1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file includes support code use by SelectionDAGBuilder when lowering a
10 // statepoint sequence in SelectionDAG IR.
12 //===----------------------------------------------------------------------===//
14 #include "StatepointLowering.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/FunctionLoweringInfo.h"
24 #include "llvm/CodeGen/GCMetadata.h"
25 #include "llvm/CodeGen/GCStrategy.h"
26 #include "llvm/CodeGen/ISDOpcodes.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/SelectionDAGNodes.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Statepoint.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/MachineValueType.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
56 #define DEBUG_TYPE "statepoint-lowering"
58 STATISTIC(NumSlotsAllocatedForStatepoints
,
59 "Number of stack slots allocated for statepoints");
60 STATISTIC(NumOfStatepoints
, "Number of statepoint nodes encountered");
61 STATISTIC(StatepointMaxSlotsRequired
,
62 "Maximum number of stack slots required for a singe statepoint");
64 static void pushStackMapConstant(SmallVectorImpl
<SDValue
>& Ops
,
65 SelectionDAGBuilder
&Builder
, uint64_t Value
) {
66 SDLoc L
= Builder
.getCurSDLoc();
67 Ops
.push_back(Builder
.DAG
.getTargetConstant(StackMaps::ConstantOp
, L
,
69 Ops
.push_back(Builder
.DAG
.getTargetConstant(Value
, L
, MVT::i64
));
72 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder
&Builder
) {
74 assert(PendingGCRelocateCalls
.empty() &&
75 "Trying to visit statepoint before finished processing previous one");
77 NextSlotToAllocate
= 0;
78 // Need to resize this on each safepoint - we need the two to stay in sync and
79 // the clear patterns of a SelectionDAGBuilder have no relation to
80 // FunctionLoweringInfo. Also need to ensure used bits get cleared.
81 AllocatedStackSlots
.clear();
82 AllocatedStackSlots
.resize(Builder
.FuncInfo
.StatepointStackSlots
.size());
85 void StatepointLoweringState::clear() {
87 AllocatedStackSlots
.clear();
88 assert(PendingGCRelocateCalls
.empty() &&
89 "cleared before statepoint sequence completed");
93 StatepointLoweringState::allocateStackSlot(EVT ValueType
,
94 SelectionDAGBuilder
&Builder
) {
95 NumSlotsAllocatedForStatepoints
++;
96 MachineFrameInfo
&MFI
= Builder
.DAG
.getMachineFunction().getFrameInfo();
98 unsigned SpillSize
= ValueType
.getStoreSize();
99 assert((SpillSize
* 8) == ValueType
.getSizeInBits() && "Size not in bytes?");
101 // First look for a previously created stack slot which is not in
102 // use (accounting for the fact arbitrary slots may already be
103 // reserved), or to create a new stack slot and use it.
105 const size_t NumSlots
= AllocatedStackSlots
.size();
106 assert(NextSlotToAllocate
<= NumSlots
&& "Broken invariant");
108 assert(AllocatedStackSlots
.size() ==
109 Builder
.FuncInfo
.StatepointStackSlots
.size() &&
112 for (; NextSlotToAllocate
< NumSlots
; NextSlotToAllocate
++) {
113 if (!AllocatedStackSlots
.test(NextSlotToAllocate
)) {
114 const int FI
= Builder
.FuncInfo
.StatepointStackSlots
[NextSlotToAllocate
];
115 if (MFI
.getObjectSize(FI
) == SpillSize
) {
116 AllocatedStackSlots
.set(NextSlotToAllocate
);
117 // TODO: Is ValueType the right thing to use here?
118 return Builder
.DAG
.getFrameIndex(FI
, ValueType
);
123 // Couldn't find a free slot, so create a new one:
125 SDValue SpillSlot
= Builder
.DAG
.CreateStackTemporary(ValueType
);
126 const unsigned FI
= cast
<FrameIndexSDNode
>(SpillSlot
)->getIndex();
127 MFI
.markAsStatepointSpillSlotObjectIndex(FI
);
129 Builder
.FuncInfo
.StatepointStackSlots
.push_back(FI
);
130 AllocatedStackSlots
.resize(AllocatedStackSlots
.size()+1, true);
131 assert(AllocatedStackSlots
.size() ==
132 Builder
.FuncInfo
.StatepointStackSlots
.size() &&
135 StatepointMaxSlotsRequired
.updateMax(
136 Builder
.FuncInfo
.StatepointStackSlots
.size());
141 /// Utility function for reservePreviousStackSlotForValue. Tries to find
142 /// stack slot index to which we have spilled value for previous statepoints.
143 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
144 static Optional
<int> findPreviousSpillSlot(const Value
*Val
,
145 SelectionDAGBuilder
&Builder
,
147 // Can not look any further - give up now
148 if (LookUpDepth
<= 0)
151 // Spill location is known for gc relocates
152 if (const auto *Relocate
= dyn_cast
<GCRelocateInst
>(Val
)) {
153 const auto &SpillMap
=
154 Builder
.FuncInfo
.StatepointSpillMaps
[Relocate
->getStatepoint()];
156 auto It
= SpillMap
.find(Relocate
->getDerivedPtr());
157 if (It
== SpillMap
.end())
163 // Look through bitcast instructions.
164 if (const BitCastInst
*Cast
= dyn_cast
<BitCastInst
>(Val
))
165 return findPreviousSpillSlot(Cast
->getOperand(0), Builder
, LookUpDepth
- 1);
167 // Look through phi nodes
168 // All incoming values should have same known stack slot, otherwise result
170 if (const PHINode
*Phi
= dyn_cast
<PHINode
>(Val
)) {
171 Optional
<int> MergedResult
= None
;
173 for (auto &IncomingValue
: Phi
->incoming_values()) {
174 Optional
<int> SpillSlot
=
175 findPreviousSpillSlot(IncomingValue
, Builder
, LookUpDepth
- 1);
176 if (!SpillSlot
.hasValue())
179 if (MergedResult
.hasValue() && *MergedResult
!= *SpillSlot
)
182 MergedResult
= SpillSlot
;
187 // TODO: We can do better for PHI nodes. In cases like this:
188 // ptr = phi(relocated_pointer, not_relocated_pointer)
190 // We will return that stack slot for ptr is unknown. And later we might
191 // assign different stack slots for ptr and relocated_pointer. This limits
192 // llvm's ability to remove redundant stores.
193 // Unfortunately it's hard to accomplish in current infrastructure.
194 // We use this function to eliminate spill store completely, while
195 // in example we still need to emit store, but instead of any location
196 // we need to use special "preferred" location.
198 // TODO: handle simple updates. If a value is modified and the original
199 // value is no longer live, it would be nice to put the modified value in the
200 // same slot. This allows folding of the memory accesses for some
201 // instructions types (like an increment).
205 // However we need to be careful for cases like this:
209 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
210 // put handling of simple modifications in this function like it's done
211 // for bitcasts we might end up reserving i's slot for 'i+1' because order in
212 // which we visit values is unspecified.
214 // Don't know any information about this instruction
218 /// Try to find existing copies of the incoming values in stack slots used for
219 /// statepoint spilling. If we can find a spill slot for the incoming value,
220 /// mark that slot as allocated, and reuse the same slot for this safepoint.
221 /// This helps to avoid series of loads and stores that only serve to reshuffle
222 /// values on the stack between calls.
223 static void reservePreviousStackSlotForValue(const Value
*IncomingValue
,
224 SelectionDAGBuilder
&Builder
) {
225 SDValue Incoming
= Builder
.getValue(IncomingValue
);
227 if (isa
<ConstantSDNode
>(Incoming
) || isa
<FrameIndexSDNode
>(Incoming
)) {
228 // We won't need to spill this, so no need to check for previously
229 // allocated stack slots
233 SDValue OldLocation
= Builder
.StatepointLowering
.getLocation(Incoming
);
234 if (OldLocation
.getNode())
235 // Duplicates in input
238 const int LookUpDepth
= 6;
239 Optional
<int> Index
=
240 findPreviousSpillSlot(IncomingValue
, Builder
, LookUpDepth
);
241 if (!Index
.hasValue())
244 const auto &StatepointSlots
= Builder
.FuncInfo
.StatepointStackSlots
;
246 auto SlotIt
= find(StatepointSlots
, *Index
);
247 assert(SlotIt
!= StatepointSlots
.end() &&
248 "Value spilled to the unknown stack slot");
250 // This is one of our dedicated lowering slots
251 const int Offset
= std::distance(StatepointSlots
.begin(), SlotIt
);
252 if (Builder
.StatepointLowering
.isStackSlotAllocated(Offset
)) {
253 // stack slot already assigned to someone else, can't use it!
254 // TODO: currently we reserve space for gc arguments after doing
255 // normal allocation for deopt arguments. We should reserve for
256 // _all_ deopt and gc arguments, then start allocating. This
257 // will prevent some moves being inserted when vm state changes,
258 // but gc state doesn't between two calls.
261 // Reserve this stack slot
262 Builder
.StatepointLowering
.reserveStackSlot(Offset
);
264 // Cache this slot so we find it when going through the normal
267 Builder
.DAG
.getTargetFrameIndex(*Index
, Builder
.getFrameIndexTy());
268 Builder
.StatepointLowering
.setLocation(Incoming
, Loc
);
271 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This
272 /// is not required for correctness. It's purpose is to reduce the size of
273 /// StackMap section. It has no effect on the number of spill slots required
274 /// or the actual lowering.
276 removeDuplicateGCPtrs(SmallVectorImpl
<const Value
*> &Bases
,
277 SmallVectorImpl
<const Value
*> &Ptrs
,
278 SmallVectorImpl
<const GCRelocateInst
*> &Relocs
,
279 SelectionDAGBuilder
&Builder
,
280 FunctionLoweringInfo::StatepointSpillMap
&SSM
) {
281 DenseMap
<SDValue
, const Value
*> Seen
;
283 SmallVector
<const Value
*, 64> NewBases
, NewPtrs
;
284 SmallVector
<const GCRelocateInst
*, 64> NewRelocs
;
285 for (size_t i
= 0, e
= Ptrs
.size(); i
< e
; i
++) {
286 SDValue SD
= Builder
.getValue(Ptrs
[i
]);
287 auto SeenIt
= Seen
.find(SD
);
289 if (SeenIt
== Seen
.end()) {
290 // Only add non-duplicates
291 NewBases
.push_back(Bases
[i
]);
292 NewPtrs
.push_back(Ptrs
[i
]);
293 NewRelocs
.push_back(Relocs
[i
]);
296 // Duplicate pointer found, note in SSM and move on:
297 SSM
.DuplicateMap
[Ptrs
[i
]] = SeenIt
->second
;
300 assert(Bases
.size() >= NewBases
.size());
301 assert(Ptrs
.size() >= NewPtrs
.size());
302 assert(Relocs
.size() >= NewRelocs
.size());
306 assert(Ptrs
.size() == Bases
.size());
307 assert(Ptrs
.size() == Relocs
.size());
310 /// Extract call from statepoint, lower it and return pointer to the
311 /// call node. Also update NodeMap so that getValue(statepoint) will
312 /// reference lowered call result
313 static std::pair
<SDValue
, SDNode
*> lowerCallFromStatepointLoweringInfo(
314 SelectionDAGBuilder::StatepointLoweringInfo
&SI
,
315 SelectionDAGBuilder
&Builder
, SmallVectorImpl
<SDValue
> &PendingExports
) {
316 SDValue ReturnValue
, CallEndVal
;
317 std::tie(ReturnValue
, CallEndVal
) =
318 Builder
.lowerInvokable(SI
.CLI
, SI
.EHPadBB
);
319 SDNode
*CallEnd
= CallEndVal
.getNode();
321 // Get a call instruction from the call sequence chain. Tail calls are not
322 // allowed. The following code is essentially reverse engineering X86's
325 // We are expecting DAG to have the following form:
327 // ch = eh_label (only in case of invoke statepoint)
328 // ch, glue = callseq_start ch
329 // ch, glue = X86::Call ch, glue
330 // ch, glue = callseq_end ch, glue
331 // get_return_value ch, glue
333 // get_return_value can either be a sequence of CopyFromReg instructions
334 // to grab the return value from the return register(s), or it can be a LOAD
335 // to load a value returned by reference via a stack slot.
337 bool HasDef
= !SI
.CLI
.RetTy
->isVoidTy();
339 if (CallEnd
->getOpcode() == ISD::LOAD
)
340 CallEnd
= CallEnd
->getOperand(0).getNode();
342 while (CallEnd
->getOpcode() == ISD::CopyFromReg
)
343 CallEnd
= CallEnd
->getOperand(0).getNode();
346 assert(CallEnd
->getOpcode() == ISD::CALLSEQ_END
&& "expected!");
347 return std::make_pair(ReturnValue
, CallEnd
->getOperand(0).getNode());
350 static MachineMemOperand
* getMachineMemOperand(MachineFunction
&MF
,
351 FrameIndexSDNode
&FI
) {
352 auto PtrInfo
= MachinePointerInfo::getFixedStack(MF
, FI
.getIndex());
353 auto MMOFlags
= MachineMemOperand::MOStore
|
354 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
355 auto &MFI
= MF
.getFrameInfo();
356 return MF
.getMachineMemOperand(PtrInfo
, MMOFlags
,
357 MFI
.getObjectSize(FI
.getIndex()),
358 MFI
.getObjectAlignment(FI
.getIndex()));
361 /// Spill a value incoming to the statepoint. It might be either part of
363 /// or gcstate. In both cases unconditionally spill it on the stack unless it
364 /// is a null constant. Return pair with first element being frame index
365 /// containing saved value and second element with outgoing chain from the
367 static std::tuple
<SDValue
, SDValue
, MachineMemOperand
*>
368 spillIncomingStatepointValue(SDValue Incoming
, SDValue Chain
,
369 SelectionDAGBuilder
&Builder
) {
370 SDValue Loc
= Builder
.StatepointLowering
.getLocation(Incoming
);
371 MachineMemOperand
* MMO
= nullptr;
373 // Emit new store if we didn't do it for this ptr before
374 if (!Loc
.getNode()) {
375 Loc
= Builder
.StatepointLowering
.allocateStackSlot(Incoming
.getValueType(),
377 int Index
= cast
<FrameIndexSDNode
>(Loc
)->getIndex();
378 // We use TargetFrameIndex so that isel will not select it into LEA
379 Loc
= Builder
.DAG
.getTargetFrameIndex(Index
, Builder
.getFrameIndexTy());
381 // Right now we always allocate spill slots that are of the same
382 // size as the value we're about to spill (the size of spillee can
383 // vary since we spill vectors of pointers too). At some point we
384 // can consider allowing spills of smaller values to larger slots
385 // (i.e. change the '==' in the assert below to a '>=').
386 MachineFrameInfo
&MFI
= Builder
.DAG
.getMachineFunction().getFrameInfo();
387 assert((MFI
.getObjectSize(Index
) * 8) == Incoming
.getValueSizeInBits() &&
388 "Bad spill: stack slot does not match!");
390 // Note: Using the alignment of the spill slot (rather than the abi or
391 // preferred alignment) is required for correctness when dealing with spill
392 // slots with preferred alignments larger than frame alignment..
393 auto &MF
= Builder
.DAG
.getMachineFunction();
394 auto PtrInfo
= MachinePointerInfo::getFixedStack(MF
, Index
);
396 MF
.getMachineMemOperand(PtrInfo
, MachineMemOperand::MOStore
,
397 MFI
.getObjectSize(Index
),
398 MFI
.getObjectAlignment(Index
));
399 Chain
= Builder
.DAG
.getStore(Chain
, Builder
.getCurSDLoc(), Incoming
, Loc
,
402 MMO
= getMachineMemOperand(MF
, *cast
<FrameIndexSDNode
>(Loc
));
404 Builder
.StatepointLowering
.setLocation(Incoming
, Loc
);
407 assert(Loc
.getNode());
408 return std::make_tuple(Loc
, Chain
, MMO
);
411 /// Lower a single value incoming to a statepoint node. This value can be
412 /// either a deopt value or a gc value, the handling is the same. We special
413 /// case constants and allocas, then fall back to spilling if required.
414 static void lowerIncomingStatepointValue(SDValue Incoming
, bool LiveInOnly
,
415 SmallVectorImpl
<SDValue
> &Ops
,
416 SmallVectorImpl
<MachineMemOperand
*> &MemRefs
,
417 SelectionDAGBuilder
&Builder
) {
418 // Note: We know all of these spills are independent, but don't bother to
419 // exploit that chain wise. DAGCombine will happily do so as needed, so
420 // doing it here would be a small compile time win at most.
421 SDValue Chain
= Builder
.getRoot();
423 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Incoming
)) {
424 // If the original value was a constant, make sure it gets recorded as
425 // such in the stackmap. This is required so that the consumer can
426 // parse any internal format to the deopt state. It also handles null
427 // pointers and other constant pointers in GC states. Note the constant
428 // vectors do not appear to actually hit this path and that anything larger
429 // than an i64 value (not type!) will fail asserts here.
430 pushStackMapConstant(Ops
, Builder
, C
->getSExtValue());
431 } else if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Incoming
)) {
432 // This handles allocas as arguments to the statepoint (this is only
433 // really meaningful for a deopt value. For GC, we'd be trying to
434 // relocate the address of the alloca itself?)
435 assert(Incoming
.getValueType() == Builder
.getFrameIndexTy() &&
436 "Incoming value is a frame index!");
437 Ops
.push_back(Builder
.DAG
.getTargetFrameIndex(FI
->getIndex(),
438 Builder
.getFrameIndexTy()));
440 auto &MF
= Builder
.DAG
.getMachineFunction();
441 auto *MMO
= getMachineMemOperand(MF
, *FI
);
442 MemRefs
.push_back(MMO
);
444 } else if (LiveInOnly
) {
445 // If this value is live in (not live-on-return, or live-through), we can
446 // treat it the same way patchpoint treats it's "live in" values. We'll
447 // end up folding some of these into stack references, but they'll be
448 // handled by the register allocator. Note that we do not have the notion
449 // of a late use so these values might be placed in registers which are
450 // clobbered by the call. This is fine for live-in.
451 Ops
.push_back(Incoming
);
453 // Otherwise, locate a spill slot and explicitly spill it so it
454 // can be found by the runtime later. We currently do not support
455 // tracking values through callee saved registers to their eventual
456 // spill location. This would be a useful optimization, but would
457 // need to be optional since it requires a lot of complexity on the
458 // runtime side which not all would support.
459 auto Res
= spillIncomingStatepointValue(Incoming
, Chain
, Builder
);
460 Ops
.push_back(std::get
<0>(Res
));
461 if (auto *MMO
= std::get
<2>(Res
))
462 MemRefs
.push_back(MMO
);
463 Chain
= std::get
<1>(Res
);;
466 Builder
.DAG
.setRoot(Chain
);
469 /// Lower deopt state and gc pointer arguments of the statepoint. The actual
470 /// lowering is described in lowerIncomingStatepointValue. This function is
471 /// responsible for lowering everything in the right position and playing some
472 /// tricks to avoid redundant stack manipulation where possible. On
473 /// completion, 'Ops' will contain ready to use operands for machine code
474 /// statepoint. The chain nodes will have already been created and the DAG root
475 /// will be set to the last value spilled (if any were).
477 lowerStatepointMetaArgs(SmallVectorImpl
<SDValue
> &Ops
,
478 SmallVectorImpl
<MachineMemOperand
*> &MemRefs
, SelectionDAGBuilder::StatepointLoweringInfo
&SI
,
479 SelectionDAGBuilder
&Builder
) {
480 // Lower the deopt and gc arguments for this statepoint. Layout will be:
481 // deopt argument length, deopt arguments.., gc arguments...
483 if (auto *GFI
= Builder
.GFI
) {
484 // Check that each of the gc pointer and bases we've gotten out of the
485 // safepoint is something the strategy thinks might be a pointer (or vector
486 // of pointers) into the GC heap. This is basically just here to help catch
487 // errors during statepoint insertion. TODO: This should actually be in the
488 // Verifier, but we can't get to the GCStrategy from there (yet).
489 GCStrategy
&S
= GFI
->getStrategy();
490 for (const Value
*V
: SI
.Bases
) {
491 auto Opt
= S
.isGCManagedPointer(V
->getType()->getScalarType());
492 if (Opt
.hasValue()) {
493 assert(Opt
.getValue() &&
494 "non gc managed base pointer found in statepoint");
497 for (const Value
*V
: SI
.Ptrs
) {
498 auto Opt
= S
.isGCManagedPointer(V
->getType()->getScalarType());
499 if (Opt
.hasValue()) {
500 assert(Opt
.getValue() &&
501 "non gc managed derived pointer found in statepoint");
504 assert(SI
.Bases
.size() == SI
.Ptrs
.size() && "Pointer without base!");
506 assert(SI
.Bases
.empty() && "No gc specified, so cannot relocate pointers!");
507 assert(SI
.Ptrs
.empty() && "No gc specified, so cannot relocate pointers!");
511 // Figure out what lowering strategy we're going to use for each part
512 // Note: Is is conservatively correct to lower both "live-in" and "live-out"
513 // as "live-through". A "live-through" variable is one which is "live-in",
514 // "live-out", and live throughout the lifetime of the call (i.e. we can find
515 // it from any PC within the transitive callee of the statepoint). In
516 // particular, if the callee spills callee preserved registers we may not
517 // be able to find a value placed in that register during the call. This is
518 // fine for live-out, but not for live-through. If we were willing to make
519 // assumptions about the code generator producing the callee, we could
520 // potentially allow live-through values in callee saved registers.
521 const bool LiveInDeopt
=
522 SI
.StatepointFlags
& (uint64_t)StatepointFlags::DeoptLiveIn
;
524 auto isGCValue
=[&](const Value
*V
) {
525 return is_contained(SI
.Ptrs
, V
) || is_contained(SI
.Bases
, V
);
528 // Before we actually start lowering (and allocating spill slots for values),
529 // reserve any stack slots which we judge to be profitable to reuse for a
530 // particular value. This is purely an optimization over the code below and
531 // doesn't change semantics at all. It is important for performance that we
532 // reserve slots for both deopt and gc values before lowering either.
533 for (const Value
*V
: SI
.DeoptState
) {
534 if (!LiveInDeopt
|| isGCValue(V
))
535 reservePreviousStackSlotForValue(V
, Builder
);
537 for (unsigned i
= 0; i
< SI
.Bases
.size(); ++i
) {
538 reservePreviousStackSlotForValue(SI
.Bases
[i
], Builder
);
539 reservePreviousStackSlotForValue(SI
.Ptrs
[i
], Builder
);
542 // First, prefix the list with the number of unique values to be
543 // lowered. Note that this is the number of *Values* not the
544 // number of SDValues required to lower them.
545 const int NumVMSArgs
= SI
.DeoptState
.size();
546 pushStackMapConstant(Ops
, Builder
, NumVMSArgs
);
548 // The vm state arguments are lowered in an opaque manner. We do not know
549 // what type of values are contained within.
550 for (const Value
*V
: SI
.DeoptState
) {
552 // If this is a function argument at a static frame index, generate it as
554 if (const Argument
*Arg
= dyn_cast
<Argument
>(V
)) {
555 int FI
= Builder
.FuncInfo
.getArgumentFrameIndex(Arg
);
557 Incoming
= Builder
.DAG
.getFrameIndex(FI
, Builder
.getFrameIndexTy());
559 if (!Incoming
.getNode())
560 Incoming
= Builder
.getValue(V
);
561 const bool LiveInValue
= LiveInDeopt
&& !isGCValue(V
);
562 lowerIncomingStatepointValue(Incoming
, LiveInValue
, Ops
, MemRefs
, Builder
);
565 // Finally, go ahead and lower all the gc arguments. There's no prefixed
566 // length for this one. After lowering, we'll have the base and pointer
567 // arrays interwoven with each (lowered) base pointer immediately followed by
568 // it's (lowered) derived pointer. i.e
569 // (base[0], ptr[0], base[1], ptr[1], ...)
570 for (unsigned i
= 0; i
< SI
.Bases
.size(); ++i
) {
571 const Value
*Base
= SI
.Bases
[i
];
572 lowerIncomingStatepointValue(Builder
.getValue(Base
), /*LiveInOnly*/ false,
573 Ops
, MemRefs
, Builder
);
575 const Value
*Ptr
= SI
.Ptrs
[i
];
576 lowerIncomingStatepointValue(Builder
.getValue(Ptr
), /*LiveInOnly*/ false,
577 Ops
, MemRefs
, Builder
);
580 // If there are any explicit spill slots passed to the statepoint, record
581 // them, but otherwise do not do anything special. These are user provided
582 // allocas and give control over placement to the consumer. In this case,
583 // it is the contents of the slot which may get updated, not the pointer to
585 for (Value
*V
: SI
.GCArgs
) {
586 SDValue Incoming
= Builder
.getValue(V
);
587 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Incoming
)) {
588 // This handles allocas as arguments to the statepoint
589 assert(Incoming
.getValueType() == Builder
.getFrameIndexTy() &&
590 "Incoming value is a frame index!");
591 Ops
.push_back(Builder
.DAG
.getTargetFrameIndex(FI
->getIndex(),
592 Builder
.getFrameIndexTy()));
594 auto &MF
= Builder
.DAG
.getMachineFunction();
595 auto *MMO
= getMachineMemOperand(MF
, *FI
);
596 MemRefs
.push_back(MMO
);
600 // Record computed locations for all lowered values.
601 // This can not be embedded in lowering loops as we need to record *all*
602 // values, while previous loops account only values with unique SDValues.
603 const Instruction
*StatepointInstr
= SI
.StatepointInstr
;
604 auto &SpillMap
= Builder
.FuncInfo
.StatepointSpillMaps
[StatepointInstr
];
606 for (const GCRelocateInst
*Relocate
: SI
.GCRelocates
) {
607 const Value
*V
= Relocate
->getDerivedPtr();
608 SDValue SDV
= Builder
.getValue(V
);
609 SDValue Loc
= Builder
.StatepointLowering
.getLocation(SDV
);
612 SpillMap
.SlotMap
[V
] = cast
<FrameIndexSDNode
>(Loc
)->getIndex();
614 // Record value as visited, but not spilled. This is case for allocas
615 // and constants. For this values we can avoid emitting spill load while
616 // visiting corresponding gc_relocate.
617 // Actually we do not need to record them in this map at all.
618 // We do this only to check that we are not relocating any unvisited
620 SpillMap
.SlotMap
[V
] = None
;
622 // Default llvm mechanisms for exporting values which are used in
623 // different basic blocks does not work for gc relocates.
624 // Note that it would be incorrect to teach llvm that all relocates are
625 // uses of the corresponding values so that it would automatically
626 // export them. Relocates of the spilled values does not use original
628 if (Relocate
->getParent() != StatepointInstr
->getParent())
629 Builder
.ExportFromCurrentBlock(V
);
634 SDValue
SelectionDAGBuilder::LowerAsSTATEPOINT(
635 SelectionDAGBuilder::StatepointLoweringInfo
&SI
) {
636 // The basic scheme here is that information about both the original call and
637 // the safepoint is encoded in the CallInst. We create a temporary call and
638 // lower it, then reverse engineer the calling sequence.
642 StatepointLowering
.startNewStatepoint(*this);
645 // We schedule gc relocates before removeDuplicateGCPtrs since we _will_
646 // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs.
647 for (auto *Reloc
: SI
.GCRelocates
)
648 if (Reloc
->getParent() == SI
.StatepointInstr
->getParent())
649 StatepointLowering
.scheduleRelocCall(*Reloc
);
652 // Remove any redundant llvm::Values which map to the same SDValue as another
653 // input. Also has the effect of removing duplicates in the original
654 // llvm::Value input list as well. This is a useful optimization for
655 // reducing the size of the StackMap section. It has no other impact.
656 removeDuplicateGCPtrs(SI
.Bases
, SI
.Ptrs
, SI
.GCRelocates
, *this,
657 FuncInfo
.StatepointSpillMaps
[SI
.StatepointInstr
]);
658 assert(SI
.Bases
.size() == SI
.Ptrs
.size() &&
659 SI
.Ptrs
.size() == SI
.GCRelocates
.size());
661 // Lower statepoint vmstate and gcstate arguments
662 SmallVector
<SDValue
, 10> LoweredMetaArgs
;
663 SmallVector
<MachineMemOperand
*, 16> MemRefs
;
664 lowerStatepointMetaArgs(LoweredMetaArgs
, MemRefs
, SI
, *this);
666 // Now that we've emitted the spills, we need to update the root so that the
667 // call sequence is ordered correctly.
668 SI
.CLI
.setChain(getRoot());
670 // Get call node, we will replace it later with statepoint
673 std::tie(ReturnVal
, CallNode
) =
674 lowerCallFromStatepointLoweringInfo(SI
, *this, PendingExports
);
676 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
677 // nodes with all the appropriate arguments and return values.
679 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
680 SDValue Chain
= CallNode
->getOperand(0);
683 bool CallHasIncomingGlue
= CallNode
->getGluedNode();
684 if (CallHasIncomingGlue
) {
685 // Glue is always last operand
686 Glue
= CallNode
->getOperand(CallNode
->getNumOperands() - 1);
689 // Build the GC_TRANSITION_START node if necessary.
691 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
692 // order in which they appear in the call to the statepoint intrinsic. If
693 // any of the operands is a pointer-typed, that operand is immediately
694 // followed by a SRCVALUE for the pointer that may be used during lowering
695 // (e.g. to form MachinePointerInfo values for loads/stores).
696 const bool IsGCTransition
=
697 (SI
.StatepointFlags
& (uint64_t)StatepointFlags::GCTransition
) ==
698 (uint64_t)StatepointFlags::GCTransition
;
699 if (IsGCTransition
) {
700 SmallVector
<SDValue
, 8> TSOps
;
703 TSOps
.push_back(Chain
);
705 // Add GC transition arguments
706 for (const Value
*V
: SI
.GCTransitionArgs
) {
707 TSOps
.push_back(getValue(V
));
708 if (V
->getType()->isPointerTy())
709 TSOps
.push_back(DAG
.getSrcValue(V
));
712 // Add glue if necessary
713 if (CallHasIncomingGlue
)
714 TSOps
.push_back(Glue
);
716 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
718 SDValue GCTransitionStart
=
719 DAG
.getNode(ISD::GC_TRANSITION_START
, getCurSDLoc(), NodeTys
, TSOps
);
721 Chain
= GCTransitionStart
.getValue(0);
722 Glue
= GCTransitionStart
.getValue(1);
725 // TODO: Currently, all of these operands are being marked as read/write in
726 // PrologEpilougeInserter.cpp, we should special case the VMState arguments
727 // and flags to be read-only.
728 SmallVector
<SDValue
, 40> Ops
;
730 // Add the <id> and <numBytes> constants.
731 Ops
.push_back(DAG
.getTargetConstant(SI
.ID
, getCurSDLoc(), MVT::i64
));
733 DAG
.getTargetConstant(SI
.NumPatchBytes
, getCurSDLoc(), MVT::i32
));
735 // Calculate and push starting position of vmstate arguments
736 // Get number of arguments incoming directly into call node
737 unsigned NumCallRegArgs
=
738 CallNode
->getNumOperands() - (CallHasIncomingGlue
? 4 : 3);
739 Ops
.push_back(DAG
.getTargetConstant(NumCallRegArgs
, getCurSDLoc(), MVT::i32
));
742 SDValue CallTarget
= SDValue(CallNode
->getOperand(1).getNode(), 0);
743 Ops
.push_back(CallTarget
);
745 // Add call arguments
746 // Get position of register mask in the call
747 SDNode::op_iterator RegMaskIt
;
748 if (CallHasIncomingGlue
)
749 RegMaskIt
= CallNode
->op_end() - 2;
751 RegMaskIt
= CallNode
->op_end() - 1;
752 Ops
.insert(Ops
.end(), CallNode
->op_begin() + 2, RegMaskIt
);
754 // Add a constant argument for the calling convention
755 pushStackMapConstant(Ops
, *this, SI
.CLI
.CallConv
);
757 // Add a constant argument for the flags
758 uint64_t Flags
= SI
.StatepointFlags
;
759 assert(((Flags
& ~(uint64_t)StatepointFlags::MaskAll
) == 0) &&
760 "Unknown flag used");
761 pushStackMapConstant(Ops
, *this, Flags
);
763 // Insert all vmstate and gcstate arguments
764 Ops
.insert(Ops
.end(), LoweredMetaArgs
.begin(), LoweredMetaArgs
.end());
766 // Add register mask from call node
767 Ops
.push_back(*RegMaskIt
);
770 Ops
.push_back(Chain
);
772 // Same for the glue, but we add it only if original call had it
776 // Compute return values. Provide a glue output since we consume one as
777 // input. This allows someone else to chain off us as needed.
778 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
780 MachineSDNode
*StatepointMCNode
=
781 DAG
.getMachineNode(TargetOpcode::STATEPOINT
, getCurSDLoc(), NodeTys
, Ops
);
782 DAG
.setNodeMemRefs(StatepointMCNode
, MemRefs
);
784 SDNode
*SinkNode
= StatepointMCNode
;
786 // Build the GC_TRANSITION_END node if necessary.
788 // See the comment above regarding GC_TRANSITION_START for the layout of
789 // the operands to the GC_TRANSITION_END node.
790 if (IsGCTransition
) {
791 SmallVector
<SDValue
, 8> TEOps
;
794 TEOps
.push_back(SDValue(StatepointMCNode
, 0));
796 // Add GC transition arguments
797 for (const Value
*V
: SI
.GCTransitionArgs
) {
798 TEOps
.push_back(getValue(V
));
799 if (V
->getType()->isPointerTy())
800 TEOps
.push_back(DAG
.getSrcValue(V
));
804 TEOps
.push_back(SDValue(StatepointMCNode
, 1));
806 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
808 SDValue GCTransitionStart
=
809 DAG
.getNode(ISD::GC_TRANSITION_END
, getCurSDLoc(), NodeTys
, TEOps
);
811 SinkNode
= GCTransitionStart
.getNode();
814 // Replace original call
815 DAG
.ReplaceAllUsesWith(CallNode
, SinkNode
); // This may update Root
816 // Remove original call node
817 DAG
.DeleteNode(CallNode
);
819 // DON'T set the root - under the assumption that it's already set past the
820 // inserted node we created.
822 // TODO: A better future implementation would be to emit a single variable
823 // argument, variable return value STATEPOINT node here and then hookup the
824 // return value of each gc.relocate to the respective output of the
825 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear
826 // to actually be possible today.
832 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP
,
833 const BasicBlock
*EHPadBB
/*= nullptr*/) {
834 assert(ISP
.getCall()->getCallingConv() != CallingConv::AnyReg
&&
835 "anyregcc is not supported on statepoints!");
838 // If this is a malformed statepoint, report it early to simplify debugging.
839 // This should catch any IR level mistake that's made when constructing or
840 // transforming statepoints.
843 // Check that the associated GCStrategy expects to encounter statepoints.
844 assert(GFI
->getStrategy().useStatepoints() &&
845 "GCStrategy does not expect to encounter statepoints");
848 SDValue ActualCallee
;
850 if (ISP
.getNumPatchBytes() > 0) {
851 // If we've been asked to emit a nop sequence instead of a call instruction
852 // for this statepoint then don't lower the call target, but use a constant
853 // `null` instead. Not lowering the call target lets statepoint clients get
854 // away without providing a physical address for the symbolic call target at
857 const auto &TLI
= DAG
.getTargetLoweringInfo();
858 const auto &DL
= DAG
.getDataLayout();
860 unsigned AS
= ISP
.getCalledValue()->getType()->getPointerAddressSpace();
861 ActualCallee
= DAG
.getConstant(0, getCurSDLoc(), TLI
.getPointerTy(DL
, AS
));
863 ActualCallee
= getValue(ISP
.getCalledValue());
866 StatepointLoweringInfo
SI(DAG
);
867 populateCallLoweringInfo(SI
.CLI
, ISP
.getCall(),
868 ImmutableStatepoint::CallArgsBeginPos
,
869 ISP
.getNumCallArgs(), ActualCallee
,
870 ISP
.getActualReturnType(), false /* IsPatchPoint */);
872 for (const GCRelocateInst
*Relocate
: ISP
.getRelocates()) {
873 SI
.GCRelocates
.push_back(Relocate
);
874 SI
.Bases
.push_back(Relocate
->getBasePtr());
875 SI
.Ptrs
.push_back(Relocate
->getDerivedPtr());
878 SI
.GCArgs
= ArrayRef
<const Use
>(ISP
.gc_args_begin(), ISP
.gc_args_end());
879 SI
.StatepointInstr
= ISP
.getInstruction();
880 SI
.GCTransitionArgs
=
881 ArrayRef
<const Use
>(ISP
.gc_args_begin(), ISP
.gc_args_end());
883 SI
.DeoptState
= ArrayRef
<const Use
>(ISP
.deopt_begin(), ISP
.deopt_end());
884 SI
.StatepointFlags
= ISP
.getFlags();
885 SI
.NumPatchBytes
= ISP
.getNumPatchBytes();
886 SI
.EHPadBB
= EHPadBB
;
888 SDValue ReturnValue
= LowerAsSTATEPOINT(SI
);
890 // Export the result value if needed
891 const GCResultInst
*GCResult
= ISP
.getGCResult();
892 Type
*RetTy
= ISP
.getActualReturnType();
893 if (!RetTy
->isVoidTy() && GCResult
) {
894 if (GCResult
->getParent() != ISP
.getCall()->getParent()) {
895 // Result value will be used in a different basic block so we need to
896 // export it now. Default exporting mechanism will not work here because
897 // statepoint call has a different type than the actual call. It means
898 // that by default llvm will create export register of the wrong type
899 // (always i32 in our case). So instead we need to create export register
900 // with correct type manually.
901 // TODO: To eliminate this problem we can remove gc.result intrinsics
902 // completely and make statepoint call to return a tuple.
903 unsigned Reg
= FuncInfo
.CreateRegs(RetTy
);
904 RegsForValue
RFV(*DAG
.getContext(), DAG
.getTargetLoweringInfo(),
905 DAG
.getDataLayout(), Reg
, RetTy
,
906 ISP
.getCall()->getCallingConv());
907 SDValue Chain
= DAG
.getEntryNode();
909 RFV
.getCopyToRegs(ReturnValue
, DAG
, getCurSDLoc(), Chain
, nullptr);
910 PendingExports
.push_back(Chain
);
911 FuncInfo
.ValueMap
[ISP
.getInstruction()] = Reg
;
913 // Result value will be used in a same basic block. Don't export it or
914 // perform any explicit register copies.
915 // We'll replace the actuall call node shortly. gc_result will grab
917 setValue(ISP
.getInstruction(), ReturnValue
);
920 // The token value is never used from here on, just generate a poison value
921 setValue(ISP
.getInstruction(), DAG
.getIntPtrConstant(-1, getCurSDLoc()));
925 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
926 const CallBase
*Call
, SDValue Callee
, const BasicBlock
*EHPadBB
,
927 bool VarArgDisallowed
, bool ForceVoidReturnTy
) {
928 StatepointLoweringInfo
SI(DAG
);
929 unsigned ArgBeginIndex
= Call
->arg_begin() - Call
->op_begin();
930 populateCallLoweringInfo(
931 SI
.CLI
, Call
, ArgBeginIndex
, Call
->getNumArgOperands(), Callee
,
932 ForceVoidReturnTy
? Type::getVoidTy(*DAG
.getContext()) : Call
->getType(),
934 if (!VarArgDisallowed
)
935 SI
.CLI
.IsVarArg
= Call
->getFunctionType()->isVarArg();
937 auto DeoptBundle
= *Call
->getOperandBundle(LLVMContext::OB_deopt
);
939 unsigned DefaultID
= StatepointDirectives::DeoptBundleStatepointID
;
941 auto SD
= parseStatepointDirectivesFromAttrs(Call
->getAttributes());
942 SI
.ID
= SD
.StatepointID
.getValueOr(DefaultID
);
943 SI
.NumPatchBytes
= SD
.NumPatchBytes
.getValueOr(0);
946 ArrayRef
<const Use
>(DeoptBundle
.Inputs
.begin(), DeoptBundle
.Inputs
.end());
947 SI
.StatepointFlags
= static_cast<uint64_t>(StatepointFlags::None
);
948 SI
.EHPadBB
= EHPadBB
;
950 // NB! The GC arguments are deliberately left empty.
952 if (SDValue ReturnVal
= LowerAsSTATEPOINT(SI
)) {
953 ReturnVal
= lowerRangeToAssertZExt(DAG
, *Call
, ReturnVal
);
954 setValue(Call
, ReturnVal
);
958 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
959 const CallBase
*Call
, SDValue Callee
, const BasicBlock
*EHPadBB
) {
960 LowerCallSiteWithDeoptBundleImpl(Call
, Callee
, EHPadBB
,
961 /* VarArgDisallowed = */ false,
962 /* ForceVoidReturnTy = */ false);
965 void SelectionDAGBuilder::visitGCResult(const GCResultInst
&CI
) {
966 // The result value of the gc_result is simply the result of the actual
967 // call. We've already emitted this, so just grab the value.
968 const Instruction
*I
= CI
.getStatepoint();
970 if (I
->getParent() != CI
.getParent()) {
971 // Statepoint is in different basic block so we should have stored call
972 // result in a virtual register.
973 // We can not use default getValue() functionality to copy value from this
974 // register because statepoint and actual call return types can be
975 // different, and getValue() will use CopyFromReg of the wrong type,
976 // which is always i32 in our case.
977 PointerType
*CalleeType
= cast
<PointerType
>(
978 ImmutableStatepoint(I
).getCalledValue()->getType());
980 cast
<FunctionType
>(CalleeType
->getElementType())->getReturnType();
981 SDValue CopyFromReg
= getCopyFromRegs(I
, RetTy
);
983 assert(CopyFromReg
.getNode());
984 setValue(&CI
, CopyFromReg
);
986 setValue(&CI
, getValue(I
));
990 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst
&Relocate
) {
993 // We skip this check for relocates not in the same basic block as their
994 // statepoint. It would be too expensive to preserve validation info through
995 // different basic blocks.
996 if (Relocate
.getStatepoint()->getParent() == Relocate
.getParent())
997 StatepointLowering
.relocCallVisited(Relocate
);
999 auto *Ty
= Relocate
.getType()->getScalarType();
1000 if (auto IsManaged
= GFI
->getStrategy().isGCManagedPointer(Ty
))
1001 assert(*IsManaged
&& "Non gc managed pointer relocated!");
1004 const Value
*DerivedPtr
= Relocate
.getDerivedPtr();
1005 SDValue SD
= getValue(DerivedPtr
);
1007 auto &SpillMap
= FuncInfo
.StatepointSpillMaps
[Relocate
.getStatepoint()];
1008 auto SlotIt
= SpillMap
.find(DerivedPtr
);
1009 assert(SlotIt
!= SpillMap
.end() && "Relocating not lowered gc value");
1010 Optional
<int> DerivedPtrLocation
= SlotIt
->second
;
1012 // We didn't need to spill these special cases (constants and allocas).
1013 // See the handling in spillIncomingValueForStatepoint for detail.
1014 if (!DerivedPtrLocation
) {
1015 setValue(&Relocate
, SD
);
1019 unsigned Index
= *DerivedPtrLocation
;
1020 SDValue SpillSlot
= DAG
.getTargetFrameIndex(Index
, getFrameIndexTy());
1022 // Note: We know all of these reloads are independent, but don't bother to
1023 // exploit that chain wise. DAGCombine will happily do so as needed, so
1024 // doing it here would be a small compile time win at most.
1025 SDValue Chain
= getRoot();
1027 auto &MF
= DAG
.getMachineFunction();
1028 auto &MFI
= MF
.getFrameInfo();
1029 auto PtrInfo
= MachinePointerInfo::getFixedStack(MF
, Index
);
1031 MF
.getMachineMemOperand(PtrInfo
, MachineMemOperand::MOLoad
,
1032 MFI
.getObjectSize(Index
),
1033 MFI
.getObjectAlignment(Index
));
1035 auto LoadVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
1036 Relocate
.getType());
1038 SDValue SpillLoad
= DAG
.getLoad(LoadVT
, getCurSDLoc(), Chain
,
1039 SpillSlot
, LoadMMO
);
1041 DAG
.setRoot(SpillLoad
.getValue(1));
1043 assert(SpillLoad
.getNode());
1044 setValue(&Relocate
, SpillLoad
);
1047 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst
*CI
) {
1048 const auto &TLI
= DAG
.getTargetLoweringInfo();
1049 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(RTLIB::DEOPTIMIZE
),
1050 TLI
.getPointerTy(DAG
.getDataLayout()));
1052 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1053 // call. We also do not lower the return value to any virtual register, and
1054 // change the immediately following return to a trap instruction.
1055 LowerCallSiteWithDeoptBundleImpl(CI
, Callee
, /* EHPadBB = */ nullptr,
1056 /* VarArgDisallowed = */ true,
1057 /* ForceVoidReturnTy = */ true);
1060 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1061 // We do not lower the return value from llvm.deoptimize to any virtual
1062 // register, and change the immediately following return to a trap
1064 if (DAG
.getTarget().Options
.TrapUnreachable
)
1066 DAG
.getNode(ISD::TRAP
, getCurSDLoc(), MVT::Other
, DAG
.getRoot()));