1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
15 // * Both of a binary operator's parameters are of the same type
16 // * Verify that the indices of mem access instructions match other operands
17 // * Verify that arithmetic and other things are only performed on first-class
18 // types. Verify that shifts & logicals only happen on integrals f.e.
19 // * All of the constants in a switch statement are of the correct type
20 // * The code is in valid SSA form
21 // * It should be illegal to put a label into any other type (like a structure)
22 // or to return one. [except constant arrays!]
23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 // * PHI nodes must have an entry for each predecessor, with no extras.
25 // * PHI nodes must be the first thing in a basic block, all grouped together
26 // * PHI nodes must have at least one entry
27 // * All basic blocks should only end with terminator insts, not contain them
28 // * The entry node to a function must not have predecessors
29 // * All Instructions must be embedded into a basic block
30 // * Functions cannot take a void-typed parameter
31 // * Verify that a function's argument list agrees with it's declared type.
32 // * It is illegal to specify a name for a void value.
33 // * It is illegal to have a internal global value with no initializer
34 // * It is illegal to have a ret instruction that returns a value that does not
35 // agree with the function return value type.
36 // * Function call argument types match the function prototype
37 // * A landing pad is defined by a landingpad instruction, and can be jumped to
38 // only by the unwind edge of an invoke instruction.
39 // * A landingpad instruction must be the first non-PHI instruction in the
41 // * Landingpad instructions must be in a function with a personality function.
42 // * All other things that are tested by asserts spread about the code...
44 //===----------------------------------------------------------------------===//
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/LLVMContext.h"
90 #include "llvm/IR/Metadata.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/ModuleSlotTracker.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/Statepoint.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/Pass.h"
100 #include "llvm/Support/AtomicOrdering.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MathExtras.h"
106 #include "llvm/Support/raw_ostream.h"
114 using namespace llvm
;
118 struct VerifierSupport
{
121 ModuleSlotTracker MST
;
123 const DataLayout
&DL
;
124 LLVMContext
&Context
;
126 /// Track the brokenness of the module while recursively visiting.
128 /// Broken debug info can be "recovered" from by stripping the debug info.
129 bool BrokenDebugInfo
= false;
130 /// Whether to treat broken debug info as an error.
131 bool TreatBrokenDebugInfoAsError
= true;
133 explicit VerifierSupport(raw_ostream
*OS
, const Module
&M
)
134 : OS(OS
), M(M
), MST(&M
), TT(M
.getTargetTriple()), DL(M
.getDataLayout()),
135 Context(M
.getContext()) {}
138 void Write(const Module
*M
) {
139 *OS
<< "; ModuleID = '" << M
->getModuleIdentifier() << "'\n";
142 void Write(const Value
*V
) {
147 void Write(const Value
&V
) {
148 if (isa
<Instruction
>(V
)) {
152 V
.printAsOperand(*OS
, true, MST
);
157 void Write(const Metadata
*MD
) {
160 MD
->print(*OS
, MST
, &M
);
164 template <class T
> void Write(const MDTupleTypedArrayWrapper
<T
> &MD
) {
168 void Write(const NamedMDNode
*NMD
) {
171 NMD
->print(*OS
, MST
);
175 void Write(Type
*T
) {
181 void Write(const Comdat
*C
) {
187 void Write(const APInt
*AI
) {
193 void Write(const unsigned i
) { *OS
<< i
<< '\n'; }
195 template <typename T
> void Write(ArrayRef
<T
> Vs
) {
196 for (const T
&V
: Vs
)
200 template <typename T1
, typename
... Ts
>
201 void WriteTs(const T1
&V1
, const Ts
&... Vs
) {
206 template <typename
... Ts
> void WriteTs() {}
209 /// A check failed, so printout out the condition and the message.
211 /// This provides a nice place to put a breakpoint if you want to see why
212 /// something is not correct.
213 void CheckFailed(const Twine
&Message
) {
215 *OS
<< Message
<< '\n';
219 /// A check failed (with values to print).
221 /// This calls the Message-only version so that the above is easier to set a
223 template <typename T1
, typename
... Ts
>
224 void CheckFailed(const Twine
&Message
, const T1
&V1
, const Ts
&... Vs
) {
225 CheckFailed(Message
);
230 /// A debug info check failed.
231 void DebugInfoCheckFailed(const Twine
&Message
) {
233 *OS
<< Message
<< '\n';
234 Broken
|= TreatBrokenDebugInfoAsError
;
235 BrokenDebugInfo
= true;
238 /// A debug info check failed (with values to print).
239 template <typename T1
, typename
... Ts
>
240 void DebugInfoCheckFailed(const Twine
&Message
, const T1
&V1
,
242 DebugInfoCheckFailed(Message
);
252 class Verifier
: public InstVisitor
<Verifier
>, VerifierSupport
{
253 friend class InstVisitor
<Verifier
>;
257 /// When verifying a basic block, keep track of all of the
258 /// instructions we have seen so far.
260 /// This allows us to do efficient dominance checks for the case when an
261 /// instruction has an operand that is an instruction in the same block.
262 SmallPtrSet
<Instruction
*, 16> InstsInThisBlock
;
264 /// Keep track of the metadata nodes that have been checked already.
265 SmallPtrSet
<const Metadata
*, 32> MDNodes
;
267 /// Keep track which DISubprogram is attached to which function.
268 DenseMap
<const DISubprogram
*, const Function
*> DISubprogramAttachments
;
270 /// Track all DICompileUnits visited.
271 SmallPtrSet
<const Metadata
*, 2> CUVisited
;
273 /// The result type for a landingpad.
274 Type
*LandingPadResultTy
;
276 /// Whether we've seen a call to @llvm.localescape in this function
280 /// Whether the current function has a DISubprogram attached to it.
281 bool HasDebugInfo
= false;
283 /// Whether source was present on the first DIFile encountered in each CU.
284 DenseMap
<const DICompileUnit
*, bool> HasSourceDebugInfo
;
286 /// Stores the count of how many objects were passed to llvm.localescape for a
287 /// given function and the largest index passed to llvm.localrecover.
288 DenseMap
<Function
*, std::pair
<unsigned, unsigned>> FrameEscapeInfo
;
290 // Maps catchswitches and cleanuppads that unwind to siblings to the
291 // terminators that indicate the unwind, used to detect cycles therein.
292 MapVector
<Instruction
*, Instruction
*> SiblingFuncletInfo
;
294 /// Cache of constants visited in search of ConstantExprs.
295 SmallPtrSet
<const Constant
*, 32> ConstantExprVisited
;
297 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
298 SmallVector
<const Function
*, 4> DeoptimizeDeclarations
;
300 // Verify that this GlobalValue is only used in this module.
301 // This map is used to avoid visiting uses twice. We can arrive at a user
302 // twice, if they have multiple operands. In particular for very large
303 // constant expressions, we can arrive at a particular user many times.
304 SmallPtrSet
<const Value
*, 32> GlobalValueVisited
;
306 // Keeps track of duplicate function argument debug info.
307 SmallVector
<const DILocalVariable
*, 16> DebugFnArgs
;
309 TBAAVerifier TBAAVerifyHelper
;
311 void checkAtomicMemAccessSize(Type
*Ty
, const Instruction
*I
);
314 explicit Verifier(raw_ostream
*OS
, bool ShouldTreatBrokenDebugInfoAsError
,
316 : VerifierSupport(OS
, M
), LandingPadResultTy(nullptr),
317 SawFrameEscape(false), TBAAVerifyHelper(this) {
318 TreatBrokenDebugInfoAsError
= ShouldTreatBrokenDebugInfoAsError
;
321 bool hasBrokenDebugInfo() const { return BrokenDebugInfo
; }
323 bool verify(const Function
&F
) {
324 assert(F
.getParent() == &M
&&
325 "An instance of this class only works with a specific module!");
327 // First ensure the function is well-enough formed to compute dominance
328 // information, and directly compute a dominance tree. We don't rely on the
329 // pass manager to provide this as it isolates us from a potentially
330 // out-of-date dominator tree and makes it significantly more complex to run
331 // this code outside of a pass manager.
332 // FIXME: It's really gross that we have to cast away constness here.
334 DT
.recalculate(const_cast<Function
&>(F
));
336 for (const BasicBlock
&BB
: F
) {
337 if (!BB
.empty() && BB
.back().isTerminator())
341 *OS
<< "Basic Block in function '" << F
.getName()
342 << "' does not have terminator!\n";
343 BB
.printAsOperand(*OS
, true, MST
);
350 // FIXME: We strip const here because the inst visitor strips const.
351 visit(const_cast<Function
&>(F
));
352 verifySiblingFuncletUnwinds();
353 InstsInThisBlock
.clear();
355 LandingPadResultTy
= nullptr;
356 SawFrameEscape
= false;
357 SiblingFuncletInfo
.clear();
362 /// Verify the module that this instance of \c Verifier was initialized with.
366 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
367 for (const Function
&F
: M
)
368 if (F
.getIntrinsicID() == Intrinsic::experimental_deoptimize
)
369 DeoptimizeDeclarations
.push_back(&F
);
371 // Now that we've visited every function, verify that we never asked to
372 // recover a frame index that wasn't escaped.
373 verifyFrameRecoverIndices();
374 for (const GlobalVariable
&GV
: M
.globals())
375 visitGlobalVariable(GV
);
377 for (const GlobalAlias
&GA
: M
.aliases())
378 visitGlobalAlias(GA
);
380 for (const NamedMDNode
&NMD
: M
.named_metadata())
381 visitNamedMDNode(NMD
);
383 for (const StringMapEntry
<Comdat
> &SMEC
: M
.getComdatSymbolTable())
384 visitComdat(SMEC
.getValue());
387 visitModuleIdents(M
);
388 visitModuleCommandLines(M
);
390 verifyCompileUnits();
392 verifyDeoptimizeCallingConvs();
393 DISubprogramAttachments
.clear();
398 // Verification methods...
399 void visitGlobalValue(const GlobalValue
&GV
);
400 void visitGlobalVariable(const GlobalVariable
&GV
);
401 void visitGlobalAlias(const GlobalAlias
&GA
);
402 void visitAliaseeSubExpr(const GlobalAlias
&A
, const Constant
&C
);
403 void visitAliaseeSubExpr(SmallPtrSetImpl
<const GlobalAlias
*> &Visited
,
404 const GlobalAlias
&A
, const Constant
&C
);
405 void visitNamedMDNode(const NamedMDNode
&NMD
);
406 void visitMDNode(const MDNode
&MD
);
407 void visitMetadataAsValue(const MetadataAsValue
&MD
, Function
*F
);
408 void visitValueAsMetadata(const ValueAsMetadata
&MD
, Function
*F
);
409 void visitComdat(const Comdat
&C
);
410 void visitModuleIdents(const Module
&M
);
411 void visitModuleCommandLines(const Module
&M
);
412 void visitModuleFlags(const Module
&M
);
413 void visitModuleFlag(const MDNode
*Op
,
414 DenseMap
<const MDString
*, const MDNode
*> &SeenIDs
,
415 SmallVectorImpl
<const MDNode
*> &Requirements
);
416 void visitModuleFlagCGProfileEntry(const MDOperand
&MDO
);
417 void visitFunction(const Function
&F
);
418 void visitBasicBlock(BasicBlock
&BB
);
419 void visitRangeMetadata(Instruction
&I
, MDNode
*Range
, Type
*Ty
);
420 void visitDereferenceableMetadata(Instruction
&I
, MDNode
*MD
);
421 void visitProfMetadata(Instruction
&I
, MDNode
*MD
);
423 template <class Ty
> bool isValidMetadataArray(const MDTuple
&N
);
424 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
425 #include "llvm/IR/Metadata.def"
426 void visitDIScope(const DIScope
&N
);
427 void visitDIVariable(const DIVariable
&N
);
428 void visitDILexicalBlockBase(const DILexicalBlockBase
&N
);
429 void visitDITemplateParameter(const DITemplateParameter
&N
);
431 void visitTemplateParams(const MDNode
&N
, const Metadata
&RawParams
);
433 // InstVisitor overrides...
434 using InstVisitor
<Verifier
>::visit
;
435 void visit(Instruction
&I
);
437 void visitTruncInst(TruncInst
&I
);
438 void visitZExtInst(ZExtInst
&I
);
439 void visitSExtInst(SExtInst
&I
);
440 void visitFPTruncInst(FPTruncInst
&I
);
441 void visitFPExtInst(FPExtInst
&I
);
442 void visitFPToUIInst(FPToUIInst
&I
);
443 void visitFPToSIInst(FPToSIInst
&I
);
444 void visitUIToFPInst(UIToFPInst
&I
);
445 void visitSIToFPInst(SIToFPInst
&I
);
446 void visitIntToPtrInst(IntToPtrInst
&I
);
447 void visitPtrToIntInst(PtrToIntInst
&I
);
448 void visitBitCastInst(BitCastInst
&I
);
449 void visitAddrSpaceCastInst(AddrSpaceCastInst
&I
);
450 void visitPHINode(PHINode
&PN
);
451 void visitCallBase(CallBase
&Call
);
452 void visitUnaryOperator(UnaryOperator
&U
);
453 void visitBinaryOperator(BinaryOperator
&B
);
454 void visitICmpInst(ICmpInst
&IC
);
455 void visitFCmpInst(FCmpInst
&FC
);
456 void visitExtractElementInst(ExtractElementInst
&EI
);
457 void visitInsertElementInst(InsertElementInst
&EI
);
458 void visitShuffleVectorInst(ShuffleVectorInst
&EI
);
459 void visitVAArgInst(VAArgInst
&VAA
) { visitInstruction(VAA
); }
460 void visitCallInst(CallInst
&CI
);
461 void visitInvokeInst(InvokeInst
&II
);
462 void visitGetElementPtrInst(GetElementPtrInst
&GEP
);
463 void visitLoadInst(LoadInst
&LI
);
464 void visitStoreInst(StoreInst
&SI
);
465 void verifyDominatesUse(Instruction
&I
, unsigned i
);
466 void visitInstruction(Instruction
&I
);
467 void visitTerminator(Instruction
&I
);
468 void visitBranchInst(BranchInst
&BI
);
469 void visitReturnInst(ReturnInst
&RI
);
470 void visitSwitchInst(SwitchInst
&SI
);
471 void visitIndirectBrInst(IndirectBrInst
&BI
);
472 void visitCallBrInst(CallBrInst
&CBI
);
473 void visitSelectInst(SelectInst
&SI
);
474 void visitUserOp1(Instruction
&I
);
475 void visitUserOp2(Instruction
&I
) { visitUserOp1(I
); }
476 void visitIntrinsicCall(Intrinsic::ID ID
, CallBase
&Call
);
477 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic
&FPI
);
478 void visitDbgIntrinsic(StringRef Kind
, DbgVariableIntrinsic
&DII
);
479 void visitDbgLabelIntrinsic(StringRef Kind
, DbgLabelInst
&DLI
);
480 void visitAtomicCmpXchgInst(AtomicCmpXchgInst
&CXI
);
481 void visitAtomicRMWInst(AtomicRMWInst
&RMWI
);
482 void visitFenceInst(FenceInst
&FI
);
483 void visitAllocaInst(AllocaInst
&AI
);
484 void visitExtractValueInst(ExtractValueInst
&EVI
);
485 void visitInsertValueInst(InsertValueInst
&IVI
);
486 void visitEHPadPredecessors(Instruction
&I
);
487 void visitLandingPadInst(LandingPadInst
&LPI
);
488 void visitResumeInst(ResumeInst
&RI
);
489 void visitCatchPadInst(CatchPadInst
&CPI
);
490 void visitCatchReturnInst(CatchReturnInst
&CatchReturn
);
491 void visitCleanupPadInst(CleanupPadInst
&CPI
);
492 void visitFuncletPadInst(FuncletPadInst
&FPI
);
493 void visitCatchSwitchInst(CatchSwitchInst
&CatchSwitch
);
494 void visitCleanupReturnInst(CleanupReturnInst
&CRI
);
496 void verifySwiftErrorCall(CallBase
&Call
, const Value
*SwiftErrorVal
);
497 void verifySwiftErrorValue(const Value
*SwiftErrorVal
);
498 void verifyMustTailCall(CallInst
&CI
);
499 bool performTypeCheck(Intrinsic::ID ID
, Function
*F
, Type
*Ty
, int VT
,
500 unsigned ArgNo
, std::string
&Suffix
);
501 bool verifyAttributeCount(AttributeList Attrs
, unsigned Params
);
502 void verifyAttributeTypes(AttributeSet Attrs
, bool IsFunction
,
504 void verifyParameterAttrs(AttributeSet Attrs
, Type
*Ty
, const Value
*V
);
505 void verifyFunctionAttrs(FunctionType
*FT
, AttributeList Attrs
,
506 const Value
*V
, bool IsIntrinsic
);
507 void verifyFunctionMetadata(ArrayRef
<std::pair
<unsigned, MDNode
*>> MDs
);
509 void visitConstantExprsRecursively(const Constant
*EntryC
);
510 void visitConstantExpr(const ConstantExpr
*CE
);
511 void verifyStatepoint(const CallBase
&Call
);
512 void verifyFrameRecoverIndices();
513 void verifySiblingFuncletUnwinds();
515 void verifyFragmentExpression(const DbgVariableIntrinsic
&I
);
516 template <typename ValueOrMetadata
>
517 void verifyFragmentExpression(const DIVariable
&V
,
518 DIExpression::FragmentInfo Fragment
,
519 ValueOrMetadata
*Desc
);
520 void verifyFnArgs(const DbgVariableIntrinsic
&I
);
521 void verifyNotEntryValue(const DbgVariableIntrinsic
&I
);
523 /// Module-level debug info verification...
524 void verifyCompileUnits();
526 /// Module-level verification that all @llvm.experimental.deoptimize
527 /// declarations share the same calling convention.
528 void verifyDeoptimizeCallingConvs();
530 /// Verify all-or-nothing property of DIFile source attribute within a CU.
531 void verifySourceDebugInfo(const DICompileUnit
&U
, const DIFile
&F
);
534 } // end anonymous namespace
536 /// We know that cond should be true, if not print an error message.
537 #define Assert(C, ...) \
538 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
540 /// We know that a debug info condition should be true, if not print
541 /// an error message.
542 #define AssertDI(C, ...) \
543 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
545 void Verifier::visit(Instruction
&I
) {
546 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
547 Assert(I
.getOperand(i
) != nullptr, "Operand is null", &I
);
548 InstVisitor
<Verifier
>::visit(I
);
551 // Helper to recursively iterate over indirect users. By
552 // returning false, the callback can ask to stop recursing
554 static void forEachUser(const Value
*User
,
555 SmallPtrSet
<const Value
*, 32> &Visited
,
556 llvm::function_ref
<bool(const Value
*)> Callback
) {
557 if (!Visited
.insert(User
).second
)
559 for (const Value
*TheNextUser
: User
->materialized_users())
560 if (Callback(TheNextUser
))
561 forEachUser(TheNextUser
, Visited
, Callback
);
564 void Verifier::visitGlobalValue(const GlobalValue
&GV
) {
565 Assert(!GV
.isDeclaration() || GV
.hasValidDeclarationLinkage(),
566 "Global is external, but doesn't have external or weak linkage!", &GV
);
568 Assert(GV
.getAlignment() <= Value::MaximumAlignment
,
569 "huge alignment values are unsupported", &GV
);
570 Assert(!GV
.hasAppendingLinkage() || isa
<GlobalVariable
>(GV
),
571 "Only global variables can have appending linkage!", &GV
);
573 if (GV
.hasAppendingLinkage()) {
574 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(&GV
);
575 Assert(GVar
&& GVar
->getValueType()->isArrayTy(),
576 "Only global arrays can have appending linkage!", GVar
);
579 if (GV
.isDeclarationForLinker())
580 Assert(!GV
.hasComdat(), "Declaration may not be in a Comdat!", &GV
);
582 if (GV
.hasDLLImportStorageClass()) {
583 Assert(!GV
.isDSOLocal(),
584 "GlobalValue with DLLImport Storage is dso_local!", &GV
);
586 Assert((GV
.isDeclaration() && GV
.hasExternalLinkage()) ||
587 GV
.hasAvailableExternallyLinkage(),
588 "Global is marked as dllimport, but not external", &GV
);
591 if (GV
.hasLocalLinkage())
592 Assert(GV
.isDSOLocal(),
593 "GlobalValue with private or internal linkage must be dso_local!",
596 if (!GV
.hasDefaultVisibility() && !GV
.hasExternalWeakLinkage())
597 Assert(GV
.isDSOLocal(),
598 "GlobalValue with non default visibility must be dso_local!", &GV
);
600 forEachUser(&GV
, GlobalValueVisited
, [&](const Value
*V
) -> bool {
601 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
602 if (!I
->getParent() || !I
->getParent()->getParent())
603 CheckFailed("Global is referenced by parentless instruction!", &GV
, &M
,
605 else if (I
->getParent()->getParent()->getParent() != &M
)
606 CheckFailed("Global is referenced in a different module!", &GV
, &M
, I
,
607 I
->getParent()->getParent(),
608 I
->getParent()->getParent()->getParent());
610 } else if (const Function
*F
= dyn_cast
<Function
>(V
)) {
611 if (F
->getParent() != &M
)
612 CheckFailed("Global is used by function in a different module", &GV
, &M
,
620 void Verifier::visitGlobalVariable(const GlobalVariable
&GV
) {
621 if (GV
.hasInitializer()) {
622 Assert(GV
.getInitializer()->getType() == GV
.getValueType(),
623 "Global variable initializer type does not match global "
626 // If the global has common linkage, it must have a zero initializer and
627 // cannot be constant.
628 if (GV
.hasCommonLinkage()) {
629 Assert(GV
.getInitializer()->isNullValue(),
630 "'common' global must have a zero initializer!", &GV
);
631 Assert(!GV
.isConstant(), "'common' global may not be marked constant!",
633 Assert(!GV
.hasComdat(), "'common' global may not be in a Comdat!", &GV
);
637 if (GV
.hasName() && (GV
.getName() == "llvm.global_ctors" ||
638 GV
.getName() == "llvm.global_dtors")) {
639 Assert(!GV
.hasInitializer() || GV
.hasAppendingLinkage(),
640 "invalid linkage for intrinsic global variable", &GV
);
641 // Don't worry about emitting an error for it not being an array,
642 // visitGlobalValue will complain on appending non-array.
643 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(GV
.getValueType())) {
644 StructType
*STy
= dyn_cast
<StructType
>(ATy
->getElementType());
645 PointerType
*FuncPtrTy
=
646 FunctionType::get(Type::getVoidTy(Context
), false)->
647 getPointerTo(DL
.getProgramAddressSpace());
649 (STy
->getNumElements() == 2 || STy
->getNumElements() == 3) &&
650 STy
->getTypeAtIndex(0u)->isIntegerTy(32) &&
651 STy
->getTypeAtIndex(1) == FuncPtrTy
,
652 "wrong type for intrinsic global variable", &GV
);
653 Assert(STy
->getNumElements() == 3,
654 "the third field of the element type is mandatory, "
655 "specify i8* null to migrate from the obsoleted 2-field form");
656 Type
*ETy
= STy
->getTypeAtIndex(2);
657 Assert(ETy
->isPointerTy() &&
658 cast
<PointerType
>(ETy
)->getElementType()->isIntegerTy(8),
659 "wrong type for intrinsic global variable", &GV
);
663 if (GV
.hasName() && (GV
.getName() == "llvm.used" ||
664 GV
.getName() == "llvm.compiler.used")) {
665 Assert(!GV
.hasInitializer() || GV
.hasAppendingLinkage(),
666 "invalid linkage for intrinsic global variable", &GV
);
667 Type
*GVType
= GV
.getValueType();
668 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(GVType
)) {
669 PointerType
*PTy
= dyn_cast
<PointerType
>(ATy
->getElementType());
670 Assert(PTy
, "wrong type for intrinsic global variable", &GV
);
671 if (GV
.hasInitializer()) {
672 const Constant
*Init
= GV
.getInitializer();
673 const ConstantArray
*InitArray
= dyn_cast
<ConstantArray
>(Init
);
674 Assert(InitArray
, "wrong initalizer for intrinsic global variable",
676 for (Value
*Op
: InitArray
->operands()) {
677 Value
*V
= Op
->stripPointerCasts();
678 Assert(isa
<GlobalVariable
>(V
) || isa
<Function
>(V
) ||
680 "invalid llvm.used member", V
);
681 Assert(V
->hasName(), "members of llvm.used must be named", V
);
687 // Visit any debug info attachments.
688 SmallVector
<MDNode
*, 1> MDs
;
689 GV
.getMetadata(LLVMContext::MD_dbg
, MDs
);
690 for (auto *MD
: MDs
) {
691 if (auto *GVE
= dyn_cast
<DIGlobalVariableExpression
>(MD
))
692 visitDIGlobalVariableExpression(*GVE
);
694 AssertDI(false, "!dbg attachment of global variable must be a "
695 "DIGlobalVariableExpression");
698 // Scalable vectors cannot be global variables, since we don't know
699 // the runtime size. If the global is a struct or an array containing
700 // scalable vectors, that will be caught by the isValidElementType methods
701 // in StructType or ArrayType instead.
702 if (auto *VTy
= dyn_cast
<VectorType
>(GV
.getValueType()))
703 Assert(!VTy
->isScalable(), "Globals cannot contain scalable vectors", &GV
);
705 if (!GV
.hasInitializer()) {
706 visitGlobalValue(GV
);
710 // Walk any aggregate initializers looking for bitcasts between address spaces
711 visitConstantExprsRecursively(GV
.getInitializer());
713 visitGlobalValue(GV
);
716 void Verifier::visitAliaseeSubExpr(const GlobalAlias
&GA
, const Constant
&C
) {
717 SmallPtrSet
<const GlobalAlias
*, 4> Visited
;
719 visitAliaseeSubExpr(Visited
, GA
, C
);
722 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl
<const GlobalAlias
*> &Visited
,
723 const GlobalAlias
&GA
, const Constant
&C
) {
724 if (const auto *GV
= dyn_cast
<GlobalValue
>(&C
)) {
725 Assert(!GV
->isDeclarationForLinker(), "Alias must point to a definition",
728 if (const auto *GA2
= dyn_cast
<GlobalAlias
>(GV
)) {
729 Assert(Visited
.insert(GA2
).second
, "Aliases cannot form a cycle", &GA
);
731 Assert(!GA2
->isInterposable(), "Alias cannot point to an interposable alias",
734 // Only continue verifying subexpressions of GlobalAliases.
735 // Do not recurse into global initializers.
740 if (const auto *CE
= dyn_cast
<ConstantExpr
>(&C
))
741 visitConstantExprsRecursively(CE
);
743 for (const Use
&U
: C
.operands()) {
745 if (const auto *GA2
= dyn_cast
<GlobalAlias
>(V
))
746 visitAliaseeSubExpr(Visited
, GA
, *GA2
->getAliasee());
747 else if (const auto *C2
= dyn_cast
<Constant
>(V
))
748 visitAliaseeSubExpr(Visited
, GA
, *C2
);
752 void Verifier::visitGlobalAlias(const GlobalAlias
&GA
) {
753 Assert(GlobalAlias::isValidLinkage(GA
.getLinkage()),
754 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
755 "weak_odr, or external linkage!",
757 const Constant
*Aliasee
= GA
.getAliasee();
758 Assert(Aliasee
, "Aliasee cannot be NULL!", &GA
);
759 Assert(GA
.getType() == Aliasee
->getType(),
760 "Alias and aliasee types should match!", &GA
);
762 Assert(isa
<GlobalValue
>(Aliasee
) || isa
<ConstantExpr
>(Aliasee
),
763 "Aliasee should be either GlobalValue or ConstantExpr", &GA
);
765 visitAliaseeSubExpr(GA
, *Aliasee
);
767 visitGlobalValue(GA
);
770 void Verifier::visitNamedMDNode(const NamedMDNode
&NMD
) {
771 // There used to be various other llvm.dbg.* nodes, but we don't support
772 // upgrading them and we want to reserve the namespace for future uses.
773 if (NMD
.getName().startswith("llvm.dbg."))
774 AssertDI(NMD
.getName() == "llvm.dbg.cu",
775 "unrecognized named metadata node in the llvm.dbg namespace",
777 for (const MDNode
*MD
: NMD
.operands()) {
778 if (NMD
.getName() == "llvm.dbg.cu")
779 AssertDI(MD
&& isa
<DICompileUnit
>(MD
), "invalid compile unit", &NMD
, MD
);
788 void Verifier::visitMDNode(const MDNode
&MD
) {
789 // Only visit each node once. Metadata can be mutually recursive, so this
790 // avoids infinite recursion here, as well as being an optimization.
791 if (!MDNodes
.insert(&MD
).second
)
794 switch (MD
.getMetadataID()) {
796 llvm_unreachable("Invalid MDNode subclass");
797 case Metadata::MDTupleKind
:
799 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
800 case Metadata::CLASS##Kind: \
801 visit##CLASS(cast<CLASS>(MD)); \
803 #include "llvm/IR/Metadata.def"
806 for (const Metadata
*Op
: MD
.operands()) {
809 Assert(!isa
<LocalAsMetadata
>(Op
), "Invalid operand for global metadata!",
811 if (auto *N
= dyn_cast
<MDNode
>(Op
)) {
815 if (auto *V
= dyn_cast
<ValueAsMetadata
>(Op
)) {
816 visitValueAsMetadata(*V
, nullptr);
821 // Check these last, so we diagnose problems in operands first.
822 Assert(!MD
.isTemporary(), "Expected no forward declarations!", &MD
);
823 Assert(MD
.isResolved(), "All nodes should be resolved!", &MD
);
826 void Verifier::visitValueAsMetadata(const ValueAsMetadata
&MD
, Function
*F
) {
827 Assert(MD
.getValue(), "Expected valid value", &MD
);
828 Assert(!MD
.getValue()->getType()->isMetadataTy(),
829 "Unexpected metadata round-trip through values", &MD
, MD
.getValue());
831 auto *L
= dyn_cast
<LocalAsMetadata
>(&MD
);
835 Assert(F
, "function-local metadata used outside a function", L
);
837 // If this was an instruction, bb, or argument, verify that it is in the
838 // function that we expect.
839 Function
*ActualF
= nullptr;
840 if (Instruction
*I
= dyn_cast
<Instruction
>(L
->getValue())) {
841 Assert(I
->getParent(), "function-local metadata not in basic block", L
, I
);
842 ActualF
= I
->getParent()->getParent();
843 } else if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(L
->getValue()))
844 ActualF
= BB
->getParent();
845 else if (Argument
*A
= dyn_cast
<Argument
>(L
->getValue()))
846 ActualF
= A
->getParent();
847 assert(ActualF
&& "Unimplemented function local metadata case!");
849 Assert(ActualF
== F
, "function-local metadata used in wrong function", L
);
852 void Verifier::visitMetadataAsValue(const MetadataAsValue
&MDV
, Function
*F
) {
853 Metadata
*MD
= MDV
.getMetadata();
854 if (auto *N
= dyn_cast
<MDNode
>(MD
)) {
859 // Only visit each node once. Metadata can be mutually recursive, so this
860 // avoids infinite recursion here, as well as being an optimization.
861 if (!MDNodes
.insert(MD
).second
)
864 if (auto *V
= dyn_cast
<ValueAsMetadata
>(MD
))
865 visitValueAsMetadata(*V
, F
);
868 static bool isType(const Metadata
*MD
) { return !MD
|| isa
<DIType
>(MD
); }
869 static bool isScope(const Metadata
*MD
) { return !MD
|| isa
<DIScope
>(MD
); }
870 static bool isDINode(const Metadata
*MD
) { return !MD
|| isa
<DINode
>(MD
); }
872 void Verifier::visitDILocation(const DILocation
&N
) {
873 AssertDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
874 "location requires a valid scope", &N
, N
.getRawScope());
875 if (auto *IA
= N
.getRawInlinedAt())
876 AssertDI(isa
<DILocation
>(IA
), "inlined-at should be a location", &N
, IA
);
877 if (auto *SP
= dyn_cast
<DISubprogram
>(N
.getRawScope()))
878 AssertDI(SP
->isDefinition(), "scope points into the type hierarchy", &N
);
881 void Verifier::visitGenericDINode(const GenericDINode
&N
) {
882 AssertDI(N
.getTag(), "invalid tag", &N
);
885 void Verifier::visitDIScope(const DIScope
&N
) {
886 if (auto *F
= N
.getRawFile())
887 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
890 void Verifier::visitDISubrange(const DISubrange
&N
) {
891 AssertDI(N
.getTag() == dwarf::DW_TAG_subrange_type
, "invalid tag", &N
);
892 auto Count
= N
.getCount();
893 AssertDI(Count
, "Count must either be a signed constant or a DIVariable",
895 AssertDI(!Count
.is
<ConstantInt
*>() ||
896 Count
.get
<ConstantInt
*>()->getSExtValue() >= -1,
897 "invalid subrange count", &N
);
900 void Verifier::visitDIEnumerator(const DIEnumerator
&N
) {
901 AssertDI(N
.getTag() == dwarf::DW_TAG_enumerator
, "invalid tag", &N
);
904 void Verifier::visitDIBasicType(const DIBasicType
&N
) {
905 AssertDI(N
.getTag() == dwarf::DW_TAG_base_type
||
906 N
.getTag() == dwarf::DW_TAG_unspecified_type
,
908 AssertDI(!(N
.isBigEndian() && N
.isLittleEndian()) ,
909 "has conflicting flags", &N
);
912 void Verifier::visitDIDerivedType(const DIDerivedType
&N
) {
913 // Common scope checks.
916 AssertDI(N
.getTag() == dwarf::DW_TAG_typedef
||
917 N
.getTag() == dwarf::DW_TAG_pointer_type
||
918 N
.getTag() == dwarf::DW_TAG_ptr_to_member_type
||
919 N
.getTag() == dwarf::DW_TAG_reference_type
||
920 N
.getTag() == dwarf::DW_TAG_rvalue_reference_type
||
921 N
.getTag() == dwarf::DW_TAG_const_type
||
922 N
.getTag() == dwarf::DW_TAG_volatile_type
||
923 N
.getTag() == dwarf::DW_TAG_restrict_type
||
924 N
.getTag() == dwarf::DW_TAG_atomic_type
||
925 N
.getTag() == dwarf::DW_TAG_member
||
926 N
.getTag() == dwarf::DW_TAG_inheritance
||
927 N
.getTag() == dwarf::DW_TAG_friend
,
929 if (N
.getTag() == dwarf::DW_TAG_ptr_to_member_type
) {
930 AssertDI(isType(N
.getRawExtraData()), "invalid pointer to member type", &N
,
931 N
.getRawExtraData());
934 AssertDI(isScope(N
.getRawScope()), "invalid scope", &N
, N
.getRawScope());
935 AssertDI(isType(N
.getRawBaseType()), "invalid base type", &N
,
938 if (N
.getDWARFAddressSpace()) {
939 AssertDI(N
.getTag() == dwarf::DW_TAG_pointer_type
||
940 N
.getTag() == dwarf::DW_TAG_reference_type
||
941 N
.getTag() == dwarf::DW_TAG_rvalue_reference_type
,
942 "DWARF address space only applies to pointer or reference types",
947 /// Detect mutually exclusive flags.
948 static bool hasConflictingReferenceFlags(unsigned Flags
) {
949 return ((Flags
& DINode::FlagLValueReference
) &&
950 (Flags
& DINode::FlagRValueReference
)) ||
951 ((Flags
& DINode::FlagTypePassByValue
) &&
952 (Flags
& DINode::FlagTypePassByReference
));
955 void Verifier::visitTemplateParams(const MDNode
&N
, const Metadata
&RawParams
) {
956 auto *Params
= dyn_cast
<MDTuple
>(&RawParams
);
957 AssertDI(Params
, "invalid template params", &N
, &RawParams
);
958 for (Metadata
*Op
: Params
->operands()) {
959 AssertDI(Op
&& isa
<DITemplateParameter
>(Op
), "invalid template parameter",
964 void Verifier::visitDICompositeType(const DICompositeType
&N
) {
965 // Common scope checks.
968 AssertDI(N
.getTag() == dwarf::DW_TAG_array_type
||
969 N
.getTag() == dwarf::DW_TAG_structure_type
||
970 N
.getTag() == dwarf::DW_TAG_union_type
||
971 N
.getTag() == dwarf::DW_TAG_enumeration_type
||
972 N
.getTag() == dwarf::DW_TAG_class_type
||
973 N
.getTag() == dwarf::DW_TAG_variant_part
,
976 AssertDI(isScope(N
.getRawScope()), "invalid scope", &N
, N
.getRawScope());
977 AssertDI(isType(N
.getRawBaseType()), "invalid base type", &N
,
980 AssertDI(!N
.getRawElements() || isa
<MDTuple
>(N
.getRawElements()),
981 "invalid composite elements", &N
, N
.getRawElements());
982 AssertDI(isType(N
.getRawVTableHolder()), "invalid vtable holder", &N
,
983 N
.getRawVTableHolder());
984 AssertDI(!hasConflictingReferenceFlags(N
.getFlags()),
985 "invalid reference flags", &N
);
986 unsigned DIBlockByRefStruct
= 1 << 4;
987 AssertDI((N
.getFlags() & DIBlockByRefStruct
) == 0,
988 "DIBlockByRefStruct on DICompositeType is no longer supported", &N
);
991 const DINodeArray Elements
= N
.getElements();
992 AssertDI(Elements
.size() == 1 &&
993 Elements
[0]->getTag() == dwarf::DW_TAG_subrange_type
,
994 "invalid vector, expected one element of type subrange", &N
);
997 if (auto *Params
= N
.getRawTemplateParams())
998 visitTemplateParams(N
, *Params
);
1000 if (N
.getTag() == dwarf::DW_TAG_class_type
||
1001 N
.getTag() == dwarf::DW_TAG_union_type
) {
1002 AssertDI(N
.getFile() && !N
.getFile()->getFilename().empty(),
1003 "class/union requires a filename", &N
, N
.getFile());
1006 if (auto *D
= N
.getRawDiscriminator()) {
1007 AssertDI(isa
<DIDerivedType
>(D
) && N
.getTag() == dwarf::DW_TAG_variant_part
,
1008 "discriminator can only appear on variant part");
1012 void Verifier::visitDISubroutineType(const DISubroutineType
&N
) {
1013 AssertDI(N
.getTag() == dwarf::DW_TAG_subroutine_type
, "invalid tag", &N
);
1014 if (auto *Types
= N
.getRawTypeArray()) {
1015 AssertDI(isa
<MDTuple
>(Types
), "invalid composite elements", &N
, Types
);
1016 for (Metadata
*Ty
: N
.getTypeArray()->operands()) {
1017 AssertDI(isType(Ty
), "invalid subroutine type ref", &N
, Types
, Ty
);
1020 AssertDI(!hasConflictingReferenceFlags(N
.getFlags()),
1021 "invalid reference flags", &N
);
1024 void Verifier::visitDIFile(const DIFile
&N
) {
1025 AssertDI(N
.getTag() == dwarf::DW_TAG_file_type
, "invalid tag", &N
);
1026 Optional
<DIFile::ChecksumInfo
<StringRef
>> Checksum
= N
.getChecksum();
1028 AssertDI(Checksum
->Kind
<= DIFile::ChecksumKind::CSK_Last
,
1029 "invalid checksum kind", &N
);
1031 switch (Checksum
->Kind
) {
1032 case DIFile::CSK_MD5
:
1035 case DIFile::CSK_SHA1
:
1039 AssertDI(Checksum
->Value
.size() == Size
, "invalid checksum length", &N
);
1040 AssertDI(Checksum
->Value
.find_if_not(llvm::isHexDigit
) == StringRef::npos
,
1041 "invalid checksum", &N
);
1045 void Verifier::visitDICompileUnit(const DICompileUnit
&N
) {
1046 AssertDI(N
.isDistinct(), "compile units must be distinct", &N
);
1047 AssertDI(N
.getTag() == dwarf::DW_TAG_compile_unit
, "invalid tag", &N
);
1049 // Don't bother verifying the compilation directory or producer string
1050 // as those could be empty.
1051 AssertDI(N
.getRawFile() && isa
<DIFile
>(N
.getRawFile()), "invalid file", &N
,
1053 AssertDI(!N
.getFile()->getFilename().empty(), "invalid filename", &N
,
1056 verifySourceDebugInfo(N
, *N
.getFile());
1058 AssertDI((N
.getEmissionKind() <= DICompileUnit::LastEmissionKind
),
1059 "invalid emission kind", &N
);
1061 if (auto *Array
= N
.getRawEnumTypes()) {
1062 AssertDI(isa
<MDTuple
>(Array
), "invalid enum list", &N
, Array
);
1063 for (Metadata
*Op
: N
.getEnumTypes()->operands()) {
1064 auto *Enum
= dyn_cast_or_null
<DICompositeType
>(Op
);
1065 AssertDI(Enum
&& Enum
->getTag() == dwarf::DW_TAG_enumeration_type
,
1066 "invalid enum type", &N
, N
.getEnumTypes(), Op
);
1069 if (auto *Array
= N
.getRawRetainedTypes()) {
1070 AssertDI(isa
<MDTuple
>(Array
), "invalid retained type list", &N
, Array
);
1071 for (Metadata
*Op
: N
.getRetainedTypes()->operands()) {
1072 AssertDI(Op
&& (isa
<DIType
>(Op
) ||
1073 (isa
<DISubprogram
>(Op
) &&
1074 !cast
<DISubprogram
>(Op
)->isDefinition())),
1075 "invalid retained type", &N
, Op
);
1078 if (auto *Array
= N
.getRawGlobalVariables()) {
1079 AssertDI(isa
<MDTuple
>(Array
), "invalid global variable list", &N
, Array
);
1080 for (Metadata
*Op
: N
.getGlobalVariables()->operands()) {
1081 AssertDI(Op
&& (isa
<DIGlobalVariableExpression
>(Op
)),
1082 "invalid global variable ref", &N
, Op
);
1085 if (auto *Array
= N
.getRawImportedEntities()) {
1086 AssertDI(isa
<MDTuple
>(Array
), "invalid imported entity list", &N
, Array
);
1087 for (Metadata
*Op
: N
.getImportedEntities()->operands()) {
1088 AssertDI(Op
&& isa
<DIImportedEntity
>(Op
), "invalid imported entity ref",
1092 if (auto *Array
= N
.getRawMacros()) {
1093 AssertDI(isa
<MDTuple
>(Array
), "invalid macro list", &N
, Array
);
1094 for (Metadata
*Op
: N
.getMacros()->operands()) {
1095 AssertDI(Op
&& isa
<DIMacroNode
>(Op
), "invalid macro ref", &N
, Op
);
1098 CUVisited
.insert(&N
);
1101 void Verifier::visitDISubprogram(const DISubprogram
&N
) {
1102 AssertDI(N
.getTag() == dwarf::DW_TAG_subprogram
, "invalid tag", &N
);
1103 AssertDI(isScope(N
.getRawScope()), "invalid scope", &N
, N
.getRawScope());
1104 if (auto *F
= N
.getRawFile())
1105 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1107 AssertDI(N
.getLine() == 0, "line specified with no file", &N
, N
.getLine());
1108 if (auto *T
= N
.getRawType())
1109 AssertDI(isa
<DISubroutineType
>(T
), "invalid subroutine type", &N
, T
);
1110 AssertDI(isType(N
.getRawContainingType()), "invalid containing type", &N
,
1111 N
.getRawContainingType());
1112 if (auto *Params
= N
.getRawTemplateParams())
1113 visitTemplateParams(N
, *Params
);
1114 if (auto *S
= N
.getRawDeclaration())
1115 AssertDI(isa
<DISubprogram
>(S
) && !cast
<DISubprogram
>(S
)->isDefinition(),
1116 "invalid subprogram declaration", &N
, S
);
1117 if (auto *RawNode
= N
.getRawRetainedNodes()) {
1118 auto *Node
= dyn_cast
<MDTuple
>(RawNode
);
1119 AssertDI(Node
, "invalid retained nodes list", &N
, RawNode
);
1120 for (Metadata
*Op
: Node
->operands()) {
1121 AssertDI(Op
&& (isa
<DILocalVariable
>(Op
) || isa
<DILabel
>(Op
)),
1122 "invalid retained nodes, expected DILocalVariable or DILabel",
1126 AssertDI(!hasConflictingReferenceFlags(N
.getFlags()),
1127 "invalid reference flags", &N
);
1129 auto *Unit
= N
.getRawUnit();
1130 if (N
.isDefinition()) {
1131 // Subprogram definitions (not part of the type hierarchy).
1132 AssertDI(N
.isDistinct(), "subprogram definitions must be distinct", &N
);
1133 AssertDI(Unit
, "subprogram definitions must have a compile unit", &N
);
1134 AssertDI(isa
<DICompileUnit
>(Unit
), "invalid unit type", &N
, Unit
);
1136 verifySourceDebugInfo(*N
.getUnit(), *N
.getFile());
1138 // Subprogram declarations (part of the type hierarchy).
1139 AssertDI(!Unit
, "subprogram declarations must not have a compile unit", &N
);
1142 if (auto *RawThrownTypes
= N
.getRawThrownTypes()) {
1143 auto *ThrownTypes
= dyn_cast
<MDTuple
>(RawThrownTypes
);
1144 AssertDI(ThrownTypes
, "invalid thrown types list", &N
, RawThrownTypes
);
1145 for (Metadata
*Op
: ThrownTypes
->operands())
1146 AssertDI(Op
&& isa
<DIType
>(Op
), "invalid thrown type", &N
, ThrownTypes
,
1150 if (N
.areAllCallsDescribed())
1151 AssertDI(N
.isDefinition(),
1152 "DIFlagAllCallsDescribed must be attached to a definition");
1155 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase
&N
) {
1156 AssertDI(N
.getTag() == dwarf::DW_TAG_lexical_block
, "invalid tag", &N
);
1157 AssertDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
1158 "invalid local scope", &N
, N
.getRawScope());
1159 if (auto *SP
= dyn_cast
<DISubprogram
>(N
.getRawScope()))
1160 AssertDI(SP
->isDefinition(), "scope points into the type hierarchy", &N
);
1163 void Verifier::visitDILexicalBlock(const DILexicalBlock
&N
) {
1164 visitDILexicalBlockBase(N
);
1166 AssertDI(N
.getLine() || !N
.getColumn(),
1167 "cannot have column info without line info", &N
);
1170 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile
&N
) {
1171 visitDILexicalBlockBase(N
);
1174 void Verifier::visitDICommonBlock(const DICommonBlock
&N
) {
1175 AssertDI(N
.getTag() == dwarf::DW_TAG_common_block
, "invalid tag", &N
);
1176 if (auto *S
= N
.getRawScope())
1177 AssertDI(isa
<DIScope
>(S
), "invalid scope ref", &N
, S
);
1178 if (auto *S
= N
.getRawDecl())
1179 AssertDI(isa
<DIGlobalVariable
>(S
), "invalid declaration", &N
, S
);
1182 void Verifier::visitDINamespace(const DINamespace
&N
) {
1183 AssertDI(N
.getTag() == dwarf::DW_TAG_namespace
, "invalid tag", &N
);
1184 if (auto *S
= N
.getRawScope())
1185 AssertDI(isa
<DIScope
>(S
), "invalid scope ref", &N
, S
);
1188 void Verifier::visitDIMacro(const DIMacro
&N
) {
1189 AssertDI(N
.getMacinfoType() == dwarf::DW_MACINFO_define
||
1190 N
.getMacinfoType() == dwarf::DW_MACINFO_undef
,
1191 "invalid macinfo type", &N
);
1192 AssertDI(!N
.getName().empty(), "anonymous macro", &N
);
1193 if (!N
.getValue().empty()) {
1194 assert(N
.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1198 void Verifier::visitDIMacroFile(const DIMacroFile
&N
) {
1199 AssertDI(N
.getMacinfoType() == dwarf::DW_MACINFO_start_file
,
1200 "invalid macinfo type", &N
);
1201 if (auto *F
= N
.getRawFile())
1202 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1204 if (auto *Array
= N
.getRawElements()) {
1205 AssertDI(isa
<MDTuple
>(Array
), "invalid macro list", &N
, Array
);
1206 for (Metadata
*Op
: N
.getElements()->operands()) {
1207 AssertDI(Op
&& isa
<DIMacroNode
>(Op
), "invalid macro ref", &N
, Op
);
1212 void Verifier::visitDIModule(const DIModule
&N
) {
1213 AssertDI(N
.getTag() == dwarf::DW_TAG_module
, "invalid tag", &N
);
1214 AssertDI(!N
.getName().empty(), "anonymous module", &N
);
1217 void Verifier::visitDITemplateParameter(const DITemplateParameter
&N
) {
1218 AssertDI(isType(N
.getRawType()), "invalid type ref", &N
, N
.getRawType());
1221 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter
&N
) {
1222 visitDITemplateParameter(N
);
1224 AssertDI(N
.getTag() == dwarf::DW_TAG_template_type_parameter
, "invalid tag",
1228 void Verifier::visitDITemplateValueParameter(
1229 const DITemplateValueParameter
&N
) {
1230 visitDITemplateParameter(N
);
1232 AssertDI(N
.getTag() == dwarf::DW_TAG_template_value_parameter
||
1233 N
.getTag() == dwarf::DW_TAG_GNU_template_template_param
||
1234 N
.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack
,
1238 void Verifier::visitDIVariable(const DIVariable
&N
) {
1239 if (auto *S
= N
.getRawScope())
1240 AssertDI(isa
<DIScope
>(S
), "invalid scope", &N
, S
);
1241 if (auto *F
= N
.getRawFile())
1242 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1245 void Verifier::visitDIGlobalVariable(const DIGlobalVariable
&N
) {
1246 // Checks common to all variables.
1249 AssertDI(N
.getTag() == dwarf::DW_TAG_variable
, "invalid tag", &N
);
1250 AssertDI(isType(N
.getRawType()), "invalid type ref", &N
, N
.getRawType());
1251 AssertDI(N
.getType(), "missing global variable type", &N
);
1252 if (auto *Member
= N
.getRawStaticDataMemberDeclaration()) {
1253 AssertDI(isa
<DIDerivedType
>(Member
),
1254 "invalid static data member declaration", &N
, Member
);
1258 void Verifier::visitDILocalVariable(const DILocalVariable
&N
) {
1259 // Checks common to all variables.
1262 AssertDI(isType(N
.getRawType()), "invalid type ref", &N
, N
.getRawType());
1263 AssertDI(N
.getTag() == dwarf::DW_TAG_variable
, "invalid tag", &N
);
1264 AssertDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
1265 "local variable requires a valid scope", &N
, N
.getRawScope());
1266 if (auto Ty
= N
.getType())
1267 AssertDI(!isa
<DISubroutineType
>(Ty
), "invalid type", &N
, N
.getType());
1270 void Verifier::visitDILabel(const DILabel
&N
) {
1271 if (auto *S
= N
.getRawScope())
1272 AssertDI(isa
<DIScope
>(S
), "invalid scope", &N
, S
);
1273 if (auto *F
= N
.getRawFile())
1274 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1276 AssertDI(N
.getTag() == dwarf::DW_TAG_label
, "invalid tag", &N
);
1277 AssertDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
1278 "label requires a valid scope", &N
, N
.getRawScope());
1281 void Verifier::visitDIExpression(const DIExpression
&N
) {
1282 AssertDI(N
.isValid(), "invalid expression", &N
);
1285 void Verifier::visitDIGlobalVariableExpression(
1286 const DIGlobalVariableExpression
&GVE
) {
1287 AssertDI(GVE
.getVariable(), "missing variable");
1288 if (auto *Var
= GVE
.getVariable())
1289 visitDIGlobalVariable(*Var
);
1290 if (auto *Expr
= GVE
.getExpression()) {
1291 visitDIExpression(*Expr
);
1292 if (auto Fragment
= Expr
->getFragmentInfo())
1293 verifyFragmentExpression(*GVE
.getVariable(), *Fragment
, &GVE
);
1297 void Verifier::visitDIObjCProperty(const DIObjCProperty
&N
) {
1298 AssertDI(N
.getTag() == dwarf::DW_TAG_APPLE_property
, "invalid tag", &N
);
1299 if (auto *T
= N
.getRawType())
1300 AssertDI(isType(T
), "invalid type ref", &N
, T
);
1301 if (auto *F
= N
.getRawFile())
1302 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1305 void Verifier::visitDIImportedEntity(const DIImportedEntity
&N
) {
1306 AssertDI(N
.getTag() == dwarf::DW_TAG_imported_module
||
1307 N
.getTag() == dwarf::DW_TAG_imported_declaration
,
1309 if (auto *S
= N
.getRawScope())
1310 AssertDI(isa
<DIScope
>(S
), "invalid scope for imported entity", &N
, S
);
1311 AssertDI(isDINode(N
.getRawEntity()), "invalid imported entity", &N
,
1315 void Verifier::visitComdat(const Comdat
&C
) {
1316 // In COFF the Module is invalid if the GlobalValue has private linkage.
1317 // Entities with private linkage don't have entries in the symbol table.
1318 if (TT
.isOSBinFormatCOFF())
1319 if (const GlobalValue
*GV
= M
.getNamedValue(C
.getName()))
1320 Assert(!GV
->hasPrivateLinkage(),
1321 "comdat global value has private linkage", GV
);
1324 void Verifier::visitModuleIdents(const Module
&M
) {
1325 const NamedMDNode
*Idents
= M
.getNamedMetadata("llvm.ident");
1329 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1330 // Scan each llvm.ident entry and make sure that this requirement is met.
1331 for (const MDNode
*N
: Idents
->operands()) {
1332 Assert(N
->getNumOperands() == 1,
1333 "incorrect number of operands in llvm.ident metadata", N
);
1334 Assert(dyn_cast_or_null
<MDString
>(N
->getOperand(0)),
1335 ("invalid value for llvm.ident metadata entry operand"
1336 "(the operand should be a string)"),
1341 void Verifier::visitModuleCommandLines(const Module
&M
) {
1342 const NamedMDNode
*CommandLines
= M
.getNamedMetadata("llvm.commandline");
1346 // llvm.commandline takes a list of metadata entry. Each entry has only one
1347 // string. Scan each llvm.commandline entry and make sure that this
1348 // requirement is met.
1349 for (const MDNode
*N
: CommandLines
->operands()) {
1350 Assert(N
->getNumOperands() == 1,
1351 "incorrect number of operands in llvm.commandline metadata", N
);
1352 Assert(dyn_cast_or_null
<MDString
>(N
->getOperand(0)),
1353 ("invalid value for llvm.commandline metadata entry operand"
1354 "(the operand should be a string)"),
1359 void Verifier::visitModuleFlags(const Module
&M
) {
1360 const NamedMDNode
*Flags
= M
.getModuleFlagsMetadata();
1363 // Scan each flag, and track the flags and requirements.
1364 DenseMap
<const MDString
*, const MDNode
*> SeenIDs
;
1365 SmallVector
<const MDNode
*, 16> Requirements
;
1366 for (const MDNode
*MDN
: Flags
->operands())
1367 visitModuleFlag(MDN
, SeenIDs
, Requirements
);
1369 // Validate that the requirements in the module are valid.
1370 for (const MDNode
*Requirement
: Requirements
) {
1371 const MDString
*Flag
= cast
<MDString
>(Requirement
->getOperand(0));
1372 const Metadata
*ReqValue
= Requirement
->getOperand(1);
1374 const MDNode
*Op
= SeenIDs
.lookup(Flag
);
1376 CheckFailed("invalid requirement on flag, flag is not present in module",
1381 if (Op
->getOperand(2) != ReqValue
) {
1382 CheckFailed(("invalid requirement on flag, "
1383 "flag does not have the required value"),
1391 Verifier::visitModuleFlag(const MDNode
*Op
,
1392 DenseMap
<const MDString
*, const MDNode
*> &SeenIDs
,
1393 SmallVectorImpl
<const MDNode
*> &Requirements
) {
1394 // Each module flag should have three arguments, the merge behavior (a
1395 // constant int), the flag ID (an MDString), and the value.
1396 Assert(Op
->getNumOperands() == 3,
1397 "incorrect number of operands in module flag", Op
);
1398 Module::ModFlagBehavior MFB
;
1399 if (!Module::isValidModFlagBehavior(Op
->getOperand(0), MFB
)) {
1401 mdconst::dyn_extract_or_null
<ConstantInt
>(Op
->getOperand(0)),
1402 "invalid behavior operand in module flag (expected constant integer)",
1405 "invalid behavior operand in module flag (unexpected constant)",
1408 MDString
*ID
= dyn_cast_or_null
<MDString
>(Op
->getOperand(1));
1409 Assert(ID
, "invalid ID operand in module flag (expected metadata string)",
1412 // Sanity check the values for behaviors with additional requirements.
1415 case Module::Warning
:
1416 case Module::Override
:
1417 // These behavior types accept any value.
1421 Assert(mdconst::dyn_extract_or_null
<ConstantInt
>(Op
->getOperand(2)),
1422 "invalid value for 'max' module flag (expected constant integer)",
1427 case Module::Require
: {
1428 // The value should itself be an MDNode with two operands, a flag ID (an
1429 // MDString), and a value.
1430 MDNode
*Value
= dyn_cast
<MDNode
>(Op
->getOperand(2));
1431 Assert(Value
&& Value
->getNumOperands() == 2,
1432 "invalid value for 'require' module flag (expected metadata pair)",
1434 Assert(isa
<MDString
>(Value
->getOperand(0)),
1435 ("invalid value for 'require' module flag "
1436 "(first value operand should be a string)"),
1437 Value
->getOperand(0));
1439 // Append it to the list of requirements, to check once all module flags are
1441 Requirements
.push_back(Value
);
1445 case Module::Append
:
1446 case Module::AppendUnique
: {
1447 // These behavior types require the operand be an MDNode.
1448 Assert(isa
<MDNode
>(Op
->getOperand(2)),
1449 "invalid value for 'append'-type module flag "
1450 "(expected a metadata node)",
1456 // Unless this is a "requires" flag, check the ID is unique.
1457 if (MFB
!= Module::Require
) {
1458 bool Inserted
= SeenIDs
.insert(std::make_pair(ID
, Op
)).second
;
1460 "module flag identifiers must be unique (or of 'require' type)", ID
);
1463 if (ID
->getString() == "wchar_size") {
1465 = mdconst::dyn_extract_or_null
<ConstantInt
>(Op
->getOperand(2));
1466 Assert(Value
, "wchar_size metadata requires constant integer argument");
1469 if (ID
->getString() == "Linker Options") {
1470 // If the llvm.linker.options named metadata exists, we assume that the
1471 // bitcode reader has upgraded the module flag. Otherwise the flag might
1472 // have been created by a client directly.
1473 Assert(M
.getNamedMetadata("llvm.linker.options"),
1474 "'Linker Options' named metadata no longer supported");
1477 if (ID
->getString() == "CG Profile") {
1478 for (const MDOperand
&MDO
: cast
<MDNode
>(Op
->getOperand(2))->operands())
1479 visitModuleFlagCGProfileEntry(MDO
);
1483 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand
&MDO
) {
1484 auto CheckFunction
= [&](const MDOperand
&FuncMDO
) {
1487 auto F
= dyn_cast
<ValueAsMetadata
>(FuncMDO
);
1488 Assert(F
&& isa
<Function
>(F
->getValue()), "expected a Function or null",
1491 auto Node
= dyn_cast_or_null
<MDNode
>(MDO
);
1492 Assert(Node
&& Node
->getNumOperands() == 3, "expected a MDNode triple", MDO
);
1493 CheckFunction(Node
->getOperand(0));
1494 CheckFunction(Node
->getOperand(1));
1495 auto Count
= dyn_cast_or_null
<ConstantAsMetadata
>(Node
->getOperand(2));
1496 Assert(Count
&& Count
->getType()->isIntegerTy(),
1497 "expected an integer constant", Node
->getOperand(2));
1500 /// Return true if this attribute kind only applies to functions.
1501 static bool isFuncOnlyAttr(Attribute::AttrKind Kind
) {
1503 case Attribute::NoReturn
:
1504 case Attribute::NoSync
:
1505 case Attribute::WillReturn
:
1506 case Attribute::NoCfCheck
:
1507 case Attribute::NoUnwind
:
1508 case Attribute::NoInline
:
1509 case Attribute::NoFree
:
1510 case Attribute::AlwaysInline
:
1511 case Attribute::OptimizeForSize
:
1512 case Attribute::StackProtect
:
1513 case Attribute::StackProtectReq
:
1514 case Attribute::StackProtectStrong
:
1515 case Attribute::SafeStack
:
1516 case Attribute::ShadowCallStack
:
1517 case Attribute::NoRedZone
:
1518 case Attribute::NoImplicitFloat
:
1519 case Attribute::Naked
:
1520 case Attribute::InlineHint
:
1521 case Attribute::StackAlignment
:
1522 case Attribute::UWTable
:
1523 case Attribute::NonLazyBind
:
1524 case Attribute::ReturnsTwice
:
1525 case Attribute::SanitizeAddress
:
1526 case Attribute::SanitizeHWAddress
:
1527 case Attribute::SanitizeMemTag
:
1528 case Attribute::SanitizeThread
:
1529 case Attribute::SanitizeMemory
:
1530 case Attribute::MinSize
:
1531 case Attribute::NoDuplicate
:
1532 case Attribute::Builtin
:
1533 case Attribute::NoBuiltin
:
1534 case Attribute::Cold
:
1535 case Attribute::OptForFuzzing
:
1536 case Attribute::OptimizeNone
:
1537 case Attribute::JumpTable
:
1538 case Attribute::Convergent
:
1539 case Attribute::ArgMemOnly
:
1540 case Attribute::NoRecurse
:
1541 case Attribute::InaccessibleMemOnly
:
1542 case Attribute::InaccessibleMemOrArgMemOnly
:
1543 case Attribute::AllocSize
:
1544 case Attribute::SpeculativeLoadHardening
:
1545 case Attribute::Speculatable
:
1546 case Attribute::StrictFP
:
1554 /// Return true if this is a function attribute that can also appear on
1556 static bool isFuncOrArgAttr(Attribute::AttrKind Kind
) {
1557 return Kind
== Attribute::ReadOnly
|| Kind
== Attribute::WriteOnly
||
1558 Kind
== Attribute::ReadNone
;
1561 void Verifier::verifyAttributeTypes(AttributeSet Attrs
, bool IsFunction
,
1563 for (Attribute A
: Attrs
) {
1564 if (A
.isStringAttribute())
1567 if (isFuncOnlyAttr(A
.getKindAsEnum())) {
1569 CheckFailed("Attribute '" + A
.getAsString() +
1570 "' only applies to functions!",
1574 } else if (IsFunction
&& !isFuncOrArgAttr(A
.getKindAsEnum())) {
1575 CheckFailed("Attribute '" + A
.getAsString() +
1576 "' does not apply to functions!",
1583 // VerifyParameterAttrs - Check the given attributes for an argument or return
1584 // value of the specified type. The value V is printed in error messages.
1585 void Verifier::verifyParameterAttrs(AttributeSet Attrs
, Type
*Ty
,
1587 if (!Attrs
.hasAttributes())
1590 verifyAttributeTypes(Attrs
, /*IsFunction=*/false, V
);
1592 if (Attrs
.hasAttribute(Attribute::ImmArg
)) {
1593 Assert(Attrs
.getNumAttributes() == 1,
1594 "Attribute 'immarg' is incompatible with other attributes", V
);
1597 // Check for mutually incompatible attributes. Only inreg is compatible with
1599 unsigned AttrCount
= 0;
1600 AttrCount
+= Attrs
.hasAttribute(Attribute::ByVal
);
1601 AttrCount
+= Attrs
.hasAttribute(Attribute::InAlloca
);
1602 AttrCount
+= Attrs
.hasAttribute(Attribute::StructRet
) ||
1603 Attrs
.hasAttribute(Attribute::InReg
);
1604 AttrCount
+= Attrs
.hasAttribute(Attribute::Nest
);
1605 Assert(AttrCount
<= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1606 "and 'sret' are incompatible!",
1609 Assert(!(Attrs
.hasAttribute(Attribute::InAlloca
) &&
1610 Attrs
.hasAttribute(Attribute::ReadOnly
)),
1612 "'inalloca and readonly' are incompatible!",
1615 Assert(!(Attrs
.hasAttribute(Attribute::StructRet
) &&
1616 Attrs
.hasAttribute(Attribute::Returned
)),
1618 "'sret and returned' are incompatible!",
1621 Assert(!(Attrs
.hasAttribute(Attribute::ZExt
) &&
1622 Attrs
.hasAttribute(Attribute::SExt
)),
1624 "'zeroext and signext' are incompatible!",
1627 Assert(!(Attrs
.hasAttribute(Attribute::ReadNone
) &&
1628 Attrs
.hasAttribute(Attribute::ReadOnly
)),
1630 "'readnone and readonly' are incompatible!",
1633 Assert(!(Attrs
.hasAttribute(Attribute::ReadNone
) &&
1634 Attrs
.hasAttribute(Attribute::WriteOnly
)),
1636 "'readnone and writeonly' are incompatible!",
1639 Assert(!(Attrs
.hasAttribute(Attribute::ReadOnly
) &&
1640 Attrs
.hasAttribute(Attribute::WriteOnly
)),
1642 "'readonly and writeonly' are incompatible!",
1645 Assert(!(Attrs
.hasAttribute(Attribute::NoInline
) &&
1646 Attrs
.hasAttribute(Attribute::AlwaysInline
)),
1648 "'noinline and alwaysinline' are incompatible!",
1651 if (Attrs
.hasAttribute(Attribute::ByVal
) && Attrs
.getByValType()) {
1652 Assert(Attrs
.getByValType() == cast
<PointerType
>(Ty
)->getElementType(),
1653 "Attribute 'byval' type does not match parameter!", V
);
1656 AttrBuilder IncompatibleAttrs
= AttributeFuncs::typeIncompatible(Ty
);
1657 Assert(!AttrBuilder(Attrs
).overlaps(IncompatibleAttrs
),
1658 "Wrong types for attribute: " +
1659 AttributeSet::get(Context
, IncompatibleAttrs
).getAsString(),
1662 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
)) {
1663 SmallPtrSet
<Type
*, 4> Visited
;
1664 if (!PTy
->getElementType()->isSized(&Visited
)) {
1665 Assert(!Attrs
.hasAttribute(Attribute::ByVal
) &&
1666 !Attrs
.hasAttribute(Attribute::InAlloca
),
1667 "Attributes 'byval' and 'inalloca' do not support unsized types!",
1670 if (!isa
<PointerType
>(PTy
->getElementType()))
1671 Assert(!Attrs
.hasAttribute(Attribute::SwiftError
),
1672 "Attribute 'swifterror' only applies to parameters "
1673 "with pointer to pointer type!",
1676 Assert(!Attrs
.hasAttribute(Attribute::ByVal
),
1677 "Attribute 'byval' only applies to parameters with pointer type!",
1679 Assert(!Attrs
.hasAttribute(Attribute::SwiftError
),
1680 "Attribute 'swifterror' only applies to parameters "
1681 "with pointer type!",
1686 // Check parameter attributes against a function type.
1687 // The value V is printed in error messages.
1688 void Verifier::verifyFunctionAttrs(FunctionType
*FT
, AttributeList Attrs
,
1689 const Value
*V
, bool IsIntrinsic
) {
1690 if (Attrs
.isEmpty())
1693 bool SawNest
= false;
1694 bool SawReturned
= false;
1695 bool SawSRet
= false;
1696 bool SawSwiftSelf
= false;
1697 bool SawSwiftError
= false;
1699 // Verify return value attributes.
1700 AttributeSet RetAttrs
= Attrs
.getRetAttributes();
1701 Assert((!RetAttrs
.hasAttribute(Attribute::ByVal
) &&
1702 !RetAttrs
.hasAttribute(Attribute::Nest
) &&
1703 !RetAttrs
.hasAttribute(Attribute::StructRet
) &&
1704 !RetAttrs
.hasAttribute(Attribute::NoCapture
) &&
1705 !RetAttrs
.hasAttribute(Attribute::Returned
) &&
1706 !RetAttrs
.hasAttribute(Attribute::InAlloca
) &&
1707 !RetAttrs
.hasAttribute(Attribute::SwiftSelf
) &&
1708 !RetAttrs
.hasAttribute(Attribute::SwiftError
)),
1709 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1710 "'returned', 'swiftself', and 'swifterror' do not apply to return "
1713 Assert((!RetAttrs
.hasAttribute(Attribute::ReadOnly
) &&
1714 !RetAttrs
.hasAttribute(Attribute::WriteOnly
) &&
1715 !RetAttrs
.hasAttribute(Attribute::ReadNone
)),
1716 "Attribute '" + RetAttrs
.getAsString() +
1717 "' does not apply to function returns",
1719 verifyParameterAttrs(RetAttrs
, FT
->getReturnType(), V
);
1721 // Verify parameter attributes.
1722 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
) {
1723 Type
*Ty
= FT
->getParamType(i
);
1724 AttributeSet ArgAttrs
= Attrs
.getParamAttributes(i
);
1727 Assert(!ArgAttrs
.hasAttribute(Attribute::ImmArg
),
1728 "immarg attribute only applies to intrinsics",V
);
1731 verifyParameterAttrs(ArgAttrs
, Ty
, V
);
1733 if (ArgAttrs
.hasAttribute(Attribute::Nest
)) {
1734 Assert(!SawNest
, "More than one parameter has attribute nest!", V
);
1738 if (ArgAttrs
.hasAttribute(Attribute::Returned
)) {
1739 Assert(!SawReturned
, "More than one parameter has attribute returned!",
1741 Assert(Ty
->canLosslesslyBitCastTo(FT
->getReturnType()),
1742 "Incompatible argument and return types for 'returned' attribute",
1747 if (ArgAttrs
.hasAttribute(Attribute::StructRet
)) {
1748 Assert(!SawSRet
, "Cannot have multiple 'sret' parameters!", V
);
1749 Assert(i
== 0 || i
== 1,
1750 "Attribute 'sret' is not on first or second parameter!", V
);
1754 if (ArgAttrs
.hasAttribute(Attribute::SwiftSelf
)) {
1755 Assert(!SawSwiftSelf
, "Cannot have multiple 'swiftself' parameters!", V
);
1756 SawSwiftSelf
= true;
1759 if (ArgAttrs
.hasAttribute(Attribute::SwiftError
)) {
1760 Assert(!SawSwiftError
, "Cannot have multiple 'swifterror' parameters!",
1762 SawSwiftError
= true;
1765 if (ArgAttrs
.hasAttribute(Attribute::InAlloca
)) {
1766 Assert(i
== FT
->getNumParams() - 1,
1767 "inalloca isn't on the last parameter!", V
);
1771 if (!Attrs
.hasAttributes(AttributeList::FunctionIndex
))
1774 verifyAttributeTypes(Attrs
.getFnAttributes(), /*IsFunction=*/true, V
);
1776 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadNone
) &&
1777 Attrs
.hasFnAttribute(Attribute::ReadOnly
)),
1778 "Attributes 'readnone and readonly' are incompatible!", V
);
1780 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadNone
) &&
1781 Attrs
.hasFnAttribute(Attribute::WriteOnly
)),
1782 "Attributes 'readnone and writeonly' are incompatible!", V
);
1784 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadOnly
) &&
1785 Attrs
.hasFnAttribute(Attribute::WriteOnly
)),
1786 "Attributes 'readonly and writeonly' are incompatible!", V
);
1788 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadNone
) &&
1789 Attrs
.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly
)),
1790 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1794 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadNone
) &&
1795 Attrs
.hasFnAttribute(Attribute::InaccessibleMemOnly
)),
1796 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V
);
1798 Assert(!(Attrs
.hasFnAttribute(Attribute::NoInline
) &&
1799 Attrs
.hasFnAttribute(Attribute::AlwaysInline
)),
1800 "Attributes 'noinline and alwaysinline' are incompatible!", V
);
1802 if (Attrs
.hasFnAttribute(Attribute::OptimizeNone
)) {
1803 Assert(Attrs
.hasFnAttribute(Attribute::NoInline
),
1804 "Attribute 'optnone' requires 'noinline'!", V
);
1806 Assert(!Attrs
.hasFnAttribute(Attribute::OptimizeForSize
),
1807 "Attributes 'optsize and optnone' are incompatible!", V
);
1809 Assert(!Attrs
.hasFnAttribute(Attribute::MinSize
),
1810 "Attributes 'minsize and optnone' are incompatible!", V
);
1813 if (Attrs
.hasFnAttribute(Attribute::JumpTable
)) {
1814 const GlobalValue
*GV
= cast
<GlobalValue
>(V
);
1815 Assert(GV
->hasGlobalUnnamedAddr(),
1816 "Attribute 'jumptable' requires 'unnamed_addr'", V
);
1819 if (Attrs
.hasFnAttribute(Attribute::AllocSize
)) {
1820 std::pair
<unsigned, Optional
<unsigned>> Args
=
1821 Attrs
.getAllocSizeArgs(AttributeList::FunctionIndex
);
1823 auto CheckParam
= [&](StringRef Name
, unsigned ParamNo
) {
1824 if (ParamNo
>= FT
->getNumParams()) {
1825 CheckFailed("'allocsize' " + Name
+ " argument is out of bounds", V
);
1829 if (!FT
->getParamType(ParamNo
)->isIntegerTy()) {
1830 CheckFailed("'allocsize' " + Name
+
1831 " argument must refer to an integer parameter",
1839 if (!CheckParam("element size", Args
.first
))
1842 if (Args
.second
&& !CheckParam("number of elements", *Args
.second
))
1847 void Verifier::verifyFunctionMetadata(
1848 ArrayRef
<std::pair
<unsigned, MDNode
*>> MDs
) {
1849 for (const auto &Pair
: MDs
) {
1850 if (Pair
.first
== LLVMContext::MD_prof
) {
1851 MDNode
*MD
= Pair
.second
;
1852 Assert(MD
->getNumOperands() >= 2,
1853 "!prof annotations should have no less than 2 operands", MD
);
1855 // Check first operand.
1856 Assert(MD
->getOperand(0) != nullptr, "first operand should not be null",
1858 Assert(isa
<MDString
>(MD
->getOperand(0)),
1859 "expected string with name of the !prof annotation", MD
);
1860 MDString
*MDS
= cast
<MDString
>(MD
->getOperand(0));
1861 StringRef ProfName
= MDS
->getString();
1862 Assert(ProfName
.equals("function_entry_count") ||
1863 ProfName
.equals("synthetic_function_entry_count"),
1864 "first operand should be 'function_entry_count'"
1865 " or 'synthetic_function_entry_count'",
1868 // Check second operand.
1869 Assert(MD
->getOperand(1) != nullptr, "second operand should not be null",
1871 Assert(isa
<ConstantAsMetadata
>(MD
->getOperand(1)),
1872 "expected integer argument to function_entry_count", MD
);
1877 void Verifier::visitConstantExprsRecursively(const Constant
*EntryC
) {
1878 if (!ConstantExprVisited
.insert(EntryC
).second
)
1881 SmallVector
<const Constant
*, 16> Stack
;
1882 Stack
.push_back(EntryC
);
1884 while (!Stack
.empty()) {
1885 const Constant
*C
= Stack
.pop_back_val();
1887 // Check this constant expression.
1888 if (const auto *CE
= dyn_cast
<ConstantExpr
>(C
))
1889 visitConstantExpr(CE
);
1891 if (const auto *GV
= dyn_cast
<GlobalValue
>(C
)) {
1892 // Global Values get visited separately, but we do need to make sure
1893 // that the global value is in the correct module
1894 Assert(GV
->getParent() == &M
, "Referencing global in another module!",
1895 EntryC
, &M
, GV
, GV
->getParent());
1899 // Visit all sub-expressions.
1900 for (const Use
&U
: C
->operands()) {
1901 const auto *OpC
= dyn_cast
<Constant
>(U
);
1904 if (!ConstantExprVisited
.insert(OpC
).second
)
1906 Stack
.push_back(OpC
);
1911 void Verifier::visitConstantExpr(const ConstantExpr
*CE
) {
1912 if (CE
->getOpcode() == Instruction::BitCast
)
1913 Assert(CastInst::castIsValid(Instruction::BitCast
, CE
->getOperand(0),
1915 "Invalid bitcast", CE
);
1917 if (CE
->getOpcode() == Instruction::IntToPtr
||
1918 CE
->getOpcode() == Instruction::PtrToInt
) {
1919 auto *PtrTy
= CE
->getOpcode() == Instruction::IntToPtr
1921 : CE
->getOperand(0)->getType();
1922 StringRef Msg
= CE
->getOpcode() == Instruction::IntToPtr
1923 ? "inttoptr not supported for non-integral pointers"
1924 : "ptrtoint not supported for non-integral pointers";
1926 !DL
.isNonIntegralPointerType(cast
<PointerType
>(PtrTy
->getScalarType())),
1931 bool Verifier::verifyAttributeCount(AttributeList Attrs
, unsigned Params
) {
1932 // There shouldn't be more attribute sets than there are parameters plus the
1933 // function and return value.
1934 return Attrs
.getNumAttrSets() <= Params
+ 2;
1937 /// Verify that statepoint intrinsic is well formed.
1938 void Verifier::verifyStatepoint(const CallBase
&Call
) {
1939 assert(Call
.getCalledFunction() &&
1940 Call
.getCalledFunction()->getIntrinsicID() ==
1941 Intrinsic::experimental_gc_statepoint
);
1943 Assert(!Call
.doesNotAccessMemory() && !Call
.onlyReadsMemory() &&
1944 !Call
.onlyAccessesArgMemory(),
1945 "gc.statepoint must read and write all memory to preserve "
1946 "reordering restrictions required by safepoint semantics",
1949 const int64_t NumPatchBytes
=
1950 cast
<ConstantInt
>(Call
.getArgOperand(1))->getSExtValue();
1951 assert(isInt
<32>(NumPatchBytes
) && "NumPatchBytesV is an i32!");
1952 Assert(NumPatchBytes
>= 0,
1953 "gc.statepoint number of patchable bytes must be "
1957 const Value
*Target
= Call
.getArgOperand(2);
1958 auto *PT
= dyn_cast
<PointerType
>(Target
->getType());
1959 Assert(PT
&& PT
->getElementType()->isFunctionTy(),
1960 "gc.statepoint callee must be of function pointer type", Call
, Target
);
1961 FunctionType
*TargetFuncType
= cast
<FunctionType
>(PT
->getElementType());
1963 const int NumCallArgs
= cast
<ConstantInt
>(Call
.getArgOperand(3))->getZExtValue();
1964 Assert(NumCallArgs
>= 0,
1965 "gc.statepoint number of arguments to underlying call "
1968 const int NumParams
= (int)TargetFuncType
->getNumParams();
1969 if (TargetFuncType
->isVarArg()) {
1970 Assert(NumCallArgs
>= NumParams
,
1971 "gc.statepoint mismatch in number of vararg call args", Call
);
1973 // TODO: Remove this limitation
1974 Assert(TargetFuncType
->getReturnType()->isVoidTy(),
1975 "gc.statepoint doesn't support wrapping non-void "
1976 "vararg functions yet",
1979 Assert(NumCallArgs
== NumParams
,
1980 "gc.statepoint mismatch in number of call args", Call
);
1982 const uint64_t Flags
1983 = cast
<ConstantInt
>(Call
.getArgOperand(4))->getZExtValue();
1984 Assert((Flags
& ~(uint64_t)StatepointFlags::MaskAll
) == 0,
1985 "unknown flag used in gc.statepoint flags argument", Call
);
1987 // Verify that the types of the call parameter arguments match
1988 // the type of the wrapped callee.
1989 AttributeList Attrs
= Call
.getAttributes();
1990 for (int i
= 0; i
< NumParams
; i
++) {
1991 Type
*ParamType
= TargetFuncType
->getParamType(i
);
1992 Type
*ArgType
= Call
.getArgOperand(5 + i
)->getType();
1993 Assert(ArgType
== ParamType
,
1994 "gc.statepoint call argument does not match wrapped "
1998 if (TargetFuncType
->isVarArg()) {
1999 AttributeSet ArgAttrs
= Attrs
.getParamAttributes(5 + i
);
2000 Assert(!ArgAttrs
.hasAttribute(Attribute::StructRet
),
2001 "Attribute 'sret' cannot be used for vararg call arguments!",
2006 const int EndCallArgsInx
= 4 + NumCallArgs
;
2008 const Value
*NumTransitionArgsV
= Call
.getArgOperand(EndCallArgsInx
+ 1);
2009 Assert(isa
<ConstantInt
>(NumTransitionArgsV
),
2010 "gc.statepoint number of transition arguments "
2011 "must be constant integer",
2013 const int NumTransitionArgs
=
2014 cast
<ConstantInt
>(NumTransitionArgsV
)->getZExtValue();
2015 Assert(NumTransitionArgs
>= 0,
2016 "gc.statepoint number of transition arguments must be positive", Call
);
2017 const int EndTransitionArgsInx
= EndCallArgsInx
+ 1 + NumTransitionArgs
;
2019 const Value
*NumDeoptArgsV
= Call
.getArgOperand(EndTransitionArgsInx
+ 1);
2020 Assert(isa
<ConstantInt
>(NumDeoptArgsV
),
2021 "gc.statepoint number of deoptimization arguments "
2022 "must be constant integer",
2024 const int NumDeoptArgs
= cast
<ConstantInt
>(NumDeoptArgsV
)->getZExtValue();
2025 Assert(NumDeoptArgs
>= 0,
2026 "gc.statepoint number of deoptimization arguments "
2030 const int ExpectedNumArgs
=
2031 7 + NumCallArgs
+ NumTransitionArgs
+ NumDeoptArgs
;
2032 Assert(ExpectedNumArgs
<= (int)Call
.arg_size(),
2033 "gc.statepoint too few arguments according to length fields", Call
);
2035 // Check that the only uses of this gc.statepoint are gc.result or
2036 // gc.relocate calls which are tied to this statepoint and thus part
2037 // of the same statepoint sequence
2038 for (const User
*U
: Call
.users()) {
2039 const CallInst
*UserCall
= dyn_cast
<const CallInst
>(U
);
2040 Assert(UserCall
, "illegal use of statepoint token", Call
, U
);
2043 Assert(isa
<GCRelocateInst
>(UserCall
) || isa
<GCResultInst
>(UserCall
),
2044 "gc.result or gc.relocate are the only value uses "
2045 "of a gc.statepoint",
2047 if (isa
<GCResultInst
>(UserCall
)) {
2048 Assert(UserCall
->getArgOperand(0) == &Call
,
2049 "gc.result connected to wrong gc.statepoint", Call
, UserCall
);
2050 } else if (isa
<GCRelocateInst
>(Call
)) {
2051 Assert(UserCall
->getArgOperand(0) == &Call
,
2052 "gc.relocate connected to wrong gc.statepoint", Call
, UserCall
);
2056 // Note: It is legal for a single derived pointer to be listed multiple
2057 // times. It's non-optimal, but it is legal. It can also happen after
2058 // insertion if we strip a bitcast away.
2059 // Note: It is really tempting to check that each base is relocated and
2060 // that a derived pointer is never reused as a base pointer. This turns
2061 // out to be problematic since optimizations run after safepoint insertion
2062 // can recognize equality properties that the insertion logic doesn't know
2063 // about. See example statepoint.ll in the verifier subdirectory
2066 void Verifier::verifyFrameRecoverIndices() {
2067 for (auto &Counts
: FrameEscapeInfo
) {
2068 Function
*F
= Counts
.first
;
2069 unsigned EscapedObjectCount
= Counts
.second
.first
;
2070 unsigned MaxRecoveredIndex
= Counts
.second
.second
;
2071 Assert(MaxRecoveredIndex
<= EscapedObjectCount
,
2072 "all indices passed to llvm.localrecover must be less than the "
2073 "number of arguments passed to llvm.localescape in the parent "
2079 static Instruction
*getSuccPad(Instruction
*Terminator
) {
2080 BasicBlock
*UnwindDest
;
2081 if (auto *II
= dyn_cast
<InvokeInst
>(Terminator
))
2082 UnwindDest
= II
->getUnwindDest();
2083 else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(Terminator
))
2084 UnwindDest
= CSI
->getUnwindDest();
2086 UnwindDest
= cast
<CleanupReturnInst
>(Terminator
)->getUnwindDest();
2087 return UnwindDest
->getFirstNonPHI();
2090 void Verifier::verifySiblingFuncletUnwinds() {
2091 SmallPtrSet
<Instruction
*, 8> Visited
;
2092 SmallPtrSet
<Instruction
*, 8> Active
;
2093 for (const auto &Pair
: SiblingFuncletInfo
) {
2094 Instruction
*PredPad
= Pair
.first
;
2095 if (Visited
.count(PredPad
))
2097 Active
.insert(PredPad
);
2098 Instruction
*Terminator
= Pair
.second
;
2100 Instruction
*SuccPad
= getSuccPad(Terminator
);
2101 if (Active
.count(SuccPad
)) {
2102 // Found a cycle; report error
2103 Instruction
*CyclePad
= SuccPad
;
2104 SmallVector
<Instruction
*, 8> CycleNodes
;
2106 CycleNodes
.push_back(CyclePad
);
2107 Instruction
*CycleTerminator
= SiblingFuncletInfo
[CyclePad
];
2108 if (CycleTerminator
!= CyclePad
)
2109 CycleNodes
.push_back(CycleTerminator
);
2110 CyclePad
= getSuccPad(CycleTerminator
);
2111 } while (CyclePad
!= SuccPad
);
2112 Assert(false, "EH pads can't handle each other's exceptions",
2113 ArrayRef
<Instruction
*>(CycleNodes
));
2115 // Don't re-walk a node we've already checked
2116 if (!Visited
.insert(SuccPad
).second
)
2118 // Walk to this successor if it has a map entry.
2120 auto TermI
= SiblingFuncletInfo
.find(PredPad
);
2121 if (TermI
== SiblingFuncletInfo
.end())
2123 Terminator
= TermI
->second
;
2124 Active
.insert(PredPad
);
2126 // Each node only has one successor, so we've walked all the active
2127 // nodes' successors.
2132 // visitFunction - Verify that a function is ok.
2134 void Verifier::visitFunction(const Function
&F
) {
2135 visitGlobalValue(F
);
2137 // Check function arguments.
2138 FunctionType
*FT
= F
.getFunctionType();
2139 unsigned NumArgs
= F
.arg_size();
2141 Assert(&Context
== &F
.getContext(),
2142 "Function context does not match Module context!", &F
);
2144 Assert(!F
.hasCommonLinkage(), "Functions may not have common linkage", &F
);
2145 Assert(FT
->getNumParams() == NumArgs
,
2146 "# formal arguments must match # of arguments for function type!", &F
,
2148 Assert(F
.getReturnType()->isFirstClassType() ||
2149 F
.getReturnType()->isVoidTy() || F
.getReturnType()->isStructTy(),
2150 "Functions cannot return aggregate values!", &F
);
2152 Assert(!F
.hasStructRetAttr() || F
.getReturnType()->isVoidTy(),
2153 "Invalid struct return type!", &F
);
2155 AttributeList Attrs
= F
.getAttributes();
2157 Assert(verifyAttributeCount(Attrs
, FT
->getNumParams()),
2158 "Attribute after last parameter!", &F
);
2160 bool isLLVMdotName
= F
.getName().size() >= 5 &&
2161 F
.getName().substr(0, 5) == "llvm.";
2163 // Check function attributes.
2164 verifyFunctionAttrs(FT
, Attrs
, &F
, isLLVMdotName
);
2166 // On function declarations/definitions, we do not support the builtin
2167 // attribute. We do not check this in VerifyFunctionAttrs since that is
2168 // checking for Attributes that can/can not ever be on functions.
2169 Assert(!Attrs
.hasFnAttribute(Attribute::Builtin
),
2170 "Attribute 'builtin' can only be applied to a callsite.", &F
);
2172 // Check that this function meets the restrictions on this calling convention.
2173 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2174 // restrictions can be lifted.
2175 switch (F
.getCallingConv()) {
2177 case CallingConv::C
:
2179 case CallingConv::AMDGPU_KERNEL
:
2180 case CallingConv::SPIR_KERNEL
:
2181 Assert(F
.getReturnType()->isVoidTy(),
2182 "Calling convention requires void return type", &F
);
2184 case CallingConv::AMDGPU_VS
:
2185 case CallingConv::AMDGPU_HS
:
2186 case CallingConv::AMDGPU_GS
:
2187 case CallingConv::AMDGPU_PS
:
2188 case CallingConv::AMDGPU_CS
:
2189 Assert(!F
.hasStructRetAttr(),
2190 "Calling convention does not allow sret", &F
);
2192 case CallingConv::Fast
:
2193 case CallingConv::Cold
:
2194 case CallingConv::Intel_OCL_BI
:
2195 case CallingConv::PTX_Kernel
:
2196 case CallingConv::PTX_Device
:
2197 Assert(!F
.isVarArg(), "Calling convention does not support varargs or "
2198 "perfect forwarding!",
2203 // Check that the argument values match the function type for this function...
2205 for (const Argument
&Arg
: F
.args()) {
2206 Assert(Arg
.getType() == FT
->getParamType(i
),
2207 "Argument value does not match function argument type!", &Arg
,
2208 FT
->getParamType(i
));
2209 Assert(Arg
.getType()->isFirstClassType(),
2210 "Function arguments must have first-class types!", &Arg
);
2211 if (!isLLVMdotName
) {
2212 Assert(!Arg
.getType()->isMetadataTy(),
2213 "Function takes metadata but isn't an intrinsic", &Arg
, &F
);
2214 Assert(!Arg
.getType()->isTokenTy(),
2215 "Function takes token but isn't an intrinsic", &Arg
, &F
);
2218 // Check that swifterror argument is only used by loads and stores.
2219 if (Attrs
.hasParamAttribute(i
, Attribute::SwiftError
)) {
2220 verifySwiftErrorValue(&Arg
);
2226 Assert(!F
.getReturnType()->isTokenTy(),
2227 "Functions returns a token but isn't an intrinsic", &F
);
2229 // Get the function metadata attachments.
2230 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
2231 F
.getAllMetadata(MDs
);
2232 assert(F
.hasMetadata() != MDs
.empty() && "Bit out-of-sync");
2233 verifyFunctionMetadata(MDs
);
2235 // Check validity of the personality function
2236 if (F
.hasPersonalityFn()) {
2237 auto *Per
= dyn_cast
<Function
>(F
.getPersonalityFn()->stripPointerCasts());
2239 Assert(Per
->getParent() == F
.getParent(),
2240 "Referencing personality function in another module!",
2241 &F
, F
.getParent(), Per
, Per
->getParent());
2244 if (F
.isMaterializable()) {
2245 // Function has a body somewhere we can't see.
2246 Assert(MDs
.empty(), "unmaterialized function cannot have metadata", &F
,
2247 MDs
.empty() ? nullptr : MDs
.front().second
);
2248 } else if (F
.isDeclaration()) {
2249 for (const auto &I
: MDs
) {
2250 // This is used for call site debug information.
2251 AssertDI(I
.first
!= LLVMContext::MD_dbg
||
2252 !cast
<DISubprogram
>(I
.second
)->isDistinct(),
2253 "function declaration may only have a unique !dbg attachment",
2255 Assert(I
.first
!= LLVMContext::MD_prof
,
2256 "function declaration may not have a !prof attachment", &F
);
2258 // Verify the metadata itself.
2259 visitMDNode(*I
.second
);
2261 Assert(!F
.hasPersonalityFn(),
2262 "Function declaration shouldn't have a personality routine", &F
);
2264 // Verify that this function (which has a body) is not named "llvm.*". It
2265 // is not legal to define intrinsics.
2266 Assert(!isLLVMdotName
, "llvm intrinsics cannot be defined!", &F
);
2268 // Check the entry node
2269 const BasicBlock
*Entry
= &F
.getEntryBlock();
2270 Assert(pred_empty(Entry
),
2271 "Entry block to function must not have predecessors!", Entry
);
2273 // The address of the entry block cannot be taken, unless it is dead.
2274 if (Entry
->hasAddressTaken()) {
2275 Assert(!BlockAddress::lookup(Entry
)->isConstantUsed(),
2276 "blockaddress may not be used with the entry block!", Entry
);
2279 unsigned NumDebugAttachments
= 0, NumProfAttachments
= 0;
2280 // Visit metadata attachments.
2281 for (const auto &I
: MDs
) {
2282 // Verify that the attachment is legal.
2286 case LLVMContext::MD_dbg
: {
2287 ++NumDebugAttachments
;
2288 AssertDI(NumDebugAttachments
== 1,
2289 "function must have a single !dbg attachment", &F
, I
.second
);
2290 AssertDI(isa
<DISubprogram
>(I
.second
),
2291 "function !dbg attachment must be a subprogram", &F
, I
.second
);
2292 auto *SP
= cast
<DISubprogram
>(I
.second
);
2293 const Function
*&AttachedTo
= DISubprogramAttachments
[SP
];
2294 AssertDI(!AttachedTo
|| AttachedTo
== &F
,
2295 "DISubprogram attached to more than one function", SP
, &F
);
2299 case LLVMContext::MD_prof
:
2300 ++NumProfAttachments
;
2301 Assert(NumProfAttachments
== 1,
2302 "function must have a single !prof attachment", &F
, I
.second
);
2306 // Verify the metadata itself.
2307 visitMDNode(*I
.second
);
2311 // If this function is actually an intrinsic, verify that it is only used in
2312 // direct call/invokes, never having its "address taken".
2313 // Only do this if the module is materialized, otherwise we don't have all the
2315 if (F
.getIntrinsicID() && F
.getParent()->isMaterialized()) {
2317 if (F
.hasAddressTaken(&U
))
2318 Assert(false, "Invalid user of intrinsic instruction!", U
);
2321 auto *N
= F
.getSubprogram();
2322 HasDebugInfo
= (N
!= nullptr);
2326 // Check that all !dbg attachments lead to back to N (or, at least, another
2327 // subprogram that describes the same function).
2329 // FIXME: Check this incrementally while visiting !dbg attachments.
2330 // FIXME: Only check when N is the canonical subprogram for F.
2331 SmallPtrSet
<const MDNode
*, 32> Seen
;
2332 auto VisitDebugLoc
= [&](const Instruction
&I
, const MDNode
*Node
) {
2333 // Be careful about using DILocation here since we might be dealing with
2334 // broken code (this is the Verifier after all).
2335 const DILocation
*DL
= dyn_cast_or_null
<DILocation
>(Node
);
2338 if (!Seen
.insert(DL
).second
)
2341 Metadata
*Parent
= DL
->getRawScope();
2342 AssertDI(Parent
&& isa
<DILocalScope
>(Parent
),
2343 "DILocation's scope must be a DILocalScope", N
, &F
, &I
, DL
,
2345 DILocalScope
*Scope
= DL
->getInlinedAtScope();
2346 if (Scope
&& !Seen
.insert(Scope
).second
)
2349 DISubprogram
*SP
= Scope
? Scope
->getSubprogram() : nullptr;
2351 // Scope and SP could be the same MDNode and we don't want to skip
2352 // validation in that case
2353 if (SP
&& ((Scope
!= SP
) && !Seen
.insert(SP
).second
))
2356 // FIXME: Once N is canonical, check "SP == &N".
2357 AssertDI(SP
->describes(&F
),
2358 "!dbg attachment points at wrong subprogram for function", N
, &F
,
2362 for (auto &I
: BB
) {
2363 VisitDebugLoc(I
, I
.getDebugLoc().getAsMDNode());
2364 // The llvm.loop annotations also contain two DILocations.
2365 if (auto MD
= I
.getMetadata(LLVMContext::MD_loop
))
2366 for (unsigned i
= 1; i
< MD
->getNumOperands(); ++i
)
2367 VisitDebugLoc(I
, dyn_cast_or_null
<MDNode
>(MD
->getOperand(i
)));
2368 if (BrokenDebugInfo
)
2373 // verifyBasicBlock - Verify that a basic block is well formed...
2375 void Verifier::visitBasicBlock(BasicBlock
&BB
) {
2376 InstsInThisBlock
.clear();
2378 // Ensure that basic blocks have terminators!
2379 Assert(BB
.getTerminator(), "Basic Block does not have terminator!", &BB
);
2381 // Check constraints that this basic block imposes on all of the PHI nodes in
2383 if (isa
<PHINode
>(BB
.front())) {
2384 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(&BB
), pred_end(&BB
));
2385 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> Values
;
2387 for (const PHINode
&PN
: BB
.phis()) {
2388 // Ensure that PHI nodes have at least one entry!
2389 Assert(PN
.getNumIncomingValues() != 0,
2390 "PHI nodes must have at least one entry. If the block is dead, "
2391 "the PHI should be removed!",
2393 Assert(PN
.getNumIncomingValues() == Preds
.size(),
2394 "PHINode should have one entry for each predecessor of its "
2395 "parent basic block!",
2398 // Get and sort all incoming values in the PHI node...
2400 Values
.reserve(PN
.getNumIncomingValues());
2401 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
2403 std::make_pair(PN
.getIncomingBlock(i
), PN
.getIncomingValue(i
)));
2406 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
) {
2407 // Check to make sure that if there is more than one entry for a
2408 // particular basic block in this PHI node, that the incoming values are
2411 Assert(i
== 0 || Values
[i
].first
!= Values
[i
- 1].first
||
2412 Values
[i
].second
== Values
[i
- 1].second
,
2413 "PHI node has multiple entries for the same basic block with "
2414 "different incoming values!",
2415 &PN
, Values
[i
].first
, Values
[i
].second
, Values
[i
- 1].second
);
2417 // Check to make sure that the predecessors and PHI node entries are
2419 Assert(Values
[i
].first
== Preds
[i
],
2420 "PHI node entries do not match predecessors!", &PN
,
2421 Values
[i
].first
, Preds
[i
]);
2426 // Check that all instructions have their parent pointers set up correctly.
2429 Assert(I
.getParent() == &BB
, "Instruction has bogus parent pointer!");
2433 void Verifier::visitTerminator(Instruction
&I
) {
2434 // Ensure that terminators only exist at the end of the basic block.
2435 Assert(&I
== I
.getParent()->getTerminator(),
2436 "Terminator found in the middle of a basic block!", I
.getParent());
2437 visitInstruction(I
);
2440 void Verifier::visitBranchInst(BranchInst
&BI
) {
2441 if (BI
.isConditional()) {
2442 Assert(BI
.getCondition()->getType()->isIntegerTy(1),
2443 "Branch condition is not 'i1' type!", &BI
, BI
.getCondition());
2445 visitTerminator(BI
);
2448 void Verifier::visitReturnInst(ReturnInst
&RI
) {
2449 Function
*F
= RI
.getParent()->getParent();
2450 unsigned N
= RI
.getNumOperands();
2451 if (F
->getReturnType()->isVoidTy())
2453 "Found return instr that returns non-void in Function of void "
2455 &RI
, F
->getReturnType());
2457 Assert(N
== 1 && F
->getReturnType() == RI
.getOperand(0)->getType(),
2458 "Function return type does not match operand "
2459 "type of return inst!",
2460 &RI
, F
->getReturnType());
2462 // Check to make sure that the return value has necessary properties for
2464 visitTerminator(RI
);
2467 void Verifier::visitSwitchInst(SwitchInst
&SI
) {
2468 // Check to make sure that all of the constants in the switch instruction
2469 // have the same type as the switched-on value.
2470 Type
*SwitchTy
= SI
.getCondition()->getType();
2471 SmallPtrSet
<ConstantInt
*, 32> Constants
;
2472 for (auto &Case
: SI
.cases()) {
2473 Assert(Case
.getCaseValue()->getType() == SwitchTy
,
2474 "Switch constants must all be same type as switch value!", &SI
);
2475 Assert(Constants
.insert(Case
.getCaseValue()).second
,
2476 "Duplicate integer as switch case", &SI
, Case
.getCaseValue());
2479 visitTerminator(SI
);
2482 void Verifier::visitIndirectBrInst(IndirectBrInst
&BI
) {
2483 Assert(BI
.getAddress()->getType()->isPointerTy(),
2484 "Indirectbr operand must have pointer type!", &BI
);
2485 for (unsigned i
= 0, e
= BI
.getNumDestinations(); i
!= e
; ++i
)
2486 Assert(BI
.getDestination(i
)->getType()->isLabelTy(),
2487 "Indirectbr destinations must all have pointer type!", &BI
);
2489 visitTerminator(BI
);
2492 void Verifier::visitCallBrInst(CallBrInst
&CBI
) {
2493 Assert(CBI
.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2495 Assert(CBI
.getType()->isVoidTy(), "Callbr return value is not supported!",
2497 for (unsigned i
= 0, e
= CBI
.getNumSuccessors(); i
!= e
; ++i
)
2498 Assert(CBI
.getSuccessor(i
)->getType()->isLabelTy(),
2499 "Callbr successors must all have pointer type!", &CBI
);
2500 for (unsigned i
= 0, e
= CBI
.getNumOperands(); i
!= e
; ++i
) {
2501 Assert(i
>= CBI
.getNumArgOperands() || !isa
<BasicBlock
>(CBI
.getOperand(i
)),
2502 "Using an unescaped label as a callbr argument!", &CBI
);
2503 if (isa
<BasicBlock
>(CBI
.getOperand(i
)))
2504 for (unsigned j
= i
+ 1; j
!= e
; ++j
)
2505 Assert(CBI
.getOperand(i
) != CBI
.getOperand(j
),
2506 "Duplicate callbr destination!", &CBI
);
2509 SmallPtrSet
<BasicBlock
*, 4> ArgBBs
;
2510 for (Value
*V
: CBI
.args())
2511 if (auto *BA
= dyn_cast
<BlockAddress
>(V
))
2512 ArgBBs
.insert(BA
->getBasicBlock());
2513 for (BasicBlock
*BB
: CBI
.getIndirectDests())
2514 Assert(ArgBBs
.find(BB
) != ArgBBs
.end(),
2515 "Indirect label missing from arglist.", &CBI
);
2518 visitTerminator(CBI
);
2521 void Verifier::visitSelectInst(SelectInst
&SI
) {
2522 Assert(!SelectInst::areInvalidOperands(SI
.getOperand(0), SI
.getOperand(1),
2524 "Invalid operands for select instruction!", &SI
);
2526 Assert(SI
.getTrueValue()->getType() == SI
.getType(),
2527 "Select values must have same type as select instruction!", &SI
);
2528 visitInstruction(SI
);
2531 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2532 /// a pass, if any exist, it's an error.
2534 void Verifier::visitUserOp1(Instruction
&I
) {
2535 Assert(false, "User-defined operators should not live outside of a pass!", &I
);
2538 void Verifier::visitTruncInst(TruncInst
&I
) {
2539 // Get the source and destination types
2540 Type
*SrcTy
= I
.getOperand(0)->getType();
2541 Type
*DestTy
= I
.getType();
2543 // Get the size of the types in bits, we'll need this later
2544 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2545 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2547 Assert(SrcTy
->isIntOrIntVectorTy(), "Trunc only operates on integer", &I
);
2548 Assert(DestTy
->isIntOrIntVectorTy(), "Trunc only produces integer", &I
);
2549 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2550 "trunc source and destination must both be a vector or neither", &I
);
2551 Assert(SrcBitSize
> DestBitSize
, "DestTy too big for Trunc", &I
);
2553 visitInstruction(I
);
2556 void Verifier::visitZExtInst(ZExtInst
&I
) {
2557 // Get the source and destination types
2558 Type
*SrcTy
= I
.getOperand(0)->getType();
2559 Type
*DestTy
= I
.getType();
2561 // Get the size of the types in bits, we'll need this later
2562 Assert(SrcTy
->isIntOrIntVectorTy(), "ZExt only operates on integer", &I
);
2563 Assert(DestTy
->isIntOrIntVectorTy(), "ZExt only produces an integer", &I
);
2564 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2565 "zext source and destination must both be a vector or neither", &I
);
2566 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2567 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2569 Assert(SrcBitSize
< DestBitSize
, "Type too small for ZExt", &I
);
2571 visitInstruction(I
);
2574 void Verifier::visitSExtInst(SExtInst
&I
) {
2575 // Get the source and destination types
2576 Type
*SrcTy
= I
.getOperand(0)->getType();
2577 Type
*DestTy
= I
.getType();
2579 // Get the size of the types in bits, we'll need this later
2580 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2581 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2583 Assert(SrcTy
->isIntOrIntVectorTy(), "SExt only operates on integer", &I
);
2584 Assert(DestTy
->isIntOrIntVectorTy(), "SExt only produces an integer", &I
);
2585 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2586 "sext source and destination must both be a vector or neither", &I
);
2587 Assert(SrcBitSize
< DestBitSize
, "Type too small for SExt", &I
);
2589 visitInstruction(I
);
2592 void Verifier::visitFPTruncInst(FPTruncInst
&I
) {
2593 // Get the source and destination types
2594 Type
*SrcTy
= I
.getOperand(0)->getType();
2595 Type
*DestTy
= I
.getType();
2596 // Get the size of the types in bits, we'll need this later
2597 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2598 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2600 Assert(SrcTy
->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I
);
2601 Assert(DestTy
->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I
);
2602 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2603 "fptrunc source and destination must both be a vector or neither", &I
);
2604 Assert(SrcBitSize
> DestBitSize
, "DestTy too big for FPTrunc", &I
);
2606 visitInstruction(I
);
2609 void Verifier::visitFPExtInst(FPExtInst
&I
) {
2610 // Get the source and destination types
2611 Type
*SrcTy
= I
.getOperand(0)->getType();
2612 Type
*DestTy
= I
.getType();
2614 // Get the size of the types in bits, we'll need this later
2615 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2616 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2618 Assert(SrcTy
->isFPOrFPVectorTy(), "FPExt only operates on FP", &I
);
2619 Assert(DestTy
->isFPOrFPVectorTy(), "FPExt only produces an FP", &I
);
2620 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2621 "fpext source and destination must both be a vector or neither", &I
);
2622 Assert(SrcBitSize
< DestBitSize
, "DestTy too small for FPExt", &I
);
2624 visitInstruction(I
);
2627 void Verifier::visitUIToFPInst(UIToFPInst
&I
) {
2628 // Get the source and destination types
2629 Type
*SrcTy
= I
.getOperand(0)->getType();
2630 Type
*DestTy
= I
.getType();
2632 bool SrcVec
= SrcTy
->isVectorTy();
2633 bool DstVec
= DestTy
->isVectorTy();
2635 Assert(SrcVec
== DstVec
,
2636 "UIToFP source and dest must both be vector or scalar", &I
);
2637 Assert(SrcTy
->isIntOrIntVectorTy(),
2638 "UIToFP source must be integer or integer vector", &I
);
2639 Assert(DestTy
->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2642 if (SrcVec
&& DstVec
)
2643 Assert(cast
<VectorType
>(SrcTy
)->getNumElements() ==
2644 cast
<VectorType
>(DestTy
)->getNumElements(),
2645 "UIToFP source and dest vector length mismatch", &I
);
2647 visitInstruction(I
);
2650 void Verifier::visitSIToFPInst(SIToFPInst
&I
) {
2651 // Get the source and destination types
2652 Type
*SrcTy
= I
.getOperand(0)->getType();
2653 Type
*DestTy
= I
.getType();
2655 bool SrcVec
= SrcTy
->isVectorTy();
2656 bool DstVec
= DestTy
->isVectorTy();
2658 Assert(SrcVec
== DstVec
,
2659 "SIToFP source and dest must both be vector or scalar", &I
);
2660 Assert(SrcTy
->isIntOrIntVectorTy(),
2661 "SIToFP source must be integer or integer vector", &I
);
2662 Assert(DestTy
->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2665 if (SrcVec
&& DstVec
)
2666 Assert(cast
<VectorType
>(SrcTy
)->getNumElements() ==
2667 cast
<VectorType
>(DestTy
)->getNumElements(),
2668 "SIToFP source and dest vector length mismatch", &I
);
2670 visitInstruction(I
);
2673 void Verifier::visitFPToUIInst(FPToUIInst
&I
) {
2674 // Get the source and destination types
2675 Type
*SrcTy
= I
.getOperand(0)->getType();
2676 Type
*DestTy
= I
.getType();
2678 bool SrcVec
= SrcTy
->isVectorTy();
2679 bool DstVec
= DestTy
->isVectorTy();
2681 Assert(SrcVec
== DstVec
,
2682 "FPToUI source and dest must both be vector or scalar", &I
);
2683 Assert(SrcTy
->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2685 Assert(DestTy
->isIntOrIntVectorTy(),
2686 "FPToUI result must be integer or integer vector", &I
);
2688 if (SrcVec
&& DstVec
)
2689 Assert(cast
<VectorType
>(SrcTy
)->getNumElements() ==
2690 cast
<VectorType
>(DestTy
)->getNumElements(),
2691 "FPToUI source and dest vector length mismatch", &I
);
2693 visitInstruction(I
);
2696 void Verifier::visitFPToSIInst(FPToSIInst
&I
) {
2697 // Get the source and destination types
2698 Type
*SrcTy
= I
.getOperand(0)->getType();
2699 Type
*DestTy
= I
.getType();
2701 bool SrcVec
= SrcTy
->isVectorTy();
2702 bool DstVec
= DestTy
->isVectorTy();
2704 Assert(SrcVec
== DstVec
,
2705 "FPToSI source and dest must both be vector or scalar", &I
);
2706 Assert(SrcTy
->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2708 Assert(DestTy
->isIntOrIntVectorTy(),
2709 "FPToSI result must be integer or integer vector", &I
);
2711 if (SrcVec
&& DstVec
)
2712 Assert(cast
<VectorType
>(SrcTy
)->getNumElements() ==
2713 cast
<VectorType
>(DestTy
)->getNumElements(),
2714 "FPToSI source and dest vector length mismatch", &I
);
2716 visitInstruction(I
);
2719 void Verifier::visitPtrToIntInst(PtrToIntInst
&I
) {
2720 // Get the source and destination types
2721 Type
*SrcTy
= I
.getOperand(0)->getType();
2722 Type
*DestTy
= I
.getType();
2724 Assert(SrcTy
->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I
);
2726 if (auto *PTy
= dyn_cast
<PointerType
>(SrcTy
->getScalarType()))
2727 Assert(!DL
.isNonIntegralPointerType(PTy
),
2728 "ptrtoint not supported for non-integral pointers");
2730 Assert(DestTy
->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I
);
2731 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(), "PtrToInt type mismatch",
2734 if (SrcTy
->isVectorTy()) {
2735 VectorType
*VSrc
= cast
<VectorType
>(SrcTy
);
2736 VectorType
*VDest
= cast
<VectorType
>(DestTy
);
2737 Assert(VSrc
->getNumElements() == VDest
->getNumElements(),
2738 "PtrToInt Vector width mismatch", &I
);
2741 visitInstruction(I
);
2744 void Verifier::visitIntToPtrInst(IntToPtrInst
&I
) {
2745 // Get the source and destination types
2746 Type
*SrcTy
= I
.getOperand(0)->getType();
2747 Type
*DestTy
= I
.getType();
2749 Assert(SrcTy
->isIntOrIntVectorTy(),
2750 "IntToPtr source must be an integral", &I
);
2751 Assert(DestTy
->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I
);
2753 if (auto *PTy
= dyn_cast
<PointerType
>(DestTy
->getScalarType()))
2754 Assert(!DL
.isNonIntegralPointerType(PTy
),
2755 "inttoptr not supported for non-integral pointers");
2757 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(), "IntToPtr type mismatch",
2759 if (SrcTy
->isVectorTy()) {
2760 VectorType
*VSrc
= cast
<VectorType
>(SrcTy
);
2761 VectorType
*VDest
= cast
<VectorType
>(DestTy
);
2762 Assert(VSrc
->getNumElements() == VDest
->getNumElements(),
2763 "IntToPtr Vector width mismatch", &I
);
2765 visitInstruction(I
);
2768 void Verifier::visitBitCastInst(BitCastInst
&I
) {
2770 CastInst::castIsValid(Instruction::BitCast
, I
.getOperand(0), I
.getType()),
2771 "Invalid bitcast", &I
);
2772 visitInstruction(I
);
2775 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst
&I
) {
2776 Type
*SrcTy
= I
.getOperand(0)->getType();
2777 Type
*DestTy
= I
.getType();
2779 Assert(SrcTy
->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2781 Assert(DestTy
->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2783 Assert(SrcTy
->getPointerAddressSpace() != DestTy
->getPointerAddressSpace(),
2784 "AddrSpaceCast must be between different address spaces", &I
);
2785 if (SrcTy
->isVectorTy())
2786 Assert(SrcTy
->getVectorNumElements() == DestTy
->getVectorNumElements(),
2787 "AddrSpaceCast vector pointer number of elements mismatch", &I
);
2788 visitInstruction(I
);
2791 /// visitPHINode - Ensure that a PHI node is well formed.
2793 void Verifier::visitPHINode(PHINode
&PN
) {
2794 // Ensure that the PHI nodes are all grouped together at the top of the block.
2795 // This can be tested by checking whether the instruction before this is
2796 // either nonexistent (because this is begin()) or is a PHI node. If not,
2797 // then there is some other instruction before a PHI.
2798 Assert(&PN
== &PN
.getParent()->front() ||
2799 isa
<PHINode
>(--BasicBlock::iterator(&PN
)),
2800 "PHI nodes not grouped at top of basic block!", &PN
, PN
.getParent());
2802 // Check that a PHI doesn't yield a Token.
2803 Assert(!PN
.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2805 // Check that all of the values of the PHI node have the same type as the
2806 // result, and that the incoming blocks are really basic blocks.
2807 for (Value
*IncValue
: PN
.incoming_values()) {
2808 Assert(PN
.getType() == IncValue
->getType(),
2809 "PHI node operands are not the same type as the result!", &PN
);
2812 // All other PHI node constraints are checked in the visitBasicBlock method.
2814 visitInstruction(PN
);
2817 void Verifier::visitCallBase(CallBase
&Call
) {
2818 Assert(Call
.getCalledValue()->getType()->isPointerTy(),
2819 "Called function must be a pointer!", Call
);
2820 PointerType
*FPTy
= cast
<PointerType
>(Call
.getCalledValue()->getType());
2822 Assert(FPTy
->getElementType()->isFunctionTy(),
2823 "Called function is not pointer to function type!", Call
);
2825 Assert(FPTy
->getElementType() == Call
.getFunctionType(),
2826 "Called function is not the same type as the call!", Call
);
2828 FunctionType
*FTy
= Call
.getFunctionType();
2830 // Verify that the correct number of arguments are being passed
2831 if (FTy
->isVarArg())
2832 Assert(Call
.arg_size() >= FTy
->getNumParams(),
2833 "Called function requires more parameters than were provided!",
2836 Assert(Call
.arg_size() == FTy
->getNumParams(),
2837 "Incorrect number of arguments passed to called function!", Call
);
2839 // Verify that all arguments to the call match the function type.
2840 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
2841 Assert(Call
.getArgOperand(i
)->getType() == FTy
->getParamType(i
),
2842 "Call parameter type does not match function signature!",
2843 Call
.getArgOperand(i
), FTy
->getParamType(i
), Call
);
2845 AttributeList Attrs
= Call
.getAttributes();
2847 Assert(verifyAttributeCount(Attrs
, Call
.arg_size()),
2848 "Attribute after last parameter!", Call
);
2850 bool IsIntrinsic
= Call
.getCalledFunction() &&
2851 Call
.getCalledFunction()->getName().startswith("llvm.");
2854 = dyn_cast
<Function
>(Call
.getCalledValue()->stripPointerCasts());
2856 if (Attrs
.hasAttribute(AttributeList::FunctionIndex
, Attribute::Speculatable
)) {
2857 // Don't allow speculatable on call sites, unless the underlying function
2858 // declaration is also speculatable.
2859 Assert(Callee
&& Callee
->isSpeculatable(),
2860 "speculatable attribute may not apply to call sites", Call
);
2863 // Verify call attributes.
2864 verifyFunctionAttrs(FTy
, Attrs
, &Call
, IsIntrinsic
);
2866 // Conservatively check the inalloca argument.
2867 // We have a bug if we can find that there is an underlying alloca without
2869 if (Call
.hasInAllocaArgument()) {
2870 Value
*InAllocaArg
= Call
.getArgOperand(FTy
->getNumParams() - 1);
2871 if (auto AI
= dyn_cast
<AllocaInst
>(InAllocaArg
->stripInBoundsOffsets()))
2872 Assert(AI
->isUsedWithInAlloca(),
2873 "inalloca argument for call has mismatched alloca", AI
, Call
);
2876 // For each argument of the callsite, if it has the swifterror argument,
2877 // make sure the underlying alloca/parameter it comes from has a swifterror as
2879 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
) {
2880 if (Call
.paramHasAttr(i
, Attribute::SwiftError
)) {
2881 Value
*SwiftErrorArg
= Call
.getArgOperand(i
);
2882 if (auto AI
= dyn_cast
<AllocaInst
>(SwiftErrorArg
->stripInBoundsOffsets())) {
2883 Assert(AI
->isSwiftError(),
2884 "swifterror argument for call has mismatched alloca", AI
, Call
);
2887 auto ArgI
= dyn_cast
<Argument
>(SwiftErrorArg
);
2889 "swifterror argument should come from an alloca or parameter",
2890 SwiftErrorArg
, Call
);
2891 Assert(ArgI
->hasSwiftErrorAttr(),
2892 "swifterror argument for call has mismatched parameter", ArgI
,
2896 if (Attrs
.hasParamAttribute(i
, Attribute::ImmArg
)) {
2897 // Don't allow immarg on call sites, unless the underlying declaration
2898 // also has the matching immarg.
2899 Assert(Callee
&& Callee
->hasParamAttribute(i
, Attribute::ImmArg
),
2900 "immarg may not apply only to call sites",
2901 Call
.getArgOperand(i
), Call
);
2904 if (Call
.paramHasAttr(i
, Attribute::ImmArg
)) {
2905 Value
*ArgVal
= Call
.getArgOperand(i
);
2906 Assert(isa
<ConstantInt
>(ArgVal
) || isa
<ConstantFP
>(ArgVal
),
2907 "immarg operand has non-immediate parameter", ArgVal
, Call
);
2911 if (FTy
->isVarArg()) {
2912 // FIXME? is 'nest' even legal here?
2913 bool SawNest
= false;
2914 bool SawReturned
= false;
2916 for (unsigned Idx
= 0; Idx
< FTy
->getNumParams(); ++Idx
) {
2917 if (Attrs
.hasParamAttribute(Idx
, Attribute::Nest
))
2919 if (Attrs
.hasParamAttribute(Idx
, Attribute::Returned
))
2923 // Check attributes on the varargs part.
2924 for (unsigned Idx
= FTy
->getNumParams(); Idx
< Call
.arg_size(); ++Idx
) {
2925 Type
*Ty
= Call
.getArgOperand(Idx
)->getType();
2926 AttributeSet ArgAttrs
= Attrs
.getParamAttributes(Idx
);
2927 verifyParameterAttrs(ArgAttrs
, Ty
, &Call
);
2929 if (ArgAttrs
.hasAttribute(Attribute::Nest
)) {
2930 Assert(!SawNest
, "More than one parameter has attribute nest!", Call
);
2934 if (ArgAttrs
.hasAttribute(Attribute::Returned
)) {
2935 Assert(!SawReturned
, "More than one parameter has attribute returned!",
2937 Assert(Ty
->canLosslesslyBitCastTo(FTy
->getReturnType()),
2938 "Incompatible argument and return types for 'returned' "
2944 // Statepoint intrinsic is vararg but the wrapped function may be not.
2945 // Allow sret here and check the wrapped function in verifyStatepoint.
2946 if (!Call
.getCalledFunction() ||
2947 Call
.getCalledFunction()->getIntrinsicID() !=
2948 Intrinsic::experimental_gc_statepoint
)
2949 Assert(!ArgAttrs
.hasAttribute(Attribute::StructRet
),
2950 "Attribute 'sret' cannot be used for vararg call arguments!",
2953 if (ArgAttrs
.hasAttribute(Attribute::InAlloca
))
2954 Assert(Idx
== Call
.arg_size() - 1,
2955 "inalloca isn't on the last argument!", Call
);
2959 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2961 for (Type
*ParamTy
: FTy
->params()) {
2962 Assert(!ParamTy
->isMetadataTy(),
2963 "Function has metadata parameter but isn't an intrinsic", Call
);
2964 Assert(!ParamTy
->isTokenTy(),
2965 "Function has token parameter but isn't an intrinsic", Call
);
2969 // Verify that indirect calls don't return tokens.
2970 if (!Call
.getCalledFunction())
2971 Assert(!FTy
->getReturnType()->isTokenTy(),
2972 "Return type cannot be token for indirect call!");
2974 if (Function
*F
= Call
.getCalledFunction())
2975 if (Intrinsic::ID ID
= (Intrinsic::ID
)F
->getIntrinsicID())
2976 visitIntrinsicCall(ID
, Call
);
2978 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2979 // at most one "gc-transition" operand bundle.
2980 bool FoundDeoptBundle
= false, FoundFuncletBundle
= false,
2981 FoundGCTransitionBundle
= false;
2982 for (unsigned i
= 0, e
= Call
.getNumOperandBundles(); i
< e
; ++i
) {
2983 OperandBundleUse BU
= Call
.getOperandBundleAt(i
);
2984 uint32_t Tag
= BU
.getTagID();
2985 if (Tag
== LLVMContext::OB_deopt
) {
2986 Assert(!FoundDeoptBundle
, "Multiple deopt operand bundles", Call
);
2987 FoundDeoptBundle
= true;
2988 } else if (Tag
== LLVMContext::OB_gc_transition
) {
2989 Assert(!FoundGCTransitionBundle
, "Multiple gc-transition operand bundles",
2991 FoundGCTransitionBundle
= true;
2992 } else if (Tag
== LLVMContext::OB_funclet
) {
2993 Assert(!FoundFuncletBundle
, "Multiple funclet operand bundles", Call
);
2994 FoundFuncletBundle
= true;
2995 Assert(BU
.Inputs
.size() == 1,
2996 "Expected exactly one funclet bundle operand", Call
);
2997 Assert(isa
<FuncletPadInst
>(BU
.Inputs
.front()),
2998 "Funclet bundle operands should correspond to a FuncletPadInst",
3003 // Verify that each inlinable callsite of a debug-info-bearing function in a
3004 // debug-info-bearing function has a debug location attached to it. Failure to
3005 // do so causes assertion failures when the inliner sets up inline scope info.
3006 if (Call
.getFunction()->getSubprogram() && Call
.getCalledFunction() &&
3007 Call
.getCalledFunction()->getSubprogram())
3008 AssertDI(Call
.getDebugLoc(),
3009 "inlinable function call in a function with "
3010 "debug info must have a !dbg location",
3013 visitInstruction(Call
);
3016 /// Two types are "congruent" if they are identical, or if they are both pointer
3017 /// types with different pointee types and the same address space.
3018 static bool isTypeCongruent(Type
*L
, Type
*R
) {
3021 PointerType
*PL
= dyn_cast
<PointerType
>(L
);
3022 PointerType
*PR
= dyn_cast
<PointerType
>(R
);
3025 return PL
->getAddressSpace() == PR
->getAddressSpace();
3028 static AttrBuilder
getParameterABIAttributes(int I
, AttributeList Attrs
) {
3029 static const Attribute::AttrKind ABIAttrs
[] = {
3030 Attribute::StructRet
, Attribute::ByVal
, Attribute::InAlloca
,
3031 Attribute::InReg
, Attribute::Returned
, Attribute::SwiftSelf
,
3032 Attribute::SwiftError
};
3034 for (auto AK
: ABIAttrs
) {
3035 if (Attrs
.hasParamAttribute(I
, AK
))
3036 Copy
.addAttribute(AK
);
3038 if (Attrs
.hasParamAttribute(I
, Attribute::Alignment
))
3039 Copy
.addAlignmentAttr(Attrs
.getParamAlignment(I
));
3043 void Verifier::verifyMustTailCall(CallInst
&CI
) {
3044 Assert(!CI
.isInlineAsm(), "cannot use musttail call with inline asm", &CI
);
3046 // - The caller and callee prototypes must match. Pointer types of
3047 // parameters or return types may differ in pointee type, but not
3049 Function
*F
= CI
.getParent()->getParent();
3050 FunctionType
*CallerTy
= F
->getFunctionType();
3051 FunctionType
*CalleeTy
= CI
.getFunctionType();
3052 if (!CI
.getCalledFunction() || !CI
.getCalledFunction()->isIntrinsic()) {
3053 Assert(CallerTy
->getNumParams() == CalleeTy
->getNumParams(),
3054 "cannot guarantee tail call due to mismatched parameter counts",
3056 for (int I
= 0, E
= CallerTy
->getNumParams(); I
!= E
; ++I
) {
3058 isTypeCongruent(CallerTy
->getParamType(I
), CalleeTy
->getParamType(I
)),
3059 "cannot guarantee tail call due to mismatched parameter types", &CI
);
3062 Assert(CallerTy
->isVarArg() == CalleeTy
->isVarArg(),
3063 "cannot guarantee tail call due to mismatched varargs", &CI
);
3064 Assert(isTypeCongruent(CallerTy
->getReturnType(), CalleeTy
->getReturnType()),
3065 "cannot guarantee tail call due to mismatched return types", &CI
);
3067 // - The calling conventions of the caller and callee must match.
3068 Assert(F
->getCallingConv() == CI
.getCallingConv(),
3069 "cannot guarantee tail call due to mismatched calling conv", &CI
);
3071 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3072 // returned, and inalloca, must match.
3073 AttributeList CallerAttrs
= F
->getAttributes();
3074 AttributeList CalleeAttrs
= CI
.getAttributes();
3075 for (int I
= 0, E
= CallerTy
->getNumParams(); I
!= E
; ++I
) {
3076 AttrBuilder CallerABIAttrs
= getParameterABIAttributes(I
, CallerAttrs
);
3077 AttrBuilder CalleeABIAttrs
= getParameterABIAttributes(I
, CalleeAttrs
);
3078 Assert(CallerABIAttrs
== CalleeABIAttrs
,
3079 "cannot guarantee tail call due to mismatched ABI impacting "
3080 "function attributes",
3081 &CI
, CI
.getOperand(I
));
3084 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3085 // or a pointer bitcast followed by a ret instruction.
3086 // - The ret instruction must return the (possibly bitcasted) value
3087 // produced by the call or void.
3088 Value
*RetVal
= &CI
;
3089 Instruction
*Next
= CI
.getNextNode();
3091 // Handle the optional bitcast.
3092 if (BitCastInst
*BI
= dyn_cast_or_null
<BitCastInst
>(Next
)) {
3093 Assert(BI
->getOperand(0) == RetVal
,
3094 "bitcast following musttail call must use the call", BI
);
3096 Next
= BI
->getNextNode();
3099 // Check the return.
3100 ReturnInst
*Ret
= dyn_cast_or_null
<ReturnInst
>(Next
);
3101 Assert(Ret
, "musttail call must precede a ret with an optional bitcast",
3103 Assert(!Ret
->getReturnValue() || Ret
->getReturnValue() == RetVal
,
3104 "musttail call result must be returned", Ret
);
3107 void Verifier::visitCallInst(CallInst
&CI
) {
3110 if (CI
.isMustTailCall())
3111 verifyMustTailCall(CI
);
3114 void Verifier::visitInvokeInst(InvokeInst
&II
) {
3117 // Verify that the first non-PHI instruction of the unwind destination is an
3118 // exception handling instruction.
3120 II
.getUnwindDest()->isEHPad(),
3121 "The unwind destination does not have an exception handling instruction!",
3124 visitTerminator(II
);
3127 /// visitUnaryOperator - Check the argument to the unary operator.
3129 void Verifier::visitUnaryOperator(UnaryOperator
&U
) {
3130 Assert(U
.getType() == U
.getOperand(0)->getType(),
3131 "Unary operators must have same type for"
3132 "operands and result!",
3135 switch (U
.getOpcode()) {
3136 // Check that floating-point arithmetic operators are only used with
3137 // floating-point operands.
3138 case Instruction::FNeg
:
3139 Assert(U
.getType()->isFPOrFPVectorTy(),
3140 "FNeg operator only works with float types!", &U
);
3143 llvm_unreachable("Unknown UnaryOperator opcode!");
3146 visitInstruction(U
);
3149 /// visitBinaryOperator - Check that both arguments to the binary operator are
3150 /// of the same type!
3152 void Verifier::visitBinaryOperator(BinaryOperator
&B
) {
3153 Assert(B
.getOperand(0)->getType() == B
.getOperand(1)->getType(),
3154 "Both operands to a binary operator are not of the same type!", &B
);
3156 switch (B
.getOpcode()) {
3157 // Check that integer arithmetic operators are only used with
3158 // integral operands.
3159 case Instruction::Add
:
3160 case Instruction::Sub
:
3161 case Instruction::Mul
:
3162 case Instruction::SDiv
:
3163 case Instruction::UDiv
:
3164 case Instruction::SRem
:
3165 case Instruction::URem
:
3166 Assert(B
.getType()->isIntOrIntVectorTy(),
3167 "Integer arithmetic operators only work with integral types!", &B
);
3168 Assert(B
.getType() == B
.getOperand(0)->getType(),
3169 "Integer arithmetic operators must have same type "
3170 "for operands and result!",
3173 // Check that floating-point arithmetic operators are only used with
3174 // floating-point operands.
3175 case Instruction::FAdd
:
3176 case Instruction::FSub
:
3177 case Instruction::FMul
:
3178 case Instruction::FDiv
:
3179 case Instruction::FRem
:
3180 Assert(B
.getType()->isFPOrFPVectorTy(),
3181 "Floating-point arithmetic operators only work with "
3182 "floating-point types!",
3184 Assert(B
.getType() == B
.getOperand(0)->getType(),
3185 "Floating-point arithmetic operators must have same type "
3186 "for operands and result!",
3189 // Check that logical operators are only used with integral operands.
3190 case Instruction::And
:
3191 case Instruction::Or
:
3192 case Instruction::Xor
:
3193 Assert(B
.getType()->isIntOrIntVectorTy(),
3194 "Logical operators only work with integral types!", &B
);
3195 Assert(B
.getType() == B
.getOperand(0)->getType(),
3196 "Logical operators must have same type for operands and result!",
3199 case Instruction::Shl
:
3200 case Instruction::LShr
:
3201 case Instruction::AShr
:
3202 Assert(B
.getType()->isIntOrIntVectorTy(),
3203 "Shifts only work with integral types!", &B
);
3204 Assert(B
.getType() == B
.getOperand(0)->getType(),
3205 "Shift return type must be same as operands!", &B
);
3208 llvm_unreachable("Unknown BinaryOperator opcode!");
3211 visitInstruction(B
);
3214 void Verifier::visitICmpInst(ICmpInst
&IC
) {
3215 // Check that the operands are the same type
3216 Type
*Op0Ty
= IC
.getOperand(0)->getType();
3217 Type
*Op1Ty
= IC
.getOperand(1)->getType();
3218 Assert(Op0Ty
== Op1Ty
,
3219 "Both operands to ICmp instruction are not of the same type!", &IC
);
3220 // Check that the operands are the right type
3221 Assert(Op0Ty
->isIntOrIntVectorTy() || Op0Ty
->isPtrOrPtrVectorTy(),
3222 "Invalid operand types for ICmp instruction", &IC
);
3223 // Check that the predicate is valid.
3224 Assert(IC
.isIntPredicate(),
3225 "Invalid predicate in ICmp instruction!", &IC
);
3227 visitInstruction(IC
);
3230 void Verifier::visitFCmpInst(FCmpInst
&FC
) {
3231 // Check that the operands are the same type
3232 Type
*Op0Ty
= FC
.getOperand(0)->getType();
3233 Type
*Op1Ty
= FC
.getOperand(1)->getType();
3234 Assert(Op0Ty
== Op1Ty
,
3235 "Both operands to FCmp instruction are not of the same type!", &FC
);
3236 // Check that the operands are the right type
3237 Assert(Op0Ty
->isFPOrFPVectorTy(),
3238 "Invalid operand types for FCmp instruction", &FC
);
3239 // Check that the predicate is valid.
3240 Assert(FC
.isFPPredicate(),
3241 "Invalid predicate in FCmp instruction!", &FC
);
3243 visitInstruction(FC
);
3246 void Verifier::visitExtractElementInst(ExtractElementInst
&EI
) {
3248 ExtractElementInst::isValidOperands(EI
.getOperand(0), EI
.getOperand(1)),
3249 "Invalid extractelement operands!", &EI
);
3250 visitInstruction(EI
);
3253 void Verifier::visitInsertElementInst(InsertElementInst
&IE
) {
3254 Assert(InsertElementInst::isValidOperands(IE
.getOperand(0), IE
.getOperand(1),
3256 "Invalid insertelement operands!", &IE
);
3257 visitInstruction(IE
);
3260 void Verifier::visitShuffleVectorInst(ShuffleVectorInst
&SV
) {
3261 Assert(ShuffleVectorInst::isValidOperands(SV
.getOperand(0), SV
.getOperand(1),
3263 "Invalid shufflevector operands!", &SV
);
3264 visitInstruction(SV
);
3267 void Verifier::visitGetElementPtrInst(GetElementPtrInst
&GEP
) {
3268 Type
*TargetTy
= GEP
.getPointerOperandType()->getScalarType();
3270 Assert(isa
<PointerType
>(TargetTy
),
3271 "GEP base pointer is not a vector or a vector of pointers", &GEP
);
3272 Assert(GEP
.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP
);
3274 SmallVector
<Value
*, 16> Idxs(GEP
.idx_begin(), GEP
.idx_end());
3276 Idxs
, [](Value
* V
) { return V
->getType()->isIntOrIntVectorTy(); }),
3277 "GEP indexes must be integers", &GEP
);
3279 GetElementPtrInst::getIndexedType(GEP
.getSourceElementType(), Idxs
);
3280 Assert(ElTy
, "Invalid indices for GEP pointer type!", &GEP
);
3282 Assert(GEP
.getType()->isPtrOrPtrVectorTy() &&
3283 GEP
.getResultElementType() == ElTy
,
3284 "GEP is not of right type for indices!", &GEP
, ElTy
);
3286 if (GEP
.getType()->isVectorTy()) {
3287 // Additional checks for vector GEPs.
3288 unsigned GEPWidth
= GEP
.getType()->getVectorNumElements();
3289 if (GEP
.getPointerOperandType()->isVectorTy())
3290 Assert(GEPWidth
== GEP
.getPointerOperandType()->getVectorNumElements(),
3291 "Vector GEP result width doesn't match operand's", &GEP
);
3292 for (Value
*Idx
: Idxs
) {
3293 Type
*IndexTy
= Idx
->getType();
3294 if (IndexTy
->isVectorTy()) {
3295 unsigned IndexWidth
= IndexTy
->getVectorNumElements();
3296 Assert(IndexWidth
== GEPWidth
, "Invalid GEP index vector width", &GEP
);
3298 Assert(IndexTy
->isIntOrIntVectorTy(),
3299 "All GEP indices should be of integer type");
3303 if (auto *PTy
= dyn_cast
<PointerType
>(GEP
.getType())) {
3304 Assert(GEP
.getAddressSpace() == PTy
->getAddressSpace(),
3305 "GEP address space doesn't match type", &GEP
);
3308 visitInstruction(GEP
);
3311 static bool isContiguous(const ConstantRange
&A
, const ConstantRange
&B
) {
3312 return A
.getUpper() == B
.getLower() || A
.getLower() == B
.getUpper();
3315 void Verifier::visitRangeMetadata(Instruction
&I
, MDNode
*Range
, Type
*Ty
) {
3316 assert(Range
&& Range
== I
.getMetadata(LLVMContext::MD_range
) &&
3317 "precondition violation");
3319 unsigned NumOperands
= Range
->getNumOperands();
3320 Assert(NumOperands
% 2 == 0, "Unfinished range!", Range
);
3321 unsigned NumRanges
= NumOperands
/ 2;
3322 Assert(NumRanges
>= 1, "It should have at least one range!", Range
);
3324 ConstantRange
LastRange(1, true); // Dummy initial value
3325 for (unsigned i
= 0; i
< NumRanges
; ++i
) {
3327 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(2 * i
));
3328 Assert(Low
, "The lower limit must be an integer!", Low
);
3330 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(2 * i
+ 1));
3331 Assert(High
, "The upper limit must be an integer!", High
);
3332 Assert(High
->getType() == Low
->getType() && High
->getType() == Ty
,
3333 "Range types must match instruction type!", &I
);
3335 APInt HighV
= High
->getValue();
3336 APInt LowV
= Low
->getValue();
3337 ConstantRange
CurRange(LowV
, HighV
);
3338 Assert(!CurRange
.isEmptySet() && !CurRange
.isFullSet(),
3339 "Range must not be empty!", Range
);
3341 Assert(CurRange
.intersectWith(LastRange
).isEmptySet(),
3342 "Intervals are overlapping", Range
);
3343 Assert(LowV
.sgt(LastRange
.getLower()), "Intervals are not in order",
3345 Assert(!isContiguous(CurRange
, LastRange
), "Intervals are contiguous",
3348 LastRange
= ConstantRange(LowV
, HighV
);
3350 if (NumRanges
> 2) {
3352 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(0))->getValue();
3354 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(1))->getValue();
3355 ConstantRange
FirstRange(FirstLow
, FirstHigh
);
3356 Assert(FirstRange
.intersectWith(LastRange
).isEmptySet(),
3357 "Intervals are overlapping", Range
);
3358 Assert(!isContiguous(FirstRange
, LastRange
), "Intervals are contiguous",
3363 void Verifier::checkAtomicMemAccessSize(Type
*Ty
, const Instruction
*I
) {
3364 unsigned Size
= DL
.getTypeSizeInBits(Ty
);
3365 Assert(Size
>= 8, "atomic memory access' size must be byte-sized", Ty
, I
);
3366 Assert(!(Size
& (Size
- 1)),
3367 "atomic memory access' operand must have a power-of-two size", Ty
, I
);
3370 void Verifier::visitLoadInst(LoadInst
&LI
) {
3371 PointerType
*PTy
= dyn_cast
<PointerType
>(LI
.getOperand(0)->getType());
3372 Assert(PTy
, "Load operand must be a pointer.", &LI
);
3373 Type
*ElTy
= LI
.getType();
3374 Assert(LI
.getAlignment() <= Value::MaximumAlignment
,
3375 "huge alignment values are unsupported", &LI
);
3376 Assert(ElTy
->isSized(), "loading unsized types is not allowed", &LI
);
3377 if (LI
.isAtomic()) {
3378 Assert(LI
.getOrdering() != AtomicOrdering::Release
&&
3379 LI
.getOrdering() != AtomicOrdering::AcquireRelease
,
3380 "Load cannot have Release ordering", &LI
);
3381 Assert(LI
.getAlignment() != 0,
3382 "Atomic load must specify explicit alignment", &LI
);
3383 Assert(ElTy
->isIntOrPtrTy() || ElTy
->isFloatingPointTy(),
3384 "atomic load operand must have integer, pointer, or floating point "
3387 checkAtomicMemAccessSize(ElTy
, &LI
);
3389 Assert(LI
.getSyncScopeID() == SyncScope::System
,
3390 "Non-atomic load cannot have SynchronizationScope specified", &LI
);
3393 visitInstruction(LI
);
3396 void Verifier::visitStoreInst(StoreInst
&SI
) {
3397 PointerType
*PTy
= dyn_cast
<PointerType
>(SI
.getOperand(1)->getType());
3398 Assert(PTy
, "Store operand must be a pointer.", &SI
);
3399 Type
*ElTy
= PTy
->getElementType();
3400 Assert(ElTy
== SI
.getOperand(0)->getType(),
3401 "Stored value type does not match pointer operand type!", &SI
, ElTy
);
3402 Assert(SI
.getAlignment() <= Value::MaximumAlignment
,
3403 "huge alignment values are unsupported", &SI
);
3404 Assert(ElTy
->isSized(), "storing unsized types is not allowed", &SI
);
3405 if (SI
.isAtomic()) {
3406 Assert(SI
.getOrdering() != AtomicOrdering::Acquire
&&
3407 SI
.getOrdering() != AtomicOrdering::AcquireRelease
,
3408 "Store cannot have Acquire ordering", &SI
);
3409 Assert(SI
.getAlignment() != 0,
3410 "Atomic store must specify explicit alignment", &SI
);
3411 Assert(ElTy
->isIntOrPtrTy() || ElTy
->isFloatingPointTy(),
3412 "atomic store operand must have integer, pointer, or floating point "
3415 checkAtomicMemAccessSize(ElTy
, &SI
);
3417 Assert(SI
.getSyncScopeID() == SyncScope::System
,
3418 "Non-atomic store cannot have SynchronizationScope specified", &SI
);
3420 visitInstruction(SI
);
3423 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3424 void Verifier::verifySwiftErrorCall(CallBase
&Call
,
3425 const Value
*SwiftErrorVal
) {
3427 for (auto I
= Call
.arg_begin(), E
= Call
.arg_end(); I
!= E
; ++I
, ++Idx
) {
3428 if (*I
== SwiftErrorVal
) {
3429 Assert(Call
.paramHasAttr(Idx
, Attribute::SwiftError
),
3430 "swifterror value when used in a callsite should be marked "
3431 "with swifterror attribute",
3432 SwiftErrorVal
, Call
);
3437 void Verifier::verifySwiftErrorValue(const Value
*SwiftErrorVal
) {
3438 // Check that swifterror value is only used by loads, stores, or as
3439 // a swifterror argument.
3440 for (const User
*U
: SwiftErrorVal
->users()) {
3441 Assert(isa
<LoadInst
>(U
) || isa
<StoreInst
>(U
) || isa
<CallInst
>(U
) ||
3443 "swifterror value can only be loaded and stored from, or "
3444 "as a swifterror argument!",
3446 // If it is used by a store, check it is the second operand.
3447 if (auto StoreI
= dyn_cast
<StoreInst
>(U
))
3448 Assert(StoreI
->getOperand(1) == SwiftErrorVal
,
3449 "swifterror value should be the second operand when used "
3450 "by stores", SwiftErrorVal
, U
);
3451 if (auto *Call
= dyn_cast
<CallBase
>(U
))
3452 verifySwiftErrorCall(*const_cast<CallBase
*>(Call
), SwiftErrorVal
);
3456 void Verifier::visitAllocaInst(AllocaInst
&AI
) {
3457 SmallPtrSet
<Type
*, 4> Visited
;
3458 PointerType
*PTy
= AI
.getType();
3459 // TODO: Relax this restriction?
3460 Assert(PTy
->getAddressSpace() == DL
.getAllocaAddrSpace(),
3461 "Allocation instruction pointer not in the stack address space!",
3463 Assert(AI
.getAllocatedType()->isSized(&Visited
),
3464 "Cannot allocate unsized type", &AI
);
3465 Assert(AI
.getArraySize()->getType()->isIntegerTy(),
3466 "Alloca array size must have integer type", &AI
);
3467 Assert(AI
.getAlignment() <= Value::MaximumAlignment
,
3468 "huge alignment values are unsupported", &AI
);
3470 if (AI
.isSwiftError()) {
3471 verifySwiftErrorValue(&AI
);
3474 visitInstruction(AI
);
3477 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst
&CXI
) {
3479 // FIXME: more conditions???
3480 Assert(CXI
.getSuccessOrdering() != AtomicOrdering::NotAtomic
,
3481 "cmpxchg instructions must be atomic.", &CXI
);
3482 Assert(CXI
.getFailureOrdering() != AtomicOrdering::NotAtomic
,
3483 "cmpxchg instructions must be atomic.", &CXI
);
3484 Assert(CXI
.getSuccessOrdering() != AtomicOrdering::Unordered
,
3485 "cmpxchg instructions cannot be unordered.", &CXI
);
3486 Assert(CXI
.getFailureOrdering() != AtomicOrdering::Unordered
,
3487 "cmpxchg instructions cannot be unordered.", &CXI
);
3488 Assert(!isStrongerThan(CXI
.getFailureOrdering(), CXI
.getSuccessOrdering()),
3489 "cmpxchg instructions failure argument shall be no stronger than the "
3492 Assert(CXI
.getFailureOrdering() != AtomicOrdering::Release
&&
3493 CXI
.getFailureOrdering() != AtomicOrdering::AcquireRelease
,
3494 "cmpxchg failure ordering cannot include release semantics", &CXI
);
3496 PointerType
*PTy
= dyn_cast
<PointerType
>(CXI
.getOperand(0)->getType());
3497 Assert(PTy
, "First cmpxchg operand must be a pointer.", &CXI
);
3498 Type
*ElTy
= PTy
->getElementType();
3499 Assert(ElTy
->isIntOrPtrTy(),
3500 "cmpxchg operand must have integer or pointer type", ElTy
, &CXI
);
3501 checkAtomicMemAccessSize(ElTy
, &CXI
);
3502 Assert(ElTy
== CXI
.getOperand(1)->getType(),
3503 "Expected value type does not match pointer operand type!", &CXI
,
3505 Assert(ElTy
== CXI
.getOperand(2)->getType(),
3506 "Stored value type does not match pointer operand type!", &CXI
, ElTy
);
3507 visitInstruction(CXI
);
3510 void Verifier::visitAtomicRMWInst(AtomicRMWInst
&RMWI
) {
3511 Assert(RMWI
.getOrdering() != AtomicOrdering::NotAtomic
,
3512 "atomicrmw instructions must be atomic.", &RMWI
);
3513 Assert(RMWI
.getOrdering() != AtomicOrdering::Unordered
,
3514 "atomicrmw instructions cannot be unordered.", &RMWI
);
3515 auto Op
= RMWI
.getOperation();
3516 PointerType
*PTy
= dyn_cast
<PointerType
>(RMWI
.getOperand(0)->getType());
3517 Assert(PTy
, "First atomicrmw operand must be a pointer.", &RMWI
);
3518 Type
*ElTy
= PTy
->getElementType();
3519 if (Op
== AtomicRMWInst::Xchg
) {
3520 Assert(ElTy
->isIntegerTy() || ElTy
->isFloatingPointTy(), "atomicrmw " +
3521 AtomicRMWInst::getOperationName(Op
) +
3522 " operand must have integer or floating point type!",
3524 } else if (AtomicRMWInst::isFPOperation(Op
)) {
3525 Assert(ElTy
->isFloatingPointTy(), "atomicrmw " +
3526 AtomicRMWInst::getOperationName(Op
) +
3527 " operand must have floating point type!",
3530 Assert(ElTy
->isIntegerTy(), "atomicrmw " +
3531 AtomicRMWInst::getOperationName(Op
) +
3532 " operand must have integer type!",
3535 checkAtomicMemAccessSize(ElTy
, &RMWI
);
3536 Assert(ElTy
== RMWI
.getOperand(1)->getType(),
3537 "Argument value type does not match pointer operand type!", &RMWI
,
3539 Assert(AtomicRMWInst::FIRST_BINOP
<= Op
&& Op
<= AtomicRMWInst::LAST_BINOP
,
3540 "Invalid binary operation!", &RMWI
);
3541 visitInstruction(RMWI
);
3544 void Verifier::visitFenceInst(FenceInst
&FI
) {
3545 const AtomicOrdering Ordering
= FI
.getOrdering();
3546 Assert(Ordering
== AtomicOrdering::Acquire
||
3547 Ordering
== AtomicOrdering::Release
||
3548 Ordering
== AtomicOrdering::AcquireRelease
||
3549 Ordering
== AtomicOrdering::SequentiallyConsistent
,
3550 "fence instructions may only have acquire, release, acq_rel, or "
3551 "seq_cst ordering.",
3553 visitInstruction(FI
);
3556 void Verifier::visitExtractValueInst(ExtractValueInst
&EVI
) {
3557 Assert(ExtractValueInst::getIndexedType(EVI
.getAggregateOperand()->getType(),
3558 EVI
.getIndices()) == EVI
.getType(),
3559 "Invalid ExtractValueInst operands!", &EVI
);
3561 visitInstruction(EVI
);
3564 void Verifier::visitInsertValueInst(InsertValueInst
&IVI
) {
3565 Assert(ExtractValueInst::getIndexedType(IVI
.getAggregateOperand()->getType(),
3566 IVI
.getIndices()) ==
3567 IVI
.getOperand(1)->getType(),
3568 "Invalid InsertValueInst operands!", &IVI
);
3570 visitInstruction(IVI
);
3573 static Value
*getParentPad(Value
*EHPad
) {
3574 if (auto *FPI
= dyn_cast
<FuncletPadInst
>(EHPad
))
3575 return FPI
->getParentPad();
3577 return cast
<CatchSwitchInst
>(EHPad
)->getParentPad();
3580 void Verifier::visitEHPadPredecessors(Instruction
&I
) {
3581 assert(I
.isEHPad());
3583 BasicBlock
*BB
= I
.getParent();
3584 Function
*F
= BB
->getParent();
3586 Assert(BB
!= &F
->getEntryBlock(), "EH pad cannot be in entry block.", &I
);
3588 if (auto *LPI
= dyn_cast
<LandingPadInst
>(&I
)) {
3589 // The landingpad instruction defines its parent as a landing pad block. The
3590 // landing pad block may be branched to only by the unwind edge of an
3592 for (BasicBlock
*PredBB
: predecessors(BB
)) {
3593 const auto *II
= dyn_cast
<InvokeInst
>(PredBB
->getTerminator());
3594 Assert(II
&& II
->getUnwindDest() == BB
&& II
->getNormalDest() != BB
,
3595 "Block containing LandingPadInst must be jumped to "
3596 "only by the unwind edge of an invoke.",
3601 if (auto *CPI
= dyn_cast
<CatchPadInst
>(&I
)) {
3602 if (!pred_empty(BB
))
3603 Assert(BB
->getUniquePredecessor() == CPI
->getCatchSwitch()->getParent(),
3604 "Block containg CatchPadInst must be jumped to "
3605 "only by its catchswitch.",
3607 Assert(BB
!= CPI
->getCatchSwitch()->getUnwindDest(),
3608 "Catchswitch cannot unwind to one of its catchpads",
3609 CPI
->getCatchSwitch(), CPI
);
3613 // Verify that each pred has a legal terminator with a legal to/from EH
3614 // pad relationship.
3615 Instruction
*ToPad
= &I
;
3616 Value
*ToPadParent
= getParentPad(ToPad
);
3617 for (BasicBlock
*PredBB
: predecessors(BB
)) {
3618 Instruction
*TI
= PredBB
->getTerminator();
3620 if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
3621 Assert(II
->getUnwindDest() == BB
&& II
->getNormalDest() != BB
,
3622 "EH pad must be jumped to via an unwind edge", ToPad
, II
);
3623 if (auto Bundle
= II
->getOperandBundle(LLVMContext::OB_funclet
))
3624 FromPad
= Bundle
->Inputs
[0];
3626 FromPad
= ConstantTokenNone::get(II
->getContext());
3627 } else if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(TI
)) {
3628 FromPad
= CRI
->getOperand(0);
3629 Assert(FromPad
!= ToPadParent
, "A cleanupret must exit its cleanup", CRI
);
3630 } else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(TI
)) {
3633 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad
, TI
);
3636 // The edge may exit from zero or more nested pads.
3637 SmallSet
<Value
*, 8> Seen
;
3638 for (;; FromPad
= getParentPad(FromPad
)) {
3639 Assert(FromPad
!= ToPad
,
3640 "EH pad cannot handle exceptions raised within it", FromPad
, TI
);
3641 if (FromPad
== ToPadParent
) {
3642 // This is a legal unwind edge.
3645 Assert(!isa
<ConstantTokenNone
>(FromPad
),
3646 "A single unwind edge may only enter one EH pad", TI
);
3647 Assert(Seen
.insert(FromPad
).second
,
3648 "EH pad jumps through a cycle of pads", FromPad
);
3653 void Verifier::visitLandingPadInst(LandingPadInst
&LPI
) {
3654 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3656 Assert(LPI
.getNumClauses() > 0 || LPI
.isCleanup(),
3657 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI
);
3659 visitEHPadPredecessors(LPI
);
3661 if (!LandingPadResultTy
)
3662 LandingPadResultTy
= LPI
.getType();
3664 Assert(LandingPadResultTy
== LPI
.getType(),
3665 "The landingpad instruction should have a consistent result type "
3666 "inside a function.",
3669 Function
*F
= LPI
.getParent()->getParent();
3670 Assert(F
->hasPersonalityFn(),
3671 "LandingPadInst needs to be in a function with a personality.", &LPI
);
3673 // The landingpad instruction must be the first non-PHI instruction in the
3675 Assert(LPI
.getParent()->getLandingPadInst() == &LPI
,
3676 "LandingPadInst not the first non-PHI instruction in the block.",
3679 for (unsigned i
= 0, e
= LPI
.getNumClauses(); i
< e
; ++i
) {
3680 Constant
*Clause
= LPI
.getClause(i
);
3681 if (LPI
.isCatch(i
)) {
3682 Assert(isa
<PointerType
>(Clause
->getType()),
3683 "Catch operand does not have pointer type!", &LPI
);
3685 Assert(LPI
.isFilter(i
), "Clause is neither catch nor filter!", &LPI
);
3686 Assert(isa
<ConstantArray
>(Clause
) || isa
<ConstantAggregateZero
>(Clause
),
3687 "Filter operand is not an array of constants!", &LPI
);
3691 visitInstruction(LPI
);
3694 void Verifier::visitResumeInst(ResumeInst
&RI
) {
3695 Assert(RI
.getFunction()->hasPersonalityFn(),
3696 "ResumeInst needs to be in a function with a personality.", &RI
);
3698 if (!LandingPadResultTy
)
3699 LandingPadResultTy
= RI
.getValue()->getType();
3701 Assert(LandingPadResultTy
== RI
.getValue()->getType(),
3702 "The resume instruction should have a consistent result type "
3703 "inside a function.",
3706 visitTerminator(RI
);
3709 void Verifier::visitCatchPadInst(CatchPadInst
&CPI
) {
3710 BasicBlock
*BB
= CPI
.getParent();
3712 Function
*F
= BB
->getParent();
3713 Assert(F
->hasPersonalityFn(),
3714 "CatchPadInst needs to be in a function with a personality.", &CPI
);
3716 Assert(isa
<CatchSwitchInst
>(CPI
.getParentPad()),
3717 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3718 CPI
.getParentPad());
3720 // The catchpad instruction must be the first non-PHI instruction in the
3722 Assert(BB
->getFirstNonPHI() == &CPI
,
3723 "CatchPadInst not the first non-PHI instruction in the block.", &CPI
);
3725 visitEHPadPredecessors(CPI
);
3726 visitFuncletPadInst(CPI
);
3729 void Verifier::visitCatchReturnInst(CatchReturnInst
&CatchReturn
) {
3730 Assert(isa
<CatchPadInst
>(CatchReturn
.getOperand(0)),
3731 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn
,
3732 CatchReturn
.getOperand(0));
3734 visitTerminator(CatchReturn
);
3737 void Verifier::visitCleanupPadInst(CleanupPadInst
&CPI
) {
3738 BasicBlock
*BB
= CPI
.getParent();
3740 Function
*F
= BB
->getParent();
3741 Assert(F
->hasPersonalityFn(),
3742 "CleanupPadInst needs to be in a function with a personality.", &CPI
);
3744 // The cleanuppad instruction must be the first non-PHI instruction in the
3746 Assert(BB
->getFirstNonPHI() == &CPI
,
3747 "CleanupPadInst not the first non-PHI instruction in the block.",
3750 auto *ParentPad
= CPI
.getParentPad();
3751 Assert(isa
<ConstantTokenNone
>(ParentPad
) || isa
<FuncletPadInst
>(ParentPad
),
3752 "CleanupPadInst has an invalid parent.", &CPI
);
3754 visitEHPadPredecessors(CPI
);
3755 visitFuncletPadInst(CPI
);
3758 void Verifier::visitFuncletPadInst(FuncletPadInst
&FPI
) {
3759 User
*FirstUser
= nullptr;
3760 Value
*FirstUnwindPad
= nullptr;
3761 SmallVector
<FuncletPadInst
*, 8> Worklist({&FPI
});
3762 SmallSet
<FuncletPadInst
*, 8> Seen
;
3764 while (!Worklist
.empty()) {
3765 FuncletPadInst
*CurrentPad
= Worklist
.pop_back_val();
3766 Assert(Seen
.insert(CurrentPad
).second
,
3767 "FuncletPadInst must not be nested within itself", CurrentPad
);
3768 Value
*UnresolvedAncestorPad
= nullptr;
3769 for (User
*U
: CurrentPad
->users()) {
3770 BasicBlock
*UnwindDest
;
3771 if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(U
)) {
3772 UnwindDest
= CRI
->getUnwindDest();
3773 } else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(U
)) {
3774 // We allow catchswitch unwind to caller to nest
3775 // within an outer pad that unwinds somewhere else,
3776 // because catchswitch doesn't have a nounwind variant.
3777 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3778 if (CSI
->unwindsToCaller())
3780 UnwindDest
= CSI
->getUnwindDest();
3781 } else if (auto *II
= dyn_cast
<InvokeInst
>(U
)) {
3782 UnwindDest
= II
->getUnwindDest();
3783 } else if (isa
<CallInst
>(U
)) {
3784 // Calls which don't unwind may be found inside funclet
3785 // pads that unwind somewhere else. We don't *require*
3786 // such calls to be annotated nounwind.
3788 } else if (auto *CPI
= dyn_cast
<CleanupPadInst
>(U
)) {
3789 // The unwind dest for a cleanup can only be found by
3790 // recursive search. Add it to the worklist, and we'll
3791 // search for its first use that determines where it unwinds.
3792 Worklist
.push_back(CPI
);
3795 Assert(isa
<CatchReturnInst
>(U
), "Bogus funclet pad use", U
);
3802 UnwindPad
= UnwindDest
->getFirstNonPHI();
3803 if (!cast
<Instruction
>(UnwindPad
)->isEHPad())
3805 Value
*UnwindParent
= getParentPad(UnwindPad
);
3806 // Ignore unwind edges that don't exit CurrentPad.
3807 if (UnwindParent
== CurrentPad
)
3809 // Determine whether the original funclet pad is exited,
3810 // and if we are scanning nested pads determine how many
3811 // of them are exited so we can stop searching their
3813 Value
*ExitedPad
= CurrentPad
;
3816 if (ExitedPad
== &FPI
) {
3818 // Now we can resolve any ancestors of CurrentPad up to
3819 // FPI, but not including FPI since we need to make sure
3820 // to check all direct users of FPI for consistency.
3821 UnresolvedAncestorPad
= &FPI
;
3824 Value
*ExitedParent
= getParentPad(ExitedPad
);
3825 if (ExitedParent
== UnwindParent
) {
3826 // ExitedPad is the ancestor-most pad which this unwind
3827 // edge exits, so we can resolve up to it, meaning that
3828 // ExitedParent is the first ancestor still unresolved.
3829 UnresolvedAncestorPad
= ExitedParent
;
3832 ExitedPad
= ExitedParent
;
3833 } while (!isa
<ConstantTokenNone
>(ExitedPad
));
3835 // Unwinding to caller exits all pads.
3836 UnwindPad
= ConstantTokenNone::get(FPI
.getContext());
3838 UnresolvedAncestorPad
= &FPI
;
3842 // This unwind edge exits FPI. Make sure it agrees with other
3845 Assert(UnwindPad
== FirstUnwindPad
, "Unwind edges out of a funclet "
3846 "pad must have the same unwind "
3848 &FPI
, U
, FirstUser
);
3851 FirstUnwindPad
= UnwindPad
;
3852 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3853 if (isa
<CleanupPadInst
>(&FPI
) && !isa
<ConstantTokenNone
>(UnwindPad
) &&
3854 getParentPad(UnwindPad
) == getParentPad(&FPI
))
3855 SiblingFuncletInfo
[&FPI
] = cast
<Instruction
>(U
);
3858 // Make sure we visit all uses of FPI, but for nested pads stop as
3859 // soon as we know where they unwind to.
3860 if (CurrentPad
!= &FPI
)
3863 if (UnresolvedAncestorPad
) {
3864 if (CurrentPad
== UnresolvedAncestorPad
) {
3865 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3866 // we've found an unwind edge that exits it, because we need to verify
3867 // all direct uses of FPI.
3868 assert(CurrentPad
== &FPI
);
3871 // Pop off the worklist any nested pads that we've found an unwind
3872 // destination for. The pads on the worklist are the uncles,
3873 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3874 // for all ancestors of CurrentPad up to but not including
3875 // UnresolvedAncestorPad.
3876 Value
*ResolvedPad
= CurrentPad
;
3877 while (!Worklist
.empty()) {
3878 Value
*UnclePad
= Worklist
.back();
3879 Value
*AncestorPad
= getParentPad(UnclePad
);
3880 // Walk ResolvedPad up the ancestor list until we either find the
3881 // uncle's parent or the last resolved ancestor.
3882 while (ResolvedPad
!= AncestorPad
) {
3883 Value
*ResolvedParent
= getParentPad(ResolvedPad
);
3884 if (ResolvedParent
== UnresolvedAncestorPad
) {
3887 ResolvedPad
= ResolvedParent
;
3889 // If the resolved ancestor search didn't find the uncle's parent,
3890 // then the uncle is not yet resolved.
3891 if (ResolvedPad
!= AncestorPad
)
3893 // This uncle is resolved, so pop it from the worklist.
3894 Worklist
.pop_back();
3899 if (FirstUnwindPad
) {
3900 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(FPI
.getParentPad())) {
3901 BasicBlock
*SwitchUnwindDest
= CatchSwitch
->getUnwindDest();
3902 Value
*SwitchUnwindPad
;
3903 if (SwitchUnwindDest
)
3904 SwitchUnwindPad
= SwitchUnwindDest
->getFirstNonPHI();
3906 SwitchUnwindPad
= ConstantTokenNone::get(FPI
.getContext());
3907 Assert(SwitchUnwindPad
== FirstUnwindPad
,
3908 "Unwind edges out of a catch must have the same unwind dest as "
3909 "the parent catchswitch",
3910 &FPI
, FirstUser
, CatchSwitch
);
3914 visitInstruction(FPI
);
3917 void Verifier::visitCatchSwitchInst(CatchSwitchInst
&CatchSwitch
) {
3918 BasicBlock
*BB
= CatchSwitch
.getParent();
3920 Function
*F
= BB
->getParent();
3921 Assert(F
->hasPersonalityFn(),
3922 "CatchSwitchInst needs to be in a function with a personality.",
3925 // The catchswitch instruction must be the first non-PHI instruction in the
3927 Assert(BB
->getFirstNonPHI() == &CatchSwitch
,
3928 "CatchSwitchInst not the first non-PHI instruction in the block.",
3931 auto *ParentPad
= CatchSwitch
.getParentPad();
3932 Assert(isa
<ConstantTokenNone
>(ParentPad
) || isa
<FuncletPadInst
>(ParentPad
),
3933 "CatchSwitchInst has an invalid parent.", ParentPad
);
3935 if (BasicBlock
*UnwindDest
= CatchSwitch
.getUnwindDest()) {
3936 Instruction
*I
= UnwindDest
->getFirstNonPHI();
3937 Assert(I
->isEHPad() && !isa
<LandingPadInst
>(I
),
3938 "CatchSwitchInst must unwind to an EH block which is not a "
3942 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3943 if (getParentPad(I
) == ParentPad
)
3944 SiblingFuncletInfo
[&CatchSwitch
] = &CatchSwitch
;
3947 Assert(CatchSwitch
.getNumHandlers() != 0,
3948 "CatchSwitchInst cannot have empty handler list", &CatchSwitch
);
3950 for (BasicBlock
*Handler
: CatchSwitch
.handlers()) {
3951 Assert(isa
<CatchPadInst
>(Handler
->getFirstNonPHI()),
3952 "CatchSwitchInst handlers must be catchpads", &CatchSwitch
, Handler
);
3955 visitEHPadPredecessors(CatchSwitch
);
3956 visitTerminator(CatchSwitch
);
3959 void Verifier::visitCleanupReturnInst(CleanupReturnInst
&CRI
) {
3960 Assert(isa
<CleanupPadInst
>(CRI
.getOperand(0)),
3961 "CleanupReturnInst needs to be provided a CleanupPad", &CRI
,
3964 if (BasicBlock
*UnwindDest
= CRI
.getUnwindDest()) {
3965 Instruction
*I
= UnwindDest
->getFirstNonPHI();
3966 Assert(I
->isEHPad() && !isa
<LandingPadInst
>(I
),
3967 "CleanupReturnInst must unwind to an EH block which is not a "
3972 visitTerminator(CRI
);
3975 void Verifier::verifyDominatesUse(Instruction
&I
, unsigned i
) {
3976 Instruction
*Op
= cast
<Instruction
>(I
.getOperand(i
));
3977 // If the we have an invalid invoke, don't try to compute the dominance.
3978 // We already reject it in the invoke specific checks and the dominance
3979 // computation doesn't handle multiple edges.
3980 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Op
)) {
3981 if (II
->getNormalDest() == II
->getUnwindDest())
3985 // Quick check whether the def has already been encountered in the same block.
3986 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
3987 // uses are defined to happen on the incoming edge, not at the instruction.
3989 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3990 // wrapping an SSA value, assert that we've already encountered it. See
3991 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3992 if (!isa
<PHINode
>(I
) && InstsInThisBlock
.count(Op
))
3995 const Use
&U
= I
.getOperandUse(i
);
3996 Assert(DT
.dominates(Op
, U
),
3997 "Instruction does not dominate all uses!", Op
, &I
);
4000 void Verifier::visitDereferenceableMetadata(Instruction
& I
, MDNode
* MD
) {
4001 Assert(I
.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
4002 "apply only to pointer types", &I
);
4003 Assert((isa
<LoadInst
>(I
) || isa
<IntToPtrInst
>(I
)),
4004 "dereferenceable, dereferenceable_or_null apply only to load"
4005 " and inttoptr instructions, use attributes for calls or invokes", &I
);
4006 Assert(MD
->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
4007 "take one operand!", &I
);
4008 ConstantInt
*CI
= mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(0));
4009 Assert(CI
&& CI
->getType()->isIntegerTy(64), "dereferenceable, "
4010 "dereferenceable_or_null metadata value must be an i64!", &I
);
4013 void Verifier::visitProfMetadata(Instruction
&I
, MDNode
*MD
) {
4014 Assert(MD
->getNumOperands() >= 2,
4015 "!prof annotations should have no less than 2 operands", MD
);
4017 // Check first operand.
4018 Assert(MD
->getOperand(0) != nullptr, "first operand should not be null", MD
);
4019 Assert(isa
<MDString
>(MD
->getOperand(0)),
4020 "expected string with name of the !prof annotation", MD
);
4021 MDString
*MDS
= cast
<MDString
>(MD
->getOperand(0));
4022 StringRef ProfName
= MDS
->getString();
4024 // Check consistency of !prof branch_weights metadata.
4025 if (ProfName
.equals("branch_weights")) {
4026 unsigned ExpectedNumOperands
= 0;
4027 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(&I
))
4028 ExpectedNumOperands
= BI
->getNumSuccessors();
4029 else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(&I
))
4030 ExpectedNumOperands
= SI
->getNumSuccessors();
4031 else if (isa
<CallInst
>(&I
) || isa
<InvokeInst
>(&I
))
4032 ExpectedNumOperands
= 1;
4033 else if (IndirectBrInst
*IBI
= dyn_cast
<IndirectBrInst
>(&I
))
4034 ExpectedNumOperands
= IBI
->getNumDestinations();
4035 else if (isa
<SelectInst
>(&I
))
4036 ExpectedNumOperands
= 2;
4038 CheckFailed("!prof branch_weights are not allowed for this instruction",
4041 Assert(MD
->getNumOperands() == 1 + ExpectedNumOperands
,
4042 "Wrong number of operands", MD
);
4043 for (unsigned i
= 1; i
< MD
->getNumOperands(); ++i
) {
4044 auto &MDO
= MD
->getOperand(i
);
4045 Assert(MDO
, "second operand should not be null", MD
);
4046 Assert(mdconst::dyn_extract
<ConstantInt
>(MDO
),
4047 "!prof brunch_weights operand is not a const int");
4052 /// verifyInstruction - Verify that an instruction is well formed.
4054 void Verifier::visitInstruction(Instruction
&I
) {
4055 BasicBlock
*BB
= I
.getParent();
4056 Assert(BB
, "Instruction not embedded in basic block!", &I
);
4058 if (!isa
<PHINode
>(I
)) { // Check that non-phi nodes are not self referential
4059 for (User
*U
: I
.users()) {
4060 Assert(U
!= (User
*)&I
|| !DT
.isReachableFromEntry(BB
),
4061 "Only PHI nodes may reference their own value!", &I
);
4065 // Check that void typed values don't have names
4066 Assert(!I
.getType()->isVoidTy() || !I
.hasName(),
4067 "Instruction has a name, but provides a void value!", &I
);
4069 // Check that the return value of the instruction is either void or a legal
4071 Assert(I
.getType()->isVoidTy() || I
.getType()->isFirstClassType(),
4072 "Instruction returns a non-scalar type!", &I
);
4074 // Check that the instruction doesn't produce metadata. Calls are already
4075 // checked against the callee type.
4076 Assert(!I
.getType()->isMetadataTy() || isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
),
4077 "Invalid use of metadata!", &I
);
4079 // Check that all uses of the instruction, if they are instructions
4080 // themselves, actually have parent basic blocks. If the use is not an
4081 // instruction, it is an error!
4082 for (Use
&U
: I
.uses()) {
4083 if (Instruction
*Used
= dyn_cast
<Instruction
>(U
.getUser()))
4084 Assert(Used
->getParent() != nullptr,
4085 "Instruction referencing"
4086 " instruction not embedded in a basic block!",
4089 CheckFailed("Use of instruction is not an instruction!", U
);
4094 // Get a pointer to the call base of the instruction if it is some form of
4096 const CallBase
*CBI
= dyn_cast
<CallBase
>(&I
);
4098 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
4099 Assert(I
.getOperand(i
) != nullptr, "Instruction has null operand!", &I
);
4101 // Check to make sure that only first-class-values are operands to
4103 if (!I
.getOperand(i
)->getType()->isFirstClassType()) {
4104 Assert(false, "Instruction operands must be first-class values!", &I
);
4107 if (Function
*F
= dyn_cast
<Function
>(I
.getOperand(i
))) {
4108 // Check to make sure that the "address of" an intrinsic function is never
4110 Assert(!F
->isIntrinsic() ||
4111 (CBI
&& &CBI
->getCalledOperandUse() == &I
.getOperandUse(i
)),
4112 "Cannot take the address of an intrinsic!", &I
);
4114 !F
->isIntrinsic() || isa
<CallInst
>(I
) ||
4115 F
->getIntrinsicID() == Intrinsic::donothing
||
4116 F
->getIntrinsicID() == Intrinsic::coro_resume
||
4117 F
->getIntrinsicID() == Intrinsic::coro_destroy
||
4118 F
->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
||
4119 F
->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
||
4120 F
->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
||
4121 F
->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
,
4122 "Cannot invoke an intrinsic other than donothing, patchpoint, "
4123 "statepoint, coro_resume or coro_destroy",
4125 Assert(F
->getParent() == &M
, "Referencing function in another module!",
4126 &I
, &M
, F
, F
->getParent());
4127 } else if (BasicBlock
*OpBB
= dyn_cast
<BasicBlock
>(I
.getOperand(i
))) {
4128 Assert(OpBB
->getParent() == BB
->getParent(),
4129 "Referring to a basic block in another function!", &I
);
4130 } else if (Argument
*OpArg
= dyn_cast
<Argument
>(I
.getOperand(i
))) {
4131 Assert(OpArg
->getParent() == BB
->getParent(),
4132 "Referring to an argument in another function!", &I
);
4133 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(I
.getOperand(i
))) {
4134 Assert(GV
->getParent() == &M
, "Referencing global in another module!", &I
,
4135 &M
, GV
, GV
->getParent());
4136 } else if (isa
<Instruction
>(I
.getOperand(i
))) {
4137 verifyDominatesUse(I
, i
);
4138 } else if (isa
<InlineAsm
>(I
.getOperand(i
))) {
4139 Assert(CBI
&& &CBI
->getCalledOperandUse() == &I
.getOperandUse(i
),
4140 "Cannot take the address of an inline asm!", &I
);
4141 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(I
.getOperand(i
))) {
4142 if (CE
->getType()->isPtrOrPtrVectorTy() ||
4143 !DL
.getNonIntegralAddressSpaces().empty()) {
4144 // If we have a ConstantExpr pointer, we need to see if it came from an
4145 // illegal bitcast. If the datalayout string specifies non-integral
4146 // address spaces then we also need to check for illegal ptrtoint and
4147 // inttoptr expressions.
4148 visitConstantExprsRecursively(CE
);
4153 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_fpmath
)) {
4154 Assert(I
.getType()->isFPOrFPVectorTy(),
4155 "fpmath requires a floating point result!", &I
);
4156 Assert(MD
->getNumOperands() == 1, "fpmath takes one operand!", &I
);
4157 if (ConstantFP
*CFP0
=
4158 mdconst::dyn_extract_or_null
<ConstantFP
>(MD
->getOperand(0))) {
4159 const APFloat
&Accuracy
= CFP0
->getValueAPF();
4160 Assert(&Accuracy
.getSemantics() == &APFloat::IEEEsingle(),
4161 "fpmath accuracy must have float type", &I
);
4162 Assert(Accuracy
.isFiniteNonZero() && !Accuracy
.isNegative(),
4163 "fpmath accuracy not a positive number!", &I
);
4165 Assert(false, "invalid fpmath accuracy!", &I
);
4169 if (MDNode
*Range
= I
.getMetadata(LLVMContext::MD_range
)) {
4170 Assert(isa
<LoadInst
>(I
) || isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
),
4171 "Ranges are only for loads, calls and invokes!", &I
);
4172 visitRangeMetadata(I
, Range
, I
.getType());
4175 if (I
.getMetadata(LLVMContext::MD_nonnull
)) {
4176 Assert(I
.getType()->isPointerTy(), "nonnull applies only to pointer types",
4178 Assert(isa
<LoadInst
>(I
),
4179 "nonnull applies only to load instructions, use attributes"
4180 " for calls or invokes",
4184 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_dereferenceable
))
4185 visitDereferenceableMetadata(I
, MD
);
4187 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_dereferenceable_or_null
))
4188 visitDereferenceableMetadata(I
, MD
);
4190 if (MDNode
*TBAA
= I
.getMetadata(LLVMContext::MD_tbaa
))
4191 TBAAVerifyHelper
.visitTBAAMetadata(I
, TBAA
);
4193 if (MDNode
*AlignMD
= I
.getMetadata(LLVMContext::MD_align
)) {
4194 Assert(I
.getType()->isPointerTy(), "align applies only to pointer types",
4196 Assert(isa
<LoadInst
>(I
), "align applies only to load instructions, "
4197 "use attributes for calls or invokes", &I
);
4198 Assert(AlignMD
->getNumOperands() == 1, "align takes one operand!", &I
);
4199 ConstantInt
*CI
= mdconst::dyn_extract
<ConstantInt
>(AlignMD
->getOperand(0));
4200 Assert(CI
&& CI
->getType()->isIntegerTy(64),
4201 "align metadata value must be an i64!", &I
);
4202 uint64_t Align
= CI
->getZExtValue();
4203 Assert(isPowerOf2_64(Align
),
4204 "align metadata value must be a power of 2!", &I
);
4205 Assert(Align
<= Value::MaximumAlignment
,
4206 "alignment is larger that implementation defined limit", &I
);
4209 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_prof
))
4210 visitProfMetadata(I
, MD
);
4212 if (MDNode
*N
= I
.getDebugLoc().getAsMDNode()) {
4213 AssertDI(isa
<DILocation
>(N
), "invalid !dbg metadata attachment", &I
, N
);
4217 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(&I
)) {
4218 verifyFragmentExpression(*DII
);
4219 verifyNotEntryValue(*DII
);
4222 InstsInThisBlock
.insert(&I
);
4225 /// Allow intrinsics to be verified in different ways.
4226 void Verifier::visitIntrinsicCall(Intrinsic::ID ID
, CallBase
&Call
) {
4227 Function
*IF
= Call
.getCalledFunction();
4228 Assert(IF
->isDeclaration(), "Intrinsic functions should never be defined!",
4231 // Verify that the intrinsic prototype lines up with what the .td files
4233 FunctionType
*IFTy
= IF
->getFunctionType();
4234 bool IsVarArg
= IFTy
->isVarArg();
4236 SmallVector
<Intrinsic::IITDescriptor
, 8> Table
;
4237 getIntrinsicInfoTableEntries(ID
, Table
);
4238 ArrayRef
<Intrinsic::IITDescriptor
> TableRef
= Table
;
4240 // Walk the descriptors to extract overloaded types.
4241 SmallVector
<Type
*, 4> ArgTys
;
4242 Intrinsic::MatchIntrinsicTypesResult Res
=
4243 Intrinsic::matchIntrinsicSignature(IFTy
, TableRef
, ArgTys
);
4244 Assert(Res
!= Intrinsic::MatchIntrinsicTypes_NoMatchRet
,
4245 "Intrinsic has incorrect return type!", IF
);
4246 Assert(Res
!= Intrinsic::MatchIntrinsicTypes_NoMatchArg
,
4247 "Intrinsic has incorrect argument type!", IF
);
4249 // Verify if the intrinsic call matches the vararg property.
4251 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg
, TableRef
),
4252 "Intrinsic was not defined with variable arguments!", IF
);
4254 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg
, TableRef
),
4255 "Callsite was not defined with variable arguments!", IF
);
4257 // All descriptors should be absorbed by now.
4258 Assert(TableRef
.empty(), "Intrinsic has too few arguments!", IF
);
4260 // Now that we have the intrinsic ID and the actual argument types (and we
4261 // know they are legal for the intrinsic!) get the intrinsic name through the
4262 // usual means. This allows us to verify the mangling of argument types into
4264 const std::string ExpectedName
= Intrinsic::getName(ID
, ArgTys
);
4265 Assert(ExpectedName
== IF
->getName(),
4266 "Intrinsic name not mangled correctly for type arguments! "
4271 // If the intrinsic takes MDNode arguments, verify that they are either global
4272 // or are local to *this* function.
4273 for (Value
*V
: Call
.args())
4274 if (auto *MD
= dyn_cast
<MetadataAsValue
>(V
))
4275 visitMetadataAsValue(*MD
, Call
.getCaller());
4280 case Intrinsic::coro_id
: {
4281 auto *InfoArg
= Call
.getArgOperand(3)->stripPointerCasts();
4282 if (isa
<ConstantPointerNull
>(InfoArg
))
4284 auto *GV
= dyn_cast
<GlobalVariable
>(InfoArg
);
4285 Assert(GV
&& GV
->isConstant() && GV
->hasDefinitiveInitializer(),
4286 "info argument of llvm.coro.begin must refer to an initialized "
4288 Constant
*Init
= GV
->getInitializer();
4289 Assert(isa
<ConstantStruct
>(Init
) || isa
<ConstantArray
>(Init
),
4290 "info argument of llvm.coro.begin must refer to either a struct or "
4294 case Intrinsic::experimental_constrained_fadd
:
4295 case Intrinsic::experimental_constrained_fsub
:
4296 case Intrinsic::experimental_constrained_fmul
:
4297 case Intrinsic::experimental_constrained_fdiv
:
4298 case Intrinsic::experimental_constrained_frem
:
4299 case Intrinsic::experimental_constrained_fma
:
4300 case Intrinsic::experimental_constrained_fptosi
:
4301 case Intrinsic::experimental_constrained_fptoui
:
4302 case Intrinsic::experimental_constrained_fptrunc
:
4303 case Intrinsic::experimental_constrained_fpext
:
4304 case Intrinsic::experimental_constrained_sqrt
:
4305 case Intrinsic::experimental_constrained_pow
:
4306 case Intrinsic::experimental_constrained_powi
:
4307 case Intrinsic::experimental_constrained_sin
:
4308 case Intrinsic::experimental_constrained_cos
:
4309 case Intrinsic::experimental_constrained_exp
:
4310 case Intrinsic::experimental_constrained_exp2
:
4311 case Intrinsic::experimental_constrained_log
:
4312 case Intrinsic::experimental_constrained_log10
:
4313 case Intrinsic::experimental_constrained_log2
:
4314 case Intrinsic::experimental_constrained_lrint
:
4315 case Intrinsic::experimental_constrained_llrint
:
4316 case Intrinsic::experimental_constrained_rint
:
4317 case Intrinsic::experimental_constrained_nearbyint
:
4318 case Intrinsic::experimental_constrained_maxnum
:
4319 case Intrinsic::experimental_constrained_minnum
:
4320 case Intrinsic::experimental_constrained_ceil
:
4321 case Intrinsic::experimental_constrained_floor
:
4322 case Intrinsic::experimental_constrained_lround
:
4323 case Intrinsic::experimental_constrained_llround
:
4324 case Intrinsic::experimental_constrained_round
:
4325 case Intrinsic::experimental_constrained_trunc
:
4326 visitConstrainedFPIntrinsic(cast
<ConstrainedFPIntrinsic
>(Call
));
4328 case Intrinsic::dbg_declare
: // llvm.dbg.declare
4329 Assert(isa
<MetadataAsValue
>(Call
.getArgOperand(0)),
4330 "invalid llvm.dbg.declare intrinsic call 1", Call
);
4331 visitDbgIntrinsic("declare", cast
<DbgVariableIntrinsic
>(Call
));
4333 case Intrinsic::dbg_addr
: // llvm.dbg.addr
4334 visitDbgIntrinsic("addr", cast
<DbgVariableIntrinsic
>(Call
));
4336 case Intrinsic::dbg_value
: // llvm.dbg.value
4337 visitDbgIntrinsic("value", cast
<DbgVariableIntrinsic
>(Call
));
4339 case Intrinsic::dbg_label
: // llvm.dbg.label
4340 visitDbgLabelIntrinsic("label", cast
<DbgLabelInst
>(Call
));
4342 case Intrinsic::memcpy
:
4343 case Intrinsic::memmove
:
4344 case Intrinsic::memset
: {
4345 const auto *MI
= cast
<MemIntrinsic
>(&Call
);
4346 auto IsValidAlignment
= [&](unsigned Alignment
) -> bool {
4347 return Alignment
== 0 || isPowerOf2_32(Alignment
);
4349 Assert(IsValidAlignment(MI
->getDestAlignment()),
4350 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4352 if (const auto *MTI
= dyn_cast
<MemTransferInst
>(MI
)) {
4353 Assert(IsValidAlignment(MTI
->getSourceAlignment()),
4354 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4360 case Intrinsic::memcpy_element_unordered_atomic
:
4361 case Intrinsic::memmove_element_unordered_atomic
:
4362 case Intrinsic::memset_element_unordered_atomic
: {
4363 const auto *AMI
= cast
<AtomicMemIntrinsic
>(&Call
);
4365 ConstantInt
*ElementSizeCI
=
4366 cast
<ConstantInt
>(AMI
->getRawElementSizeInBytes());
4367 const APInt
&ElementSizeVal
= ElementSizeCI
->getValue();
4368 Assert(ElementSizeVal
.isPowerOf2(),
4369 "element size of the element-wise atomic memory intrinsic "
4370 "must be a power of 2",
4373 if (auto *LengthCI
= dyn_cast
<ConstantInt
>(AMI
->getLength())) {
4374 uint64_t Length
= LengthCI
->getZExtValue();
4375 uint64_t ElementSize
= AMI
->getElementSizeInBytes();
4376 Assert((Length
% ElementSize
) == 0,
4377 "constant length must be a multiple of the element size in the "
4378 "element-wise atomic memory intrinsic",
4382 auto IsValidAlignment
= [&](uint64_t Alignment
) {
4383 return isPowerOf2_64(Alignment
) && ElementSizeVal
.ule(Alignment
);
4385 uint64_t DstAlignment
= AMI
->getDestAlignment();
4386 Assert(IsValidAlignment(DstAlignment
),
4387 "incorrect alignment of the destination argument", Call
);
4388 if (const auto *AMT
= dyn_cast
<AtomicMemTransferInst
>(AMI
)) {
4389 uint64_t SrcAlignment
= AMT
->getSourceAlignment();
4390 Assert(IsValidAlignment(SrcAlignment
),
4391 "incorrect alignment of the source argument", Call
);
4395 case Intrinsic::gcroot
:
4396 case Intrinsic::gcwrite
:
4397 case Intrinsic::gcread
:
4398 if (ID
== Intrinsic::gcroot
) {
4400 dyn_cast
<AllocaInst
>(Call
.getArgOperand(0)->stripPointerCasts());
4401 Assert(AI
, "llvm.gcroot parameter #1 must be an alloca.", Call
);
4402 Assert(isa
<Constant
>(Call
.getArgOperand(1)),
4403 "llvm.gcroot parameter #2 must be a constant.", Call
);
4404 if (!AI
->getAllocatedType()->isPointerTy()) {
4405 Assert(!isa
<ConstantPointerNull
>(Call
.getArgOperand(1)),
4406 "llvm.gcroot parameter #1 must either be a pointer alloca, "
4407 "or argument #2 must be a non-null constant.",
4412 Assert(Call
.getParent()->getParent()->hasGC(),
4413 "Enclosing function does not use GC.", Call
);
4415 case Intrinsic::init_trampoline
:
4416 Assert(isa
<Function
>(Call
.getArgOperand(1)->stripPointerCasts()),
4417 "llvm.init_trampoline parameter #2 must resolve to a function.",
4420 case Intrinsic::prefetch
:
4421 Assert(cast
<ConstantInt
>(Call
.getArgOperand(1))->getZExtValue() < 2 &&
4422 cast
<ConstantInt
>(Call
.getArgOperand(2))->getZExtValue() < 4,
4423 "invalid arguments to llvm.prefetch", Call
);
4425 case Intrinsic::stackprotector
:
4426 Assert(isa
<AllocaInst
>(Call
.getArgOperand(1)->stripPointerCasts()),
4427 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call
);
4429 case Intrinsic::localescape
: {
4430 BasicBlock
*BB
= Call
.getParent();
4431 Assert(BB
== &BB
->getParent()->front(),
4432 "llvm.localescape used outside of entry block", Call
);
4433 Assert(!SawFrameEscape
,
4434 "multiple calls to llvm.localescape in one function", Call
);
4435 for (Value
*Arg
: Call
.args()) {
4436 if (isa
<ConstantPointerNull
>(Arg
))
4437 continue; // Null values are allowed as placeholders.
4438 auto *AI
= dyn_cast
<AllocaInst
>(Arg
->stripPointerCasts());
4439 Assert(AI
&& AI
->isStaticAlloca(),
4440 "llvm.localescape only accepts static allocas", Call
);
4442 FrameEscapeInfo
[BB
->getParent()].first
= Call
.getNumArgOperands();
4443 SawFrameEscape
= true;
4446 case Intrinsic::localrecover
: {
4447 Value
*FnArg
= Call
.getArgOperand(0)->stripPointerCasts();
4448 Function
*Fn
= dyn_cast
<Function
>(FnArg
);
4449 Assert(Fn
&& !Fn
->isDeclaration(),
4450 "llvm.localrecover first "
4451 "argument must be function defined in this module",
4453 auto *IdxArg
= cast
<ConstantInt
>(Call
.getArgOperand(2));
4454 auto &Entry
= FrameEscapeInfo
[Fn
];
4455 Entry
.second
= unsigned(
4456 std::max(uint64_t(Entry
.second
), IdxArg
->getLimitedValue(~0U) + 1));
4460 case Intrinsic::experimental_gc_statepoint
:
4461 if (auto *CI
= dyn_cast
<CallInst
>(&Call
))
4462 Assert(!CI
->isInlineAsm(),
4463 "gc.statepoint support for inline assembly unimplemented", CI
);
4464 Assert(Call
.getParent()->getParent()->hasGC(),
4465 "Enclosing function does not use GC.", Call
);
4467 verifyStatepoint(Call
);
4469 case Intrinsic::experimental_gc_result
: {
4470 Assert(Call
.getParent()->getParent()->hasGC(),
4471 "Enclosing function does not use GC.", Call
);
4472 // Are we tied to a statepoint properly?
4473 const auto *StatepointCall
= dyn_cast
<CallBase
>(Call
.getArgOperand(0));
4474 const Function
*StatepointFn
=
4475 StatepointCall
? StatepointCall
->getCalledFunction() : nullptr;
4476 Assert(StatepointFn
&& StatepointFn
->isDeclaration() &&
4477 StatepointFn
->getIntrinsicID() ==
4478 Intrinsic::experimental_gc_statepoint
,
4479 "gc.result operand #1 must be from a statepoint", Call
,
4480 Call
.getArgOperand(0));
4482 // Assert that result type matches wrapped callee.
4483 const Value
*Target
= StatepointCall
->getArgOperand(2);
4484 auto *PT
= cast
<PointerType
>(Target
->getType());
4485 auto *TargetFuncType
= cast
<FunctionType
>(PT
->getElementType());
4486 Assert(Call
.getType() == TargetFuncType
->getReturnType(),
4487 "gc.result result type does not match wrapped callee", Call
);
4490 case Intrinsic::experimental_gc_relocate
: {
4491 Assert(Call
.getNumArgOperands() == 3, "wrong number of arguments", Call
);
4493 Assert(isa
<PointerType
>(Call
.getType()->getScalarType()),
4494 "gc.relocate must return a pointer or a vector of pointers", Call
);
4496 // Check that this relocate is correctly tied to the statepoint
4498 // This is case for relocate on the unwinding path of an invoke statepoint
4499 if (LandingPadInst
*LandingPad
=
4500 dyn_cast
<LandingPadInst
>(Call
.getArgOperand(0))) {
4502 const BasicBlock
*InvokeBB
=
4503 LandingPad
->getParent()->getUniquePredecessor();
4505 // Landingpad relocates should have only one predecessor with invoke
4506 // statepoint terminator
4507 Assert(InvokeBB
, "safepoints should have unique landingpads",
4508 LandingPad
->getParent());
4509 Assert(InvokeBB
->getTerminator(), "safepoint block should be well formed",
4511 Assert(isStatepoint(InvokeBB
->getTerminator()),
4512 "gc relocate should be linked to a statepoint", InvokeBB
);
4514 // In all other cases relocate should be tied to the statepoint directly.
4515 // This covers relocates on a normal return path of invoke statepoint and
4516 // relocates of a call statepoint.
4517 auto Token
= Call
.getArgOperand(0);
4518 Assert(isa
<Instruction
>(Token
) && isStatepoint(cast
<Instruction
>(Token
)),
4519 "gc relocate is incorrectly tied to the statepoint", Call
, Token
);
4522 // Verify rest of the relocate arguments.
4523 const CallBase
&StatepointCall
=
4524 *cast
<CallBase
>(cast
<GCRelocateInst
>(Call
).getStatepoint());
4526 // Both the base and derived must be piped through the safepoint.
4527 Value
*Base
= Call
.getArgOperand(1);
4528 Assert(isa
<ConstantInt
>(Base
),
4529 "gc.relocate operand #2 must be integer offset", Call
);
4531 Value
*Derived
= Call
.getArgOperand(2);
4532 Assert(isa
<ConstantInt
>(Derived
),
4533 "gc.relocate operand #3 must be integer offset", Call
);
4535 const int BaseIndex
= cast
<ConstantInt
>(Base
)->getZExtValue();
4536 const int DerivedIndex
= cast
<ConstantInt
>(Derived
)->getZExtValue();
4538 Assert(0 <= BaseIndex
&& BaseIndex
< (int)StatepointCall
.arg_size(),
4539 "gc.relocate: statepoint base index out of bounds", Call
);
4540 Assert(0 <= DerivedIndex
&& DerivedIndex
< (int)StatepointCall
.arg_size(),
4541 "gc.relocate: statepoint derived index out of bounds", Call
);
4543 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4544 // section of the statepoint's argument.
4545 Assert(StatepointCall
.arg_size() > 0,
4546 "gc.statepoint: insufficient arguments");
4547 Assert(isa
<ConstantInt
>(StatepointCall
.getArgOperand(3)),
4548 "gc.statement: number of call arguments must be constant integer");
4549 const unsigned NumCallArgs
=
4550 cast
<ConstantInt
>(StatepointCall
.getArgOperand(3))->getZExtValue();
4551 Assert(StatepointCall
.arg_size() > NumCallArgs
+ 5,
4552 "gc.statepoint: mismatch in number of call arguments");
4553 Assert(isa
<ConstantInt
>(StatepointCall
.getArgOperand(NumCallArgs
+ 5)),
4554 "gc.statepoint: number of transition arguments must be "
4555 "a constant integer");
4556 const int NumTransitionArgs
=
4557 cast
<ConstantInt
>(StatepointCall
.getArgOperand(NumCallArgs
+ 5))
4559 const int DeoptArgsStart
= 4 + NumCallArgs
+ 1 + NumTransitionArgs
+ 1;
4560 Assert(isa
<ConstantInt
>(StatepointCall
.getArgOperand(DeoptArgsStart
)),
4561 "gc.statepoint: number of deoptimization arguments must be "
4562 "a constant integer");
4563 const int NumDeoptArgs
=
4564 cast
<ConstantInt
>(StatepointCall
.getArgOperand(DeoptArgsStart
))
4566 const int GCParamArgsStart
= DeoptArgsStart
+ 1 + NumDeoptArgs
;
4567 const int GCParamArgsEnd
= StatepointCall
.arg_size();
4568 Assert(GCParamArgsStart
<= BaseIndex
&& BaseIndex
< GCParamArgsEnd
,
4569 "gc.relocate: statepoint base index doesn't fall within the "
4570 "'gc parameters' section of the statepoint call",
4572 Assert(GCParamArgsStart
<= DerivedIndex
&& DerivedIndex
< GCParamArgsEnd
,
4573 "gc.relocate: statepoint derived index doesn't fall within the "
4574 "'gc parameters' section of the statepoint call",
4577 // Relocated value must be either a pointer type or vector-of-pointer type,
4578 // but gc_relocate does not need to return the same pointer type as the
4579 // relocated pointer. It can be casted to the correct type later if it's
4580 // desired. However, they must have the same address space and 'vectorness'
4581 GCRelocateInst
&Relocate
= cast
<GCRelocateInst
>(Call
);
4582 Assert(Relocate
.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4583 "gc.relocate: relocated value must be a gc pointer", Call
);
4585 auto ResultType
= Call
.getType();
4586 auto DerivedType
= Relocate
.getDerivedPtr()->getType();
4587 Assert(ResultType
->isVectorTy() == DerivedType
->isVectorTy(),
4588 "gc.relocate: vector relocates to vector and pointer to pointer",
4591 ResultType
->getPointerAddressSpace() ==
4592 DerivedType
->getPointerAddressSpace(),
4593 "gc.relocate: relocating a pointer shouldn't change its address space",
4597 case Intrinsic::eh_exceptioncode
:
4598 case Intrinsic::eh_exceptionpointer
: {
4599 Assert(isa
<CatchPadInst
>(Call
.getArgOperand(0)),
4600 "eh.exceptionpointer argument must be a catchpad", Call
);
4603 case Intrinsic::masked_load
: {
4604 Assert(Call
.getType()->isVectorTy(), "masked_load: must return a vector",
4607 Value
*Ptr
= Call
.getArgOperand(0);
4608 ConstantInt
*Alignment
= cast
<ConstantInt
>(Call
.getArgOperand(1));
4609 Value
*Mask
= Call
.getArgOperand(2);
4610 Value
*PassThru
= Call
.getArgOperand(3);
4611 Assert(Mask
->getType()->isVectorTy(), "masked_load: mask must be vector",
4613 Assert(Alignment
->getValue().isPowerOf2(),
4614 "masked_load: alignment must be a power of 2", Call
);
4616 // DataTy is the overloaded type
4617 Type
*DataTy
= cast
<PointerType
>(Ptr
->getType())->getElementType();
4618 Assert(DataTy
== Call
.getType(),
4619 "masked_load: return must match pointer type", Call
);
4620 Assert(PassThru
->getType() == DataTy
,
4621 "masked_load: pass through and data type must match", Call
);
4622 Assert(Mask
->getType()->getVectorNumElements() ==
4623 DataTy
->getVectorNumElements(),
4624 "masked_load: vector mask must be same length as data", Call
);
4627 case Intrinsic::masked_store
: {
4628 Value
*Val
= Call
.getArgOperand(0);
4629 Value
*Ptr
= Call
.getArgOperand(1);
4630 ConstantInt
*Alignment
= cast
<ConstantInt
>(Call
.getArgOperand(2));
4631 Value
*Mask
= Call
.getArgOperand(3);
4632 Assert(Mask
->getType()->isVectorTy(), "masked_store: mask must be vector",
4634 Assert(Alignment
->getValue().isPowerOf2(),
4635 "masked_store: alignment must be a power of 2", Call
);
4637 // DataTy is the overloaded type
4638 Type
*DataTy
= cast
<PointerType
>(Ptr
->getType())->getElementType();
4639 Assert(DataTy
== Val
->getType(),
4640 "masked_store: storee must match pointer type", Call
);
4641 Assert(Mask
->getType()->getVectorNumElements() ==
4642 DataTy
->getVectorNumElements(),
4643 "masked_store: vector mask must be same length as data", Call
);
4647 case Intrinsic::experimental_guard
: {
4648 Assert(isa
<CallInst
>(Call
), "experimental_guard cannot be invoked", Call
);
4649 Assert(Call
.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1,
4650 "experimental_guard must have exactly one "
4651 "\"deopt\" operand bundle");
4655 case Intrinsic::experimental_deoptimize
: {
4656 Assert(isa
<CallInst
>(Call
), "experimental_deoptimize cannot be invoked",
4658 Assert(Call
.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1,
4659 "experimental_deoptimize must have exactly one "
4660 "\"deopt\" operand bundle");
4661 Assert(Call
.getType() == Call
.getFunction()->getReturnType(),
4662 "experimental_deoptimize return type must match caller return type");
4664 if (isa
<CallInst
>(Call
)) {
4665 auto *RI
= dyn_cast
<ReturnInst
>(Call
.getNextNode());
4667 "calls to experimental_deoptimize must be followed by a return");
4669 if (!Call
.getType()->isVoidTy() && RI
)
4670 Assert(RI
->getReturnValue() == &Call
,
4671 "calls to experimental_deoptimize must be followed by a return "
4672 "of the value computed by experimental_deoptimize");
4677 case Intrinsic::sadd_sat
:
4678 case Intrinsic::uadd_sat
:
4679 case Intrinsic::ssub_sat
:
4680 case Intrinsic::usub_sat
: {
4681 Value
*Op1
= Call
.getArgOperand(0);
4682 Value
*Op2
= Call
.getArgOperand(1);
4683 Assert(Op1
->getType()->isIntOrIntVectorTy(),
4684 "first operand of [us][add|sub]_sat must be an int type or vector "
4686 Assert(Op2
->getType()->isIntOrIntVectorTy(),
4687 "second operand of [us][add|sub]_sat must be an int type or vector "
4691 case Intrinsic::smul_fix
:
4692 case Intrinsic::smul_fix_sat
:
4693 case Intrinsic::umul_fix
:
4694 case Intrinsic::umul_fix_sat
: {
4695 Value
*Op1
= Call
.getArgOperand(0);
4696 Value
*Op2
= Call
.getArgOperand(1);
4697 Assert(Op1
->getType()->isIntOrIntVectorTy(),
4698 "first operand of [us]mul_fix[_sat] must be an int type or vector "
4700 Assert(Op2
->getType()->isIntOrIntVectorTy(),
4701 "second operand of [us]mul_fix_[sat] must be an int type or vector "
4704 auto *Op3
= cast
<ConstantInt
>(Call
.getArgOperand(2));
4705 Assert(Op3
->getType()->getBitWidth() <= 32,
4706 "third argument of [us]mul_fix[_sat] must fit within 32 bits");
4708 if (ID
== Intrinsic::smul_fix
|| ID
== Intrinsic::smul_fix_sat
) {
4710 Op3
->getZExtValue() < Op1
->getType()->getScalarSizeInBits(),
4711 "the scale of smul_fix[_sat] must be less than the width of the operands");
4713 Assert(Op3
->getZExtValue() <= Op1
->getType()->getScalarSizeInBits(),
4714 "the scale of umul_fix[_sat] must be less than or equal to the width of "
4719 case Intrinsic::lround
:
4720 case Intrinsic::llround
:
4721 case Intrinsic::lrint
:
4722 case Intrinsic::llrint
: {
4723 Type
*ValTy
= Call
.getArgOperand(0)->getType();
4724 Type
*ResultTy
= Call
.getType();
4725 Assert(!ValTy
->isVectorTy() && !ResultTy
->isVectorTy(),
4726 "Intrinsic does not support vectors", &Call
);
4732 /// Carefully grab the subprogram from a local scope.
4734 /// This carefully grabs the subprogram from a local scope, avoiding the
4735 /// built-in assertions that would typically fire.
4736 static DISubprogram
*getSubprogram(Metadata
*LocalScope
) {
4740 if (auto *SP
= dyn_cast
<DISubprogram
>(LocalScope
))
4743 if (auto *LB
= dyn_cast
<DILexicalBlockBase
>(LocalScope
))
4744 return getSubprogram(LB
->getRawScope());
4746 // Just return null; broken scope chains are checked elsewhere.
4747 assert(!isa
<DILocalScope
>(LocalScope
) && "Unknown type of local scope");
4751 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic
&FPI
) {
4752 unsigned NumOperands
= FPI
.getNumArgOperands();
4753 bool HasExceptionMD
= false;
4754 bool HasRoundingMD
= false;
4755 switch (FPI
.getIntrinsicID()) {
4756 case Intrinsic::experimental_constrained_sqrt
:
4757 case Intrinsic::experimental_constrained_sin
:
4758 case Intrinsic::experimental_constrained_cos
:
4759 case Intrinsic::experimental_constrained_exp
:
4760 case Intrinsic::experimental_constrained_exp2
:
4761 case Intrinsic::experimental_constrained_log
:
4762 case Intrinsic::experimental_constrained_log10
:
4763 case Intrinsic::experimental_constrained_log2
:
4764 case Intrinsic::experimental_constrained_rint
:
4765 case Intrinsic::experimental_constrained_nearbyint
:
4766 case Intrinsic::experimental_constrained_ceil
:
4767 case Intrinsic::experimental_constrained_floor
:
4768 case Intrinsic::experimental_constrained_round
:
4769 case Intrinsic::experimental_constrained_trunc
:
4770 Assert((NumOperands
== 3), "invalid arguments for constrained FP intrinsic",
4772 HasExceptionMD
= true;
4773 HasRoundingMD
= true;
4776 case Intrinsic::experimental_constrained_lrint
:
4777 case Intrinsic::experimental_constrained_llrint
: {
4778 Assert((NumOperands
== 3), "invalid arguments for constrained FP intrinsic",
4780 Type
*ValTy
= FPI
.getArgOperand(0)->getType();
4781 Type
*ResultTy
= FPI
.getType();
4782 Assert(!ValTy
->isVectorTy() && !ResultTy
->isVectorTy(),
4783 "Intrinsic does not support vectors", &FPI
);
4784 HasExceptionMD
= true;
4785 HasRoundingMD
= true;
4789 case Intrinsic::experimental_constrained_lround
:
4790 case Intrinsic::experimental_constrained_llround
: {
4791 Assert((NumOperands
== 2), "invalid arguments for constrained FP intrinsic",
4793 Type
*ValTy
= FPI
.getArgOperand(0)->getType();
4794 Type
*ResultTy
= FPI
.getType();
4795 Assert(!ValTy
->isVectorTy() && !ResultTy
->isVectorTy(),
4796 "Intrinsic does not support vectors", &FPI
);
4797 HasExceptionMD
= true;
4801 case Intrinsic::experimental_constrained_fma
:
4802 Assert((NumOperands
== 5), "invalid arguments for constrained FP intrinsic",
4804 HasExceptionMD
= true;
4805 HasRoundingMD
= true;
4808 case Intrinsic::experimental_constrained_fadd
:
4809 case Intrinsic::experimental_constrained_fsub
:
4810 case Intrinsic::experimental_constrained_fmul
:
4811 case Intrinsic::experimental_constrained_fdiv
:
4812 case Intrinsic::experimental_constrained_frem
:
4813 case Intrinsic::experimental_constrained_pow
:
4814 case Intrinsic::experimental_constrained_powi
:
4815 case Intrinsic::experimental_constrained_maxnum
:
4816 case Intrinsic::experimental_constrained_minnum
:
4817 Assert((NumOperands
== 4), "invalid arguments for constrained FP intrinsic",
4819 HasExceptionMD
= true;
4820 HasRoundingMD
= true;
4823 case Intrinsic::experimental_constrained_fptosi
:
4824 case Intrinsic::experimental_constrained_fptoui
: {
4825 Assert((NumOperands
== 2),
4826 "invalid arguments for constrained FP intrinsic", &FPI
);
4827 HasExceptionMD
= true;
4829 Value
*Operand
= FPI
.getArgOperand(0);
4830 uint64_t NumSrcElem
= 0;
4831 Assert(Operand
->getType()->isFPOrFPVectorTy(),
4832 "Intrinsic first argument must be floating point", &FPI
);
4833 if (auto *OperandT
= dyn_cast
<VectorType
>(Operand
->getType())) {
4834 NumSrcElem
= OperandT
->getNumElements();
4838 Assert((NumSrcElem
> 0) == Operand
->getType()->isVectorTy(),
4839 "Intrinsic first argument and result disagree on vector use", &FPI
);
4840 Assert(Operand
->getType()->isIntOrIntVectorTy(),
4841 "Intrinsic result must be an integer", &FPI
);
4842 if (auto *OperandT
= dyn_cast
<VectorType
>(Operand
->getType())) {
4843 Assert(NumSrcElem
== OperandT
->getNumElements(),
4844 "Intrinsic first argument and result vector lengths must be equal",
4850 case Intrinsic::experimental_constrained_fptrunc
:
4851 case Intrinsic::experimental_constrained_fpext
: {
4852 if (FPI
.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc
) {
4853 Assert((NumOperands
== 3),
4854 "invalid arguments for constrained FP intrinsic", &FPI
);
4855 HasRoundingMD
= true;
4857 Assert((NumOperands
== 2),
4858 "invalid arguments for constrained FP intrinsic", &FPI
);
4860 HasExceptionMD
= true;
4862 Value
*Operand
= FPI
.getArgOperand(0);
4863 Type
*OperandTy
= Operand
->getType();
4864 Value
*Result
= &FPI
;
4865 Type
*ResultTy
= Result
->getType();
4866 Assert(OperandTy
->isFPOrFPVectorTy(),
4867 "Intrinsic first argument must be FP or FP vector", &FPI
);
4868 Assert(ResultTy
->isFPOrFPVectorTy(),
4869 "Intrinsic result must be FP or FP vector", &FPI
);
4870 Assert(OperandTy
->isVectorTy() == ResultTy
->isVectorTy(),
4871 "Intrinsic first argument and result disagree on vector use", &FPI
);
4872 if (OperandTy
->isVectorTy()) {
4873 auto *OperandVecTy
= cast
<VectorType
>(OperandTy
);
4874 auto *ResultVecTy
= cast
<VectorType
>(ResultTy
);
4875 Assert(OperandVecTy
->getNumElements() == ResultVecTy
->getNumElements(),
4876 "Intrinsic first argument and result vector lengths must be equal",
4879 if (FPI
.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc
) {
4880 Assert(OperandTy
->getScalarSizeInBits() > ResultTy
->getScalarSizeInBits(),
4881 "Intrinsic first argument's type must be larger than result type",
4884 Assert(OperandTy
->getScalarSizeInBits() < ResultTy
->getScalarSizeInBits(),
4885 "Intrinsic first argument's type must be smaller than result type",
4892 llvm_unreachable("Invalid constrained FP intrinsic!");
4895 // If a non-metadata argument is passed in a metadata slot then the
4896 // error will be caught earlier when the incorrect argument doesn't
4897 // match the specification in the intrinsic call table. Thus, no
4898 // argument type check is needed here.
4900 if (HasExceptionMD
) {
4901 Assert(FPI
.getExceptionBehavior().hasValue(),
4902 "invalid exception behavior argument", &FPI
);
4904 if (HasRoundingMD
) {
4905 Assert(FPI
.getRoundingMode().hasValue(),
4906 "invalid rounding mode argument", &FPI
);
4910 void Verifier::visitDbgIntrinsic(StringRef Kind
, DbgVariableIntrinsic
&DII
) {
4911 auto *MD
= cast
<MetadataAsValue
>(DII
.getArgOperand(0))->getMetadata();
4912 AssertDI(isa
<ValueAsMetadata
>(MD
) ||
4913 (isa
<MDNode
>(MD
) && !cast
<MDNode
>(MD
)->getNumOperands()),
4914 "invalid llvm.dbg." + Kind
+ " intrinsic address/value", &DII
, MD
);
4915 AssertDI(isa
<DILocalVariable
>(DII
.getRawVariable()),
4916 "invalid llvm.dbg." + Kind
+ " intrinsic variable", &DII
,
4917 DII
.getRawVariable());
4918 AssertDI(isa
<DIExpression
>(DII
.getRawExpression()),
4919 "invalid llvm.dbg." + Kind
+ " intrinsic expression", &DII
,
4920 DII
.getRawExpression());
4922 // Ignore broken !dbg attachments; they're checked elsewhere.
4923 if (MDNode
*N
= DII
.getDebugLoc().getAsMDNode())
4924 if (!isa
<DILocation
>(N
))
4927 BasicBlock
*BB
= DII
.getParent();
4928 Function
*F
= BB
? BB
->getParent() : nullptr;
4930 // The scopes for variables and !dbg attachments must agree.
4931 DILocalVariable
*Var
= DII
.getVariable();
4932 DILocation
*Loc
= DII
.getDebugLoc();
4933 AssertDI(Loc
, "llvm.dbg." + Kind
+ " intrinsic requires a !dbg attachment",
4936 DISubprogram
*VarSP
= getSubprogram(Var
->getRawScope());
4937 DISubprogram
*LocSP
= getSubprogram(Loc
->getRawScope());
4938 if (!VarSP
|| !LocSP
)
4939 return; // Broken scope chains are checked elsewhere.
4941 AssertDI(VarSP
== LocSP
, "mismatched subprogram between llvm.dbg." + Kind
+
4942 " variable and !dbg attachment",
4943 &DII
, BB
, F
, Var
, Var
->getScope()->getSubprogram(), Loc
,
4944 Loc
->getScope()->getSubprogram());
4946 // This check is redundant with one in visitLocalVariable().
4947 AssertDI(isType(Var
->getRawType()), "invalid type ref", Var
,
4952 void Verifier::visitDbgLabelIntrinsic(StringRef Kind
, DbgLabelInst
&DLI
) {
4953 AssertDI(isa
<DILabel
>(DLI
.getRawLabel()),
4954 "invalid llvm.dbg." + Kind
+ " intrinsic variable", &DLI
,
4957 // Ignore broken !dbg attachments; they're checked elsewhere.
4958 if (MDNode
*N
= DLI
.getDebugLoc().getAsMDNode())
4959 if (!isa
<DILocation
>(N
))
4962 BasicBlock
*BB
= DLI
.getParent();
4963 Function
*F
= BB
? BB
->getParent() : nullptr;
4965 // The scopes for variables and !dbg attachments must agree.
4966 DILabel
*Label
= DLI
.getLabel();
4967 DILocation
*Loc
= DLI
.getDebugLoc();
4968 Assert(Loc
, "llvm.dbg." + Kind
+ " intrinsic requires a !dbg attachment",
4971 DISubprogram
*LabelSP
= getSubprogram(Label
->getRawScope());
4972 DISubprogram
*LocSP
= getSubprogram(Loc
->getRawScope());
4973 if (!LabelSP
|| !LocSP
)
4976 AssertDI(LabelSP
== LocSP
, "mismatched subprogram between llvm.dbg." + Kind
+
4977 " label and !dbg attachment",
4978 &DLI
, BB
, F
, Label
, Label
->getScope()->getSubprogram(), Loc
,
4979 Loc
->getScope()->getSubprogram());
4982 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic
&I
) {
4983 DILocalVariable
*V
= dyn_cast_or_null
<DILocalVariable
>(I
.getRawVariable());
4984 DIExpression
*E
= dyn_cast_or_null
<DIExpression
>(I
.getRawExpression());
4986 // We don't know whether this intrinsic verified correctly.
4987 if (!V
|| !E
|| !E
->isValid())
4990 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4991 auto Fragment
= E
->getFragmentInfo();
4995 // The frontend helps out GDB by emitting the members of local anonymous
4996 // unions as artificial local variables with shared storage. When SROA splits
4997 // the storage for artificial local variables that are smaller than the entire
4998 // union, the overhang piece will be outside of the allotted space for the
4999 // variable and this check fails.
5000 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
5001 if (V
->isArtificial())
5004 verifyFragmentExpression(*V
, *Fragment
, &I
);
5007 template <typename ValueOrMetadata
>
5008 void Verifier::verifyFragmentExpression(const DIVariable
&V
,
5009 DIExpression::FragmentInfo Fragment
,
5010 ValueOrMetadata
*Desc
) {
5011 // If there's no size, the type is broken, but that should be checked
5013 auto VarSize
= V
.getSizeInBits();
5017 unsigned FragSize
= Fragment
.SizeInBits
;
5018 unsigned FragOffset
= Fragment
.OffsetInBits
;
5019 AssertDI(FragSize
+ FragOffset
<= *VarSize
,
5020 "fragment is larger than or outside of variable", Desc
, &V
);
5021 AssertDI(FragSize
!= *VarSize
, "fragment covers entire variable", Desc
, &V
);
5024 void Verifier::verifyFnArgs(const DbgVariableIntrinsic
&I
) {
5025 // This function does not take the scope of noninlined function arguments into
5026 // account. Don't run it if current function is nodebug, because it may
5027 // contain inlined debug intrinsics.
5031 // For performance reasons only check non-inlined ones.
5032 if (I
.getDebugLoc()->getInlinedAt())
5035 DILocalVariable
*Var
= I
.getVariable();
5036 AssertDI(Var
, "dbg intrinsic without variable");
5038 unsigned ArgNo
= Var
->getArg();
5042 // Verify there are no duplicate function argument debug info entries.
5043 // These will cause hard-to-debug assertions in the DWARF backend.
5044 if (DebugFnArgs
.size() < ArgNo
)
5045 DebugFnArgs
.resize(ArgNo
, nullptr);
5047 auto *Prev
= DebugFnArgs
[ArgNo
- 1];
5048 DebugFnArgs
[ArgNo
- 1] = Var
;
5049 AssertDI(!Prev
|| (Prev
== Var
), "conflicting debug info for argument", &I
,
5053 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic
&I
) {
5054 DIExpression
*E
= dyn_cast_or_null
<DIExpression
>(I
.getRawExpression());
5056 // We don't know whether this intrinsic verified correctly.
5057 if (!E
|| !E
->isValid())
5060 AssertDI(!E
->isEntryValue(), "Entry values are only allowed in MIR", &I
);
5063 void Verifier::verifyCompileUnits() {
5064 // When more than one Module is imported into the same context, such as during
5065 // an LTO build before linking the modules, ODR type uniquing may cause types
5066 // to point to a different CU. This check does not make sense in this case.
5067 if (M
.getContext().isODRUniquingDebugTypes())
5069 auto *CUs
= M
.getNamedMetadata("llvm.dbg.cu");
5070 SmallPtrSet
<const Metadata
*, 2> Listed
;
5072 Listed
.insert(CUs
->op_begin(), CUs
->op_end());
5073 for (auto *CU
: CUVisited
)
5074 AssertDI(Listed
.count(CU
), "DICompileUnit not listed in llvm.dbg.cu", CU
);
5078 void Verifier::verifyDeoptimizeCallingConvs() {
5079 if (DeoptimizeDeclarations
.empty())
5082 const Function
*First
= DeoptimizeDeclarations
[0];
5083 for (auto *F
: makeArrayRef(DeoptimizeDeclarations
).slice(1)) {
5084 Assert(First
->getCallingConv() == F
->getCallingConv(),
5085 "All llvm.experimental.deoptimize declarations must have the same "
5086 "calling convention",
5091 void Verifier::verifySourceDebugInfo(const DICompileUnit
&U
, const DIFile
&F
) {
5092 bool HasSource
= F
.getSource().hasValue();
5093 if (!HasSourceDebugInfo
.count(&U
))
5094 HasSourceDebugInfo
[&U
] = HasSource
;
5095 AssertDI(HasSource
== HasSourceDebugInfo
[&U
],
5096 "inconsistent use of embedded source");
5099 //===----------------------------------------------------------------------===//
5100 // Implement the public interfaces to this file...
5101 //===----------------------------------------------------------------------===//
5103 bool llvm::verifyFunction(const Function
&f
, raw_ostream
*OS
) {
5104 Function
&F
= const_cast<Function
&>(f
);
5106 // Don't use a raw_null_ostream. Printing IR is expensive.
5107 Verifier
V(OS
, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f
.getParent());
5109 // Note that this function's return value is inverted from what you would
5110 // expect of a function called "verify".
5111 return !V
.verify(F
);
5114 bool llvm::verifyModule(const Module
&M
, raw_ostream
*OS
,
5115 bool *BrokenDebugInfo
) {
5116 // Don't use a raw_null_ostream. Printing IR is expensive.
5117 Verifier
V(OS
, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo
, M
);
5119 bool Broken
= false;
5120 for (const Function
&F
: M
)
5121 Broken
|= !V
.verify(F
);
5123 Broken
|= !V
.verify();
5124 if (BrokenDebugInfo
)
5125 *BrokenDebugInfo
= V
.hasBrokenDebugInfo();
5126 // Note that this function's return value is inverted from what you would
5127 // expect of a function called "verify".
5133 struct VerifierLegacyPass
: public FunctionPass
{
5136 std::unique_ptr
<Verifier
> V
;
5137 bool FatalErrors
= true;
5139 VerifierLegacyPass() : FunctionPass(ID
) {
5140 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5142 explicit VerifierLegacyPass(bool FatalErrors
)
5144 FatalErrors(FatalErrors
) {
5145 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5148 bool doInitialization(Module
&M
) override
{
5149 V
= std::make_unique
<Verifier
>(
5150 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M
);
5154 bool runOnFunction(Function
&F
) override
{
5155 if (!V
->verify(F
) && FatalErrors
) {
5156 errs() << "in function " << F
.getName() << '\n';
5157 report_fatal_error("Broken function found, compilation aborted!");
5162 bool doFinalization(Module
&M
) override
{
5163 bool HasErrors
= false;
5164 for (Function
&F
: M
)
5165 if (F
.isDeclaration())
5166 HasErrors
|= !V
->verify(F
);
5168 HasErrors
|= !V
->verify();
5169 if (FatalErrors
&& (HasErrors
|| V
->hasBrokenDebugInfo()))
5170 report_fatal_error("Broken module found, compilation aborted!");
5174 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
5175 AU
.setPreservesAll();
5179 } // end anonymous namespace
5181 /// Helper to issue failure from the TBAA verification
5182 template <typename
... Tys
> void TBAAVerifier::CheckFailed(Tys
&&... Args
) {
5184 return Diagnostic
->CheckFailed(Args
...);
5187 #define AssertTBAA(C, ...) \
5190 CheckFailed(__VA_ARGS__); \
5195 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
5196 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
5197 /// struct-type node describing an aggregate data structure (like a struct).
5198 TBAAVerifier::TBAABaseNodeSummary
5199 TBAAVerifier::verifyTBAABaseNode(Instruction
&I
, const MDNode
*BaseNode
,
5201 if (BaseNode
->getNumOperands() < 2) {
5202 CheckFailed("Base nodes must have at least two operands", &I
, BaseNode
);
5206 auto Itr
= TBAABaseNodes
.find(BaseNode
);
5207 if (Itr
!= TBAABaseNodes
.end())
5210 auto Result
= verifyTBAABaseNodeImpl(I
, BaseNode
, IsNewFormat
);
5211 auto InsertResult
= TBAABaseNodes
.insert({BaseNode
, Result
});
5213 assert(InsertResult
.second
&& "We just checked!");
5217 TBAAVerifier::TBAABaseNodeSummary
5218 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction
&I
, const MDNode
*BaseNode
,
5220 const TBAAVerifier::TBAABaseNodeSummary InvalidNode
= {true, ~0u};
5222 if (BaseNode
->getNumOperands() == 2) {
5223 // Scalar nodes can only be accessed at offset 0.
5224 return isValidScalarTBAANode(BaseNode
)
5225 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5230 if (BaseNode
->getNumOperands() % 3 != 0) {
5231 CheckFailed("Access tag nodes must have the number of operands that is a "
5232 "multiple of 3!", BaseNode
);
5236 if (BaseNode
->getNumOperands() % 2 != 1) {
5237 CheckFailed("Struct tag nodes must have an odd number of operands!",
5243 // Check the type size field.
5245 auto *TypeSizeNode
= mdconst::dyn_extract_or_null
<ConstantInt
>(
5246 BaseNode
->getOperand(1));
5247 if (!TypeSizeNode
) {
5248 CheckFailed("Type size nodes must be constants!", &I
, BaseNode
);
5253 // Check the type name field. In the new format it can be anything.
5254 if (!IsNewFormat
&& !isa
<MDString
>(BaseNode
->getOperand(0))) {
5255 CheckFailed("Struct tag nodes have a string as their first operand",
5260 bool Failed
= false;
5262 Optional
<APInt
> PrevOffset
;
5263 unsigned BitWidth
= ~0u;
5265 // We've already checked that BaseNode is not a degenerate root node with one
5266 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5267 unsigned FirstFieldOpNo
= IsNewFormat
? 3 : 1;
5268 unsigned NumOpsPerField
= IsNewFormat
? 3 : 2;
5269 for (unsigned Idx
= FirstFieldOpNo
; Idx
< BaseNode
->getNumOperands();
5270 Idx
+= NumOpsPerField
) {
5271 const MDOperand
&FieldTy
= BaseNode
->getOperand(Idx
);
5272 const MDOperand
&FieldOffset
= BaseNode
->getOperand(Idx
+ 1);
5273 if (!isa
<MDNode
>(FieldTy
)) {
5274 CheckFailed("Incorrect field entry in struct type node!", &I
, BaseNode
);
5279 auto *OffsetEntryCI
=
5280 mdconst::dyn_extract_or_null
<ConstantInt
>(FieldOffset
);
5281 if (!OffsetEntryCI
) {
5282 CheckFailed("Offset entries must be constants!", &I
, BaseNode
);
5287 if (BitWidth
== ~0u)
5288 BitWidth
= OffsetEntryCI
->getBitWidth();
5290 if (OffsetEntryCI
->getBitWidth() != BitWidth
) {
5292 "Bitwidth between the offsets and struct type entries must match", &I
,
5298 // NB! As far as I can tell, we generate a non-strictly increasing offset
5299 // sequence only from structs that have zero size bit fields. When
5300 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5301 // pick the field lexically the latest in struct type metadata node. This
5302 // mirrors the actual behavior of the alias analysis implementation.
5304 !PrevOffset
|| PrevOffset
->ule(OffsetEntryCI
->getValue());
5307 CheckFailed("Offsets must be increasing!", &I
, BaseNode
);
5311 PrevOffset
= OffsetEntryCI
->getValue();
5314 auto *MemberSizeNode
= mdconst::dyn_extract_or_null
<ConstantInt
>(
5315 BaseNode
->getOperand(Idx
+ 2));
5316 if (!MemberSizeNode
) {
5317 CheckFailed("Member size entries must be constants!", &I
, BaseNode
);
5324 return Failed
? InvalidNode
5325 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth
);
5328 static bool IsRootTBAANode(const MDNode
*MD
) {
5329 return MD
->getNumOperands() < 2;
5332 static bool IsScalarTBAANodeImpl(const MDNode
*MD
,
5333 SmallPtrSetImpl
<const MDNode
*> &Visited
) {
5334 if (MD
->getNumOperands() != 2 && MD
->getNumOperands() != 3)
5337 if (!isa
<MDString
>(MD
->getOperand(0)))
5340 if (MD
->getNumOperands() == 3) {
5341 auto *Offset
= mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(2));
5342 if (!(Offset
&& Offset
->isZero() && isa
<MDString
>(MD
->getOperand(0))))
5346 auto *Parent
= dyn_cast_or_null
<MDNode
>(MD
->getOperand(1));
5347 return Parent
&& Visited
.insert(Parent
).second
&&
5348 (IsRootTBAANode(Parent
) || IsScalarTBAANodeImpl(Parent
, Visited
));
5351 bool TBAAVerifier::isValidScalarTBAANode(const MDNode
*MD
) {
5352 auto ResultIt
= TBAAScalarNodes
.find(MD
);
5353 if (ResultIt
!= TBAAScalarNodes
.end())
5354 return ResultIt
->second
;
5356 SmallPtrSet
<const MDNode
*, 4> Visited
;
5357 bool Result
= IsScalarTBAANodeImpl(MD
, Visited
);
5358 auto InsertResult
= TBAAScalarNodes
.insert({MD
, Result
});
5360 assert(InsertResult
.second
&& "Just checked!");
5365 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
5366 /// Offset in place to be the offset within the field node returned.
5368 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5369 MDNode
*TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction
&I
,
5370 const MDNode
*BaseNode
,
5373 assert(BaseNode
->getNumOperands() >= 2 && "Invalid base node!");
5375 // Scalar nodes have only one possible "field" -- their parent in the access
5376 // hierarchy. Offset must be zero at this point, but our caller is supposed
5378 if (BaseNode
->getNumOperands() == 2)
5379 return cast
<MDNode
>(BaseNode
->getOperand(1));
5381 unsigned FirstFieldOpNo
= IsNewFormat
? 3 : 1;
5382 unsigned NumOpsPerField
= IsNewFormat
? 3 : 2;
5383 for (unsigned Idx
= FirstFieldOpNo
; Idx
< BaseNode
->getNumOperands();
5384 Idx
+= NumOpsPerField
) {
5385 auto *OffsetEntryCI
=
5386 mdconst::extract
<ConstantInt
>(BaseNode
->getOperand(Idx
+ 1));
5387 if (OffsetEntryCI
->getValue().ugt(Offset
)) {
5388 if (Idx
== FirstFieldOpNo
) {
5389 CheckFailed("Could not find TBAA parent in struct type node", &I
,
5394 unsigned PrevIdx
= Idx
- NumOpsPerField
;
5395 auto *PrevOffsetEntryCI
=
5396 mdconst::extract
<ConstantInt
>(BaseNode
->getOperand(PrevIdx
+ 1));
5397 Offset
-= PrevOffsetEntryCI
->getValue();
5398 return cast
<MDNode
>(BaseNode
->getOperand(PrevIdx
));
5402 unsigned LastIdx
= BaseNode
->getNumOperands() - NumOpsPerField
;
5403 auto *LastOffsetEntryCI
= mdconst::extract
<ConstantInt
>(
5404 BaseNode
->getOperand(LastIdx
+ 1));
5405 Offset
-= LastOffsetEntryCI
->getValue();
5406 return cast
<MDNode
>(BaseNode
->getOperand(LastIdx
));
5409 static bool isNewFormatTBAATypeNode(llvm::MDNode
*Type
) {
5410 if (!Type
|| Type
->getNumOperands() < 3)
5413 // In the new format type nodes shall have a reference to the parent type as
5414 // its first operand.
5415 MDNode
*Parent
= dyn_cast_or_null
<MDNode
>(Type
->getOperand(0));
5422 bool TBAAVerifier::visitTBAAMetadata(Instruction
&I
, const MDNode
*MD
) {
5423 AssertTBAA(isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
) || isa
<CallInst
>(I
) ||
5424 isa
<VAArgInst
>(I
) || isa
<AtomicRMWInst
>(I
) ||
5425 isa
<AtomicCmpXchgInst
>(I
),
5426 "This instruction shall not have a TBAA access tag!", &I
);
5428 bool IsStructPathTBAA
=
5429 isa
<MDNode
>(MD
->getOperand(0)) && MD
->getNumOperands() >= 3;
5433 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I
);
5435 MDNode
*BaseNode
= dyn_cast_or_null
<MDNode
>(MD
->getOperand(0));
5436 MDNode
*AccessType
= dyn_cast_or_null
<MDNode
>(MD
->getOperand(1));
5438 bool IsNewFormat
= isNewFormatTBAATypeNode(AccessType
);
5441 AssertTBAA(MD
->getNumOperands() == 4 || MD
->getNumOperands() == 5,
5442 "Access tag metadata must have either 4 or 5 operands", &I
, MD
);
5444 AssertTBAA(MD
->getNumOperands() < 5,
5445 "Struct tag metadata must have either 3 or 4 operands", &I
, MD
);
5448 // Check the access size field.
5450 auto *AccessSizeNode
= mdconst::dyn_extract_or_null
<ConstantInt
>(
5452 AssertTBAA(AccessSizeNode
, "Access size field must be a constant", &I
, MD
);
5455 // Check the immutability flag.
5456 unsigned ImmutabilityFlagOpNo
= IsNewFormat
? 4 : 3;
5457 if (MD
->getNumOperands() == ImmutabilityFlagOpNo
+ 1) {
5458 auto *IsImmutableCI
= mdconst::dyn_extract_or_null
<ConstantInt
>(
5459 MD
->getOperand(ImmutabilityFlagOpNo
));
5460 AssertTBAA(IsImmutableCI
,
5461 "Immutability tag on struct tag metadata must be a constant",
5464 IsImmutableCI
->isZero() || IsImmutableCI
->isOne(),
5465 "Immutability part of the struct tag metadata must be either 0 or 1",
5469 AssertTBAA(BaseNode
&& AccessType
,
5470 "Malformed struct tag metadata: base and access-type "
5471 "should be non-null and point to Metadata nodes",
5472 &I
, MD
, BaseNode
, AccessType
);
5475 AssertTBAA(isValidScalarTBAANode(AccessType
),
5476 "Access type node must be a valid scalar type", &I
, MD
,
5480 auto *OffsetCI
= mdconst::dyn_extract_or_null
<ConstantInt
>(MD
->getOperand(2));
5481 AssertTBAA(OffsetCI
, "Offset must be constant integer", &I
, MD
);
5483 APInt Offset
= OffsetCI
->getValue();
5484 bool SeenAccessTypeInPath
= false;
5486 SmallPtrSet
<MDNode
*, 4> StructPath
;
5488 for (/* empty */; BaseNode
&& !IsRootTBAANode(BaseNode
);
5489 BaseNode
= getFieldNodeFromTBAABaseNode(I
, BaseNode
, Offset
,
5491 if (!StructPath
.insert(BaseNode
).second
) {
5492 CheckFailed("Cycle detected in struct path", &I
, MD
);
5497 unsigned BaseNodeBitWidth
;
5498 std::tie(Invalid
, BaseNodeBitWidth
) = verifyTBAABaseNode(I
, BaseNode
,
5501 // If the base node is invalid in itself, then we've already printed all the
5502 // errors we wanted to print.
5506 SeenAccessTypeInPath
|= BaseNode
== AccessType
;
5508 if (isValidScalarTBAANode(BaseNode
) || BaseNode
== AccessType
)
5509 AssertTBAA(Offset
== 0, "Offset not zero at the point of scalar access",
5512 AssertTBAA(BaseNodeBitWidth
== Offset
.getBitWidth() ||
5513 (BaseNodeBitWidth
== 0 && Offset
== 0) ||
5514 (IsNewFormat
&& BaseNodeBitWidth
== ~0u),
5515 "Access bit-width not the same as description bit-width", &I
, MD
,
5516 BaseNodeBitWidth
, Offset
.getBitWidth());
5518 if (IsNewFormat
&& SeenAccessTypeInPath
)
5522 AssertTBAA(SeenAccessTypeInPath
, "Did not see access type in access path!",
5527 char VerifierLegacyPass::ID
= 0;
5528 INITIALIZE_PASS(VerifierLegacyPass
, "verify", "Module Verifier", false, false)
5530 FunctionPass
*llvm::createVerifierPass(bool FatalErrors
) {
5531 return new VerifierLegacyPass(FatalErrors
);
5534 AnalysisKey
VerifierAnalysis::Key
;
5535 VerifierAnalysis::Result
VerifierAnalysis::run(Module
&M
,
5536 ModuleAnalysisManager
&) {
5538 Res
.IRBroken
= llvm::verifyModule(M
, &dbgs(), &Res
.DebugInfoBroken
);
5542 VerifierAnalysis::Result
VerifierAnalysis::run(Function
&F
,
5543 FunctionAnalysisManager
&) {
5544 return { llvm::verifyFunction(F
, &dbgs()), false };
5547 PreservedAnalyses
VerifierPass::run(Module
&M
, ModuleAnalysisManager
&AM
) {
5548 auto Res
= AM
.getResult
<VerifierAnalysis
>(M
);
5549 if (FatalErrors
&& (Res
.IRBroken
|| Res
.DebugInfoBroken
))
5550 report_fatal_error("Broken module found, compilation aborted!");
5552 return PreservedAnalyses::all();
5555 PreservedAnalyses
VerifierPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
5556 auto res
= AM
.getResult
<VerifierAnalysis
>(F
);
5557 if (res
.IRBroken
&& FatalErrors
)
5558 report_fatal_error("Broken function found, compilation aborted!");
5560 return PreservedAnalyses::all();