VT is iPTR.
2548 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2551 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2552 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2553 SDValue N) {
2554 int64_t Val = MatcherTable[MatcherIndex++];
2555 if (Val & 128)
2556 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2558 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2559 return C && C->getSExtValue() == Val;
2562 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2563 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2564 SDValue N, unsigned ChildNo) {
2565 if (ChildNo >= N.getNumOperands())
2566 return false; // Match fails if out of range child #.
2567 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2570 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2571 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2572 SDValue N, const SelectionDAGISel &SDISel) {
2573 int64_t Val = MatcherTable[MatcherIndex++];
2574 if (Val & 128)
2575 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2577 if (N->getOpcode() != ISD::AND) return false;
2579 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2580 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2583 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2584 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2585 SDValue N, const SelectionDAGISel &SDISel) {
2586 int64_t Val = MatcherTable[MatcherIndex++];
2587 if (Val & 128)
2588 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2590 if (N->getOpcode() != ISD::OR) return false;
2592 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2593 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2596 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2597 /// scope, evaluate the current node. If the current predicate is known to
2598 /// fail, set Result=true and return anything. If the current predicate is
2599 /// known to pass, set Result=false and return the MatcherIndex to continue
2600 /// with. If the current predicate is unknown, set Result=false and return the
2601 /// MatcherIndex to continue with.
2602 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2603 unsigned Index, SDValue N,
2604 bool &Result,
2605 const SelectionDAGISel &SDISel,
2606 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2607 switch (Table[Index++]) {
2608 default:
2609 Result = false;
2610 return Index-1; // Could not evaluate this predicate.
2611 case SelectionDAGISel::OPC_CheckSame:
2612 Result = !::CheckSame(Table, Index, N, RecordedNodes);
2613 return Index;
2614 case SelectionDAGISel::OPC_CheckChild0Same:
2615 case SelectionDAGISel::OPC_CheckChild1Same:
2616 case SelectionDAGISel::OPC_CheckChild2Same:
2617 case SelectionDAGISel::OPC_CheckChild3Same:
2618 Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2619 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2620 return Index;
2621 case SelectionDAGISel::OPC_CheckPatternPredicate:
2622 Result = !::CheckPatternPredicate(Table, Index, SDISel);
2623 return Index;
2624 case SelectionDAGISel::OPC_CheckPredicate:
2625 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2626 return Index;
2627 case SelectionDAGISel::OPC_CheckOpcode:
2628 Result = !::CheckOpcode(Table, Index, N.getNode());
2629 return Index;
2630 case SelectionDAGISel::OPC_CheckType:
2631 Result = !::CheckType(Table, Index, N, SDISel.TLI,
2632 SDISel.CurDAG->getDataLayout());
2633 return Index;
2634 case SelectionDAGISel::OPC_CheckTypeRes: {
2635 unsigned Res = Table[Index++];
2636 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2637 SDISel.CurDAG->getDataLayout());
2638 return Index;
2640 case SelectionDAGISel::OPC_CheckChild0Type:
2641 case SelectionDAGISel::OPC_CheckChild1Type:
2642 case SelectionDAGISel::OPC_CheckChild2Type:
2643 case SelectionDAGISel::OPC_CheckChild3Type:
2644 case SelectionDAGISel::OPC_CheckChild4Type:
2645 case SelectionDAGISel::OPC_CheckChild5Type:
2646 case SelectionDAGISel::OPC_CheckChild6Type:
2647 case SelectionDAGISel::OPC_CheckChild7Type:
2648 Result = !::CheckChildType(
2649 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2650 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2651 return Index;
2652 case SelectionDAGISel::OPC_CheckCondCode:
2653 Result = !::CheckCondCode(Table, Index, N);
2654 return Index;
2655 case SelectionDAGISel::OPC_CheckChild2CondCode:
2656 Result = !::CheckChild2CondCode(Table, Index, N);
2657 return Index;
2658 case SelectionDAGISel::OPC_CheckValueType:
2659 Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2660 SDISel.CurDAG->getDataLayout());
2661 return Index;
2662 case SelectionDAGISel::OPC_CheckInteger:
2663 Result = !::CheckInteger(Table, Index, N);
2664 return Index;
2665 case SelectionDAGISel::OPC_CheckChild0Integer:
2666 case SelectionDAGISel::OPC_CheckChild1Integer:
2667 case SelectionDAGISel::OPC_CheckChild2Integer:
2668 case SelectionDAGISel::OPC_CheckChild3Integer:
2669 case SelectionDAGISel::OPC_CheckChild4Integer:
2670 Result = !::CheckChildInteger(Table, Index, N,
2671 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2672 return Index;
2673 case SelectionDAGISel::OPC_CheckAndImm:
2674 Result = !::CheckAndImm(Table, Index, N, SDISel);
2675 return Index;
2676 case SelectionDAGISel::OPC_CheckOrImm:
2677 Result = !::CheckOrImm(Table, Index, N, SDISel);
2678 return Index;
2682 namespace {
2684 struct MatchScope {
2685 /// FailIndex - If this match fails, this is the index to continue with.
2686 unsigned FailIndex;
2688 /// NodeStack - The node stack when the scope was formed.
2689 SmallVector<SDValue, 4> NodeStack;
2691 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2692 unsigned NumRecordedNodes;
2694 /// NumMatchedMemRefs - The number of matched memref entries.
2695 unsigned NumMatchedMemRefs;
2697 /// InputChain/InputGlue - The current chain/glue
2698 SDValue InputChain, InputGlue;
2700 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2701 bool HasChainNodesMatched;
2704 /// \A DAG update listener to keep the matching state
2705 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2706 /// change the DAG while matching. X86 addressing mode matcher is an example
2707 /// for this.
2708 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2710 SDNode **NodeToMatch;
2711 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2712 SmallVectorImpl<MatchScope> &MatchScopes;
2714 public:
2715 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2716 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2717 SmallVectorImpl<MatchScope> &MS)
2718 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2719 RecordedNodes(RN), MatchScopes(MS) {}
2721 void NodeDeleted(SDNode *N, SDNode *E) override {
2722 // Some early-returns here to avoid the search if we deleted the node or
2723 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2724 // do, so it's unnecessary to update matching state at that point).
2725 // Neither of these can occur currently because we only install this
2726 // update listener during matching a complex patterns.
2727 if (!E || E->isMachineOpcode())
2728 return;
2729 // Check if NodeToMatch was updated.
2730 if (N == *NodeToMatch)
2731 *NodeToMatch = E;
2732 // Performing linear search here does not matter because we almost never
2733 // run this code. You'd have to have a CSE during complex pattern
2734 // matching.
2735 for (auto &I : RecordedNodes)
2736 if (I.first.getNode() == N)
2737 I.first.setNode(E);
2739 for (auto &I : MatchScopes)
2740 for (auto &J : I.NodeStack)
2741 if (J.getNode() == N)
2742 J.setNode(E);
2746 } // end anonymous namespace
2748 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2749 const unsigned char *MatcherTable,
2750 unsigned TableSize) {
2751 // FIXME: Should these even be selected? Handle these cases in the caller?
2752 switch (NodeToMatch->getOpcode()) {
2753 default:
2754 break;
2755 case ISD::EntryToken: // These nodes remain the same.
2756 case ISD::BasicBlock:
2757 case ISD::Register:
2758 case ISD::RegisterMask:
2759 case ISD::HANDLENODE:
2760 case ISD::MDNODE_SDNODE:
2761 case ISD::TargetConstant:
2762 case ISD::TargetConstantFP:
2763 case ISD::TargetConstantPool:
2764 case ISD::TargetFrameIndex:
2765 case ISD::TargetExternalSymbol:
2766 case ISD::MCSymbol:
2767 case ISD::TargetBlockAddress:
2768 case ISD::TargetJumpTable:
2769 case ISD::TargetGlobalTLSAddress:
2770 case ISD::TargetGlobalAddress:
2771 case ISD::TokenFactor:
2772 case ISD::CopyFromReg:
2773 case ISD::CopyToReg:
2774 case ISD::EH_LABEL:
2775 case ISD::ANNOTATION_LABEL:
2776 case ISD::LIFETIME_START:
2777 case ISD::LIFETIME_END:
2778 NodeToMatch->setNodeId(-1); // Mark selected.
2779 return;
2780 case ISD::AssertSext:
2781 case ISD::AssertZext:
2782 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2783 CurDAG->RemoveDeadNode(NodeToMatch);
2784 return;
2785 case ISD::INLINEASM:
2786 case ISD::INLINEASM_BR:
2787 Select_INLINEASM(NodeToMatch,
2788 NodeToMatch->getOpcode() == ISD::INLINEASM_BR);
2789 return;
2790 case ISD::READ_REGISTER:
2791 Select_READ_REGISTER(NodeToMatch);
2792 return;
2793 case ISD::WRITE_REGISTER:
2794 Select_WRITE_REGISTER(NodeToMatch);
2795 return;
2796 case ISD::UNDEF:
2797 Select_UNDEF(NodeToMatch);
2798 return;
2801 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2803 // Set up the node stack with NodeToMatch as the only node on the stack.
2804 SmallVector<SDValue, 8> NodeStack;
2805 SDValue N = SDValue(NodeToMatch, 0);
2806 NodeStack.push_back(N);
2808 // MatchScopes - Scopes used when matching, if a match failure happens, this
2809 // indicates where to continue checking.
2810 SmallVector<MatchScope, 8> MatchScopes;
2812 // RecordedNodes - This is the set of nodes that have been recorded by the
2813 // state machine. The second value is the parent of the node, or null if the
2814 // root is recorded.
2815 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2817 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2818 // pattern.
2819 SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2821 // These are the current input chain and glue for use when generating nodes.
2822 // Various Emit operations change these. For example, emitting a copytoreg
2823 // uses and updates these.
2824 SDValue InputChain, InputGlue;
2826 // ChainNodesMatched - If a pattern matches nodes that have input/output
2827 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2828 // which ones they are. The result is captured into this list so that we can
2829 // update the chain results when the pattern is complete.
2830 SmallVector<SDNode*, 3> ChainNodesMatched;
2832 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2834 // Determine where to start the interpreter. Normally we start at opcode #0,
2835 // but if the state machine starts with an OPC_SwitchOpcode, then we
2836 // accelerate the first lookup (which is guaranteed to be hot) with the
2837 // OpcodeOffset table.
2838 unsigned MatcherIndex = 0;
2840 if (!OpcodeOffset.empty()) {
2841 // Already computed the OpcodeOffset table, just index into it.
2842 if (N.getOpcode() < OpcodeOffset.size())
2843 MatcherIndex = OpcodeOffset[N.getOpcode()];
2844 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
2846 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2847 // Otherwise, the table isn't computed, but the state machine does start
2848 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2849 // is the first time we're selecting an instruction.
2850 unsigned Idx = 1;
2851 while (true) {
2852 // Get the size of this case.
2853 unsigned CaseSize = MatcherTable[Idx++];
2854 if (CaseSize & 128)
2855 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2856 if (CaseSize == 0) break;
2858 // Get the opcode, add the index to the table.
2859 uint16_t Opc = MatcherTable[Idx++];
2860 Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2861 if (Opc >= OpcodeOffset.size())
2862 OpcodeOffset.resize((Opc+1)*2);
2863 OpcodeOffset[Opc] = Idx;
2864 Idx += CaseSize;
2867 // Okay, do the lookup for the first opcode.
2868 if (N.getOpcode() < OpcodeOffset.size())
2869 MatcherIndex = OpcodeOffset[N.getOpcode()];
2872 while (true) {
2873 assert(MatcherIndex < TableSize && "Invalid index");
2874 #ifndef NDEBUG
2875 unsigned CurrentOpcodeIndex = MatcherIndex;
2876 #endif
2877 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2878 switch (Opcode) {
2879 case OPC_Scope: {
2880 // Okay, the semantics of this operation are that we should push a scope
2881 // then evaluate the first child. However, pushing a scope only to have
2882 // the first check fail (which then pops it) is inefficient. If we can
2883 // determine immediately that the first check (or first several) will
2884 // immediately fail, don't even bother pushing a scope for them.
2885 unsigned FailIndex;
2887 while (true) {
2888 unsigned NumToSkip = MatcherTable[MatcherIndex++];
2889 if (NumToSkip & 128)
2890 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2891 // Found the end of the scope with no match.
2892 if (NumToSkip == 0) {
2893 FailIndex = 0;
2894 break;
2897 FailIndex = MatcherIndex+NumToSkip;
2899 unsigned MatcherIndexOfPredicate = MatcherIndex;
2900 (void)MatcherIndexOfPredicate; // silence warning.
2902 // If we can't evaluate this predicate without pushing a scope (e.g. if
2903 // it is a 'MoveParent') or if the predicate succeeds on this node, we
2904 // push the scope and evaluate the full predicate chain.
2905 bool Result;
2906 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2907 Result, *this, RecordedNodes);
2908 if (!Result)
2909 break;
2911 LLVM_DEBUG(
2912 dbgs() << " Skipped scope entry (due to false predicate) at "
2913 << "index " << MatcherIndexOfPredicate << ", continuing at "
2914 << FailIndex << "\n");
2915 ++NumDAGIselRetries;
2917 // Otherwise, we know that this case of the Scope is guaranteed to fail,
2918 // move to the next case.
2919 MatcherIndex = FailIndex;
2922 // If the whole scope failed to match, bail.
2923 if (FailIndex == 0) break;
2925 // Push a MatchScope which indicates where to go if the first child fails
2926 // to match.
2927 MatchScope NewEntry;
2928 NewEntry.FailIndex = FailIndex;
2929 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2930 NewEntry.NumRecordedNodes = RecordedNodes.size();
2931 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2932 NewEntry.InputChain = InputChain;
2933 NewEntry.InputGlue = InputGlue;
2934 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2935 MatchScopes.push_back(NewEntry);
2936 continue;
2938 case OPC_RecordNode: {
2939 // Remember this node, it may end up being an operand in the pattern.
2940 SDNode *Parent = nullptr;
2941 if (NodeStack.size() > 1)
2942 Parent = NodeStack[NodeStack.size()-2].getNode();
2943 RecordedNodes.push_back(std::make_pair(N, Parent));
2944 continue;
2947 case OPC_RecordChild0: case OPC_RecordChild1:
2948 case OPC_RecordChild2: case OPC_RecordChild3:
2949 case OPC_RecordChild4: case OPC_RecordChild5:
2950 case OPC_RecordChild6: case OPC_RecordChild7: {
2951 unsigned ChildNo = Opcode-OPC_RecordChild0;
2952 if (ChildNo >= N.getNumOperands())
2953 break; // Match fails if out of range child #.
2955 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2956 N.getNode()));
2957 continue;
2959 case OPC_RecordMemRef:
2960 if (auto *MN = dyn_cast<MemSDNode>(N))
2961 MatchedMemRefs.push_back(MN->getMemOperand());
2962 else {
2963 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
2964 dbgs() << '\n');
2967 continue;
2969 case OPC_CaptureGlueInput:
2970 // If the current node has an input glue, capture it in InputGlue.
2971 if (N->getNumOperands() != 0 &&
2972 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2973 InputGlue = N->getOperand(N->getNumOperands()-1);
2974 continue;
2976 case OPC_MoveChild: {
2977 unsigned ChildNo = MatcherTable[MatcherIndex++];
2978 if (ChildNo >= N.getNumOperands())
2979 break; // Match fails if out of range child #.
2980 N = N.getOperand(ChildNo);
2981 NodeStack.push_back(N);
2982 continue;
2985 case OPC_MoveChild0: case OPC_MoveChild1:
2986 case OPC_MoveChild2: case OPC_MoveChild3:
2987 case OPC_MoveChild4: case OPC_MoveChild5:
2988 case OPC_MoveChild6: case OPC_MoveChild7: {
2989 unsigned ChildNo = Opcode-OPC_MoveChild0;
2990 if (ChildNo >= N.getNumOperands())
2991 break; // Match fails if out of range child #.
2992 N = N.getOperand(ChildNo);
2993 NodeStack.push_back(N);
2994 continue;
2997 case OPC_MoveParent:
2998 // Pop the current node off the NodeStack.
2999 NodeStack.pop_back();
3000 assert(!NodeStack.empty() && "Node stack imbalance!");
3001 N = NodeStack.back();
3002 continue;
3004 case OPC_CheckSame:
3005 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3006 continue;
3008 case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3009 case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3010 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3011 Opcode-OPC_CheckChild0Same))
3012 break;
3013 continue;
3015 case OPC_CheckPatternPredicate:
3016 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3017 continue;
3018 case OPC_CheckPredicate:
3019 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3020 N.getNode()))
3021 break;
3022 continue;
3023 case OPC_CheckPredicateWithOperands: {
3024 unsigned OpNum = MatcherTable[MatcherIndex++];
3025 SmallVector<SDValue, 8> Operands;
3027 for (unsigned i = 0; i < OpNum; ++i)
3028 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3030 unsigned PredNo = MatcherTable[MatcherIndex++];
3031 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3032 break;
3033 continue;
3035 case OPC_CheckComplexPat: {
3036 unsigned CPNum = MatcherTable[MatcherIndex++];
3037 unsigned RecNo = MatcherTable[MatcherIndex++];
3038 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3040 // If target can modify DAG during matching, keep the matching state
3041 // consistent.
3042 std::unique_ptr<MatchStateUpdater> MSU;
3043 if (ComplexPatternFuncMutatesDAG())
3044 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3045 MatchScopes));
3047 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3048 RecordedNodes[RecNo].first, CPNum,
3049 RecordedNodes))
3050 break;
3051 continue;
3053 case OPC_CheckOpcode:
3054 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3055 continue;
3057 case OPC_CheckType:
3058 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3059 CurDAG->getDataLayout()))
3060 break;
3061 continue;
3063 case OPC_CheckTypeRes: {
3064 unsigned Res = MatcherTable[MatcherIndex++];
3065 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3066 CurDAG->getDataLayout()))
3067 break;
3068 continue;
3071 case OPC_SwitchOpcode: {
3072 unsigned CurNodeOpcode = N.getOpcode();
3073 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3074 unsigned CaseSize;
3075 while (true) {
3076 // Get the size of this case.
3077 CaseSize = MatcherTable[MatcherIndex++];
3078 if (CaseSize & 128)
3079 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3080 if (CaseSize == 0) break;
3082 uint16_t Opc = MatcherTable[MatcherIndex++];
3083 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3085 // If the opcode matches, then we will execute this case.
3086 if (CurNodeOpcode == Opc)
3087 break;
3089 // Otherwise, skip over this case.
3090 MatcherIndex += CaseSize;
3093 // If no cases matched, bail out.
3094 if (CaseSize == 0) break;
3096 // Otherwise, execute the case we found.
3097 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to "
3098 << MatcherIndex << "\n");
3099 continue;
3102 case OPC_SwitchType: {
3103 MVT CurNodeVT = N.getSimpleValueType();
3104 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3105 unsigned CaseSize;
3106 while (true) {
3107 // Get the size of this case.
3108 CaseSize = MatcherTable[MatcherIndex++];
3109 if (CaseSize & 128)
3110 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3111 if (CaseSize == 0) break;
3113 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3114 if (CaseVT == MVT::iPTR)
3115 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3117 // If the VT matches, then we will execute this case.
3118 if (CurNodeVT == CaseVT)
3119 break;
3121 // Otherwise, skip over this case.
3122 MatcherIndex += CaseSize;
3125 // If no cases matched, bail out.
3126 if (CaseSize == 0) break;
3128 // Otherwise, execute the case we found.
3129 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3130 << "] from " << SwitchStart << " to " << MatcherIndex
3131 << '\n');
3132 continue;
3134 case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3135 case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3136 case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3137 case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3138 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3139 CurDAG->getDataLayout(),
3140 Opcode - OPC_CheckChild0Type))
3141 break;
3142 continue;
3143 case OPC_CheckCondCode:
3144 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3145 continue;
3146 case OPC_CheckChild2CondCode:
3147 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3148 continue;
3149 case OPC_CheckValueType:
3150 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3151 CurDAG->getDataLayout()))
3152 break;
3153 continue;
3154 case OPC_CheckInteger:
3155 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3156 continue;
3157 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3158 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3159 case OPC_CheckChild4Integer:
3160 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3161 Opcode-OPC_CheckChild0Integer)) break;
3162 continue;
3163 case OPC_CheckAndImm:
3164 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3165 continue;
3166 case OPC_CheckOrImm:
3167 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3168 continue;
3169 case OPC_CheckImmAllOnesV:
3170 if (!ISD::isBuildVectorAllOnes(N.getNode())) break;
3171 continue;
3172 case OPC_CheckImmAllZerosV:
3173 if (!ISD::isBuildVectorAllZeros(N.getNode())) break;
3174 continue;
3176 case OPC_CheckFoldableChainNode: {
3177 assert(NodeStack.size() != 1 && "No parent node");
3178 // Verify that all intermediate nodes between the root and this one have
3179 // a single use.
3180 bool HasMultipleUses = false;
3181 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
3182 if (!NodeStack[i].getNode()->hasOneUse()) {
3183 HasMultipleUses = true;
3184 break;
3186 if (HasMultipleUses) break;
3188 // Check to see that the target thinks this is profitable to fold and that
3189 // we can fold it without inducing cycles in the graph.
3190 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3191 NodeToMatch) ||
3192 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3193 NodeToMatch, OptLevel,
3194 true/*We validate our own chains*/))
3195 break;
3197 continue;
3199 case OPC_EmitInteger: {
3200 MVT::SimpleValueType VT =
3201 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3202 int64_t Val = MatcherTable[MatcherIndex++];
3203 if (Val & 128)
3204 Val = GetVBR(Val, MatcherTable, MatcherIndex);
3205 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3206 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3207 VT), nullptr));
3208 continue;
3210 case OPC_EmitRegister: {
3211 MVT::SimpleValueType VT =
3212 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3213 unsigned RegNo = MatcherTable[MatcherIndex++];
3214 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3215 CurDAG->getRegister(RegNo, VT), nullptr));
3216 continue;
3218 case OPC_EmitRegister2: {
3219 // For targets w/ more than 256 register names, the register enum
3220 // values are stored in two bytes in the matcher table (just like
3221 // opcodes).
3222 MVT::SimpleValueType VT =
3223 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3224 unsigned RegNo = MatcherTable[MatcherIndex++];
3225 RegNo |= MatcherTable[MatcherIndex++] << 8;
3226 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3227 CurDAG->getRegister(RegNo, VT), nullptr));
3228 continue;
3231 case OPC_EmitConvertToTarget: {
3232 // Convert from IMM/FPIMM to target version.
3233 unsigned RecNo = MatcherTable[MatcherIndex++];
3234 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3235 SDValue Imm = RecordedNodes[RecNo].first;
3237 if (Imm->getOpcode() == ISD::Constant) {
3238 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3239 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3240 Imm.getValueType());
3241 } else if (Imm->getOpcode() == ISD::ConstantFP) {
3242 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3243 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3244 Imm.getValueType());
3247 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3248 continue;
3251 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
3252 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1
3253 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2
3254 // These are space-optimized forms of OPC_EmitMergeInputChains.
3255 assert(!InputChain.getNode() &&
3256 "EmitMergeInputChains should be the first chain producing node");
3257 assert(ChainNodesMatched.empty() &&
3258 "Should only have one EmitMergeInputChains per match");
3260 // Read all of the chained nodes.
3261 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3262 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3263 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3265 // FIXME: What if other value results of the node have uses not matched
3266 // by this pattern?
3267 if (ChainNodesMatched.back() != NodeToMatch &&
3268 !RecordedNodes[RecNo].first.hasOneUse()) {
3269 ChainNodesMatched.clear();
3270 break;
3273 // Merge the input chains if they are not intra-pattern references.
3274 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3276 if (!InputChain.getNode())
3277 break; // Failed to merge.
3278 continue;
3281 case OPC_EmitMergeInputChains: {
3282 assert(!InputChain.getNode() &&
3283 "EmitMergeInputChains should be the first chain producing node");
3284 // This node gets a list of nodes we matched in the input that have
3285 // chains. We want to token factor all of the input chains to these nodes
3286 // together. However, if any of the input chains is actually one of the
3287 // nodes matched in this pattern, then we have an intra-match reference.
3288 // Ignore these because the newly token factored chain should not refer to
3289 // the old nodes.
3290 unsigned NumChains = MatcherTable[MatcherIndex++];
3291 assert(NumChains != 0 && "Can't TF zero chains");
3293 assert(ChainNodesMatched.empty() &&
3294 "Should only have one EmitMergeInputChains per match");
3296 // Read all of the chained nodes.
3297 for (unsigned i = 0; i != NumChains; ++i) {
3298 unsigned RecNo = MatcherTable[MatcherIndex++];
3299 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3300 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3302 // FIXME: What if other value results of the node have uses not matched
3303 // by this pattern?
3304 if (ChainNodesMatched.back() != NodeToMatch &&
3305 !RecordedNodes[RecNo].first.hasOneUse()) {
3306 ChainNodesMatched.clear();
3307 break;
3311 // If the inner loop broke out, the match fails.
3312 if (ChainNodesMatched.empty())
3313 break;
3315 // Merge the input chains if they are not intra-pattern references.
3316 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3318 if (!InputChain.getNode())
3319 break; // Failed to merge.
3321 continue;
3324 case OPC_EmitCopyToReg:
3325 case OPC_EmitCopyToReg2: {
3326 unsigned RecNo = MatcherTable[MatcherIndex++];
3327 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3328 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3329 if (Opcode == OPC_EmitCopyToReg2)
3330 DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
3332 if (!InputChain.getNode())
3333 InputChain = CurDAG->getEntryNode();
3335 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3336 DestPhysReg, RecordedNodes[RecNo].first,
3337 InputGlue);
3339 InputGlue = InputChain.getValue(1);
3340 continue;
3343 case OPC_EmitNodeXForm: {
3344 unsigned XFormNo = MatcherTable[MatcherIndex++];
3345 unsigned RecNo = MatcherTable[MatcherIndex++];
3346 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3347 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3348 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3349 continue;
3351 case OPC_Coverage: {
3352 // This is emitted right before MorphNode/EmitNode.
3353 // So it should be safe to assume that this node has been selected
3354 unsigned index = MatcherTable[MatcherIndex++];
3355 index |= (MatcherTable[MatcherIndex++] << 8);
3356 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3357 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3358 continue;
3361 case OPC_EmitNode: case OPC_MorphNodeTo:
3362 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2:
3363 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3364 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3365 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3366 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3367 // Get the result VT list.
3368 unsigned NumVTs;
3369 // If this is one of the compressed forms, get the number of VTs based
3370 // on the Opcode. Otherwise read the next byte from the table.
3371 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3372 NumVTs = Opcode - OPC_MorphNodeTo0;
3373 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3374 NumVTs = Opcode - OPC_EmitNode0;
3375 else
3376 NumVTs = MatcherTable[MatcherIndex++];
3377 SmallVector<EVT, 4> VTs;
3378 for (unsigned i = 0; i != NumVTs; ++i) {
3379 MVT::SimpleValueType VT =
3380 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3381 if (VT == MVT::iPTR)
3382 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3383 VTs.push_back(VT);
3386 if (EmitNodeInfo & OPFL_Chain)
3387 VTs.push_back(MVT::Other);
3388 if (EmitNodeInfo & OPFL_GlueOutput)
3389 VTs.push_back(MVT::Glue);
3391 // This is hot code, so optimize the two most common cases of 1 and 2
3392 // results.
3393 SDVTList VTList;
3394 if (VTs.size() == 1)
3395 VTList = CurDAG->getVTList(VTs[0]);
3396 else if (VTs.size() == 2)
3397 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3398 else
3399 VTList = CurDAG->getVTList(VTs);
3401 // Get the operand list.
3402 unsigned NumOps = MatcherTable[MatcherIndex++];
3403 SmallVector<SDValue, 8> Ops;
3404 for (unsigned i = 0; i != NumOps; ++i) {
3405 unsigned RecNo = MatcherTable[MatcherIndex++];
3406 if (RecNo & 128)
3407 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3409 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3410 Ops.push_back(RecordedNodes[RecNo].first);
3413 // If there are variadic operands to add, handle them now.
3414 if (EmitNodeInfo & OPFL_VariadicInfo) {
3415 // Determine the start index to copy from.
3416 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3417 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3418 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3419 "Invalid variadic node");
3420 // Copy all of the variadic operands, not including a potential glue
3421 // input.
3422 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3423 i != e; ++i) {
3424 SDValue V = NodeToMatch->getOperand(i);
3425 if (V.getValueType() == MVT::Glue) break;
3426 Ops.push_back(V);
3430 // If this has chain/glue inputs, add them.
3431 if (EmitNodeInfo & OPFL_Chain)
3432 Ops.push_back(InputChain);
3433 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3434 Ops.push_back(InputGlue);
3436 // Create the node.
3437 MachineSDNode *Res = nullptr;
3438 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3439 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3440 if (!IsMorphNodeTo) {
3441 // If this is a normal EmitNode command, just create the new node and
3442 // add the results to the RecordedNodes list.
3443 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3444 VTList, Ops);
3446 // Add all the non-glue/non-chain results to the RecordedNodes list.
3447 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3448 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3449 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3450 nullptr));
3452 } else {
3453 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3454 "NodeToMatch was removed partway through selection");
3455 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3456 SDNode *E) {
3457 CurDAG->salvageDebugInfo(*N);
3458 auto &Chain = ChainNodesMatched;
3459 assert((!E || !is_contained(Chain, N)) &&
3460 "Chain node replaced during MorphNode");
3461 Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
3463 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3464 Ops, EmitNodeInfo));
3467 // If the node had chain/glue results, update our notion of the current
3468 // chain and glue.
3469 if (EmitNodeInfo & OPFL_GlueOutput) {
3470 InputGlue = SDValue(Res, VTs.size()-1);
3471 if (EmitNodeInfo & OPFL_Chain)
3472 InputChain = SDValue(Res, VTs.size()-2);
3473 } else if (EmitNodeInfo & OPFL_Chain)
3474 InputChain = SDValue(Res, VTs.size()-1);
3476 // If the OPFL_MemRefs glue is set on this node, slap all of the
3477 // accumulated memrefs onto it.
3479 // FIXME: This is vastly incorrect for patterns with multiple outputs
3480 // instructions that access memory and for ComplexPatterns that match
3481 // loads.
3482 if (EmitNodeInfo & OPFL_MemRefs) {
3483 // Only attach load or store memory operands if the generated
3484 // instruction may load or store.
3485 const MCInstrDesc &MCID = TII->get(TargetOpc);
3486 bool mayLoad = MCID.mayLoad();
3487 bool mayStore = MCID.mayStore();
3489 // We expect to have relatively few of these so just filter them into a
3490 // temporary buffer so that we can easily add them to the instruction.
3491 SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3492 for (MachineMemOperand *MMO : MatchedMemRefs) {
3493 if (MMO->isLoad()) {
3494 if (mayLoad)
3495 FilteredMemRefs.push_back(MMO);
3496 } else if (MMO->isStore()) {
3497 if (mayStore)
3498 FilteredMemRefs.push_back(MMO);
3499 } else {
3500 FilteredMemRefs.push_back(MMO);
3504 CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3507 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3508 << " Dropping mem operands\n";
3509 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created")
3510 << " node: ";
3511 Res->dump(CurDAG););
3513 // If this was a MorphNodeTo then we're completely done!
3514 if (IsMorphNodeTo) {
3515 // Update chain uses.
3516 UpdateChains(Res, InputChain, ChainNodesMatched, true);
3517 return;
3519 continue;
3522 case OPC_CompleteMatch: {
3523 // The match has been completed, and any new nodes (if any) have been
3524 // created. Patch up references to the matched dag to use the newly
3525 // created nodes.
3526 unsigned NumResults = MatcherTable[MatcherIndex++];
3528 for (unsigned i = 0; i != NumResults; ++i) {
3529 unsigned ResSlot = MatcherTable[MatcherIndex++];
3530 if (ResSlot & 128)
3531 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3533 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3534 SDValue Res = RecordedNodes[ResSlot].first;
3536 assert(i < NodeToMatch->getNumValues() &&
3537 NodeToMatch->getValueType(i) != MVT::Other &&
3538 NodeToMatch->getValueType(i) != MVT::Glue &&
3539 "Invalid number of results to complete!");
3540 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3541 NodeToMatch->getValueType(i) == MVT::iPTR ||
3542 Res.getValueType() == MVT::iPTR ||
3543 NodeToMatch->getValueType(i).getSizeInBits() ==
3544 Res.getValueSizeInBits()) &&
3545 "invalid replacement");
3546 ReplaceUses(SDValue(NodeToMatch, i), Res);
3549 // Update chain uses.
3550 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3552 // If the root node defines glue, we need to update it to the glue result.
3553 // TODO: This never happens in our tests and I think it can be removed /
3554 // replaced with an assert, but if we do it this the way the change is
3555 // NFC.
3556 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3557 MVT::Glue &&
3558 InputGlue.getNode())
3559 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3560 InputGlue);
3562 assert(NodeToMatch->use_empty() &&
3563 "Didn't replace all uses of the node?");
3564 CurDAG->RemoveDeadNode(NodeToMatch);
3566 return;
3570 // If the code reached this point, then the match failed. See if there is
3571 // another child to try in the current 'Scope', otherwise pop it until we
3572 // find a case to check.
3573 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
3574 << "\n");
3575 ++NumDAGIselRetries;
3576 while (true) {
3577 if (MatchScopes.empty()) {
3578 CannotYetSelect(NodeToMatch);
3579 return;
3582 // Restore the interpreter state back to the point where the scope was
3583 // formed.
3584 MatchScope &LastScope = MatchScopes.back();
3585 RecordedNodes.resize(LastScope.NumRecordedNodes);
3586 NodeStack.clear();
3587 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3588 N = NodeStack.back();
3590 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3591 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3592 MatcherIndex = LastScope.FailIndex;
3594 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
3596 InputChain = LastScope.InputChain;
3597 InputGlue = LastScope.InputGlue;
3598 if (!LastScope.HasChainNodesMatched)
3599 ChainNodesMatched.clear();
3601 // Check to see what the offset is at the new MatcherIndex. If it is zero
3602 // we have reached the end of this scope, otherwise we have another child
3603 // in the current scope to try.
3604 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3605 if (NumToSkip & 128)
3606 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3608 // If we have another child in this scope to match, update FailIndex and
3609 // try it.
3610 if (NumToSkip != 0) {
3611 LastScope.FailIndex = MatcherIndex+NumToSkip;
3612 break;
3615 // End of this scope, pop it and try the next child in the containing
3616 // scope.
3617 MatchScopes.pop_back();
3622 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3623 assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3624 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3625 if (!C)
3626 return false;
3628 // Detect when "or" is used to add an offset to a stack object.
3629 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3630 MachineFrameInfo &MFI = MF->getFrameInfo();
3631 unsigned A = MFI.getObjectAlignment(FN->getIndex());
3632 assert(isPowerOf2_32(A) && "Unexpected alignment");
3633 int32_t Off = C->getSExtValue();
3634 // If the alleged offset fits in the zero bits guaranteed by
3635 // the alignment, then this or is really an add.
3636 return (Off >= 0) && (((A - 1) & Off) == unsigned(Off));
3638 return false;
3641 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3642 std::string msg;
3643 raw_string_ostream Msg(msg);
3644 Msg << "Cannot select: ";
3646 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3647 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3648 N->getOpcode() != ISD::INTRINSIC_VOID) {
3649 N->printrFull(Msg, CurDAG);
3650 Msg << "\nIn function: " << MF->getName();
3651 } else {
3652 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3653 unsigned iid =
3654 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3655 if (iid < Intrinsic::num_intrinsics)
3656 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
3657 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3658 Msg << "target intrinsic %" << TII->getName(iid);
3659 else
3660 Msg << "unknown intrinsic #" << iid;
3662 report_fatal_error(Msg.str());
3665 char SelectionDAGISel::ID = 0;