[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Target / AArch64 / AArch64CallLowering.cpp
blobed93d02aa6153ba915277f79aa4a75fc1f52d91e
1 //===--- AArch64CallLowering.cpp - Call lowering --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
15 #include "AArch64CallLowering.h"
16 #include "AArch64ISelLowering.h"
17 #include "AArch64MachineFunctionInfo.h"
18 #include "AArch64Subtarget.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/CodeGen/GlobalISel/Utils.h"
25 #include "llvm/CodeGen/LowLevelType.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
47 #define DEBUG_TYPE "aarch64-call-lowering"
49 using namespace llvm;
51 AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI)
52 : CallLowering(&TLI) {}
54 namespace {
55 struct IncomingArgHandler : public CallLowering::ValueHandler {
56 IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
57 CCAssignFn *AssignFn)
58 : ValueHandler(MIRBuilder, MRI, AssignFn), StackUsed(0) {}
60 Register getStackAddress(uint64_t Size, int64_t Offset,
61 MachinePointerInfo &MPO) override {
62 auto &MFI = MIRBuilder.getMF().getFrameInfo();
63 int FI = MFI.CreateFixedObject(Size, Offset, true);
64 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
65 Register AddrReg = MRI.createGenericVirtualRegister(LLT::pointer(0, 64));
66 MIRBuilder.buildFrameIndex(AddrReg, FI);
67 StackUsed = std::max(StackUsed, Size + Offset);
68 return AddrReg;
71 void assignValueToReg(Register ValVReg, Register PhysReg,
72 CCValAssign &VA) override {
73 markPhysRegUsed(PhysReg);
74 switch (VA.getLocInfo()) {
75 default:
76 MIRBuilder.buildCopy(ValVReg, PhysReg);
77 break;
78 case CCValAssign::LocInfo::SExt:
79 case CCValAssign::LocInfo::ZExt:
80 case CCValAssign::LocInfo::AExt: {
81 auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
82 MIRBuilder.buildTrunc(ValVReg, Copy);
83 break;
88 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
89 MachinePointerInfo &MPO, CCValAssign &VA) override {
90 // FIXME: Get alignment
91 auto MMO = MIRBuilder.getMF().getMachineMemOperand(
92 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size,
93 1);
94 MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
97 /// How the physical register gets marked varies between formal
98 /// parameters (it's a basic-block live-in), and a call instruction
99 /// (it's an implicit-def of the BL).
100 virtual void markPhysRegUsed(unsigned PhysReg) = 0;
102 bool isIncomingArgumentHandler() const override { return true; }
104 uint64_t StackUsed;
107 struct FormalArgHandler : public IncomingArgHandler {
108 FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
109 CCAssignFn *AssignFn)
110 : IncomingArgHandler(MIRBuilder, MRI, AssignFn) {}
112 void markPhysRegUsed(unsigned PhysReg) override {
113 MIRBuilder.getMRI()->addLiveIn(PhysReg);
114 MIRBuilder.getMBB().addLiveIn(PhysReg);
118 struct CallReturnHandler : public IncomingArgHandler {
119 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
120 MachineInstrBuilder MIB, CCAssignFn *AssignFn)
121 : IncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
123 void markPhysRegUsed(unsigned PhysReg) override {
124 MIB.addDef(PhysReg, RegState::Implicit);
127 MachineInstrBuilder MIB;
130 struct OutgoingArgHandler : public CallLowering::ValueHandler {
131 OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
132 MachineInstrBuilder MIB, CCAssignFn *AssignFn,
133 CCAssignFn *AssignFnVarArg, bool IsTailCall = false,
134 int FPDiff = 0)
135 : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB),
136 AssignFnVarArg(AssignFnVarArg), IsTailCall(IsTailCall), FPDiff(FPDiff),
137 StackSize(0) {}
139 bool isIncomingArgumentHandler() const override { return false; }
141 Register getStackAddress(uint64_t Size, int64_t Offset,
142 MachinePointerInfo &MPO) override {
143 MachineFunction &MF = MIRBuilder.getMF();
144 LLT p0 = LLT::pointer(0, 64);
145 LLT s64 = LLT::scalar(64);
147 if (IsTailCall) {
148 Offset += FPDiff;
149 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
150 Register FIReg = MRI.createGenericVirtualRegister(p0);
151 MIRBuilder.buildFrameIndex(FIReg, FI);
152 MPO = MachinePointerInfo::getFixedStack(MF, FI);
153 return FIReg;
156 Register SPReg = MRI.createGenericVirtualRegister(p0);
157 MIRBuilder.buildCopy(SPReg, Register(AArch64::SP));
159 Register OffsetReg = MRI.createGenericVirtualRegister(s64);
160 MIRBuilder.buildConstant(OffsetReg, Offset);
162 Register AddrReg = MRI.createGenericVirtualRegister(p0);
163 MIRBuilder.buildGEP(AddrReg, SPReg, OffsetReg);
165 MPO = MachinePointerInfo::getStack(MF, Offset);
166 return AddrReg;
169 void assignValueToReg(Register ValVReg, Register PhysReg,
170 CCValAssign &VA) override {
171 MIB.addUse(PhysReg, RegState::Implicit);
172 Register ExtReg = extendRegister(ValVReg, VA);
173 MIRBuilder.buildCopy(PhysReg, ExtReg);
176 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
177 MachinePointerInfo &MPO, CCValAssign &VA) override {
178 if (VA.getLocInfo() == CCValAssign::LocInfo::AExt) {
179 Size = VA.getLocVT().getSizeInBits() / 8;
180 ValVReg = MIRBuilder.buildAnyExt(LLT::scalar(Size * 8), ValVReg)
181 ->getOperand(0)
182 .getReg();
184 auto MMO = MIRBuilder.getMF().getMachineMemOperand(
185 MPO, MachineMemOperand::MOStore, Size, 1);
186 MIRBuilder.buildStore(ValVReg, Addr, *MMO);
189 bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
190 CCValAssign::LocInfo LocInfo,
191 const CallLowering::ArgInfo &Info,
192 ISD::ArgFlagsTy Flags,
193 CCState &State) override {
194 bool Res;
195 if (Info.IsFixed)
196 Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
197 else
198 Res = AssignFnVarArg(ValNo, ValVT, LocVT, LocInfo, Flags, State);
200 StackSize = State.getNextStackOffset();
201 return Res;
204 MachineInstrBuilder MIB;
205 CCAssignFn *AssignFnVarArg;
206 bool IsTailCall;
208 /// For tail calls, the byte offset of the call's argument area from the
209 /// callee's. Unused elsewhere.
210 int FPDiff;
211 uint64_t StackSize;
213 } // namespace
215 static bool doesCalleeRestoreStack(CallingConv::ID CallConv, bool TailCallOpt) {
216 return CallConv == CallingConv::Fast && TailCallOpt;
219 void AArch64CallLowering::splitToValueTypes(
220 const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
221 const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv) const {
222 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
223 LLVMContext &Ctx = OrigArg.Ty->getContext();
225 if (OrigArg.Ty->isVoidTy())
226 return;
228 SmallVector<EVT, 4> SplitVTs;
229 SmallVector<uint64_t, 4> Offsets;
230 ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);
232 if (SplitVTs.size() == 1) {
233 // No splitting to do, but we want to replace the original type (e.g. [1 x
234 // double] -> double).
235 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
236 OrigArg.Flags[0], OrigArg.IsFixed);
237 return;
240 // Create one ArgInfo for each virtual register in the original ArgInfo.
241 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
243 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
244 OrigArg.Ty, CallConv, false);
245 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
246 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
247 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0],
248 OrigArg.IsFixed);
249 if (NeedsRegBlock)
250 SplitArgs.back().Flags[0].setInConsecutiveRegs();
253 SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
256 bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
257 const Value *Val,
258 ArrayRef<Register> VRegs,
259 Register SwiftErrorVReg) const {
260 auto MIB = MIRBuilder.buildInstrNoInsert(AArch64::RET_ReallyLR);
261 assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
262 "Return value without a vreg");
264 bool Success = true;
265 if (!VRegs.empty()) {
266 MachineFunction &MF = MIRBuilder.getMF();
267 const Function &F = MF.getFunction();
269 MachineRegisterInfo &MRI = MF.getRegInfo();
270 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
271 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv());
272 auto &DL = F.getParent()->getDataLayout();
273 LLVMContext &Ctx = Val->getType()->getContext();
275 SmallVector<EVT, 4> SplitEVTs;
276 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
277 assert(VRegs.size() == SplitEVTs.size() &&
278 "For each split Type there should be exactly one VReg.");
280 SmallVector<ArgInfo, 8> SplitArgs;
281 CallingConv::ID CC = F.getCallingConv();
283 for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
284 if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) > 1) {
285 LLVM_DEBUG(dbgs() << "Can't handle extended arg types which need split");
286 return false;
289 Register CurVReg = VRegs[i];
290 ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx)};
291 setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
293 // i1 is a special case because SDAG i1 true is naturally zero extended
294 // when widened using ANYEXT. We need to do it explicitly here.
295 if (MRI.getType(CurVReg).getSizeInBits() == 1) {
296 CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0);
297 } else {
298 // Some types will need extending as specified by the CC.
299 MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]);
300 if (EVT(NewVT) != SplitEVTs[i]) {
301 unsigned ExtendOp = TargetOpcode::G_ANYEXT;
302 if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
303 Attribute::SExt))
304 ExtendOp = TargetOpcode::G_SEXT;
305 else if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
306 Attribute::ZExt))
307 ExtendOp = TargetOpcode::G_ZEXT;
309 LLT NewLLT(NewVT);
310 LLT OldLLT(MVT::getVT(CurArgInfo.Ty));
311 CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx);
312 // Instead of an extend, we might have a vector type which needs
313 // padding with more elements, e.g. <2 x half> -> <4 x half>.
314 if (NewVT.isVector()) {
315 if (OldLLT.isVector()) {
316 if (NewLLT.getNumElements() > OldLLT.getNumElements()) {
317 // We don't handle VA types which are not exactly twice the
318 // size, but can easily be done in future.
319 if (NewLLT.getNumElements() != OldLLT.getNumElements() * 2) {
320 LLVM_DEBUG(dbgs() << "Outgoing vector ret has too many elts");
321 return false;
323 auto Undef = MIRBuilder.buildUndef({OldLLT});
324 CurVReg =
325 MIRBuilder.buildMerge({NewLLT}, {CurVReg, Undef.getReg(0)})
326 .getReg(0);
327 } else {
328 // Just do a vector extend.
329 CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg})
330 .getReg(0);
332 } else if (NewLLT.getNumElements() == 2) {
333 // We need to pad a <1 x S> type to <2 x S>. Since we don't have
334 // <1 x S> vector types in GISel we use a build_vector instead
335 // of a vector merge/concat.
336 auto Undef = MIRBuilder.buildUndef({OldLLT});
337 CurVReg =
338 MIRBuilder
339 .buildBuildVector({NewLLT}, {CurVReg, Undef.getReg(0)})
340 .getReg(0);
341 } else {
342 LLVM_DEBUG(dbgs() << "Could not handle ret ty");
343 return false;
345 } else {
346 // A scalar extend.
347 CurVReg =
348 MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}).getReg(0);
352 if (CurVReg != CurArgInfo.Regs[0]) {
353 CurArgInfo.Regs[0] = CurVReg;
354 // Reset the arg flags after modifying CurVReg.
355 setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
357 splitToValueTypes(CurArgInfo, SplitArgs, DL, MRI, CC);
360 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFn, AssignFn);
361 Success = handleAssignments(MIRBuilder, SplitArgs, Handler);
364 if (SwiftErrorVReg) {
365 MIB.addUse(AArch64::X21, RegState::Implicit);
366 MIRBuilder.buildCopy(AArch64::X21, SwiftErrorVReg);
369 MIRBuilder.insertInstr(MIB);
370 return Success;
373 /// Helper function to compute forwarded registers for musttail calls. Computes
374 /// the forwarded registers, sets MBB liveness, and emits COPY instructions that
375 /// can be used to save + restore registers later.
376 static void handleMustTailForwardedRegisters(MachineIRBuilder &MIRBuilder,
377 CCAssignFn *AssignFn) {
378 MachineBasicBlock &MBB = MIRBuilder.getMBB();
379 MachineFunction &MF = MIRBuilder.getMF();
380 MachineFrameInfo &MFI = MF.getFrameInfo();
382 if (!MFI.hasMustTailInVarArgFunc())
383 return;
385 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
386 const Function &F = MF.getFunction();
387 assert(F.isVarArg() && "Expected F to be vararg?");
389 // Compute the set of forwarded registers. The rest are scratch.
390 SmallVector<CCValAssign, 16> ArgLocs;
391 CCState CCInfo(F.getCallingConv(), /*IsVarArg=*/true, MF, ArgLocs,
392 F.getContext());
393 SmallVector<MVT, 2> RegParmTypes;
394 RegParmTypes.push_back(MVT::i64);
395 RegParmTypes.push_back(MVT::f128);
397 // Later on, we can use this vector to restore the registers if necessary.
398 SmallVectorImpl<ForwardedRegister> &Forwards =
399 FuncInfo->getForwardedMustTailRegParms();
400 CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, AssignFn);
402 // Conservatively forward X8, since it might be used for an aggregate
403 // return.
404 if (!CCInfo.isAllocated(AArch64::X8)) {
405 unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
406 Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
409 // Add the forwards to the MachineBasicBlock and MachineFunction.
410 for (const auto &F : Forwards) {
411 MBB.addLiveIn(F.PReg);
412 MIRBuilder.buildCopy(Register(F.VReg), Register(F.PReg));
416 bool AArch64CallLowering::lowerFormalArguments(
417 MachineIRBuilder &MIRBuilder, const Function &F,
418 ArrayRef<ArrayRef<Register>> VRegs) const {
419 MachineFunction &MF = MIRBuilder.getMF();
420 MachineBasicBlock &MBB = MIRBuilder.getMBB();
421 MachineRegisterInfo &MRI = MF.getRegInfo();
422 auto &DL = F.getParent()->getDataLayout();
424 SmallVector<ArgInfo, 8> SplitArgs;
425 unsigned i = 0;
426 for (auto &Arg : F.args()) {
427 if (DL.getTypeStoreSize(Arg.getType()) == 0)
428 continue;
430 ArgInfo OrigArg{VRegs[i], Arg.getType()};
431 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, F);
433 splitToValueTypes(OrigArg, SplitArgs, DL, MRI, F.getCallingConv());
434 ++i;
437 if (!MBB.empty())
438 MIRBuilder.setInstr(*MBB.begin());
440 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
441 CCAssignFn *AssignFn =
442 TLI.CCAssignFnForCall(F.getCallingConv(), /*IsVarArg=*/false);
444 FormalArgHandler Handler(MIRBuilder, MRI, AssignFn);
445 if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
446 return false;
448 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
449 uint64_t StackOffset = Handler.StackUsed;
450 if (F.isVarArg()) {
451 auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
452 if (!Subtarget.isTargetDarwin()) {
453 // FIXME: we need to reimplement saveVarArgsRegisters from
454 // AArch64ISelLowering.
455 return false;
458 // We currently pass all varargs at 8-byte alignment, or 4 in ILP32.
459 StackOffset = alignTo(Handler.StackUsed, Subtarget.isTargetILP32() ? 4 : 8);
461 auto &MFI = MIRBuilder.getMF().getFrameInfo();
462 FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
465 if (doesCalleeRestoreStack(F.getCallingConv(),
466 MF.getTarget().Options.GuaranteedTailCallOpt)) {
467 // We have a non-standard ABI, so why not make full use of the stack that
468 // we're going to pop? It must be aligned to 16 B in any case.
469 StackOffset = alignTo(StackOffset, 16);
471 // If we're expected to restore the stack (e.g. fastcc), then we'll be
472 // adding a multiple of 16.
473 FuncInfo->setArgumentStackToRestore(StackOffset);
475 // Our own callers will guarantee that the space is free by giving an
476 // aligned value to CALLSEQ_START.
479 // When we tail call, we need to check if the callee's arguments
480 // will fit on the caller's stack. So, whenever we lower formal arguments,
481 // we should keep track of this information, since we might lower a tail call
482 // in this function later.
483 FuncInfo->setBytesInStackArgArea(StackOffset);
485 auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
486 if (Subtarget.hasCustomCallingConv())
487 Subtarget.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
489 handleMustTailForwardedRegisters(MIRBuilder, AssignFn);
491 // Move back to the end of the basic block.
492 MIRBuilder.setMBB(MBB);
494 return true;
497 /// Return true if the calling convention is one that we can guarantee TCO for.
498 static bool canGuaranteeTCO(CallingConv::ID CC) {
499 return CC == CallingConv::Fast;
502 /// Return true if we might ever do TCO for calls with this calling convention.
503 static bool mayTailCallThisCC(CallingConv::ID CC) {
504 switch (CC) {
505 case CallingConv::C:
506 case CallingConv::PreserveMost:
507 case CallingConv::Swift:
508 return true;
509 default:
510 return canGuaranteeTCO(CC);
514 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
515 /// CC.
516 static std::pair<CCAssignFn *, CCAssignFn *>
517 getAssignFnsForCC(CallingConv::ID CC, const AArch64TargetLowering &TLI) {
518 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
521 bool AArch64CallLowering::doCallerAndCalleePassArgsTheSameWay(
522 CallLoweringInfo &Info, MachineFunction &MF,
523 SmallVectorImpl<ArgInfo> &InArgs) const {
524 const Function &CallerF = MF.getFunction();
525 CallingConv::ID CalleeCC = Info.CallConv;
526 CallingConv::ID CallerCC = CallerF.getCallingConv();
528 // If the calling conventions match, then everything must be the same.
529 if (CalleeCC == CallerCC)
530 return true;
532 // Check if the caller and callee will handle arguments in the same way.
533 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
534 CCAssignFn *CalleeAssignFnFixed;
535 CCAssignFn *CalleeAssignFnVarArg;
536 std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
537 getAssignFnsForCC(CalleeCC, TLI);
539 CCAssignFn *CallerAssignFnFixed;
540 CCAssignFn *CallerAssignFnVarArg;
541 std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
542 getAssignFnsForCC(CallerCC, TLI);
544 if (!resultsCompatible(Info, MF, InArgs, *CalleeAssignFnFixed,
545 *CalleeAssignFnVarArg, *CallerAssignFnFixed,
546 *CallerAssignFnVarArg))
547 return false;
549 // Make sure that the caller and callee preserve all of the same registers.
550 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
551 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
552 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
553 if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) {
554 TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
555 TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
558 return TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved);
561 bool AArch64CallLowering::areCalleeOutgoingArgsTailCallable(
562 CallLoweringInfo &Info, MachineFunction &MF,
563 SmallVectorImpl<ArgInfo> &OutArgs) const {
564 // If there are no outgoing arguments, then we are done.
565 if (OutArgs.empty())
566 return true;
568 const Function &CallerF = MF.getFunction();
569 CallingConv::ID CalleeCC = Info.CallConv;
570 CallingConv::ID CallerCC = CallerF.getCallingConv();
571 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
573 CCAssignFn *AssignFnFixed;
574 CCAssignFn *AssignFnVarArg;
575 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
577 // We have outgoing arguments. Make sure that we can tail call with them.
578 SmallVector<CCValAssign, 16> OutLocs;
579 CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
581 if (!analyzeArgInfo(OutInfo, OutArgs, *AssignFnFixed, *AssignFnVarArg)) {
582 LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
583 return false;
586 // Make sure that they can fit on the caller's stack.
587 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
588 if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
589 LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
590 return false;
593 // Verify that the parameters in callee-saved registers match.
594 // TODO: Port this over to CallLowering as general code once swiftself is
595 // supported.
596 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
597 const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
598 MachineRegisterInfo &MRI = MF.getRegInfo();
600 for (unsigned i = 0; i < OutLocs.size(); ++i) {
601 auto &ArgLoc = OutLocs[i];
602 // If it's not a register, it's fine.
603 if (!ArgLoc.isRegLoc()) {
604 if (Info.IsVarArg) {
605 // Be conservative and disallow variadic memory operands to match SDAG's
606 // behaviour.
607 // FIXME: If the caller's calling convention is C, then we can
608 // potentially use its argument area. However, for cases like fastcc,
609 // we can't do anything.
610 LLVM_DEBUG(
611 dbgs()
612 << "... Cannot tail call vararg function with stack arguments\n");
613 return false;
615 continue;
618 Register Reg = ArgLoc.getLocReg();
620 // Only look at callee-saved registers.
621 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
622 continue;
624 LLVM_DEBUG(
625 dbgs()
626 << "... Call has an argument passed in a callee-saved register.\n");
628 // Check if it was copied from.
629 ArgInfo &OutInfo = OutArgs[i];
631 if (OutInfo.Regs.size() > 1) {
632 LLVM_DEBUG(
633 dbgs() << "... Cannot handle arguments in multiple registers.\n");
634 return false;
637 // Check if we copy the register, walking through copies from virtual
638 // registers. Note that getDefIgnoringCopies does not ignore copies from
639 // physical registers.
640 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
641 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
642 LLVM_DEBUG(
643 dbgs()
644 << "... Parameter was not copied into a VReg, cannot tail call.\n");
645 return false;
648 // Got a copy. Verify that it's the same as the register we want.
649 Register CopyRHS = RegDef->getOperand(1).getReg();
650 if (CopyRHS != Reg) {
651 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
652 "VReg, cannot tail call.\n");
653 return false;
657 return true;
660 bool AArch64CallLowering::isEligibleForTailCallOptimization(
661 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
662 SmallVectorImpl<ArgInfo> &InArgs,
663 SmallVectorImpl<ArgInfo> &OutArgs) const {
665 // Must pass all target-independent checks in order to tail call optimize.
666 if (!Info.IsTailCall)
667 return false;
669 CallingConv::ID CalleeCC = Info.CallConv;
670 MachineFunction &MF = MIRBuilder.getMF();
671 const Function &CallerF = MF.getFunction();
673 LLVM_DEBUG(dbgs() << "Attempting to lower call as tail call\n");
675 if (Info.SwiftErrorVReg) {
676 // TODO: We should handle this.
677 // Note that this is also handled by the check for no outgoing arguments.
678 // Proactively disabling this though, because the swifterror handling in
679 // lowerCall inserts a COPY *after* the location of the call.
680 LLVM_DEBUG(dbgs() << "... Cannot handle tail calls with swifterror yet.\n");
681 return false;
684 if (!mayTailCallThisCC(CalleeCC)) {
685 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
686 return false;
689 // Byval parameters hand the function a pointer directly into the stack area
690 // we want to reuse during a tail call. Working around this *is* possible (see
691 // X86).
693 // FIXME: In AArch64ISelLowering, this isn't worked around. Can/should we try
694 // it?
696 // On Windows, "inreg" attributes signify non-aggregate indirect returns.
697 // In this case, it is necessary to save/restore X0 in the callee. Tail
698 // call opt interferes with this. So we disable tail call opt when the
699 // caller has an argument with "inreg" attribute.
701 // FIXME: Check whether the callee also has an "inreg" argument.
703 // When the caller has a swifterror argument, we don't want to tail call
704 // because would have to move into the swifterror register before the
705 // tail call.
706 if (any_of(CallerF.args(), [](const Argument &A) {
707 return A.hasByValAttr() || A.hasInRegAttr() || A.hasSwiftErrorAttr();
708 })) {
709 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval, "
710 "inreg, or swifterror arguments\n");
711 return false;
714 // Externally-defined functions with weak linkage should not be
715 // tail-called on AArch64 when the OS does not support dynamic
716 // pre-emption of symbols, as the AAELF spec requires normal calls
717 // to undefined weak functions to be replaced with a NOP or jump to the
718 // next instruction. The behaviour of branch instructions in this
719 // situation (as used for tail calls) is implementation-defined, so we
720 // cannot rely on the linker replacing the tail call with a return.
721 if (Info.Callee.isGlobal()) {
722 const GlobalValue *GV = Info.Callee.getGlobal();
723 const Triple &TT = MF.getTarget().getTargetTriple();
724 if (GV->hasExternalWeakLinkage() &&
725 (!TT.isOSWindows() || TT.isOSBinFormatELF() ||
726 TT.isOSBinFormatMachO())) {
727 LLVM_DEBUG(dbgs() << "... Cannot tail call externally-defined function "
728 "with weak linkage for this OS.\n");
729 return false;
733 // If we have -tailcallopt, then we're done.
734 if (MF.getTarget().Options.GuaranteedTailCallOpt)
735 return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();
737 // We don't have -tailcallopt, so we're allowed to change the ABI (sibcall).
738 // Try to find cases where we can do that.
740 // I want anyone implementing a new calling convention to think long and hard
741 // about this assert.
742 assert((!Info.IsVarArg || CalleeCC == CallingConv::C) &&
743 "Unexpected variadic calling convention");
745 // Verify that the incoming and outgoing arguments from the callee are
746 // safe to tail call.
747 if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
748 LLVM_DEBUG(
749 dbgs()
750 << "... Caller and callee have incompatible calling conventions.\n");
751 return false;
754 if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
755 return false;
757 LLVM_DEBUG(
758 dbgs() << "... Call is eligible for tail call optimization.\n");
759 return true;
762 static unsigned getCallOpcode(const Function &CallerF, bool IsIndirect,
763 bool IsTailCall) {
764 if (!IsTailCall)
765 return IsIndirect ? AArch64::BLR : AArch64::BL;
767 if (!IsIndirect)
768 return AArch64::TCRETURNdi;
770 // When BTI is enabled, we need to use TCRETURNriBTI to make sure that we use
771 // x16 or x17.
772 if (CallerF.hasFnAttribute("branch-target-enforcement"))
773 return AArch64::TCRETURNriBTI;
775 return AArch64::TCRETURNri;
778 bool AArch64CallLowering::lowerTailCall(
779 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
780 SmallVectorImpl<ArgInfo> &OutArgs) const {
781 MachineFunction &MF = MIRBuilder.getMF();
782 const Function &F = MF.getFunction();
783 MachineRegisterInfo &MRI = MF.getRegInfo();
784 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
785 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
787 // True when we're tail calling, but without -tailcallopt.
788 bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;
790 // TODO: Right now, regbankselect doesn't know how to handle the rtcGPR64
791 // register class. Until we can do that, we should fall back here.
792 if (F.hasFnAttribute("branch-target-enforcement")) {
793 LLVM_DEBUG(
794 dbgs() << "Cannot lower indirect tail calls with BTI enabled yet.\n");
795 return false;
798 // Find out which ABI gets to decide where things go.
799 CallingConv::ID CalleeCC = Info.CallConv;
800 CCAssignFn *AssignFnFixed;
801 CCAssignFn *AssignFnVarArg;
802 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
804 MachineInstrBuilder CallSeqStart;
805 if (!IsSibCall)
806 CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
808 unsigned Opc = getCallOpcode(F, Info.Callee.isReg(), true);
809 auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
810 MIB.add(Info.Callee);
812 // Byte offset for the tail call. When we are sibcalling, this will always
813 // be 0.
814 MIB.addImm(0);
816 // Tell the call which registers are clobbered.
817 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
818 const uint32_t *Mask = TRI->getCallPreservedMask(MF, F.getCallingConv());
819 if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
820 TRI->UpdateCustomCallPreservedMask(MF, &Mask);
821 MIB.addRegMask(Mask);
823 if (TRI->isAnyArgRegReserved(MF))
824 TRI->emitReservedArgRegCallError(MF);
826 // FPDiff is the byte offset of the call's argument area from the callee's.
827 // Stores to callee stack arguments will be placed in FixedStackSlots offset
828 // by this amount for a tail call. In a sibling call it must be 0 because the
829 // caller will deallocate the entire stack and the callee still expects its
830 // arguments to begin at SP+0.
831 int FPDiff = 0;
833 // This will be 0 for sibcalls, potentially nonzero for tail calls produced
834 // by -tailcallopt. For sibcalls, the memory operands for the call are
835 // already available in the caller's incoming argument space.
836 unsigned NumBytes = 0;
837 if (!IsSibCall) {
838 // We aren't sibcalling, so we need to compute FPDiff. We need to do this
839 // before handling assignments, because FPDiff must be known for memory
840 // arguments.
841 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
842 SmallVector<CCValAssign, 16> OutLocs;
843 CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
844 analyzeArgInfo(OutInfo, OutArgs, *AssignFnFixed, *AssignFnVarArg);
846 // The callee will pop the argument stack as a tail call. Thus, we must
847 // keep it 16-byte aligned.
848 NumBytes = alignTo(OutInfo.getNextStackOffset(), 16);
850 // FPDiff will be negative if this tail call requires more space than we
851 // would automatically have in our incoming argument space. Positive if we
852 // actually shrink the stack.
853 FPDiff = NumReusableBytes - NumBytes;
855 // The stack pointer must be 16-byte aligned at all times it's used for a
856 // memory operation, which in practice means at *all* times and in
857 // particular across call boundaries. Therefore our own arguments started at
858 // a 16-byte aligned SP and the delta applied for the tail call should
859 // satisfy the same constraint.
860 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
863 const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
865 // Do the actual argument marshalling.
866 SmallVector<unsigned, 8> PhysRegs;
867 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
868 AssignFnVarArg, true, FPDiff);
869 if (!handleAssignments(MIRBuilder, OutArgs, Handler))
870 return false;
872 if (Info.IsVarArg && Info.IsMustTailCall) {
873 // Now we know what's being passed to the function. Add uses to the call for
874 // the forwarded registers that we *aren't* passing as parameters. This will
875 // preserve the copies we build earlier.
876 for (const auto &F : Forwards) {
877 Register ForwardedReg = F.PReg;
878 // If the register is already passed, or aliases a register which is
879 // already being passed, then skip it.
880 if (any_of(MIB->uses(), [&ForwardedReg, &TRI](const MachineOperand &Use) {
881 if (!Use.isReg())
882 return false;
883 return TRI->regsOverlap(Use.getReg(), ForwardedReg);
885 continue;
887 // We aren't passing it already, so we should add it to the call.
888 MIRBuilder.buildCopy(ForwardedReg, Register(F.VReg));
889 MIB.addReg(ForwardedReg, RegState::Implicit);
893 // If we have -tailcallopt, we need to adjust the stack. We'll do the call
894 // sequence start and end here.
895 if (!IsSibCall) {
896 MIB->getOperand(1).setImm(FPDiff);
897 CallSeqStart.addImm(NumBytes).addImm(0);
898 // End the call sequence *before* emitting the call. Normally, we would
899 // tidy the frame up after the call. However, here, we've laid out the
900 // parameters so that when SP is reset, they will be in the correct
901 // location.
902 MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP).addImm(NumBytes).addImm(0);
905 // Now we can add the actual call instruction to the correct basic block.
906 MIRBuilder.insertInstr(MIB);
908 // If Callee is a reg, since it is used by a target specific instruction,
909 // it must have a register class matching the constraint of that instruction.
910 if (Info.Callee.isReg())
911 MIB->getOperand(0).setReg(constrainOperandRegClass(
912 MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
913 *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
914 0));
916 MF.getFrameInfo().setHasTailCall();
917 Info.LoweredTailCall = true;
918 return true;
921 bool AArch64CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
922 CallLoweringInfo &Info) const {
923 MachineFunction &MF = MIRBuilder.getMF();
924 const Function &F = MF.getFunction();
925 MachineRegisterInfo &MRI = MF.getRegInfo();
926 auto &DL = F.getParent()->getDataLayout();
927 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
929 SmallVector<ArgInfo, 8> OutArgs;
930 for (auto &OrigArg : Info.OrigArgs) {
931 splitToValueTypes(OrigArg, OutArgs, DL, MRI, Info.CallConv);
932 // AAPCS requires that we zero-extend i1 to 8 bits by the caller.
933 if (OrigArg.Ty->isIntegerTy(1))
934 OutArgs.back().Flags[0].setZExt();
937 SmallVector<ArgInfo, 8> InArgs;
938 if (!Info.OrigRet.Ty->isVoidTy())
939 splitToValueTypes(Info.OrigRet, InArgs, DL, MRI, F.getCallingConv());
941 // If we can lower as a tail call, do that instead.
942 bool CanTailCallOpt =
943 isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
945 // We must emit a tail call if we have musttail.
946 if (Info.IsMustTailCall && !CanTailCallOpt) {
947 // There are types of incoming/outgoing arguments we can't handle yet, so
948 // it doesn't make sense to actually die here like in ISelLowering. Instead,
949 // fall back to SelectionDAG and let it try to handle this.
950 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
951 return false;
954 if (CanTailCallOpt)
955 return lowerTailCall(MIRBuilder, Info, OutArgs);
957 // Find out which ABI gets to decide where things go.
958 CCAssignFn *AssignFnFixed;
959 CCAssignFn *AssignFnVarArg;
960 std::tie(AssignFnFixed, AssignFnVarArg) =
961 getAssignFnsForCC(Info.CallConv, TLI);
963 MachineInstrBuilder CallSeqStart;
964 CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
966 // Create a temporarily-floating call instruction so we can add the implicit
967 // uses of arg registers.
968 unsigned Opc = getCallOpcode(F, Info.Callee.isReg(), false);
970 auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
971 MIB.add(Info.Callee);
973 // Tell the call which registers are clobbered.
974 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
975 const uint32_t *Mask = TRI->getCallPreservedMask(MF, F.getCallingConv());
976 if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
977 TRI->UpdateCustomCallPreservedMask(MF, &Mask);
978 MIB.addRegMask(Mask);
980 if (TRI->isAnyArgRegReserved(MF))
981 TRI->emitReservedArgRegCallError(MF);
983 // Do the actual argument marshalling.
984 SmallVector<unsigned, 8> PhysRegs;
985 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
986 AssignFnVarArg, false);
987 if (!handleAssignments(MIRBuilder, OutArgs, Handler))
988 return false;
990 // Now we can add the actual call instruction to the correct basic block.
991 MIRBuilder.insertInstr(MIB);
993 // If Callee is a reg, since it is used by a target specific
994 // instruction, it must have a register class matching the
995 // constraint of that instruction.
996 if (Info.Callee.isReg())
997 MIB->getOperand(0).setReg(constrainOperandRegClass(
998 MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
999 *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
1000 0));
1002 // Finally we can copy the returned value back into its virtual-register. In
1003 // symmetry with the arugments, the physical register must be an
1004 // implicit-define of the call instruction.
1005 if (!Info.OrigRet.Ty->isVoidTy()) {
1006 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(F.getCallingConv());
1007 CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
1008 if (!handleAssignments(MIRBuilder, InArgs, Handler))
1009 return false;
1012 if (Info.SwiftErrorVReg) {
1013 MIB.addDef(AArch64::X21, RegState::Implicit);
1014 MIRBuilder.buildCopy(Info.SwiftErrorVReg, Register(AArch64::X21));
1017 uint64_t CalleePopBytes =
1018 doesCalleeRestoreStack(Info.CallConv,
1019 MF.getTarget().Options.GuaranteedTailCallOpt)
1020 ? alignTo(Handler.StackSize, 16)
1021 : 0;
1023 CallSeqStart.addImm(Handler.StackSize).addImm(0);
1024 MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP)
1025 .addImm(Handler.StackSize)
1026 .addImm(CalleePopBytes);
1028 return true;