[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / MC / XCOFFObjectWriter.cpp
blob353c21068735ba4f5dc66f9f4bb8f8a2676d0575
1 //===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements XCOFF object file writer information.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/BinaryFormat/XCOFF.h"
14 #include "llvm/MC/MCAsmLayout.h"
15 #include "llvm/MC/MCAssembler.h"
16 #include "llvm/MC/MCObjectWriter.h"
17 #include "llvm/MC/MCSectionXCOFF.h"
18 #include "llvm/MC/MCSymbolXCOFF.h"
19 #include "llvm/MC/MCValue.h"
20 #include "llvm/MC/MCXCOFFObjectWriter.h"
21 #include "llvm/MC/StringTableBuilder.h"
22 #include "llvm/Support/Error.h"
23 #include "llvm/Support/MathExtras.h"
25 #include <deque>
27 using namespace llvm;
29 // An XCOFF object file has a limited set of predefined sections. The most
30 // important ones for us (right now) are:
31 // .text --> contains program code and read-only data.
32 // .data --> contains initialized data, function descriptors, and the TOC.
33 // .bss --> contains uninitialized data.
34 // Each of these sections is composed of 'Control Sections'. A Control Section
35 // is more commonly referred to as a csect. A csect is an indivisible unit of
36 // code or data, and acts as a container for symbols. A csect is mapped
37 // into a section based on its storage-mapping class, with the exception of
38 // XMC_RW which gets mapped to either .data or .bss based on whether it's
39 // explicitly initialized or not.
41 // We don't represent the sections in the MC layer as there is nothing
42 // interesting about them at at that level: they carry information that is
43 // only relevant to the ObjectWriter, so we materialize them in this class.
44 namespace {
46 constexpr unsigned DefaultSectionAlign = 4;
48 // Packs the csect's alignment and type into a byte.
49 uint8_t getEncodedType(const MCSectionXCOFF *);
51 // Wrapper around an MCSymbolXCOFF.
52 struct Symbol {
53 const MCSymbolXCOFF *const MCSym;
54 uint32_t SymbolTableIndex;
56 XCOFF::StorageClass getStorageClass() const {
57 return MCSym->getStorageClass();
59 StringRef getName() const { return MCSym->getName(); }
60 Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {}
63 // Wrapper for an MCSectionXCOFF.
64 struct ControlSection {
65 const MCSectionXCOFF *const MCCsect;
66 uint32_t SymbolTableIndex;
67 uint32_t Address;
68 uint32_t Size;
70 SmallVector<Symbol, 1> Syms;
71 StringRef getName() const { return MCCsect->getSectionName(); }
72 ControlSection(const MCSectionXCOFF *MCSec)
73 : MCCsect(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {}
76 // Represents the data related to a section excluding the csects that make up
77 // the raw data of the section. The csects are stored separately as not all
78 // sections contain csects, and some sections contain csects which are better
79 // stored separately, e.g. the .data section containing read-write, descriptor,
80 // TOCBase and TOC-entry csects.
81 struct Section {
82 char Name[XCOFF::NameSize];
83 // The physical/virtual address of the section. For an object file
84 // these values are equivalent.
85 uint32_t Address;
86 uint32_t Size;
87 uint32_t FileOffsetToData;
88 uint32_t FileOffsetToRelocations;
89 uint32_t RelocationCount;
90 int32_t Flags;
92 int16_t Index;
94 // Virtual sections do not need storage allocated in the object file.
95 const bool IsVirtual;
97 void reset() {
98 Address = 0;
99 Size = 0;
100 FileOffsetToData = 0;
101 FileOffsetToRelocations = 0;
102 RelocationCount = 0;
103 Index = -1;
106 Section(const char *N, XCOFF::SectionTypeFlags Flags, bool IsVirtual)
107 : Address(0), Size(0), FileOffsetToData(0), FileOffsetToRelocations(0),
108 RelocationCount(0), Flags(Flags), Index(-1), IsVirtual(IsVirtual) {
109 strncpy(Name, N, XCOFF::NameSize);
113 class XCOFFObjectWriter : public MCObjectWriter {
114 // Type to be used for a container representing a set of csects with
115 // (approximately) the same storage mapping class. For example all the csects
116 // with a storage mapping class of `xmc_pr` will get placed into the same
117 // container.
118 using CsectGroup = std::deque<ControlSection>;
120 support::endian::Writer W;
121 std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter;
122 StringTableBuilder Strings;
124 // The non-empty sections, in the order they will appear in the section header
125 // table.
126 std::vector<Section *> Sections;
128 // The Predefined sections.
129 Section Text;
130 Section BSS;
132 // CsectGroups. These store the csects which make up different parts of
133 // the sections. Should have one for each set of csects that get mapped into
134 // the same section and get handled in a 'similar' way.
135 CsectGroup ProgramCodeCsects;
136 CsectGroup BSSCsects;
138 uint32_t SymbolTableEntryCount = 0;
139 uint32_t SymbolTableOffset = 0;
141 virtual void reset() override;
143 void executePostLayoutBinding(MCAssembler &, const MCAsmLayout &) override;
145 void recordRelocation(MCAssembler &, const MCAsmLayout &, const MCFragment *,
146 const MCFixup &, MCValue, uint64_t &) override;
148 uint64_t writeObject(MCAssembler &, const MCAsmLayout &) override;
150 static bool nameShouldBeInStringTable(const StringRef &);
151 void writeSymbolName(const StringRef &);
152 void writeSymbolTableEntryForCsectMemberLabel(const Symbol &,
153 const ControlSection &, int16_t,
154 uint64_t);
155 void writeSymbolTableEntryForControlSection(const ControlSection &, int16_t,
156 XCOFF::StorageClass);
157 void writeFileHeader();
158 void writeSectionHeaderTable();
159 void writeSections(const MCAssembler &Asm, const MCAsmLayout &Layout);
160 void writeSymbolTable(const MCAsmLayout &Layout);
162 // Called after all the csects and symbols have been processed by
163 // `executePostLayoutBinding`, this function handles building up the majority
164 // of the structures in the object file representation. Namely:
165 // *) Calculates physical/virtual addresses, raw-pointer offsets, and section
166 // sizes.
167 // *) Assigns symbol table indices.
168 // *) Builds up the section header table by adding any non-empty sections to
169 // `Sections`.
170 void assignAddressesAndIndices(const MCAsmLayout &);
172 bool
173 needsAuxiliaryHeader() const { /* TODO aux header support not implemented. */
174 return false;
177 // Returns the size of the auxiliary header to be written to the object file.
178 size_t auxiliaryHeaderSize() const {
179 assert(!needsAuxiliaryHeader() &&
180 "Auxiliary header support not implemented.");
181 return 0;
184 public:
185 XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
186 raw_pwrite_stream &OS);
189 XCOFFObjectWriter::XCOFFObjectWriter(
190 std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS)
191 : W(OS, support::big), TargetObjectWriter(std::move(MOTW)),
192 Strings(StringTableBuilder::XCOFF),
193 Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false),
194 BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true) {}
196 void XCOFFObjectWriter::reset() {
197 // Reset any sections we have written to, and empty the section header table.
198 for (auto *Sec : Sections)
199 Sec->reset();
200 Sections.clear();
202 // Clear any csects we have stored.
203 ProgramCodeCsects.clear();
204 BSSCsects.clear();
206 // Reset the symbol table and string table.
207 SymbolTableEntryCount = 0;
208 SymbolTableOffset = 0;
209 Strings.clear();
211 MCObjectWriter::reset();
214 void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
215 const MCAsmLayout &Layout) {
216 if (TargetObjectWriter->is64Bit())
217 report_fatal_error("64-bit XCOFF object files are not supported yet.");
219 // Maps the MC Section representation to its corresponding ControlSection
220 // wrapper. Needed for finding the ControlSection to insert an MCSymbol into
221 // from its containing MCSectionXCOFF.
222 DenseMap<const MCSectionXCOFF *, ControlSection *> WrapperMap;
224 for (const auto &S : Asm) {
225 const auto *MCSec = cast<const MCSectionXCOFF>(&S);
226 assert(WrapperMap.find(MCSec) == WrapperMap.end() &&
227 "Cannot add a csect twice.");
229 // If the name does not fit in the storage provided in the symbol table
230 // entry, add it to the string table.
231 if (nameShouldBeInStringTable(MCSec->getSectionName()))
232 Strings.add(MCSec->getSectionName());
234 switch (MCSec->getMappingClass()) {
235 case XCOFF::XMC_PR:
236 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
237 "Only an initialized csect can contain program code.");
238 ProgramCodeCsects.emplace_back(MCSec);
239 WrapperMap[MCSec] = &ProgramCodeCsects.back();
240 break;
241 case XCOFF::XMC_RW:
242 if (XCOFF::XTY_CM == MCSec->getCSectType()) {
243 BSSCsects.emplace_back(MCSec);
244 WrapperMap[MCSec] = &BSSCsects.back();
245 break;
247 report_fatal_error("Unhandled mapping of read-write csect to section.");
248 case XCOFF::XMC_TC0:
249 // TODO FIXME Handle emiting the TOC base.
250 break;
251 case XCOFF::XMC_BS:
252 assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
253 "Mapping invalid csect. CSECT with bss storage class must be "
254 "common type.");
255 BSSCsects.emplace_back(MCSec);
256 WrapperMap[MCSec] = &BSSCsects.back();
257 break;
258 default:
259 report_fatal_error("Unhandled mapping of csect to section.");
263 for (const MCSymbol &S : Asm.symbols()) {
264 // Nothing to do for temporary symbols.
265 if (S.isTemporary())
266 continue;
267 const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S);
269 // Map the symbol into its containing csect.
270 const MCSectionXCOFF *ContainingCsect = XSym->getContainingCsect();
271 assert(WrapperMap.find(ContainingCsect) != WrapperMap.end() &&
272 "Expected containing csect to exist in map");
274 // Lookup the containing csect and add the symbol to it.
275 WrapperMap[ContainingCsect]->Syms.emplace_back(XSym);
277 // If the name does not fit in the storage provided in the symbol table
278 // entry, add it to the string table.
279 if (nameShouldBeInStringTable(XSym->getName()))
280 Strings.add(XSym->getName());
283 Strings.finalize();
284 assignAddressesAndIndices(Layout);
287 void XCOFFObjectWriter::recordRelocation(MCAssembler &, const MCAsmLayout &,
288 const MCFragment *, const MCFixup &,
289 MCValue, uint64_t &) {
290 report_fatal_error("XCOFF relocations not supported.");
293 void XCOFFObjectWriter::writeSections(const MCAssembler &Asm,
294 const MCAsmLayout &Layout) {
295 // Write the program code control sections one at a time.
296 uint32_t CurrentAddressLocation = Text.Address;
297 for (const auto &Csect : ProgramCodeCsects) {
298 if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation)
299 W.OS.write_zeros(PaddingSize);
300 Asm.writeSectionData(W.OS, Csect.MCCsect, Layout);
301 CurrentAddressLocation = Csect.Address + Csect.Size;
304 if (Text.Index != -1) {
305 // The size of the tail padding in a section is the end virtual address of
306 // the current section minus the the end virtual address of the last csect
307 // in that section.
308 if (uint32_t PaddingSize =
309 Text.Address + Text.Size - CurrentAddressLocation)
310 W.OS.write_zeros(PaddingSize);
314 uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm,
315 const MCAsmLayout &Layout) {
316 // We always emit a timestamp of 0 for reproducibility, so ensure incremental
317 // linking is not enabled, in case, like with Windows COFF, such a timestamp
318 // is incompatible with incremental linking of XCOFF.
319 if (Asm.isIncrementalLinkerCompatible())
320 report_fatal_error("Incremental linking not supported for XCOFF.");
322 if (TargetObjectWriter->is64Bit())
323 report_fatal_error("64-bit XCOFF object files are not supported yet.");
325 uint64_t StartOffset = W.OS.tell();
327 writeFileHeader();
328 writeSectionHeaderTable();
329 writeSections(Asm, Layout);
330 // TODO writeRelocations();
332 writeSymbolTable(Layout);
333 // Write the string table.
334 Strings.write(W.OS);
336 return W.OS.tell() - StartOffset;
339 bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef &SymbolName) {
340 return SymbolName.size() > XCOFF::NameSize;
343 void XCOFFObjectWriter::writeSymbolName(const StringRef &SymbolName) {
344 if (nameShouldBeInStringTable(SymbolName)) {
345 W.write<int32_t>(0);
346 W.write<uint32_t>(Strings.getOffset(SymbolName));
347 } else {
348 char Name[XCOFF::NameSize];
349 std::strncpy(Name, SymbolName.data(), XCOFF::NameSize);
350 ArrayRef<char> NameRef(Name, XCOFF::NameSize);
351 W.write(NameRef);
355 void XCOFFObjectWriter::writeSymbolTableEntryForCsectMemberLabel(
356 const Symbol &SymbolRef, const ControlSection &CSectionRef,
357 int16_t SectionIndex, uint64_t SymbolOffset) {
358 // Name or Zeros and string table offset
359 writeSymbolName(SymbolRef.getName());
360 assert(SymbolOffset <= UINT32_MAX - CSectionRef.Address &&
361 "Symbol address overflows.");
362 W.write<uint32_t>(CSectionRef.Address + SymbolOffset);
363 W.write<int16_t>(SectionIndex);
364 // Basic/Derived type. See the description of the n_type field for symbol
365 // table entries for a detailed description. Since we don't yet support
366 // visibility, and all other bits are either optionally set or reserved, this
367 // is always zero.
368 // TODO FIXME How to assert a symbol's visibilty is default?
369 // TODO Set the function indicator (bit 10, 0x0020) for functions
370 // when debugging is enabled.
371 W.write<uint16_t>(0);
372 W.write<uint8_t>(SymbolRef.getStorageClass());
373 // Always 1 aux entry for now.
374 W.write<uint8_t>(1);
376 // Now output the auxiliary entry.
377 W.write<uint32_t>(CSectionRef.SymbolTableIndex);
378 // Parameter typecheck hash. Not supported.
379 W.write<uint32_t>(0);
380 // Typecheck section number. Not supported.
381 W.write<uint16_t>(0);
382 // Symbol type: Label
383 W.write<uint8_t>(XCOFF::XTY_LD);
384 // Storage mapping class.
385 W.write<uint8_t>(CSectionRef.MCCsect->getMappingClass());
386 // Reserved (x_stab).
387 W.write<uint32_t>(0);
388 // Reserved (x_snstab).
389 W.write<uint16_t>(0);
392 void XCOFFObjectWriter::writeSymbolTableEntryForControlSection(
393 const ControlSection &CSectionRef, int16_t SectionIndex,
394 XCOFF::StorageClass StorageClass) {
395 // n_name, n_zeros, n_offset
396 writeSymbolName(CSectionRef.getName());
397 // n_value
398 W.write<uint32_t>(CSectionRef.Address);
399 // n_scnum
400 W.write<int16_t>(SectionIndex);
401 // Basic/Derived type. See the description of the n_type field for symbol
402 // table entries for a detailed description. Since we don't yet support
403 // visibility, and all other bits are either optionally set or reserved, this
404 // is always zero.
405 // TODO FIXME How to assert a symbol's visibilty is default?
406 // TODO Set the function indicator (bit 10, 0x0020) for functions
407 // when debugging is enabled.
408 W.write<uint16_t>(0);
409 // n_sclass
410 W.write<uint8_t>(StorageClass);
411 // Always 1 aux entry for now.
412 W.write<uint8_t>(1);
414 // Now output the auxiliary entry.
415 W.write<uint32_t>(CSectionRef.Size);
416 // Parameter typecheck hash. Not supported.
417 W.write<uint32_t>(0);
418 // Typecheck section number. Not supported.
419 W.write<uint16_t>(0);
420 // Symbol type.
421 W.write<uint8_t>(getEncodedType(CSectionRef.MCCsect));
422 // Storage mapping class.
423 W.write<uint8_t>(CSectionRef.MCCsect->getMappingClass());
424 // Reserved (x_stab).
425 W.write<uint32_t>(0);
426 // Reserved (x_snstab).
427 W.write<uint16_t>(0);
430 void XCOFFObjectWriter::writeFileHeader() {
431 // Magic.
432 W.write<uint16_t>(0x01df);
433 // Number of sections.
434 W.write<uint16_t>(Sections.size());
435 // Timestamp field. For reproducible output we write a 0, which represents no
436 // timestamp.
437 W.write<int32_t>(0);
438 // Byte Offset to the start of the symbol table.
439 W.write<uint32_t>(SymbolTableOffset);
440 // Number of entries in the symbol table.
441 W.write<int32_t>(SymbolTableEntryCount);
442 // Size of the optional header.
443 W.write<uint16_t>(0);
444 // Flags.
445 W.write<uint16_t>(0);
448 void XCOFFObjectWriter::writeSectionHeaderTable() {
449 for (const auto *Sec : Sections) {
450 // Write Name.
451 ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize);
452 W.write(NameRef);
454 // Write the Physical Address and Virtual Address. In an object file these
455 // are the same.
456 W.write<uint32_t>(Sec->Address);
457 W.write<uint32_t>(Sec->Address);
459 W.write<uint32_t>(Sec->Size);
460 W.write<uint32_t>(Sec->FileOffsetToData);
462 // Relocation pointer and Lineno pointer. Not supported yet.
463 W.write<uint32_t>(0);
464 W.write<uint32_t>(0);
466 // Relocation and line-number counts. Not supported yet.
467 W.write<uint16_t>(0);
468 W.write<uint16_t>(0);
470 W.write<int32_t>(Sec->Flags);
474 void XCOFFObjectWriter::writeSymbolTable(const MCAsmLayout &Layout) {
475 // Print out symbol table for the program code.
476 for (const auto &Csect : ProgramCodeCsects) {
477 // Write out the control section first and then each symbol in it.
478 writeSymbolTableEntryForControlSection(Csect, Text.Index,
479 Csect.MCCsect->getStorageClass());
480 for (const auto &Sym : Csect.Syms)
481 writeSymbolTableEntryForCsectMemberLabel(
482 Sym, Csect, Text.Index, Layout.getSymbolOffset(*Sym.MCSym));
485 // The BSS Section is special in that the csects must contain a single symbol,
486 // and the contained symbol cannot be represented in the symbol table as a
487 // label definition.
488 for (auto &Csect : BSSCsects) {
489 assert(Csect.Syms.size() == 1 &&
490 "Uninitialized csect cannot contain more then 1 symbol.");
491 Symbol &Sym = Csect.Syms.back();
492 writeSymbolTableEntryForControlSection(Csect, BSS.Index,
493 Sym.getStorageClass());
497 void XCOFFObjectWriter::assignAddressesAndIndices(const MCAsmLayout &Layout) {
498 // The address corrresponds to the address of sections and symbols in the
499 // object file. We place the shared address 0 immediately after the
500 // section header table.
501 uint32_t Address = 0;
502 // Section indices are 1-based in XCOFF.
503 int16_t SectionIndex = 1;
504 // The first symbol table entry is for the file name. We are not emitting it
505 // yet, so start at index 0.
506 uint32_t SymbolTableIndex = 0;
508 // Text section comes first.
509 if (!ProgramCodeCsects.empty()) {
510 Sections.push_back(&Text);
511 Text.Index = SectionIndex++;
512 for (auto &Csect : ProgramCodeCsects) {
513 const MCSectionXCOFF *MCSec = Csect.MCCsect;
514 Csect.Address = alignTo(Address, MCSec->getAlignment());
515 Csect.Size = Layout.getSectionAddressSize(MCSec);
516 Address = Csect.Address + Csect.Size;
517 Csect.SymbolTableIndex = SymbolTableIndex;
518 // 1 main and 1 auxiliary symbol table entry for the csect.
519 SymbolTableIndex += 2;
520 for (auto &Sym : Csect.Syms) {
521 Sym.SymbolTableIndex = SymbolTableIndex;
522 // 1 main and 1 auxiliary symbol table entry for each contained symbol
523 SymbolTableIndex += 2;
526 Address = alignTo(Address, DefaultSectionAlign);
528 // The first csect of a section can be aligned by adjusting the virtual
529 // address of its containing section instead of writing zeroes into the
530 // object file.
531 Text.Address = ProgramCodeCsects.front().Address;
533 Text.Size = Address - Text.Address;
536 // Data section Second. TODO
538 // BSS Section third.
539 if (!BSSCsects.empty()) {
540 Sections.push_back(&BSS);
541 BSS.Index = SectionIndex++;
542 for (auto &Csect : BSSCsects) {
543 const MCSectionXCOFF *MCSec = Csect.MCCsect;
544 Csect.Address = alignTo(Address, MCSec->getAlignment());
545 Csect.Size = Layout.getSectionAddressSize(MCSec);
546 Address = Csect.Address + Csect.Size;
547 Csect.SymbolTableIndex = SymbolTableIndex;
548 // 1 main and 1 auxiliary symbol table entry for the csect.
549 SymbolTableIndex += 2;
551 assert(Csect.Syms.size() == 1 &&
552 "csect in the BSS can only contain a single symbol.");
553 Csect.Syms[0].SymbolTableIndex = Csect.SymbolTableIndex;
555 // Pad out Address to the default alignment. This is to match how the system
556 // assembler handles the .bss section. Its size is always a multiple of 4.
557 Address = alignTo(Address, DefaultSectionAlign);
559 BSS.Address = BSSCsects.front().Address;
560 BSS.Size = Address - BSS.Address;
563 SymbolTableEntryCount = SymbolTableIndex;
565 // Calculate the RawPointer value for each section.
566 uint64_t RawPointer = sizeof(XCOFF::FileHeader32) + auxiliaryHeaderSize() +
567 Sections.size() * sizeof(XCOFF::SectionHeader32);
568 for (auto *Sec : Sections) {
569 if (!Sec->IsVirtual) {
570 Sec->FileOffsetToData = RawPointer;
571 RawPointer += Sec->Size;
575 // TODO Add in Relocation storage to the RawPointer Calculation.
576 // TODO What to align the SymbolTable to?
577 // TODO Error check that the number of symbol table entries fits in 32-bits
578 // signed ...
579 if (SymbolTableEntryCount)
580 SymbolTableOffset = RawPointer;
583 // Takes the log base 2 of the alignment and shifts the result into the 5 most
584 // significant bits of a byte, then or's in the csect type into the least
585 // significant 3 bits.
586 uint8_t getEncodedType(const MCSectionXCOFF *Sec) {
587 unsigned Align = Sec->getAlignment();
588 assert(isPowerOf2_32(Align) && "Alignment must be a power of 2.");
589 unsigned Log2Align = Log2_32(Align);
590 // Result is a number in the range [0, 31] which fits in the 5 least
591 // significant bits. Shift this value into the 5 most significant bits, and
592 // bitwise-or in the csect type.
593 uint8_t EncodedAlign = Log2Align << 3;
594 return EncodedAlign | Sec->getCSectType();
597 } // end anonymous namespace
599 std::unique_ptr<MCObjectWriter>
600 llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
601 raw_pwrite_stream &OS) {
602 return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS);