[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Target / AArch64 / AArch64InstrAtomics.td
blob459b53923625d61789f82118217b3e5bb8d054d7
1 //=- AArch64InstrAtomics.td - AArch64 Atomic codegen support -*- tablegen -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // AArch64 Atomic operand code-gen constructs.
11 //===----------------------------------------------------------------------===//
13 //===----------------------------------
14 // Atomic fences
15 //===----------------------------------
16 let AddedComplexity = 15, Size = 0 in
17 def CompilerBarrier : Pseudo<(outs), (ins i32imm:$ordering),
18                              [(atomic_fence imm:$ordering, 0)]>, Sched<[]>;
19 def : Pat<(atomic_fence (i64 4), (imm)), (DMB (i32 0x9))>;
20 def : Pat<(atomic_fence (imm), (imm)), (DMB (i32 0xb))>;
22 //===----------------------------------
23 // Atomic loads
24 //===----------------------------------
26 // When they're actually atomic, only one addressing mode (GPR64sp) is
27 // supported, but when they're relaxed and anything can be used, all the
28 // standard modes would be valid and may give efficiency gains.
30 // A atomic load operation that actually needs acquire semantics.
31 class acquiring_load<PatFrag base>
32   : PatFrag<(ops node:$ptr), (base node:$ptr)> {
33   let IsAtomic = 1;
34   let IsAtomicOrderingAcquireOrStronger = 1;
37 // An atomic load operation that does not need either acquire or release
38 // semantics.
39 class relaxed_load<PatFrag base>
40   : PatFrag<(ops node:$ptr), (base node:$ptr)> {
41   let IsAtomic = 1;
42   let IsAtomicOrderingAcquireOrStronger = 0;
45 // 8-bit loads
46 def : Pat<(acquiring_load<atomic_load_8>  GPR64sp:$ptr), (LDARB GPR64sp:$ptr)>;
47 def : Pat<(relaxed_load<atomic_load_8> (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm,
48                                                      ro_Wextend8:$offset)),
49           (LDRBBroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$offset)>;
50 def : Pat<(relaxed_load<atomic_load_8> (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm,
51                                                      ro_Xextend8:$offset)),
52           (LDRBBroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$offset)>;
53 def : Pat<(relaxed_load<atomic_load_8> (am_indexed8 GPR64sp:$Rn,
54                                                     uimm12s1:$offset)),
55           (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
56 def : Pat<(relaxed_load<atomic_load_8>
57                (am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
58           (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
60 // 16-bit loads
61 def : Pat<(acquiring_load<atomic_load_16> GPR64sp:$ptr), (LDARH GPR64sp:$ptr)>;
62 def : Pat<(relaxed_load<atomic_load_16> (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm,
63                                                        ro_Wextend16:$extend)),
64           (LDRHHroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)>;
65 def : Pat<(relaxed_load<atomic_load_16> (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm,
66                                                        ro_Xextend16:$extend)),
67           (LDRHHroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)>;
68 def : Pat<(relaxed_load<atomic_load_16> (am_indexed16 GPR64sp:$Rn,
69                                                       uimm12s2:$offset)),
70           (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
71 def : Pat<(relaxed_load<atomic_load_16>
72                (am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
73           (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
75 // 32-bit loads
76 def : Pat<(acquiring_load<atomic_load_32> GPR64sp:$ptr), (LDARW GPR64sp:$ptr)>;
77 def : Pat<(relaxed_load<atomic_load_32> (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm,
78                                                        ro_Wextend32:$extend)),
79           (LDRWroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>;
80 def : Pat<(relaxed_load<atomic_load_32> (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm,
81                                                        ro_Xextend32:$extend)),
82           (LDRWroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>;
83 def : Pat<(relaxed_load<atomic_load_32> (am_indexed32 GPR64sp:$Rn,
84                                                       uimm12s4:$offset)),
85           (LDRWui GPR64sp:$Rn, uimm12s4:$offset)>;
86 def : Pat<(relaxed_load<atomic_load_32>
87                (am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
88           (LDURWi GPR64sp:$Rn, simm9:$offset)>;
90 // 64-bit loads
91 def : Pat<(acquiring_load<atomic_load_64> GPR64sp:$ptr), (LDARX GPR64sp:$ptr)>;
92 def : Pat<(relaxed_load<atomic_load_64> (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
93                                                        ro_Wextend64:$extend)),
94           (LDRXroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
95 def : Pat<(relaxed_load<atomic_load_64> (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
96                                                        ro_Xextend64:$extend)),
97           (LDRXroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
98 def : Pat<(relaxed_load<atomic_load_64> (am_indexed64 GPR64sp:$Rn,
99                                                       uimm12s8:$offset)),
100           (LDRXui GPR64sp:$Rn, uimm12s8:$offset)>;
101 def : Pat<(relaxed_load<atomic_load_64>
102                (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
103           (LDURXi GPR64sp:$Rn, simm9:$offset)>;
105 //===----------------------------------
106 // Atomic stores
107 //===----------------------------------
109 // When they're actually atomic, only one addressing mode (GPR64sp) is
110 // supported, but when they're relaxed and anything can be used, all the
111 // standard modes would be valid and may give efficiency gains.
113 // A store operation that actually needs release semantics.
114 class releasing_store<PatFrag base>
115   : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val)> {
116   let IsAtomic = 1;
117   let IsAtomicOrderingReleaseOrStronger = 1;
120 // An atomic store operation that doesn't actually need to be atomic on AArch64.
121 class relaxed_store<PatFrag base>
122   : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val)> {
123   let IsAtomic = 1;
124   let IsAtomicOrderingReleaseOrStronger = 0;
127 // 8-bit stores
128 def : Pat<(releasing_store<atomic_store_8> GPR64sp:$ptr, GPR32:$val),
129           (STLRB GPR32:$val, GPR64sp:$ptr)>;
130 def : Pat<(relaxed_store<atomic_store_8>
131                (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend),
132                GPR32:$val),
133           (STRBBroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend)>;
134 def : Pat<(relaxed_store<atomic_store_8>
135                (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend),
136                GPR32:$val),
137           (STRBBroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend)>;
138 def : Pat<(relaxed_store<atomic_store_8>
139                (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset), GPR32:$val),
140           (STRBBui GPR32:$val, GPR64sp:$Rn, uimm12s1:$offset)>;
141 def : Pat<(relaxed_store<atomic_store_8>
142                (am_unscaled8 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
143           (STURBBi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;
145 // 16-bit stores
146 def : Pat<(releasing_store<atomic_store_16> GPR64sp:$ptr, GPR32:$val),
147           (STLRH GPR32:$val, GPR64sp:$ptr)>;
148 def : Pat<(relaxed_store<atomic_store_16> (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm,
149                                                          ro_Wextend16:$extend),
150                                           GPR32:$val),
151           (STRHHroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)>;
152 def : Pat<(relaxed_store<atomic_store_16> (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm,
153                                                          ro_Xextend16:$extend),
154                                           GPR32:$val),
155           (STRHHroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)>;
156 def : Pat<(relaxed_store<atomic_store_16>
157               (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset), GPR32:$val),
158           (STRHHui GPR32:$val, GPR64sp:$Rn, uimm12s2:$offset)>;
159 def : Pat<(relaxed_store<atomic_store_16>
160                (am_unscaled16 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
161           (STURHHi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;
163 // 32-bit stores
164 def : Pat<(releasing_store<atomic_store_32> GPR64sp:$ptr, GPR32:$val),
165           (STLRW GPR32:$val, GPR64sp:$ptr)>;
166 def : Pat<(relaxed_store<atomic_store_32> (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm,
167                                                          ro_Wextend32:$extend),
168                                           GPR32:$val),
169           (STRWroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>;
170 def : Pat<(relaxed_store<atomic_store_32> (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm,
171                                                          ro_Xextend32:$extend),
172                                           GPR32:$val),
173           (STRWroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>;
174 def : Pat<(relaxed_store<atomic_store_32>
175               (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset), GPR32:$val),
176           (STRWui GPR32:$val, GPR64sp:$Rn, uimm12s4:$offset)>;
177 def : Pat<(relaxed_store<atomic_store_32>
178                (am_unscaled32 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
179           (STURWi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;
181 // 64-bit stores
182 def : Pat<(releasing_store<atomic_store_64> GPR64sp:$ptr, GPR64:$val),
183           (STLRX GPR64:$val, GPR64sp:$ptr)>;
184 def : Pat<(relaxed_store<atomic_store_64> (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
185                                                          ro_Wextend16:$extend),
186                                           GPR64:$val),
187           (STRXroW GPR64:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
188 def : Pat<(relaxed_store<atomic_store_64> (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
189                                                          ro_Xextend16:$extend),
190                                           GPR64:$val),
191           (STRXroX GPR64:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
192 def : Pat<(relaxed_store<atomic_store_64>
193               (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset), GPR64:$val),
194           (STRXui GPR64:$val, GPR64sp:$Rn, uimm12s8:$offset)>;
195 def : Pat<(relaxed_store<atomic_store_64>
196                (am_unscaled64 GPR64sp:$Rn, simm9:$offset), GPR64:$val),
197           (STURXi GPR64:$val, GPR64sp:$Rn, simm9:$offset)>;
199 //===----------------------------------
200 // Low-level exclusive operations
201 //===----------------------------------
203 // Load-exclusives.
205 def ldxr_1 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
206   return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
207 }]> {
208   let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
211 def ldxr_2 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
212   return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
213 }]> {
214   let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
217 def ldxr_4 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
218   return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
219 }]> {
220   let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
223 def ldxr_8 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
224   return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
225 }]> {
226   let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
229 def : Pat<(ldxr_1 GPR64sp:$addr),
230           (SUBREG_TO_REG (i64 0), (LDXRB GPR64sp:$addr), sub_32)>;
231 def : Pat<(ldxr_2 GPR64sp:$addr),
232           (SUBREG_TO_REG (i64 0), (LDXRH GPR64sp:$addr), sub_32)>;
233 def : Pat<(ldxr_4 GPR64sp:$addr),
234           (SUBREG_TO_REG (i64 0), (LDXRW GPR64sp:$addr), sub_32)>;
235 def : Pat<(ldxr_8 GPR64sp:$addr), (LDXRX GPR64sp:$addr)>;
237 def : Pat<(and (ldxr_1 GPR64sp:$addr), 0xff),
238           (SUBREG_TO_REG (i64 0), (LDXRB GPR64sp:$addr), sub_32)>;
239 def : Pat<(and (ldxr_2 GPR64sp:$addr), 0xffff),
240           (SUBREG_TO_REG (i64 0), (LDXRH GPR64sp:$addr), sub_32)>;
241 def : Pat<(and (ldxr_4 GPR64sp:$addr), 0xffffffff),
242           (SUBREG_TO_REG (i64 0), (LDXRW GPR64sp:$addr), sub_32)>;
244 // Load-exclusives.
246 def ldaxr_1 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
247   return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
248 }]> {
249   let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
252 def ldaxr_2 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
253   return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
254 }]> {
255   let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
258 def ldaxr_4 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
259   return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
260 }]> {
261   let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
264 def ldaxr_8 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
265   return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
266 }]> {
267   let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
270 def : Pat<(ldaxr_1 GPR64sp:$addr),
271           (SUBREG_TO_REG (i64 0), (LDAXRB GPR64sp:$addr), sub_32)>;
272 def : Pat<(ldaxr_2 GPR64sp:$addr),
273           (SUBREG_TO_REG (i64 0), (LDAXRH GPR64sp:$addr), sub_32)>;
274 def : Pat<(ldaxr_4 GPR64sp:$addr),
275           (SUBREG_TO_REG (i64 0), (LDAXRW GPR64sp:$addr), sub_32)>;
276 def : Pat<(ldaxr_8 GPR64sp:$addr), (LDAXRX GPR64sp:$addr)>;
278 def : Pat<(and (ldaxr_1 GPR64sp:$addr), 0xff),
279           (SUBREG_TO_REG (i64 0), (LDAXRB GPR64sp:$addr), sub_32)>;
280 def : Pat<(and (ldaxr_2 GPR64sp:$addr), 0xffff),
281           (SUBREG_TO_REG (i64 0), (LDAXRH GPR64sp:$addr), sub_32)>;
282 def : Pat<(and (ldaxr_4 GPR64sp:$addr), 0xffffffff),
283           (SUBREG_TO_REG (i64 0), (LDAXRW GPR64sp:$addr), sub_32)>;
285 // Store-exclusives.
287 def stxr_1 : PatFrag<(ops node:$val, node:$ptr),
288                      (int_aarch64_stxr node:$val, node:$ptr), [{
289   return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
290 }]> {
291   let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
294 def stxr_2 : PatFrag<(ops node:$val, node:$ptr),
295                      (int_aarch64_stxr node:$val, node:$ptr), [{
296   return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
297 }]> {
298   let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
301 def stxr_4 : PatFrag<(ops node:$val, node:$ptr),
302                      (int_aarch64_stxr node:$val, node:$ptr), [{
303   return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
304 }]> {
305   let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
308 def stxr_8 : PatFrag<(ops node:$val, node:$ptr),
309                      (int_aarch64_stxr node:$val, node:$ptr), [{
310   return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
311 }]> {
312   let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
316 def : Pat<(stxr_1 GPR64:$val, GPR64sp:$addr),
317           (STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
318 def : Pat<(stxr_2 GPR64:$val, GPR64sp:$addr),
319           (STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
320 def : Pat<(stxr_4 GPR64:$val, GPR64sp:$addr),
321           (STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
322 def : Pat<(stxr_8 GPR64:$val, GPR64sp:$addr),
323           (STXRX GPR64:$val, GPR64sp:$addr)>;
325 def : Pat<(stxr_1 (zext (and GPR32:$val, 0xff)), GPR64sp:$addr),
326           (STXRB GPR32:$val, GPR64sp:$addr)>;
327 def : Pat<(stxr_2 (zext (and GPR32:$val, 0xffff)), GPR64sp:$addr),
328           (STXRH GPR32:$val, GPR64sp:$addr)>;
329 def : Pat<(stxr_4 (zext GPR32:$val), GPR64sp:$addr),
330           (STXRW GPR32:$val, GPR64sp:$addr)>;
332 def : Pat<(stxr_1 (and GPR64:$val, 0xff), GPR64sp:$addr),
333           (STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
334 def : Pat<(stxr_2 (and GPR64:$val, 0xffff), GPR64sp:$addr),
335           (STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
336 def : Pat<(stxr_4 (and GPR64:$val, 0xffffffff), GPR64sp:$addr),
337           (STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
339 // Store-release-exclusives.
341 def stlxr_1 : PatFrag<(ops node:$val, node:$ptr),
342                      (int_aarch64_stlxr node:$val, node:$ptr), [{
343   return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
344 }]> {
345   let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
348 def stlxr_2 : PatFrag<(ops node:$val, node:$ptr),
349                      (int_aarch64_stlxr node:$val, node:$ptr), [{
350   return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
351 }]> {
352   let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
355 def stlxr_4 : PatFrag<(ops node:$val, node:$ptr),
356                      (int_aarch64_stlxr node:$val, node:$ptr), [{
357   return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
358 }]> {
359   let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
362 def stlxr_8 : PatFrag<(ops node:$val, node:$ptr),
363                      (int_aarch64_stlxr node:$val, node:$ptr), [{
364   return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
365 }]> {
366   let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
370 def : Pat<(stlxr_1 GPR64:$val, GPR64sp:$addr),
371           (STLXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
372 def : Pat<(stlxr_2 GPR64:$val, GPR64sp:$addr),
373           (STLXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
374 def : Pat<(stlxr_4 GPR64:$val, GPR64sp:$addr),
375           (STLXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
376 def : Pat<(stlxr_8 GPR64:$val, GPR64sp:$addr),
377           (STLXRX GPR64:$val, GPR64sp:$addr)>;
379 def : Pat<(stlxr_1 (zext (and GPR32:$val, 0xff)), GPR64sp:$addr),
380           (STLXRB GPR32:$val, GPR64sp:$addr)>;
381 def : Pat<(stlxr_2 (zext (and GPR32:$val, 0xffff)), GPR64sp:$addr),
382           (STLXRH GPR32:$val, GPR64sp:$addr)>;
383 def : Pat<(stlxr_4 (zext GPR32:$val), GPR64sp:$addr),
384           (STLXRW GPR32:$val, GPR64sp:$addr)>;
386 def : Pat<(stlxr_1 (and GPR64:$val, 0xff), GPR64sp:$addr),
387           (STLXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
388 def : Pat<(stlxr_2 (and GPR64:$val, 0xffff), GPR64sp:$addr),
389           (STLXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
390 def : Pat<(stlxr_4 (and GPR64:$val, 0xffffffff), GPR64sp:$addr),
391           (STLXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
394 // And clear exclusive.
396 def : Pat<(int_aarch64_clrex), (CLREX 0xf)>;
398 //===----------------------------------
399 // Atomic cmpxchg for -O0
400 //===----------------------------------
402 // The fast register allocator used during -O0 inserts spills to cover any VRegs
403 // live across basic block boundaries. When this happens between an LDXR and an
404 // STXR it can clear the exclusive monitor, causing all cmpxchg attempts to
405 // fail.
407 // Unfortunately, this means we have to have an alternative (expanded
408 // post-regalloc) path for -O0 compilations. Fortunately this path can be
409 // significantly more naive than the standard expansion: we conservatively
410 // assume seq_cst, strong cmpxchg and omit clrex on failure.
412 let Constraints = "@earlyclobber $Rd,@earlyclobber $scratch",
413     mayLoad = 1, mayStore = 1 in {
414 def CMP_SWAP_8 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch),
415                         (ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>,
416                  Sched<[WriteAtomic]>;
418 def CMP_SWAP_16 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch),
419                          (ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>,
420                   Sched<[WriteAtomic]>;
422 def CMP_SWAP_32 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch),
423                          (ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>,
424                   Sched<[WriteAtomic]>;
426 def CMP_SWAP_64 : Pseudo<(outs GPR64:$Rd, GPR32:$scratch),
427                          (ins GPR64:$addr, GPR64:$desired, GPR64:$new), []>,
428                   Sched<[WriteAtomic]>;
431 let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi,@earlyclobber $scratch",
432     mayLoad = 1, mayStore = 1 in
433 def CMP_SWAP_128 : Pseudo<(outs GPR64:$RdLo, GPR64:$RdHi, GPR32:$scratch),
434                           (ins GPR64:$addr, GPR64:$desiredLo, GPR64:$desiredHi,
435                                GPR64:$newLo, GPR64:$newHi), []>,
436                    Sched<[WriteAtomic]>;
438 // v8.1 Atomic instructions:
439 let Predicates = [HasLSE] in {
440   defm : LDOPregister_patterns<"LDADD", "atomic_load_add">;
441   defm : LDOPregister_patterns<"LDSET", "atomic_load_or">;
442   defm : LDOPregister_patterns<"LDEOR", "atomic_load_xor">;
443   defm : LDOPregister_patterns<"LDCLR", "atomic_load_clr">;
444   defm : LDOPregister_patterns<"LDSMAX", "atomic_load_max">;
445   defm : LDOPregister_patterns<"LDSMIN", "atomic_load_min">;
446   defm : LDOPregister_patterns<"LDUMAX", "atomic_load_umax">;
447   defm : LDOPregister_patterns<"LDUMIN", "atomic_load_umin">;
448   defm : LDOPregister_patterns<"SWP", "atomic_swap">;
449   defm : CASregister_patterns<"CAS", "atomic_cmp_swap">;
451   // These two patterns are only needed for global isel, selection dag isel
452   // converts atomic load-sub into a sub and atomic load-add, and likewise for
453   // and -> clr.
454   defm : LDOPregister_patterns_mod<"LDADD", "atomic_load_sub", "SUB">;
455   defm : LDOPregister_patterns_mod<"LDCLR", "atomic_load_and", "ORN">;