1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements the TargetLoweringBase class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
66 static cl::opt
<bool> JumpIsExpensiveOverride(
67 "jump-is-expensive", cl::init(false),
68 cl::desc("Do not create extra branches to split comparison logic."),
71 static cl::opt
<unsigned> MinimumJumpTableEntries
72 ("min-jump-table-entries", cl::init(4), cl::Hidden
,
73 cl::desc("Set minimum number of entries to use a jump table."));
75 static cl::opt
<unsigned> MaximumJumpTableSize
76 ("max-jump-table-size", cl::init(UINT_MAX
), cl::Hidden
,
77 cl::desc("Set maximum size of jump tables."));
79 /// Minimum jump table density for normal functions.
80 static cl::opt
<unsigned>
81 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden
,
82 cl::desc("Minimum density for building a jump table in "
83 "a normal function"));
85 /// Minimum jump table density for -Os or -Oz functions.
86 static cl::opt
<unsigned> OptsizeJumpTableDensity(
87 "optsize-jump-table-density", cl::init(40), cl::Hidden
,
88 cl::desc("Minimum density for building a jump table in "
89 "an optsize function"));
91 static bool darwinHasSinCos(const Triple
&TT
) {
92 assert(TT
.isOSDarwin() && "should be called with darwin triple");
93 // Don't bother with 32 bit x86.
94 if (TT
.getArch() == Triple::x86
)
96 // Macos < 10.9 has no sincos_stret.
98 return !TT
.isMacOSXVersionLT(10, 9) && TT
.isArch64Bit();
99 // iOS < 7.0 has no sincos_stret.
101 return !TT
.isOSVersionLT(7, 0);
102 // Any other darwin such as WatchOS/TvOS is new enough.
106 // Although this default value is arbitrary, it is not random. It is assumed
107 // that a condition that evaluates the same way by a higher percentage than this
108 // is best represented as control flow. Therefore, the default value N should be
109 // set such that the win from N% correct executions is greater than the loss
110 // from (100 - N)% mispredicted executions for the majority of intended targets.
111 static cl::opt
<int> MinPercentageForPredictableBranch(
112 "min-predictable-branch", cl::init(99),
113 cl::desc("Minimum percentage (0-100) that a condition must be either true "
114 "or false to assume that the condition is predictable"),
117 void TargetLoweringBase::InitLibcalls(const Triple
&TT
) {
118 #define HANDLE_LIBCALL(code, name) \
119 setLibcallName(RTLIB::code, name);
120 #include "llvm/IR/RuntimeLibcalls.def"
121 #undef HANDLE_LIBCALL
122 // Initialize calling conventions to their default.
123 for (int LC
= 0; LC
< RTLIB::UNKNOWN_LIBCALL
; ++LC
)
124 setLibcallCallingConv((RTLIB::Libcall
)LC
, CallingConv::C
);
126 // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
127 if (TT
.getArch() == Triple::ppc
|| TT
.isPPC64()) {
128 setLibcallName(RTLIB::ADD_F128
, "__addkf3");
129 setLibcallName(RTLIB::SUB_F128
, "__subkf3");
130 setLibcallName(RTLIB::MUL_F128
, "__mulkf3");
131 setLibcallName(RTLIB::DIV_F128
, "__divkf3");
132 setLibcallName(RTLIB::FPEXT_F32_F128
, "__extendsfkf2");
133 setLibcallName(RTLIB::FPEXT_F64_F128
, "__extenddfkf2");
134 setLibcallName(RTLIB::FPROUND_F128_F32
, "__trunckfsf2");
135 setLibcallName(RTLIB::FPROUND_F128_F64
, "__trunckfdf2");
136 setLibcallName(RTLIB::FPTOSINT_F128_I32
, "__fixkfsi");
137 setLibcallName(RTLIB::FPTOSINT_F128_I64
, "__fixkfdi");
138 setLibcallName(RTLIB::FPTOUINT_F128_I32
, "__fixunskfsi");
139 setLibcallName(RTLIB::FPTOUINT_F128_I64
, "__fixunskfdi");
140 setLibcallName(RTLIB::SINTTOFP_I32_F128
, "__floatsikf");
141 setLibcallName(RTLIB::SINTTOFP_I64_F128
, "__floatdikf");
142 setLibcallName(RTLIB::UINTTOFP_I32_F128
, "__floatunsikf");
143 setLibcallName(RTLIB::UINTTOFP_I64_F128
, "__floatundikf");
144 setLibcallName(RTLIB::OEQ_F128
, "__eqkf2");
145 setLibcallName(RTLIB::UNE_F128
, "__nekf2");
146 setLibcallName(RTLIB::OGE_F128
, "__gekf2");
147 setLibcallName(RTLIB::OLT_F128
, "__ltkf2");
148 setLibcallName(RTLIB::OLE_F128
, "__lekf2");
149 setLibcallName(RTLIB::OGT_F128
, "__gtkf2");
150 setLibcallName(RTLIB::UO_F128
, "__unordkf2");
151 setLibcallName(RTLIB::O_F128
, "__unordkf2");
154 // A few names are different on particular architectures or environments.
155 if (TT
.isOSDarwin()) {
156 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
157 // of the gnueabi-style __gnu_*_ieee.
158 // FIXME: What about other targets?
159 setLibcallName(RTLIB::FPEXT_F16_F32
, "__extendhfsf2");
160 setLibcallName(RTLIB::FPROUND_F32_F16
, "__truncsfhf2");
162 // Some darwins have an optimized __bzero/bzero function.
163 switch (TT
.getArch()) {
166 if (TT
.isMacOSX() && !TT
.isMacOSXVersionLT(10, 6))
167 setLibcallName(RTLIB::BZERO
, "__bzero");
169 case Triple::aarch64
:
170 case Triple::aarch64_32
:
171 setLibcallName(RTLIB::BZERO
, "bzero");
177 if (darwinHasSinCos(TT
)) {
178 setLibcallName(RTLIB::SINCOS_STRET_F32
, "__sincosf_stret");
179 setLibcallName(RTLIB::SINCOS_STRET_F64
, "__sincos_stret");
180 if (TT
.isWatchABI()) {
181 setLibcallCallingConv(RTLIB::SINCOS_STRET_F32
,
182 CallingConv::ARM_AAPCS_VFP
);
183 setLibcallCallingConv(RTLIB::SINCOS_STRET_F64
,
184 CallingConv::ARM_AAPCS_VFP
);
188 setLibcallName(RTLIB::FPEXT_F16_F32
, "__gnu_h2f_ieee");
189 setLibcallName(RTLIB::FPROUND_F32_F16
, "__gnu_f2h_ieee");
192 if (TT
.isGNUEnvironment() || TT
.isOSFuchsia() ||
193 (TT
.isAndroid() && !TT
.isAndroidVersionLT(9))) {
194 setLibcallName(RTLIB::SINCOS_F32
, "sincosf");
195 setLibcallName(RTLIB::SINCOS_F64
, "sincos");
196 setLibcallName(RTLIB::SINCOS_F80
, "sincosl");
197 setLibcallName(RTLIB::SINCOS_F128
, "sincosl");
198 setLibcallName(RTLIB::SINCOS_PPCF128
, "sincosl");
202 setLibcallName(RTLIB::SINCOS_F32
, "sincosf");
203 setLibcallName(RTLIB::SINCOS_F64
, "sincos");
206 if (TT
.isOSOpenBSD()) {
207 setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL
, nullptr);
211 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
212 /// UNKNOWN_LIBCALL if there is none.
213 RTLIB::Libcall
RTLIB::getFPEXT(EVT OpVT
, EVT RetVT
) {
214 if (OpVT
== MVT::f16
) {
215 if (RetVT
== MVT::f32
)
216 return FPEXT_F16_F32
;
217 } else if (OpVT
== MVT::f32
) {
218 if (RetVT
== MVT::f64
)
219 return FPEXT_F32_F64
;
220 if (RetVT
== MVT::f128
)
221 return FPEXT_F32_F128
;
222 if (RetVT
== MVT::ppcf128
)
223 return FPEXT_F32_PPCF128
;
224 } else if (OpVT
== MVT::f64
) {
225 if (RetVT
== MVT::f128
)
226 return FPEXT_F64_F128
;
227 else if (RetVT
== MVT::ppcf128
)
228 return FPEXT_F64_PPCF128
;
229 } else if (OpVT
== MVT::f80
) {
230 if (RetVT
== MVT::f128
)
231 return FPEXT_F80_F128
;
234 return UNKNOWN_LIBCALL
;
237 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
238 /// UNKNOWN_LIBCALL if there is none.
239 RTLIB::Libcall
RTLIB::getFPROUND(EVT OpVT
, EVT RetVT
) {
240 if (RetVT
== MVT::f16
) {
241 if (OpVT
== MVT::f32
)
242 return FPROUND_F32_F16
;
243 if (OpVT
== MVT::f64
)
244 return FPROUND_F64_F16
;
245 if (OpVT
== MVT::f80
)
246 return FPROUND_F80_F16
;
247 if (OpVT
== MVT::f128
)
248 return FPROUND_F128_F16
;
249 if (OpVT
== MVT::ppcf128
)
250 return FPROUND_PPCF128_F16
;
251 } else if (RetVT
== MVT::f32
) {
252 if (OpVT
== MVT::f64
)
253 return FPROUND_F64_F32
;
254 if (OpVT
== MVT::f80
)
255 return FPROUND_F80_F32
;
256 if (OpVT
== MVT::f128
)
257 return FPROUND_F128_F32
;
258 if (OpVT
== MVT::ppcf128
)
259 return FPROUND_PPCF128_F32
;
260 } else if (RetVT
== MVT::f64
) {
261 if (OpVT
== MVT::f80
)
262 return FPROUND_F80_F64
;
263 if (OpVT
== MVT::f128
)
264 return FPROUND_F128_F64
;
265 if (OpVT
== MVT::ppcf128
)
266 return FPROUND_PPCF128_F64
;
267 } else if (RetVT
== MVT::f80
) {
268 if (OpVT
== MVT::f128
)
269 return FPROUND_F128_F80
;
272 return UNKNOWN_LIBCALL
;
275 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
276 /// UNKNOWN_LIBCALL if there is none.
277 RTLIB::Libcall
RTLIB::getFPTOSINT(EVT OpVT
, EVT RetVT
) {
278 if (OpVT
== MVT::f32
) {
279 if (RetVT
== MVT::i32
)
280 return FPTOSINT_F32_I32
;
281 if (RetVT
== MVT::i64
)
282 return FPTOSINT_F32_I64
;
283 if (RetVT
== MVT::i128
)
284 return FPTOSINT_F32_I128
;
285 } else if (OpVT
== MVT::f64
) {
286 if (RetVT
== MVT::i32
)
287 return FPTOSINT_F64_I32
;
288 if (RetVT
== MVT::i64
)
289 return FPTOSINT_F64_I64
;
290 if (RetVT
== MVT::i128
)
291 return FPTOSINT_F64_I128
;
292 } else if (OpVT
== MVT::f80
) {
293 if (RetVT
== MVT::i32
)
294 return FPTOSINT_F80_I32
;
295 if (RetVT
== MVT::i64
)
296 return FPTOSINT_F80_I64
;
297 if (RetVT
== MVT::i128
)
298 return FPTOSINT_F80_I128
;
299 } else if (OpVT
== MVT::f128
) {
300 if (RetVT
== MVT::i32
)
301 return FPTOSINT_F128_I32
;
302 if (RetVT
== MVT::i64
)
303 return FPTOSINT_F128_I64
;
304 if (RetVT
== MVT::i128
)
305 return FPTOSINT_F128_I128
;
306 } else if (OpVT
== MVT::ppcf128
) {
307 if (RetVT
== MVT::i32
)
308 return FPTOSINT_PPCF128_I32
;
309 if (RetVT
== MVT::i64
)
310 return FPTOSINT_PPCF128_I64
;
311 if (RetVT
== MVT::i128
)
312 return FPTOSINT_PPCF128_I128
;
314 return UNKNOWN_LIBCALL
;
317 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
318 /// UNKNOWN_LIBCALL if there is none.
319 RTLIB::Libcall
RTLIB::getFPTOUINT(EVT OpVT
, EVT RetVT
) {
320 if (OpVT
== MVT::f32
) {
321 if (RetVT
== MVT::i32
)
322 return FPTOUINT_F32_I32
;
323 if (RetVT
== MVT::i64
)
324 return FPTOUINT_F32_I64
;
325 if (RetVT
== MVT::i128
)
326 return FPTOUINT_F32_I128
;
327 } else if (OpVT
== MVT::f64
) {
328 if (RetVT
== MVT::i32
)
329 return FPTOUINT_F64_I32
;
330 if (RetVT
== MVT::i64
)
331 return FPTOUINT_F64_I64
;
332 if (RetVT
== MVT::i128
)
333 return FPTOUINT_F64_I128
;
334 } else if (OpVT
== MVT::f80
) {
335 if (RetVT
== MVT::i32
)
336 return FPTOUINT_F80_I32
;
337 if (RetVT
== MVT::i64
)
338 return FPTOUINT_F80_I64
;
339 if (RetVT
== MVT::i128
)
340 return FPTOUINT_F80_I128
;
341 } else if (OpVT
== MVT::f128
) {
342 if (RetVT
== MVT::i32
)
343 return FPTOUINT_F128_I32
;
344 if (RetVT
== MVT::i64
)
345 return FPTOUINT_F128_I64
;
346 if (RetVT
== MVT::i128
)
347 return FPTOUINT_F128_I128
;
348 } else if (OpVT
== MVT::ppcf128
) {
349 if (RetVT
== MVT::i32
)
350 return FPTOUINT_PPCF128_I32
;
351 if (RetVT
== MVT::i64
)
352 return FPTOUINT_PPCF128_I64
;
353 if (RetVT
== MVT::i128
)
354 return FPTOUINT_PPCF128_I128
;
356 return UNKNOWN_LIBCALL
;
359 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
360 /// UNKNOWN_LIBCALL if there is none.
361 RTLIB::Libcall
RTLIB::getSINTTOFP(EVT OpVT
, EVT RetVT
) {
362 if (OpVT
== MVT::i32
) {
363 if (RetVT
== MVT::f32
)
364 return SINTTOFP_I32_F32
;
365 if (RetVT
== MVT::f64
)
366 return SINTTOFP_I32_F64
;
367 if (RetVT
== MVT::f80
)
368 return SINTTOFP_I32_F80
;
369 if (RetVT
== MVT::f128
)
370 return SINTTOFP_I32_F128
;
371 if (RetVT
== MVT::ppcf128
)
372 return SINTTOFP_I32_PPCF128
;
373 } else if (OpVT
== MVT::i64
) {
374 if (RetVT
== MVT::f32
)
375 return SINTTOFP_I64_F32
;
376 if (RetVT
== MVT::f64
)
377 return SINTTOFP_I64_F64
;
378 if (RetVT
== MVT::f80
)
379 return SINTTOFP_I64_F80
;
380 if (RetVT
== MVT::f128
)
381 return SINTTOFP_I64_F128
;
382 if (RetVT
== MVT::ppcf128
)
383 return SINTTOFP_I64_PPCF128
;
384 } else if (OpVT
== MVT::i128
) {
385 if (RetVT
== MVT::f32
)
386 return SINTTOFP_I128_F32
;
387 if (RetVT
== MVT::f64
)
388 return SINTTOFP_I128_F64
;
389 if (RetVT
== MVT::f80
)
390 return SINTTOFP_I128_F80
;
391 if (RetVT
== MVT::f128
)
392 return SINTTOFP_I128_F128
;
393 if (RetVT
== MVT::ppcf128
)
394 return SINTTOFP_I128_PPCF128
;
396 return UNKNOWN_LIBCALL
;
399 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
400 /// UNKNOWN_LIBCALL if there is none.
401 RTLIB::Libcall
RTLIB::getUINTTOFP(EVT OpVT
, EVT RetVT
) {
402 if (OpVT
== MVT::i32
) {
403 if (RetVT
== MVT::f32
)
404 return UINTTOFP_I32_F32
;
405 if (RetVT
== MVT::f64
)
406 return UINTTOFP_I32_F64
;
407 if (RetVT
== MVT::f80
)
408 return UINTTOFP_I32_F80
;
409 if (RetVT
== MVT::f128
)
410 return UINTTOFP_I32_F128
;
411 if (RetVT
== MVT::ppcf128
)
412 return UINTTOFP_I32_PPCF128
;
413 } else if (OpVT
== MVT::i64
) {
414 if (RetVT
== MVT::f32
)
415 return UINTTOFP_I64_F32
;
416 if (RetVT
== MVT::f64
)
417 return UINTTOFP_I64_F64
;
418 if (RetVT
== MVT::f80
)
419 return UINTTOFP_I64_F80
;
420 if (RetVT
== MVT::f128
)
421 return UINTTOFP_I64_F128
;
422 if (RetVT
== MVT::ppcf128
)
423 return UINTTOFP_I64_PPCF128
;
424 } else if (OpVT
== MVT::i128
) {
425 if (RetVT
== MVT::f32
)
426 return UINTTOFP_I128_F32
;
427 if (RetVT
== MVT::f64
)
428 return UINTTOFP_I128_F64
;
429 if (RetVT
== MVT::f80
)
430 return UINTTOFP_I128_F80
;
431 if (RetVT
== MVT::f128
)
432 return UINTTOFP_I128_F128
;
433 if (RetVT
== MVT::ppcf128
)
434 return UINTTOFP_I128_PPCF128
;
436 return UNKNOWN_LIBCALL
;
439 RTLIB::Libcall
RTLIB::getSYNC(unsigned Opc
, MVT VT
) {
440 #define OP_TO_LIBCALL(Name, Enum) \
442 switch (VT.SimpleTy) { \
444 return UNKNOWN_LIBCALL; \
458 OP_TO_LIBCALL(ISD::ATOMIC_SWAP
, SYNC_LOCK_TEST_AND_SET
)
459 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP
, SYNC_VAL_COMPARE_AND_SWAP
)
460 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD
, SYNC_FETCH_AND_ADD
)
461 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB
, SYNC_FETCH_AND_SUB
)
462 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND
, SYNC_FETCH_AND_AND
)
463 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR
, SYNC_FETCH_AND_OR
)
464 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR
, SYNC_FETCH_AND_XOR
)
465 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND
, SYNC_FETCH_AND_NAND
)
466 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX
, SYNC_FETCH_AND_MAX
)
467 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX
, SYNC_FETCH_AND_UMAX
)
468 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN
, SYNC_FETCH_AND_MIN
)
469 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN
, SYNC_FETCH_AND_UMIN
)
474 return UNKNOWN_LIBCALL
;
477 RTLIB::Libcall
RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize
) {
478 switch (ElementSize
) {
480 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1
;
482 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2
;
484 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4
;
486 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8
;
488 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16
;
490 return UNKNOWN_LIBCALL
;
494 RTLIB::Libcall
RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize
) {
495 switch (ElementSize
) {
497 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1
;
499 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2
;
501 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4
;
503 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8
;
505 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16
;
507 return UNKNOWN_LIBCALL
;
511 RTLIB::Libcall
RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize
) {
512 switch (ElementSize
) {
514 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1
;
516 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2
;
518 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4
;
520 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8
;
522 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16
;
524 return UNKNOWN_LIBCALL
;
528 /// InitCmpLibcallCCs - Set default comparison libcall CC.
529 static void InitCmpLibcallCCs(ISD::CondCode
*CCs
) {
530 memset(CCs
, ISD::SETCC_INVALID
, sizeof(ISD::CondCode
)*RTLIB::UNKNOWN_LIBCALL
);
531 CCs
[RTLIB::OEQ_F32
] = ISD::SETEQ
;
532 CCs
[RTLIB::OEQ_F64
] = ISD::SETEQ
;
533 CCs
[RTLIB::OEQ_F128
] = ISD::SETEQ
;
534 CCs
[RTLIB::OEQ_PPCF128
] = ISD::SETEQ
;
535 CCs
[RTLIB::UNE_F32
] = ISD::SETNE
;
536 CCs
[RTLIB::UNE_F64
] = ISD::SETNE
;
537 CCs
[RTLIB::UNE_F128
] = ISD::SETNE
;
538 CCs
[RTLIB::UNE_PPCF128
] = ISD::SETNE
;
539 CCs
[RTLIB::OGE_F32
] = ISD::SETGE
;
540 CCs
[RTLIB::OGE_F64
] = ISD::SETGE
;
541 CCs
[RTLIB::OGE_F128
] = ISD::SETGE
;
542 CCs
[RTLIB::OGE_PPCF128
] = ISD::SETGE
;
543 CCs
[RTLIB::OLT_F32
] = ISD::SETLT
;
544 CCs
[RTLIB::OLT_F64
] = ISD::SETLT
;
545 CCs
[RTLIB::OLT_F128
] = ISD::SETLT
;
546 CCs
[RTLIB::OLT_PPCF128
] = ISD::SETLT
;
547 CCs
[RTLIB::OLE_F32
] = ISD::SETLE
;
548 CCs
[RTLIB::OLE_F64
] = ISD::SETLE
;
549 CCs
[RTLIB::OLE_F128
] = ISD::SETLE
;
550 CCs
[RTLIB::OLE_PPCF128
] = ISD::SETLE
;
551 CCs
[RTLIB::OGT_F32
] = ISD::SETGT
;
552 CCs
[RTLIB::OGT_F64
] = ISD::SETGT
;
553 CCs
[RTLIB::OGT_F128
] = ISD::SETGT
;
554 CCs
[RTLIB::OGT_PPCF128
] = ISD::SETGT
;
555 CCs
[RTLIB::UO_F32
] = ISD::SETNE
;
556 CCs
[RTLIB::UO_F64
] = ISD::SETNE
;
557 CCs
[RTLIB::UO_F128
] = ISD::SETNE
;
558 CCs
[RTLIB::UO_PPCF128
] = ISD::SETNE
;
559 CCs
[RTLIB::O_F32
] = ISD::SETEQ
;
560 CCs
[RTLIB::O_F64
] = ISD::SETEQ
;
561 CCs
[RTLIB::O_F128
] = ISD::SETEQ
;
562 CCs
[RTLIB::O_PPCF128
] = ISD::SETEQ
;
565 /// NOTE: The TargetMachine owns TLOF.
566 TargetLoweringBase::TargetLoweringBase(const TargetMachine
&tm
) : TM(tm
) {
569 // Perform these initializations only once.
570 MaxStoresPerMemset
= MaxStoresPerMemcpy
= MaxStoresPerMemmove
=
571 MaxLoadsPerMemcmp
= 8;
572 MaxGluedStoresPerMemcpy
= 0;
573 MaxStoresPerMemsetOptSize
= MaxStoresPerMemcpyOptSize
=
574 MaxStoresPerMemmoveOptSize
= MaxLoadsPerMemcmpOptSize
= 4;
575 UseUnderscoreSetJmp
= false;
576 UseUnderscoreLongJmp
= false;
577 HasMultipleConditionRegisters
= false;
578 HasExtractBitsInsn
= false;
579 JumpIsExpensive
= JumpIsExpensiveOverride
;
580 PredictableSelectIsExpensive
= false;
581 EnableExtLdPromotion
= false;
582 StackPointerRegisterToSaveRestore
= 0;
583 BooleanContents
= UndefinedBooleanContent
;
584 BooleanFloatContents
= UndefinedBooleanContent
;
585 BooleanVectorContents
= UndefinedBooleanContent
;
586 SchedPreferenceInfo
= Sched::ILP
;
587 GatherAllAliasesMaxDepth
= 18;
588 // TODO: the default will be switched to 0 in the next commit, along
589 // with the Target-specific changes necessary.
590 MaxAtomicSizeInBitsSupported
= 1024;
592 MinCmpXchgSizeInBits
= 0;
593 SupportsUnalignedAtomics
= false;
595 std::fill(std::begin(LibcallRoutineNames
), std::end(LibcallRoutineNames
), nullptr);
597 InitLibcalls(TM
.getTargetTriple());
598 InitCmpLibcallCCs(CmpLibcallCCs
);
601 void TargetLoweringBase::initActions() {
602 // All operations default to being supported.
603 memset(OpActions
, 0, sizeof(OpActions
));
604 memset(LoadExtActions
, 0, sizeof(LoadExtActions
));
605 memset(TruncStoreActions
, 0, sizeof(TruncStoreActions
));
606 memset(IndexedModeActions
, 0, sizeof(IndexedModeActions
));
607 memset(CondCodeActions
, 0, sizeof(CondCodeActions
));
608 std::fill(std::begin(RegClassForVT
), std::end(RegClassForVT
), nullptr);
609 std::fill(std::begin(TargetDAGCombineArray
),
610 std::end(TargetDAGCombineArray
), 0);
612 for (MVT VT
: MVT::fp_valuetypes()) {
613 MVT IntVT
= MVT::getIntegerVT(VT
.getSizeInBits());
614 if (IntVT
.isValid()) {
615 setOperationAction(ISD::ATOMIC_SWAP
, VT
, Promote
);
616 AddPromotedToType(ISD::ATOMIC_SWAP
, VT
, IntVT
);
620 // Set default actions for various operations.
621 for (MVT VT
: MVT::all_valuetypes()) {
622 // Default all indexed load / store to expand.
623 for (unsigned IM
= (unsigned)ISD::PRE_INC
;
624 IM
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++IM
) {
625 setIndexedLoadAction(IM
, VT
, Expand
);
626 setIndexedStoreAction(IM
, VT
, Expand
);
629 // Most backends expect to see the node which just returns the value loaded.
630 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
, VT
, Expand
);
632 // These operations default to expand.
633 setOperationAction(ISD::FGETSIGN
, VT
, Expand
);
634 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Expand
);
635 setOperationAction(ISD::FMINNUM
, VT
, Expand
);
636 setOperationAction(ISD::FMAXNUM
, VT
, Expand
);
637 setOperationAction(ISD::FMINNUM_IEEE
, VT
, Expand
);
638 setOperationAction(ISD::FMAXNUM_IEEE
, VT
, Expand
);
639 setOperationAction(ISD::FMINIMUM
, VT
, Expand
);
640 setOperationAction(ISD::FMAXIMUM
, VT
, Expand
);
641 setOperationAction(ISD::FMAD
, VT
, Expand
);
642 setOperationAction(ISD::SMIN
, VT
, Expand
);
643 setOperationAction(ISD::SMAX
, VT
, Expand
);
644 setOperationAction(ISD::UMIN
, VT
, Expand
);
645 setOperationAction(ISD::UMAX
, VT
, Expand
);
646 setOperationAction(ISD::ABS
, VT
, Expand
);
647 setOperationAction(ISD::FSHL
, VT
, Expand
);
648 setOperationAction(ISD::FSHR
, VT
, Expand
);
649 setOperationAction(ISD::SADDSAT
, VT
, Expand
);
650 setOperationAction(ISD::UADDSAT
, VT
, Expand
);
651 setOperationAction(ISD::SSUBSAT
, VT
, Expand
);
652 setOperationAction(ISD::USUBSAT
, VT
, Expand
);
653 setOperationAction(ISD::SMULFIX
, VT
, Expand
);
654 setOperationAction(ISD::SMULFIXSAT
, VT
, Expand
);
655 setOperationAction(ISD::UMULFIX
, VT
, Expand
);
656 setOperationAction(ISD::UMULFIXSAT
, VT
, Expand
);
658 // Overflow operations default to expand
659 setOperationAction(ISD::SADDO
, VT
, Expand
);
660 setOperationAction(ISD::SSUBO
, VT
, Expand
);
661 setOperationAction(ISD::UADDO
, VT
, Expand
);
662 setOperationAction(ISD::USUBO
, VT
, Expand
);
663 setOperationAction(ISD::SMULO
, VT
, Expand
);
664 setOperationAction(ISD::UMULO
, VT
, Expand
);
666 // ADDCARRY operations default to expand
667 setOperationAction(ISD::ADDCARRY
, VT
, Expand
);
668 setOperationAction(ISD::SUBCARRY
, VT
, Expand
);
669 setOperationAction(ISD::SETCCCARRY
, VT
, Expand
);
671 // ADDC/ADDE/SUBC/SUBE default to expand.
672 setOperationAction(ISD::ADDC
, VT
, Expand
);
673 setOperationAction(ISD::ADDE
, VT
, Expand
);
674 setOperationAction(ISD::SUBC
, VT
, Expand
);
675 setOperationAction(ISD::SUBE
, VT
, Expand
);
677 // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
678 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, VT
, Expand
);
679 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, VT
, Expand
);
681 setOperationAction(ISD::BITREVERSE
, VT
, Expand
);
683 // These library functions default to expand.
684 setOperationAction(ISD::FROUND
, VT
, Expand
);
685 setOperationAction(ISD::FPOWI
, VT
, Expand
);
687 // These operations default to expand for vector types.
689 setOperationAction(ISD::FCOPYSIGN
, VT
, Expand
);
690 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG
, VT
, Expand
);
691 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG
, VT
, Expand
);
692 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG
, VT
, Expand
);
693 setOperationAction(ISD::SPLAT_VECTOR
, VT
, Expand
);
696 // Constrained floating-point operations default to expand.
697 setOperationAction(ISD::STRICT_FADD
, VT
, Expand
);
698 setOperationAction(ISD::STRICT_FSUB
, VT
, Expand
);
699 setOperationAction(ISD::STRICT_FMUL
, VT
, Expand
);
700 setOperationAction(ISD::STRICT_FDIV
, VT
, Expand
);
701 setOperationAction(ISD::STRICT_FREM
, VT
, Expand
);
702 setOperationAction(ISD::STRICT_FMA
, VT
, Expand
);
703 setOperationAction(ISD::STRICT_FSQRT
, VT
, Expand
);
704 setOperationAction(ISD::STRICT_FPOW
, VT
, Expand
);
705 setOperationAction(ISD::STRICT_FPOWI
, VT
, Expand
);
706 setOperationAction(ISD::STRICT_FSIN
, VT
, Expand
);
707 setOperationAction(ISD::STRICT_FCOS
, VT
, Expand
);
708 setOperationAction(ISD::STRICT_FEXP
, VT
, Expand
);
709 setOperationAction(ISD::STRICT_FEXP2
, VT
, Expand
);
710 setOperationAction(ISD::STRICT_FLOG
, VT
, Expand
);
711 setOperationAction(ISD::STRICT_FLOG10
, VT
, Expand
);
712 setOperationAction(ISD::STRICT_FLOG2
, VT
, Expand
);
713 setOperationAction(ISD::STRICT_LRINT
, VT
, Expand
);
714 setOperationAction(ISD::STRICT_LLRINT
, VT
, Expand
);
715 setOperationAction(ISD::STRICT_FRINT
, VT
, Expand
);
716 setOperationAction(ISD::STRICT_FNEARBYINT
, VT
, Expand
);
717 setOperationAction(ISD::STRICT_FCEIL
, VT
, Expand
);
718 setOperationAction(ISD::STRICT_FFLOOR
, VT
, Expand
);
719 setOperationAction(ISD::STRICT_LROUND
, VT
, Expand
);
720 setOperationAction(ISD::STRICT_LLROUND
, VT
, Expand
);
721 setOperationAction(ISD::STRICT_FROUND
, VT
, Expand
);
722 setOperationAction(ISD::STRICT_FTRUNC
, VT
, Expand
);
723 setOperationAction(ISD::STRICT_FMAXNUM
, VT
, Expand
);
724 setOperationAction(ISD::STRICT_FMINNUM
, VT
, Expand
);
725 setOperationAction(ISD::STRICT_FP_ROUND
, VT
, Expand
);
726 setOperationAction(ISD::STRICT_FP_EXTEND
, VT
, Expand
);
727 setOperationAction(ISD::STRICT_FP_TO_SINT
, VT
, Expand
);
728 setOperationAction(ISD::STRICT_FP_TO_UINT
, VT
, Expand
);
730 // For most targets @llvm.get.dynamic.area.offset just returns 0.
731 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET
, VT
, Expand
);
733 // Vector reduction default to expand.
734 setOperationAction(ISD::VECREDUCE_FADD
, VT
, Expand
);
735 setOperationAction(ISD::VECREDUCE_FMUL
, VT
, Expand
);
736 setOperationAction(ISD::VECREDUCE_ADD
, VT
, Expand
);
737 setOperationAction(ISD::VECREDUCE_MUL
, VT
, Expand
);
738 setOperationAction(ISD::VECREDUCE_AND
, VT
, Expand
);
739 setOperationAction(ISD::VECREDUCE_OR
, VT
, Expand
);
740 setOperationAction(ISD::VECREDUCE_XOR
, VT
, Expand
);
741 setOperationAction(ISD::VECREDUCE_SMAX
, VT
, Expand
);
742 setOperationAction(ISD::VECREDUCE_SMIN
, VT
, Expand
);
743 setOperationAction(ISD::VECREDUCE_UMAX
, VT
, Expand
);
744 setOperationAction(ISD::VECREDUCE_UMIN
, VT
, Expand
);
745 setOperationAction(ISD::VECREDUCE_FMAX
, VT
, Expand
);
746 setOperationAction(ISD::VECREDUCE_FMIN
, VT
, Expand
);
749 // Most targets ignore the @llvm.prefetch intrinsic.
750 setOperationAction(ISD::PREFETCH
, MVT::Other
, Expand
);
752 // Most targets also ignore the @llvm.readcyclecounter intrinsic.
753 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Expand
);
755 // ConstantFP nodes default to expand. Targets can either change this to
756 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
757 // to optimize expansions for certain constants.
758 setOperationAction(ISD::ConstantFP
, MVT::f16
, Expand
);
759 setOperationAction(ISD::ConstantFP
, MVT::f32
, Expand
);
760 setOperationAction(ISD::ConstantFP
, MVT::f64
, Expand
);
761 setOperationAction(ISD::ConstantFP
, MVT::f80
, Expand
);
762 setOperationAction(ISD::ConstantFP
, MVT::f128
, Expand
);
764 // These library functions default to expand.
765 for (MVT VT
: {MVT::f32
, MVT::f64
, MVT::f128
}) {
766 setOperationAction(ISD::FCBRT
, VT
, Expand
);
767 setOperationAction(ISD::FLOG
, VT
, Expand
);
768 setOperationAction(ISD::FLOG2
, VT
, Expand
);
769 setOperationAction(ISD::FLOG10
, VT
, Expand
);
770 setOperationAction(ISD::FEXP
, VT
, Expand
);
771 setOperationAction(ISD::FEXP2
, VT
, Expand
);
772 setOperationAction(ISD::FFLOOR
, VT
, Expand
);
773 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
774 setOperationAction(ISD::FCEIL
, VT
, Expand
);
775 setOperationAction(ISD::FRINT
, VT
, Expand
);
776 setOperationAction(ISD::FTRUNC
, VT
, Expand
);
777 setOperationAction(ISD::FROUND
, VT
, Expand
);
778 setOperationAction(ISD::LROUND
, VT
, Expand
);
779 setOperationAction(ISD::LLROUND
, VT
, Expand
);
780 setOperationAction(ISD::LRINT
, VT
, Expand
);
781 setOperationAction(ISD::LLRINT
, VT
, Expand
);
784 // Default ISD::TRAP to expand (which turns it into abort).
785 setOperationAction(ISD::TRAP
, MVT::Other
, Expand
);
787 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
788 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
789 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Expand
);
792 MVT
TargetLoweringBase::getScalarShiftAmountTy(const DataLayout
&DL
,
794 return MVT::getIntegerVT(DL
.getPointerSizeInBits(0));
797 EVT
TargetLoweringBase::getShiftAmountTy(EVT LHSTy
, const DataLayout
&DL
,
798 bool LegalTypes
) const {
799 assert(LHSTy
.isInteger() && "Shift amount is not an integer type!");
800 if (LHSTy
.isVector())
802 return LegalTypes
? getScalarShiftAmountTy(DL
, LHSTy
)
806 bool TargetLoweringBase::canOpTrap(unsigned Op
, EVT VT
) const {
807 assert(isTypeLegal(VT
));
819 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive
) {
820 // If the command-line option was specified, ignore this request.
821 if (!JumpIsExpensiveOverride
.getNumOccurrences())
822 JumpIsExpensive
= isExpensive
;
825 TargetLoweringBase::LegalizeKind
826 TargetLoweringBase::getTypeConversion(LLVMContext
&Context
, EVT VT
) const {
827 // If this is a simple type, use the ComputeRegisterProp mechanism.
829 MVT SVT
= VT
.getSimpleVT();
830 assert((unsigned)SVT
.SimpleTy
< array_lengthof(TransformToType
));
831 MVT NVT
= TransformToType
[SVT
.SimpleTy
];
832 LegalizeTypeAction LA
= ValueTypeActions
.getTypeAction(SVT
);
834 assert((LA
== TypeLegal
|| LA
== TypeSoftenFloat
||
836 ValueTypeActions
.getTypeAction(NVT
) != TypePromoteInteger
)) &&
837 "Promote may not follow Expand or Promote");
839 if (LA
== TypeSplitVector
)
840 return LegalizeKind(LA
,
841 EVT::getVectorVT(Context
, SVT
.getVectorElementType(),
842 SVT
.getVectorNumElements() / 2));
843 if (LA
== TypeScalarizeVector
)
844 return LegalizeKind(LA
, SVT
.getVectorElementType());
845 return LegalizeKind(LA
, NVT
);
848 // Handle Extended Scalar Types.
849 if (!VT
.isVector()) {
850 assert(VT
.isInteger() && "Float types must be simple");
851 unsigned BitSize
= VT
.getSizeInBits();
852 // First promote to a power-of-two size, then expand if necessary.
853 if (BitSize
< 8 || !isPowerOf2_32(BitSize
)) {
854 EVT NVT
= VT
.getRoundIntegerType(Context
);
855 assert(NVT
!= VT
&& "Unable to round integer VT");
856 LegalizeKind NextStep
= getTypeConversion(Context
, NVT
);
857 // Avoid multi-step promotion.
858 if (NextStep
.first
== TypePromoteInteger
)
860 // Return rounded integer type.
861 return LegalizeKind(TypePromoteInteger
, NVT
);
864 return LegalizeKind(TypeExpandInteger
,
865 EVT::getIntegerVT(Context
, VT
.getSizeInBits() / 2));
868 // Handle vector types.
869 unsigned NumElts
= VT
.getVectorNumElements();
870 EVT EltVT
= VT
.getVectorElementType();
872 // Vectors with only one element are always scalarized.
874 return LegalizeKind(TypeScalarizeVector
, EltVT
);
876 // Try to widen vector elements until the element type is a power of two and
877 // promote it to a legal type later on, for example:
878 // <3 x i8> -> <4 x i8> -> <4 x i32>
879 if (EltVT
.isInteger()) {
880 // Vectors with a number of elements that is not a power of two are always
881 // widened, for example <3 x i8> -> <4 x i8>.
882 if (!VT
.isPow2VectorType()) {
883 NumElts
= (unsigned)NextPowerOf2(NumElts
);
884 EVT NVT
= EVT::getVectorVT(Context
, EltVT
, NumElts
);
885 return LegalizeKind(TypeWidenVector
, NVT
);
888 // Examine the element type.
889 LegalizeKind LK
= getTypeConversion(Context
, EltVT
);
891 // If type is to be expanded, split the vector.
892 // <4 x i140> -> <2 x i140>
893 if (LK
.first
== TypeExpandInteger
)
894 return LegalizeKind(TypeSplitVector
,
895 EVT::getVectorVT(Context
, EltVT
, NumElts
/ 2));
897 // Promote the integer element types until a legal vector type is found
898 // or until the element integer type is too big. If a legal type was not
899 // found, fallback to the usual mechanism of widening/splitting the
901 EVT OldEltVT
= EltVT
;
903 // Increase the bitwidth of the element to the next pow-of-two
904 // (which is greater than 8 bits).
905 EltVT
= EVT::getIntegerVT(Context
, 1 + EltVT
.getSizeInBits())
906 .getRoundIntegerType(Context
);
908 // Stop trying when getting a non-simple element type.
909 // Note that vector elements may be greater than legal vector element
910 // types. Example: X86 XMM registers hold 64bit element on 32bit
912 if (!EltVT
.isSimple())
915 // Build a new vector type and check if it is legal.
916 MVT NVT
= MVT::getVectorVT(EltVT
.getSimpleVT(), NumElts
);
917 // Found a legal promoted vector type.
918 if (NVT
!= MVT() && ValueTypeActions
.getTypeAction(NVT
) == TypeLegal
)
919 return LegalizeKind(TypePromoteInteger
,
920 EVT::getVectorVT(Context
, EltVT
, NumElts
));
923 // Reset the type to the unexpanded type if we did not find a legal vector
924 // type with a promoted vector element type.
928 // Try to widen the vector until a legal type is found.
929 // If there is no wider legal type, split the vector.
931 // Round up to the next power of 2.
932 NumElts
= (unsigned)NextPowerOf2(NumElts
);
934 // If there is no simple vector type with this many elements then there
935 // cannot be a larger legal vector type. Note that this assumes that
936 // there are no skipped intermediate vector types in the simple types.
937 if (!EltVT
.isSimple())
939 MVT LargerVector
= MVT::getVectorVT(EltVT
.getSimpleVT(), NumElts
);
940 if (LargerVector
== MVT())
943 // If this type is legal then widen the vector.
944 if (ValueTypeActions
.getTypeAction(LargerVector
) == TypeLegal
)
945 return LegalizeKind(TypeWidenVector
, LargerVector
);
948 // Widen odd vectors to next power of two.
949 if (!VT
.isPow2VectorType()) {
950 EVT NVT
= VT
.getPow2VectorType(Context
);
951 return LegalizeKind(TypeWidenVector
, NVT
);
954 // Vectors with illegal element types are expanded.
955 EVT NVT
= EVT::getVectorVT(Context
, EltVT
, VT
.getVectorNumElements() / 2);
956 return LegalizeKind(TypeSplitVector
, NVT
);
959 static unsigned getVectorTypeBreakdownMVT(MVT VT
, MVT
&IntermediateVT
,
960 unsigned &NumIntermediates
,
962 TargetLoweringBase
*TLI
) {
963 // Figure out the right, legal destination reg to copy into.
964 unsigned NumElts
= VT
.getVectorNumElements();
965 MVT EltTy
= VT
.getVectorElementType();
967 unsigned NumVectorRegs
= 1;
969 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
970 // could break down into LHS/RHS like LegalizeDAG does.
971 if (!isPowerOf2_32(NumElts
)) {
972 NumVectorRegs
= NumElts
;
976 // Divide the input until we get to a supported size. This will always
977 // end with a scalar if the target doesn't support vectors.
978 while (NumElts
> 1 && !TLI
->isTypeLegal(MVT::getVectorVT(EltTy
, NumElts
))) {
983 NumIntermediates
= NumVectorRegs
;
985 MVT NewVT
= MVT::getVectorVT(EltTy
, NumElts
);
986 if (!TLI
->isTypeLegal(NewVT
))
988 IntermediateVT
= NewVT
;
990 unsigned NewVTSize
= NewVT
.getSizeInBits();
992 // Convert sizes such as i33 to i64.
993 if (!isPowerOf2_32(NewVTSize
))
994 NewVTSize
= NextPowerOf2(NewVTSize
);
996 MVT DestVT
= TLI
->getRegisterType(NewVT
);
998 if (EVT(DestVT
).bitsLT(NewVT
)) // Value is expanded, e.g. i64 -> i16.
999 return NumVectorRegs
*(NewVTSize
/DestVT
.getSizeInBits());
1001 // Otherwise, promotion or legal types use the same number of registers as
1002 // the vector decimated to the appropriate level.
1003 return NumVectorRegs
;
1006 /// isLegalRC - Return true if the value types that can be represented by the
1007 /// specified register class are all legal.
1008 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo
&TRI
,
1009 const TargetRegisterClass
&RC
) const {
1010 for (auto I
= TRI
.legalclasstypes_begin(RC
); *I
!= MVT::Other
; ++I
)
1011 if (isTypeLegal(*I
))
1016 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1017 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1019 TargetLoweringBase::emitPatchPoint(MachineInstr
&InitialMI
,
1020 MachineBasicBlock
*MBB
) const {
1021 MachineInstr
*MI
= &InitialMI
;
1022 MachineFunction
&MF
= *MI
->getMF();
1023 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1025 // We're handling multiple types of operands here:
1026 // PATCHPOINT MetaArgs - live-in, read only, direct
1027 // STATEPOINT Deopt Spill - live-through, read only, indirect
1028 // STATEPOINT Deopt Alloca - live-through, read only, direct
1029 // (We're currently conservative and mark the deopt slots read/write in
1031 // STATEPOINT GC Spill - live-through, read/write, indirect
1032 // STATEPOINT GC Alloca - live-through, read/write, direct
1033 // The live-in vs live-through is handled already (the live through ones are
1034 // all stack slots), but we need to handle the different type of stackmap
1035 // operands and memory effects here.
1037 // MI changes inside this loop as we grow operands.
1038 for(unsigned OperIdx
= 0; OperIdx
!= MI
->getNumOperands(); ++OperIdx
) {
1039 MachineOperand
&MO
= MI
->getOperand(OperIdx
);
1043 // foldMemoryOperand builds a new MI after replacing a single FI operand
1044 // with the canonical set of five x86 addressing-mode operands.
1045 int FI
= MO
.getIndex();
1046 MachineInstrBuilder MIB
= BuildMI(MF
, MI
->getDebugLoc(), MI
->getDesc());
1048 // Copy operands before the frame-index.
1049 for (unsigned i
= 0; i
< OperIdx
; ++i
)
1050 MIB
.add(MI
->getOperand(i
));
1051 // Add frame index operands recognized by stackmaps.cpp
1052 if (MFI
.isStatepointSpillSlotObjectIndex(FI
)) {
1053 // indirect-mem-ref tag, size, #FI, offset.
1054 // Used for spills inserted by StatepointLowering. This codepath is not
1055 // used for patchpoints/stackmaps at all, for these spilling is done via
1056 // foldMemoryOperand callback only.
1057 assert(MI
->getOpcode() == TargetOpcode::STATEPOINT
&& "sanity");
1058 MIB
.addImm(StackMaps::IndirectMemRefOp
);
1059 MIB
.addImm(MFI
.getObjectSize(FI
));
1060 MIB
.add(MI
->getOperand(OperIdx
));
1063 // direct-mem-ref tag, #FI, offset.
1064 // Used by patchpoint, and direct alloca arguments to statepoints
1065 MIB
.addImm(StackMaps::DirectMemRefOp
);
1066 MIB
.add(MI
->getOperand(OperIdx
));
1069 // Copy the operands after the frame index.
1070 for (unsigned i
= OperIdx
+ 1; i
!= MI
->getNumOperands(); ++i
)
1071 MIB
.add(MI
->getOperand(i
));
1073 // Inherit previous memory operands.
1074 MIB
.cloneMemRefs(*MI
);
1075 assert(MIB
->mayLoad() && "Folded a stackmap use to a non-load!");
1077 // Add a new memory operand for this FI.
1078 assert(MFI
.getObjectOffset(FI
) != -1);
1080 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and
1081 // PATCHPOINT should be updated to do the same. (TODO)
1082 if (MI
->getOpcode() != TargetOpcode::STATEPOINT
) {
1083 auto Flags
= MachineMemOperand::MOLoad
;
1084 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
1085 MachinePointerInfo::getFixedStack(MF
, FI
), Flags
,
1086 MF
.getDataLayout().getPointerSize(), MFI
.getObjectAlignment(FI
));
1087 MIB
->addMemOperand(MF
, MMO
);
1090 // Replace the instruction and update the operand index.
1091 MBB
->insert(MachineBasicBlock::iterator(MI
), MIB
);
1092 OperIdx
+= (MIB
->getNumOperands() - MI
->getNumOperands()) - 1;
1093 MI
->eraseFromParent();
1100 TargetLoweringBase::emitXRayCustomEvent(MachineInstr
&MI
,
1101 MachineBasicBlock
*MBB
) const {
1102 assert(MI
.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL
&&
1103 "Called emitXRayCustomEvent on the wrong MI!");
1104 auto &MF
= *MI
.getMF();
1105 auto MIB
= BuildMI(MF
, MI
.getDebugLoc(), MI
.getDesc());
1106 for (unsigned OpIdx
= 0; OpIdx
!= MI
.getNumOperands(); ++OpIdx
)
1107 MIB
.add(MI
.getOperand(OpIdx
));
1109 MBB
->insert(MachineBasicBlock::iterator(MI
), MIB
);
1110 MI
.eraseFromParent();
1115 TargetLoweringBase::emitXRayTypedEvent(MachineInstr
&MI
,
1116 MachineBasicBlock
*MBB
) const {
1117 assert(MI
.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL
&&
1118 "Called emitXRayTypedEvent on the wrong MI!");
1119 auto &MF
= *MI
.getMF();
1120 auto MIB
= BuildMI(MF
, MI
.getDebugLoc(), MI
.getDesc());
1121 for (unsigned OpIdx
= 0; OpIdx
!= MI
.getNumOperands(); ++OpIdx
)
1122 MIB
.add(MI
.getOperand(OpIdx
));
1124 MBB
->insert(MachineBasicBlock::iterator(MI
), MIB
);
1125 MI
.eraseFromParent();
1129 /// findRepresentativeClass - Return the largest legal super-reg register class
1130 /// of the register class for the specified type and its associated "cost".
1131 // This function is in TargetLowering because it uses RegClassForVT which would
1132 // need to be moved to TargetRegisterInfo and would necessitate moving
1133 // isTypeLegal over as well - a massive change that would just require
1134 // TargetLowering having a TargetRegisterInfo class member that it would use.
1135 std::pair
<const TargetRegisterClass
*, uint8_t>
1136 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1138 const TargetRegisterClass
*RC
= RegClassForVT
[VT
.SimpleTy
];
1140 return std::make_pair(RC
, 0);
1142 // Compute the set of all super-register classes.
1143 BitVector
SuperRegRC(TRI
->getNumRegClasses());
1144 for (SuperRegClassIterator
RCI(RC
, TRI
); RCI
.isValid(); ++RCI
)
1145 SuperRegRC
.setBitsInMask(RCI
.getMask());
1147 // Find the first legal register class with the largest spill size.
1148 const TargetRegisterClass
*BestRC
= RC
;
1149 for (unsigned i
: SuperRegRC
.set_bits()) {
1150 const TargetRegisterClass
*SuperRC
= TRI
->getRegClass(i
);
1151 // We want the largest possible spill size.
1152 if (TRI
->getSpillSize(*SuperRC
) <= TRI
->getSpillSize(*BestRC
))
1154 if (!isLegalRC(*TRI
, *SuperRC
))
1158 return std::make_pair(BestRC
, 1);
1161 /// computeRegisterProperties - Once all of the register classes are added,
1162 /// this allows us to compute derived properties we expose.
1163 void TargetLoweringBase::computeRegisterProperties(
1164 const TargetRegisterInfo
*TRI
) {
1165 static_assert(MVT::LAST_VALUETYPE
<= MVT::MAX_ALLOWED_VALUETYPE
,
1166 "Too many value types for ValueTypeActions to hold!");
1168 // Everything defaults to needing one register.
1169 for (unsigned i
= 0; i
!= MVT::LAST_VALUETYPE
; ++i
) {
1170 NumRegistersForVT
[i
] = 1;
1171 RegisterTypeForVT
[i
] = TransformToType
[i
] = (MVT::SimpleValueType
)i
;
1173 // ...except isVoid, which doesn't need any registers.
1174 NumRegistersForVT
[MVT::isVoid
] = 0;
1176 // Find the largest integer register class.
1177 unsigned LargestIntReg
= MVT::LAST_INTEGER_VALUETYPE
;
1178 for (; RegClassForVT
[LargestIntReg
] == nullptr; --LargestIntReg
)
1179 assert(LargestIntReg
!= MVT::i1
&& "No integer registers defined!");
1181 // Every integer value type larger than this largest register takes twice as
1182 // many registers to represent as the previous ValueType.
1183 for (unsigned ExpandedReg
= LargestIntReg
+ 1;
1184 ExpandedReg
<= MVT::LAST_INTEGER_VALUETYPE
; ++ExpandedReg
) {
1185 NumRegistersForVT
[ExpandedReg
] = 2*NumRegistersForVT
[ExpandedReg
-1];
1186 RegisterTypeForVT
[ExpandedReg
] = (MVT::SimpleValueType
)LargestIntReg
;
1187 TransformToType
[ExpandedReg
] = (MVT::SimpleValueType
)(ExpandedReg
- 1);
1188 ValueTypeActions
.setTypeAction((MVT::SimpleValueType
)ExpandedReg
,
1192 // Inspect all of the ValueType's smaller than the largest integer
1193 // register to see which ones need promotion.
1194 unsigned LegalIntReg
= LargestIntReg
;
1195 for (unsigned IntReg
= LargestIntReg
- 1;
1196 IntReg
>= (unsigned)MVT::i1
; --IntReg
) {
1197 MVT IVT
= (MVT::SimpleValueType
)IntReg
;
1198 if (isTypeLegal(IVT
)) {
1199 LegalIntReg
= IntReg
;
1201 RegisterTypeForVT
[IntReg
] = TransformToType
[IntReg
] =
1202 (MVT::SimpleValueType
)LegalIntReg
;
1203 ValueTypeActions
.setTypeAction(IVT
, TypePromoteInteger
);
1207 // ppcf128 type is really two f64's.
1208 if (!isTypeLegal(MVT::ppcf128
)) {
1209 if (isTypeLegal(MVT::f64
)) {
1210 NumRegistersForVT
[MVT::ppcf128
] = 2*NumRegistersForVT
[MVT::f64
];
1211 RegisterTypeForVT
[MVT::ppcf128
] = MVT::f64
;
1212 TransformToType
[MVT::ppcf128
] = MVT::f64
;
1213 ValueTypeActions
.setTypeAction(MVT::ppcf128
, TypeExpandFloat
);
1215 NumRegistersForVT
[MVT::ppcf128
] = NumRegistersForVT
[MVT::i128
];
1216 RegisterTypeForVT
[MVT::ppcf128
] = RegisterTypeForVT
[MVT::i128
];
1217 TransformToType
[MVT::ppcf128
] = MVT::i128
;
1218 ValueTypeActions
.setTypeAction(MVT::ppcf128
, TypeSoftenFloat
);
1222 // Decide how to handle f128. If the target does not have native f128 support,
1223 // expand it to i128 and we will be generating soft float library calls.
1224 if (!isTypeLegal(MVT::f128
)) {
1225 NumRegistersForVT
[MVT::f128
] = NumRegistersForVT
[MVT::i128
];
1226 RegisterTypeForVT
[MVT::f128
] = RegisterTypeForVT
[MVT::i128
];
1227 TransformToType
[MVT::f128
] = MVT::i128
;
1228 ValueTypeActions
.setTypeAction(MVT::f128
, TypeSoftenFloat
);
1231 // Decide how to handle f64. If the target does not have native f64 support,
1232 // expand it to i64 and we will be generating soft float library calls.
1233 if (!isTypeLegal(MVT::f64
)) {
1234 NumRegistersForVT
[MVT::f64
] = NumRegistersForVT
[MVT::i64
];
1235 RegisterTypeForVT
[MVT::f64
] = RegisterTypeForVT
[MVT::i64
];
1236 TransformToType
[MVT::f64
] = MVT::i64
;
1237 ValueTypeActions
.setTypeAction(MVT::f64
, TypeSoftenFloat
);
1240 // Decide how to handle f32. If the target does not have native f32 support,
1241 // expand it to i32 and we will be generating soft float library calls.
1242 if (!isTypeLegal(MVT::f32
)) {
1243 NumRegistersForVT
[MVT::f32
] = NumRegistersForVT
[MVT::i32
];
1244 RegisterTypeForVT
[MVT::f32
] = RegisterTypeForVT
[MVT::i32
];
1245 TransformToType
[MVT::f32
] = MVT::i32
;
1246 ValueTypeActions
.setTypeAction(MVT::f32
, TypeSoftenFloat
);
1249 // Decide how to handle f16. If the target does not have native f16 support,
1250 // promote it to f32, because there are no f16 library calls (except for
1252 if (!isTypeLegal(MVT::f16
)) {
1253 NumRegistersForVT
[MVT::f16
] = NumRegistersForVT
[MVT::f32
];
1254 RegisterTypeForVT
[MVT::f16
] = RegisterTypeForVT
[MVT::f32
];
1255 TransformToType
[MVT::f16
] = MVT::f32
;
1256 ValueTypeActions
.setTypeAction(MVT::f16
, TypePromoteFloat
);
1259 // Loop over all of the vector value types to see which need transformations.
1260 for (unsigned i
= MVT::FIRST_VECTOR_VALUETYPE
;
1261 i
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++i
) {
1262 MVT VT
= (MVT::SimpleValueType
) i
;
1263 if (isTypeLegal(VT
))
1266 MVT EltVT
= VT
.getVectorElementType();
1267 unsigned NElts
= VT
.getVectorNumElements();
1268 bool IsLegalWiderType
= false;
1269 bool IsScalable
= VT
.isScalableVector();
1270 LegalizeTypeAction PreferredAction
= getPreferredVectorAction(VT
);
1271 switch (PreferredAction
) {
1272 case TypePromoteInteger
: {
1273 MVT::SimpleValueType EndVT
= IsScalable
?
1274 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE
:
1275 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE
;
1276 // Try to promote the elements of integer vectors. If no legal
1277 // promotion was found, fall through to the widen-vector method.
1278 for (unsigned nVT
= i
+ 1;
1279 (MVT::SimpleValueType
)nVT
<= EndVT
; ++nVT
) {
1280 MVT SVT
= (MVT::SimpleValueType
) nVT
;
1281 // Promote vectors of integers to vectors with the same number
1282 // of elements, with a wider element type.
1283 if (SVT
.getScalarSizeInBits() > EltVT
.getSizeInBits() &&
1284 SVT
.getVectorNumElements() == NElts
&&
1285 SVT
.isScalableVector() == IsScalable
&& isTypeLegal(SVT
)) {
1286 TransformToType
[i
] = SVT
;
1287 RegisterTypeForVT
[i
] = SVT
;
1288 NumRegistersForVT
[i
] = 1;
1289 ValueTypeActions
.setTypeAction(VT
, TypePromoteInteger
);
1290 IsLegalWiderType
= true;
1294 if (IsLegalWiderType
)
1299 case TypeWidenVector
:
1300 if (isPowerOf2_32(NElts
)) {
1301 // Try to widen the vector.
1302 for (unsigned nVT
= i
+ 1; nVT
<= MVT::LAST_VECTOR_VALUETYPE
; ++nVT
) {
1303 MVT SVT
= (MVT::SimpleValueType
) nVT
;
1304 if (SVT
.getVectorElementType() == EltVT
1305 && SVT
.getVectorNumElements() > NElts
1306 && SVT
.isScalableVector() == IsScalable
&& isTypeLegal(SVT
)) {
1307 TransformToType
[i
] = SVT
;
1308 RegisterTypeForVT
[i
] = SVT
;
1309 NumRegistersForVT
[i
] = 1;
1310 ValueTypeActions
.setTypeAction(VT
, TypeWidenVector
);
1311 IsLegalWiderType
= true;
1315 if (IsLegalWiderType
)
1318 // Only widen to the next power of 2 to keep consistency with EVT.
1319 MVT NVT
= VT
.getPow2VectorType();
1320 if (isTypeLegal(NVT
)) {
1321 TransformToType
[i
] = NVT
;
1322 ValueTypeActions
.setTypeAction(VT
, TypeWidenVector
);
1323 RegisterTypeForVT
[i
] = NVT
;
1324 NumRegistersForVT
[i
] = 1;
1330 case TypeSplitVector
:
1331 case TypeScalarizeVector
: {
1334 unsigned NumIntermediates
;
1335 NumRegistersForVT
[i
] = getVectorTypeBreakdownMVT(VT
, IntermediateVT
,
1336 NumIntermediates
, RegisterVT
, this);
1337 RegisterTypeForVT
[i
] = RegisterVT
;
1339 MVT NVT
= VT
.getPow2VectorType();
1341 // Type is already a power of 2. The default action is to split.
1342 TransformToType
[i
] = MVT::Other
;
1343 if (PreferredAction
== TypeScalarizeVector
)
1344 ValueTypeActions
.setTypeAction(VT
, TypeScalarizeVector
);
1345 else if (PreferredAction
== TypeSplitVector
)
1346 ValueTypeActions
.setTypeAction(VT
, TypeSplitVector
);
1348 // Set type action according to the number of elements.
1349 ValueTypeActions
.setTypeAction(VT
, NElts
== 1 ? TypeScalarizeVector
1352 TransformToType
[i
] = NVT
;
1353 ValueTypeActions
.setTypeAction(VT
, TypeWidenVector
);
1358 llvm_unreachable("Unknown vector legalization action!");
1362 // Determine the 'representative' register class for each value type.
1363 // An representative register class is the largest (meaning one which is
1364 // not a sub-register class / subreg register class) legal register class for
1365 // a group of value types. For example, on i386, i8, i16, and i32
1366 // representative would be GR32; while on x86_64 it's GR64.
1367 for (unsigned i
= 0; i
!= MVT::LAST_VALUETYPE
; ++i
) {
1368 const TargetRegisterClass
* RRC
;
1370 std::tie(RRC
, Cost
) = findRepresentativeClass(TRI
, (MVT::SimpleValueType
)i
);
1371 RepRegClassForVT
[i
] = RRC
;
1372 RepRegClassCostForVT
[i
] = Cost
;
1376 EVT
TargetLoweringBase::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
1378 assert(!VT
.isVector() && "No default SetCC type for vectors!");
1379 return getPointerTy(DL
).SimpleTy
;
1382 MVT::SimpleValueType
TargetLoweringBase::getCmpLibcallReturnType() const {
1383 return MVT::i32
; // return the default value
1386 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1387 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
1388 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1389 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1391 /// This method returns the number of registers needed, and the VT for each
1392 /// register. It also returns the VT and quantity of the intermediate values
1393 /// before they are promoted/expanded.
1394 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext
&Context
, EVT VT
,
1395 EVT
&IntermediateVT
,
1396 unsigned &NumIntermediates
,
1397 MVT
&RegisterVT
) const {
1398 unsigned NumElts
= VT
.getVectorNumElements();
1400 // If there is a wider vector type with the same element type as this one,
1401 // or a promoted vector type that has the same number of elements which
1402 // are wider, then we should convert to that legal vector type.
1403 // This handles things like <2 x float> -> <4 x float> and
1404 // <4 x i1> -> <4 x i32>.
1405 LegalizeTypeAction TA
= getTypeAction(Context
, VT
);
1406 if (NumElts
!= 1 && (TA
== TypeWidenVector
|| TA
== TypePromoteInteger
)) {
1407 EVT RegisterEVT
= getTypeToTransformTo(Context
, VT
);
1408 if (isTypeLegal(RegisterEVT
)) {
1409 IntermediateVT
= RegisterEVT
;
1410 RegisterVT
= RegisterEVT
.getSimpleVT();
1411 NumIntermediates
= 1;
1416 // Figure out the right, legal destination reg to copy into.
1417 EVT EltTy
= VT
.getVectorElementType();
1419 unsigned NumVectorRegs
= 1;
1421 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
1422 // could break down into LHS/RHS like LegalizeDAG does.
1423 if (!isPowerOf2_32(NumElts
)) {
1424 NumVectorRegs
= NumElts
;
1428 // Divide the input until we get to a supported size. This will always
1429 // end with a scalar if the target doesn't support vectors.
1430 while (NumElts
> 1 && !isTypeLegal(
1431 EVT::getVectorVT(Context
, EltTy
, NumElts
))) {
1433 NumVectorRegs
<<= 1;
1436 NumIntermediates
= NumVectorRegs
;
1438 EVT NewVT
= EVT::getVectorVT(Context
, EltTy
, NumElts
);
1439 if (!isTypeLegal(NewVT
))
1441 IntermediateVT
= NewVT
;
1443 MVT DestVT
= getRegisterType(Context
, NewVT
);
1444 RegisterVT
= DestVT
;
1445 unsigned NewVTSize
= NewVT
.getSizeInBits();
1447 // Convert sizes such as i33 to i64.
1448 if (!isPowerOf2_32(NewVTSize
))
1449 NewVTSize
= NextPowerOf2(NewVTSize
);
1451 if (EVT(DestVT
).bitsLT(NewVT
)) // Value is expanded, e.g. i64 -> i16.
1452 return NumVectorRegs
*(NewVTSize
/DestVT
.getSizeInBits());
1454 // Otherwise, promotion or legal types use the same number of registers as
1455 // the vector decimated to the appropriate level.
1456 return NumVectorRegs
;
1459 /// Get the EVTs and ArgFlags collections that represent the legalized return
1460 /// type of the given function. This does not require a DAG or a return value,
1461 /// and is suitable for use before any DAGs for the function are constructed.
1462 /// TODO: Move this out of TargetLowering.cpp.
1463 void llvm::GetReturnInfo(CallingConv::ID CC
, Type
*ReturnType
,
1465 SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1466 const TargetLowering
&TLI
, const DataLayout
&DL
) {
1467 SmallVector
<EVT
, 4> ValueVTs
;
1468 ComputeValueVTs(TLI
, DL
, ReturnType
, ValueVTs
);
1469 unsigned NumValues
= ValueVTs
.size();
1470 if (NumValues
== 0) return;
1472 for (unsigned j
= 0, f
= NumValues
; j
!= f
; ++j
) {
1473 EVT VT
= ValueVTs
[j
];
1474 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
1476 if (attr
.hasAttribute(AttributeList::ReturnIndex
, Attribute::SExt
))
1477 ExtendKind
= ISD::SIGN_EXTEND
;
1478 else if (attr
.hasAttribute(AttributeList::ReturnIndex
, Attribute::ZExt
))
1479 ExtendKind
= ISD::ZERO_EXTEND
;
1481 // FIXME: C calling convention requires the return type to be promoted to
1482 // at least 32-bit. But this is not necessary for non-C calling
1483 // conventions. The frontend should mark functions whose return values
1484 // require promoting with signext or zeroext attributes.
1485 if (ExtendKind
!= ISD::ANY_EXTEND
&& VT
.isInteger()) {
1486 MVT MinVT
= TLI
.getRegisterType(ReturnType
->getContext(), MVT::i32
);
1487 if (VT
.bitsLT(MinVT
))
1492 TLI
.getNumRegistersForCallingConv(ReturnType
->getContext(), CC
, VT
);
1494 TLI
.getRegisterTypeForCallingConv(ReturnType
->getContext(), CC
, VT
);
1496 // 'inreg' on function refers to return value
1497 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
1498 if (attr
.hasAttribute(AttributeList::ReturnIndex
, Attribute::InReg
))
1501 // Propagate extension type if any
1502 if (attr
.hasAttribute(AttributeList::ReturnIndex
, Attribute::SExt
))
1504 else if (attr
.hasAttribute(AttributeList::ReturnIndex
, Attribute::ZExt
))
1507 for (unsigned i
= 0; i
< NumParts
; ++i
)
1508 Outs
.push_back(ISD::OutputArg(Flags
, PartVT
, VT
, /*isfixed=*/true, 0, 0));
1512 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1513 /// function arguments in the caller parameter area. This is the actual
1514 /// alignment, not its logarithm.
1515 unsigned TargetLoweringBase::getByValTypeAlignment(Type
*Ty
,
1516 const DataLayout
&DL
) const {
1517 return DL
.getABITypeAlignment(Ty
);
1520 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1521 LLVMContext
&Context
, const DataLayout
&DL
, EVT VT
, unsigned AddrSpace
,
1522 unsigned Alignment
, MachineMemOperand::Flags Flags
, bool *Fast
) const {
1523 // Check if the specified alignment is sufficient based on the data layout.
1524 // TODO: While using the data layout works in practice, a better solution
1525 // would be to implement this check directly (make this a virtual function).
1526 // For example, the ABI alignment may change based on software platform while
1527 // this function should only be affected by hardware implementation.
1528 Type
*Ty
= VT
.getTypeForEVT(Context
);
1529 if (Alignment
>= DL
.getABITypeAlignment(Ty
)) {
1530 // Assume that an access that meets the ABI-specified alignment is fast.
1531 if (Fast
!= nullptr)
1536 // This is a misaligned access.
1537 return allowsMisalignedMemoryAccesses(VT
, AddrSpace
, Alignment
, Flags
, Fast
);
1540 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1541 LLVMContext
&Context
, const DataLayout
&DL
, EVT VT
,
1542 const MachineMemOperand
&MMO
, bool *Fast
) const {
1543 return allowsMemoryAccessForAlignment(Context
, DL
, VT
, MMO
.getAddrSpace(),
1544 MMO
.getAlignment(), MMO
.getFlags(),
1548 bool TargetLoweringBase::allowsMemoryAccess(
1549 LLVMContext
&Context
, const DataLayout
&DL
, EVT VT
, unsigned AddrSpace
,
1550 unsigned Alignment
, MachineMemOperand::Flags Flags
, bool *Fast
) const {
1551 return allowsMemoryAccessForAlignment(Context
, DL
, VT
, AddrSpace
, Alignment
,
1555 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext
&Context
,
1556 const DataLayout
&DL
, EVT VT
,
1557 const MachineMemOperand
&MMO
,
1559 return allowsMemoryAccess(Context
, DL
, VT
, MMO
.getAddrSpace(),
1560 MMO
.getAlignment(), MMO
.getFlags(), Fast
);
1563 BranchProbability
TargetLoweringBase::getPredictableBranchThreshold() const {
1564 return BranchProbability(MinPercentageForPredictableBranch
, 100);
1567 //===----------------------------------------------------------------------===//
1568 // TargetTransformInfo Helpers
1569 //===----------------------------------------------------------------------===//
1571 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode
) const {
1572 enum InstructionOpcodes
{
1573 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1574 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1575 #include "llvm/IR/Instruction.def"
1577 switch (static_cast<InstructionOpcodes
>(Opcode
)) {
1580 case Switch
: return 0;
1581 case IndirectBr
: return 0;
1582 case Invoke
: return 0;
1583 case CallBr
: return 0;
1584 case Resume
: return 0;
1585 case Unreachable
: return 0;
1586 case CleanupRet
: return 0;
1587 case CatchRet
: return 0;
1588 case CatchPad
: return 0;
1589 case CatchSwitch
: return 0;
1590 case CleanupPad
: return 0;
1591 case FNeg
: return ISD::FNEG
;
1592 case Add
: return ISD::ADD
;
1593 case FAdd
: return ISD::FADD
;
1594 case Sub
: return ISD::SUB
;
1595 case FSub
: return ISD::FSUB
;
1596 case Mul
: return ISD::MUL
;
1597 case FMul
: return ISD::FMUL
;
1598 case UDiv
: return ISD::UDIV
;
1599 case SDiv
: return ISD::SDIV
;
1600 case FDiv
: return ISD::FDIV
;
1601 case URem
: return ISD::UREM
;
1602 case SRem
: return ISD::SREM
;
1603 case FRem
: return ISD::FREM
;
1604 case Shl
: return ISD::SHL
;
1605 case LShr
: return ISD::SRL
;
1606 case AShr
: return ISD::SRA
;
1607 case And
: return ISD::AND
;
1608 case Or
: return ISD::OR
;
1609 case Xor
: return ISD::XOR
;
1610 case Alloca
: return 0;
1611 case Load
: return ISD::LOAD
;
1612 case Store
: return ISD::STORE
;
1613 case GetElementPtr
: return 0;
1614 case Fence
: return 0;
1615 case AtomicCmpXchg
: return 0;
1616 case AtomicRMW
: return 0;
1617 case Trunc
: return ISD::TRUNCATE
;
1618 case ZExt
: return ISD::ZERO_EXTEND
;
1619 case SExt
: return ISD::SIGN_EXTEND
;
1620 case FPToUI
: return ISD::FP_TO_UINT
;
1621 case FPToSI
: return ISD::FP_TO_SINT
;
1622 case UIToFP
: return ISD::UINT_TO_FP
;
1623 case SIToFP
: return ISD::SINT_TO_FP
;
1624 case FPTrunc
: return ISD::FP_ROUND
;
1625 case FPExt
: return ISD::FP_EXTEND
;
1626 case PtrToInt
: return ISD::BITCAST
;
1627 case IntToPtr
: return ISD::BITCAST
;
1628 case BitCast
: return ISD::BITCAST
;
1629 case AddrSpaceCast
: return ISD::ADDRSPACECAST
;
1630 case ICmp
: return ISD::SETCC
;
1631 case FCmp
: return ISD::SETCC
;
1633 case Call
: return 0;
1634 case Select
: return ISD::SELECT
;
1635 case UserOp1
: return 0;
1636 case UserOp2
: return 0;
1637 case VAArg
: return 0;
1638 case ExtractElement
: return ISD::EXTRACT_VECTOR_ELT
;
1639 case InsertElement
: return ISD::INSERT_VECTOR_ELT
;
1640 case ShuffleVector
: return ISD::VECTOR_SHUFFLE
;
1641 case ExtractValue
: return ISD::MERGE_VALUES
;
1642 case InsertValue
: return ISD::MERGE_VALUES
;
1643 case LandingPad
: return 0;
1646 llvm_unreachable("Unknown instruction type encountered!");
1650 TargetLoweringBase::getTypeLegalizationCost(const DataLayout
&DL
,
1652 LLVMContext
&C
= Ty
->getContext();
1653 EVT MTy
= getValueType(DL
, Ty
);
1656 // We keep legalizing the type until we find a legal kind. We assume that
1657 // the only operation that costs anything is the split. After splitting
1658 // we need to handle two types.
1660 LegalizeKind LK
= getTypeConversion(C
, MTy
);
1662 if (LK
.first
== TypeLegal
)
1663 return std::make_pair(Cost
, MTy
.getSimpleVT());
1665 if (LK
.first
== TypeSplitVector
|| LK
.first
== TypeExpandInteger
)
1668 // Do not loop with f128 type.
1669 if (MTy
== LK
.second
)
1670 return std::make_pair(Cost
, MTy
.getSimpleVT());
1672 // Keep legalizing the type.
1677 Value
*TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder
<> &IRB
,
1678 bool UseTLS
) const {
1679 // compiler-rt provides a variable with a magic name. Targets that do not
1680 // link with compiler-rt may also provide such a variable.
1681 Module
*M
= IRB
.GetInsertBlock()->getParent()->getParent();
1682 const char *UnsafeStackPtrVar
= "__safestack_unsafe_stack_ptr";
1683 auto UnsafeStackPtr
=
1684 dyn_cast_or_null
<GlobalVariable
>(M
->getNamedValue(UnsafeStackPtrVar
));
1686 Type
*StackPtrTy
= Type::getInt8PtrTy(M
->getContext());
1688 if (!UnsafeStackPtr
) {
1689 auto TLSModel
= UseTLS
?
1690 GlobalValue::InitialExecTLSModel
:
1691 GlobalValue::NotThreadLocal
;
1692 // The global variable is not defined yet, define it ourselves.
1693 // We use the initial-exec TLS model because we do not support the
1694 // variable living anywhere other than in the main executable.
1695 UnsafeStackPtr
= new GlobalVariable(
1696 *M
, StackPtrTy
, false, GlobalValue::ExternalLinkage
, nullptr,
1697 UnsafeStackPtrVar
, nullptr, TLSModel
);
1699 // The variable exists, check its type and attributes.
1700 if (UnsafeStackPtr
->getValueType() != StackPtrTy
)
1701 report_fatal_error(Twine(UnsafeStackPtrVar
) + " must have void* type");
1702 if (UseTLS
!= UnsafeStackPtr
->isThreadLocal())
1703 report_fatal_error(Twine(UnsafeStackPtrVar
) + " must " +
1704 (UseTLS
? "" : "not ") + "be thread-local");
1706 return UnsafeStackPtr
;
1709 Value
*TargetLoweringBase::getSafeStackPointerLocation(IRBuilder
<> &IRB
) const {
1710 if (!TM
.getTargetTriple().isAndroid())
1711 return getDefaultSafeStackPointerLocation(IRB
, true);
1713 // Android provides a libc function to retrieve the address of the current
1714 // thread's unsafe stack pointer.
1715 Module
*M
= IRB
.GetInsertBlock()->getParent()->getParent();
1716 Type
*StackPtrTy
= Type::getInt8PtrTy(M
->getContext());
1717 FunctionCallee Fn
= M
->getOrInsertFunction("__safestack_pointer_address",
1718 StackPtrTy
->getPointerTo(0));
1719 return IRB
.CreateCall(Fn
);
1722 //===----------------------------------------------------------------------===//
1723 // Loop Strength Reduction hooks
1724 //===----------------------------------------------------------------------===//
1726 /// isLegalAddressingMode - Return true if the addressing mode represented
1727 /// by AM is legal for this target, for a load/store of the specified type.
1728 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout
&DL
,
1729 const AddrMode
&AM
, Type
*Ty
,
1730 unsigned AS
, Instruction
*I
) const {
1731 // The default implementation of this implements a conservative RISCy, r+r and
1734 // Allows a sign-extended 16-bit immediate field.
1735 if (AM
.BaseOffs
<= -(1LL << 16) || AM
.BaseOffs
>= (1LL << 16)-1)
1738 // No global is ever allowed as a base.
1742 // Only support r+r,
1744 case 0: // "r+i" or just "i", depending on HasBaseReg.
1747 if (AM
.HasBaseReg
&& AM
.BaseOffs
) // "r+r+i" is not allowed.
1749 // Otherwise we have r+r or r+i.
1752 if (AM
.HasBaseReg
|| AM
.BaseOffs
) // 2*r+r or 2*r+i is not allowed.
1754 // Allow 2*r as r+r.
1756 default: // Don't allow n * r
1763 //===----------------------------------------------------------------------===//
1765 //===----------------------------------------------------------------------===//
1767 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1768 // so that SelectionDAG handle SSP.
1769 Value
*TargetLoweringBase::getIRStackGuard(IRBuilder
<> &IRB
) const {
1770 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1771 Module
&M
= *IRB
.GetInsertBlock()->getParent()->getParent();
1772 PointerType
*PtrTy
= Type::getInt8PtrTy(M
.getContext());
1773 return M
.getOrInsertGlobal("__guard_local", PtrTy
);
1778 // Currently only support "standard" __stack_chk_guard.
1779 // TODO: add LOAD_STACK_GUARD support.
1780 void TargetLoweringBase::insertSSPDeclarations(Module
&M
) const {
1781 if (!M
.getNamedValue("__stack_chk_guard"))
1782 new GlobalVariable(M
, Type::getInt8PtrTy(M
.getContext()), false,
1783 GlobalVariable::ExternalLinkage
,
1784 nullptr, "__stack_chk_guard");
1787 // Currently only support "standard" __stack_chk_guard.
1788 // TODO: add LOAD_STACK_GUARD support.
1789 Value
*TargetLoweringBase::getSDagStackGuard(const Module
&M
) const {
1790 return M
.getNamedValue("__stack_chk_guard");
1793 Function
*TargetLoweringBase::getSSPStackGuardCheck(const Module
&M
) const {
1797 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1798 return MinimumJumpTableEntries
;
1801 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val
) {
1802 MinimumJumpTableEntries
= Val
;
1805 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize
) const {
1806 return OptForSize
? OptsizeJumpTableDensity
: JumpTableDensity
;
1809 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1810 return MaximumJumpTableSize
;
1813 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val
) {
1814 MaximumJumpTableSize
= Val
;
1817 //===----------------------------------------------------------------------===//
1818 // Reciprocal Estimates
1819 //===----------------------------------------------------------------------===//
1821 /// Get the reciprocal estimate attribute string for a function that will
1822 /// override the target defaults.
1823 static StringRef
getRecipEstimateForFunc(MachineFunction
&MF
) {
1824 const Function
&F
= MF
.getFunction();
1825 return F
.getFnAttribute("reciprocal-estimates").getValueAsString();
1828 /// Construct a string for the given reciprocal operation of the given type.
1829 /// This string should match the corresponding option to the front-end's
1830 /// "-mrecip" flag assuming those strings have been passed through in an
1831 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1832 static std::string
getReciprocalOpName(bool IsSqrt
, EVT VT
) {
1833 std::string Name
= VT
.isVector() ? "vec-" : "";
1835 Name
+= IsSqrt
? "sqrt" : "div";
1837 // TODO: Handle "half" or other float types?
1838 if (VT
.getScalarType() == MVT::f64
) {
1841 assert(VT
.getScalarType() == MVT::f32
&&
1842 "Unexpected FP type for reciprocal estimate");
1849 /// Return the character position and value (a single numeric character) of a
1850 /// customized refinement operation in the input string if it exists. Return
1851 /// false if there is no customized refinement step count.
1852 static bool parseRefinementStep(StringRef In
, size_t &Position
,
1854 const char RefStepToken
= ':';
1855 Position
= In
.find(RefStepToken
);
1856 if (Position
== StringRef::npos
)
1859 StringRef RefStepString
= In
.substr(Position
+ 1);
1860 // Allow exactly one numeric character for the additional refinement
1862 if (RefStepString
.size() == 1) {
1863 char RefStepChar
= RefStepString
[0];
1864 if (RefStepChar
>= '0' && RefStepChar
<= '9') {
1865 Value
= RefStepChar
- '0';
1869 report_fatal_error("Invalid refinement step for -recip.");
1872 /// For the input attribute string, return one of the ReciprocalEstimate enum
1873 /// status values (enabled, disabled, or not specified) for this operation on
1874 /// the specified data type.
1875 static int getOpEnabled(bool IsSqrt
, EVT VT
, StringRef Override
) {
1876 if (Override
.empty())
1877 return TargetLoweringBase::ReciprocalEstimate::Unspecified
;
1879 SmallVector
<StringRef
, 4> OverrideVector
;
1880 Override
.split(OverrideVector
, ',');
1881 unsigned NumArgs
= OverrideVector
.size();
1883 // Check if "all", "none", or "default" was specified.
1885 // Look for an optional setting of the number of refinement steps needed
1886 // for this type of reciprocal operation.
1889 if (parseRefinementStep(Override
, RefPos
, RefSteps
)) {
1890 // Split the string for further processing.
1891 Override
= Override
.substr(0, RefPos
);
1894 // All reciprocal types are enabled.
1895 if (Override
== "all")
1896 return TargetLoweringBase::ReciprocalEstimate::Enabled
;
1898 // All reciprocal types are disabled.
1899 if (Override
== "none")
1900 return TargetLoweringBase::ReciprocalEstimate::Disabled
;
1902 // Target defaults for enablement are used.
1903 if (Override
== "default")
1904 return TargetLoweringBase::ReciprocalEstimate::Unspecified
;
1907 // The attribute string may omit the size suffix ('f'/'d').
1908 std::string VTName
= getReciprocalOpName(IsSqrt
, VT
);
1909 std::string VTNameNoSize
= VTName
;
1910 VTNameNoSize
.pop_back();
1911 static const char DisabledPrefix
= '!';
1913 for (StringRef RecipType
: OverrideVector
) {
1916 if (parseRefinementStep(RecipType
, RefPos
, RefSteps
))
1917 RecipType
= RecipType
.substr(0, RefPos
);
1919 // Ignore the disablement token for string matching.
1920 bool IsDisabled
= RecipType
[0] == DisabledPrefix
;
1922 RecipType
= RecipType
.substr(1);
1924 if (RecipType
.equals(VTName
) || RecipType
.equals(VTNameNoSize
))
1925 return IsDisabled
? TargetLoweringBase::ReciprocalEstimate::Disabled
1926 : TargetLoweringBase::ReciprocalEstimate::Enabled
;
1929 return TargetLoweringBase::ReciprocalEstimate::Unspecified
;
1932 /// For the input attribute string, return the customized refinement step count
1933 /// for this operation on the specified data type. If the step count does not
1934 /// exist, return the ReciprocalEstimate enum value for unspecified.
1935 static int getOpRefinementSteps(bool IsSqrt
, EVT VT
, StringRef Override
) {
1936 if (Override
.empty())
1937 return TargetLoweringBase::ReciprocalEstimate::Unspecified
;
1939 SmallVector
<StringRef
, 4> OverrideVector
;
1940 Override
.split(OverrideVector
, ',');
1941 unsigned NumArgs
= OverrideVector
.size();
1943 // Check if "all", "default", or "none" was specified.
1945 // Look for an optional setting of the number of refinement steps needed
1946 // for this type of reciprocal operation.
1949 if (!parseRefinementStep(Override
, RefPos
, RefSteps
))
1950 return TargetLoweringBase::ReciprocalEstimate::Unspecified
;
1952 // Split the string for further processing.
1953 Override
= Override
.substr(0, RefPos
);
1954 assert(Override
!= "none" &&
1955 "Disabled reciprocals, but specifed refinement steps?");
1957 // If this is a general override, return the specified number of steps.
1958 if (Override
== "all" || Override
== "default")
1962 // The attribute string may omit the size suffix ('f'/'d').
1963 std::string VTName
= getReciprocalOpName(IsSqrt
, VT
);
1964 std::string VTNameNoSize
= VTName
;
1965 VTNameNoSize
.pop_back();
1967 for (StringRef RecipType
: OverrideVector
) {
1970 if (!parseRefinementStep(RecipType
, RefPos
, RefSteps
))
1973 RecipType
= RecipType
.substr(0, RefPos
);
1974 if (RecipType
.equals(VTName
) || RecipType
.equals(VTNameNoSize
))
1978 return TargetLoweringBase::ReciprocalEstimate::Unspecified
;
1981 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT
,
1982 MachineFunction
&MF
) const {
1983 return getOpEnabled(true, VT
, getRecipEstimateForFunc(MF
));
1986 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT
,
1987 MachineFunction
&MF
) const {
1988 return getOpEnabled(false, VT
, getRecipEstimateForFunc(MF
));
1991 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT
,
1992 MachineFunction
&MF
) const {
1993 return getOpRefinementSteps(true, VT
, getRecipEstimateForFunc(MF
));
1996 int TargetLoweringBase::getDivRefinementSteps(EVT VT
,
1997 MachineFunction
&MF
) const {
1998 return getOpRefinementSteps(false, VT
, getRecipEstimateForFunc(MF
));
2001 void TargetLoweringBase::finalizeLowering(MachineFunction
&MF
) const {
2002 MF
.getRegInfo().freezeReservedRegs(MF
);