[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Target / AArch64 / AArch64SchedA53.td
bloba6df0f3f083cb6a9a670acace91d935de236c127
1 //==- AArch64SchedA53.td - Cortex-A53 Scheduling Definitions -*- tablegen -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the itinerary class data for the ARM Cortex A53 processors.
11 //===----------------------------------------------------------------------===//
13 // ===---------------------------------------------------------------------===//
14 // The following definitions describe the simpler per-operand machine model.
15 // This works with MachineScheduler. See MCSchedule.h for details.
17 // Cortex-A53 machine model for scheduling and other instruction cost heuristics.
18 def CortexA53Model : SchedMachineModel {
19   let MicroOpBufferSize = 0; // Explicitly set to zero since A53 is in-order.
20   let IssueWidth = 2;        // 2 micro-ops are dispatched per cycle.
21   let LoadLatency = 3;       // Optimistic load latency assuming bypass.
22                              // This is overriden by OperandCycles if the
23                              // Itineraries are queried instead.
24   let MispredictPenalty = 9; // Based on "Cortex-A53 Software Optimisation
25                              // Specification - Instruction Timings"
26                              // v 1.0 Spreadsheet
27   let CompleteModel = 1;
29   list<Predicate> UnsupportedFeatures = SVEUnsupported.F;
33 //===----------------------------------------------------------------------===//
34 // Define each kind of processor resource and number available.
36 // Modeling each pipeline as a ProcResource using the BufferSize = 0 since
37 // Cortex-A53 is in-order.
39 def A53UnitALU    : ProcResource<2> { let BufferSize = 0; } // Int ALU
40 def A53UnitMAC    : ProcResource<1> { let BufferSize = 0; } // Int MAC
41 def A53UnitDiv    : ProcResource<1> { let BufferSize = 0; } // Int Division
42 def A53UnitLdSt   : ProcResource<1> { let BufferSize = 0; } // Load/Store
43 def A53UnitB      : ProcResource<1> { let BufferSize = 0; } // Branch
44 def A53UnitFPALU  : ProcResource<1> { let BufferSize = 0; } // FP ALU
45 def A53UnitFPMDS  : ProcResource<1> { let BufferSize = 0; } // FP Mult/Div/Sqrt
48 //===----------------------------------------------------------------------===//
49 // Subtarget-specific SchedWrite types which both map the ProcResources and
50 // set the latency.
52 let SchedModel = CortexA53Model in {
54 // ALU - Despite having a full latency of 4, most of the ALU instructions can
55 //       forward a cycle earlier and then two cycles earlier in the case of a
56 //       shift-only instruction. These latencies will be incorrect when the
57 //       result cannot be forwarded, but modeling isn't rocket surgery.
58 def : WriteRes<WriteImm, [A53UnitALU]> { let Latency = 3; }
59 def : WriteRes<WriteI, [A53UnitALU]> { let Latency = 3; }
60 def : WriteRes<WriteISReg, [A53UnitALU]> { let Latency = 3; }
61 def : WriteRes<WriteIEReg, [A53UnitALU]> { let Latency = 3; }
62 def : WriteRes<WriteIS, [A53UnitALU]> { let Latency = 2; }
63 def : WriteRes<WriteExtr, [A53UnitALU]> { let Latency = 3; }
65 // MAC
66 def : WriteRes<WriteIM32, [A53UnitMAC]> { let Latency = 4; }
67 def : WriteRes<WriteIM64, [A53UnitMAC]> { let Latency = 4; }
69 // Div
70 def : WriteRes<WriteID32, [A53UnitDiv]> { let Latency = 4; }
71 def : WriteRes<WriteID64, [A53UnitDiv]> { let Latency = 4; }
73 // Load
74 def : WriteRes<WriteLD, [A53UnitLdSt]> { let Latency = 4; }
75 def : WriteRes<WriteLDIdx, [A53UnitLdSt]> { let Latency = 4; }
76 def : WriteRes<WriteLDHi, [A53UnitLdSt]> { let Latency = 4; }
78 // Vector Load - Vector loads take 1-5 cycles to issue. For the WriteVecLd
79 //               below, choosing the median of 3 which makes the latency 6.
80 //               May model this more carefully in the future. The remaining
81 //               A53WriteVLD# types represent the 1-5 cycle issues explicitly.
82 def : WriteRes<WriteVLD, [A53UnitLdSt]> { let Latency = 6;
83                                           let ResourceCycles = [3]; }
84 def A53WriteVLD1 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 4; }
85 def A53WriteVLD2 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 5;
86                                                   let ResourceCycles = [2]; }
87 def A53WriteVLD3 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 6;
88                                                   let ResourceCycles = [3]; }
89 def A53WriteVLD4 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 7;
90                                                   let ResourceCycles = [4]; }
91 def A53WriteVLD5 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 8;
92                                                   let ResourceCycles = [5]; }
94 // Pre/Post Indexing - Performed as part of address generation which is already
95 //                     accounted for in the WriteST* latencies below
96 def : WriteRes<WriteAdr, []> { let Latency = 0; }
98 // Store
99 def : WriteRes<WriteST, [A53UnitLdSt]> { let Latency = 4; }
100 def : WriteRes<WriteSTP, [A53UnitLdSt]> { let Latency = 4; }
101 def : WriteRes<WriteSTIdx, [A53UnitLdSt]> { let Latency = 4; }
102 def : WriteRes<WriteSTX, [A53UnitLdSt]> { let Latency = 4; }
104 // Vector Store - Similar to vector loads, can take 1-3 cycles to issue.
105 def : WriteRes<WriteVST, [A53UnitLdSt]> { let Latency = 5;
106                                           let ResourceCycles = [2];}
107 def A53WriteVST1 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 4; }
108 def A53WriteVST2 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 5;
109                                                   let ResourceCycles = [2]; }
110 def A53WriteVST3 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 6;
111                                                   let ResourceCycles = [3]; }
113 def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }
115 // Branch
116 def : WriteRes<WriteBr, [A53UnitB]>;
117 def : WriteRes<WriteBrReg, [A53UnitB]>;
118 def : WriteRes<WriteSys, [A53UnitB]>;
119 def : WriteRes<WriteBarrier, [A53UnitB]>;
120 def : WriteRes<WriteHint, [A53UnitB]>;
122 // FP ALU
123 def : WriteRes<WriteF, [A53UnitFPALU]> { let Latency = 6; }
124 def : WriteRes<WriteFCmp, [A53UnitFPALU]> { let Latency = 6; }
125 def : WriteRes<WriteFCvt, [A53UnitFPALU]> { let Latency = 6; }
126 def : WriteRes<WriteFCopy, [A53UnitFPALU]> { let Latency = 6; }
127 def : WriteRes<WriteFImm, [A53UnitFPALU]> { let Latency = 6; }
128 def : WriteRes<WriteV, [A53UnitFPALU]> { let Latency = 6; }
130 // FP Mul, Div, Sqrt
131 def : WriteRes<WriteFMul, [A53UnitFPMDS]> { let Latency = 6; }
132 def : WriteRes<WriteFDiv, [A53UnitFPMDS]> { let Latency = 33;
133                                             let ResourceCycles = [29]; }
134 def A53WriteFMAC : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 10; }
135 def A53WriteFDivSP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 18;
136                                                      let ResourceCycles = [14]; }
137 def A53WriteFDivDP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 33;
138                                                      let ResourceCycles = [29]; }
139 def A53WriteFSqrtSP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 17;
140                                                       let ResourceCycles = [13]; }
141 def A53WriteFSqrtDP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 32;
142                                                       let ResourceCycles = [28]; }
144 //===----------------------------------------------------------------------===//
145 // Subtarget-specific SchedRead types.
147 // No forwarding for these reads.
148 def : ReadAdvance<ReadExtrHi, 0>;
149 def : ReadAdvance<ReadAdrBase, 0>;
150 def : ReadAdvance<ReadVLD, 0>;
152 // ALU - Most operands in the ALU pipes are not needed for two cycles. Shiftable
153 //       operands are needed one cycle later if and only if they are to be
154 //       shifted. Otherwise, they too are needed two cycles later. This same
155 //       ReadAdvance applies to Extended registers as well, even though there is
156 //       a separate SchedPredicate for them.
157 def : ReadAdvance<ReadI, 2, [WriteImm,WriteI,
158                              WriteISReg, WriteIEReg,WriteIS,
159                              WriteID32,WriteID64,
160                              WriteIM32,WriteIM64]>;
161 def A53ReadShifted : SchedReadAdvance<1, [WriteImm,WriteI,
162                                           WriteISReg, WriteIEReg,WriteIS,
163                                           WriteID32,WriteID64,
164                                           WriteIM32,WriteIM64]>;
165 def A53ReadNotShifted : SchedReadAdvance<2, [WriteImm,WriteI,
166                                              WriteISReg, WriteIEReg,WriteIS,
167                                              WriteID32,WriteID64,
168                                              WriteIM32,WriteIM64]>;
169 def A53ReadISReg : SchedReadVariant<[
170         SchedVar<RegShiftedPred, [A53ReadShifted]>,
171         SchedVar<NoSchedPred, [A53ReadNotShifted]>]>;
172 def : SchedAlias<ReadISReg, A53ReadISReg>;
174 def A53ReadIEReg : SchedReadVariant<[
175         SchedVar<RegExtendedPred, [A53ReadShifted]>,
176         SchedVar<NoSchedPred, [A53ReadNotShifted]>]>;
177 def : SchedAlias<ReadIEReg, A53ReadIEReg>;
179 // MAC - Operands are generally needed one cycle later in the MAC pipe.
180 //       Accumulator operands are needed two cycles later.
181 def : ReadAdvance<ReadIM, 1, [WriteImm,WriteI,
182                               WriteISReg, WriteIEReg,WriteIS,
183                               WriteID32,WriteID64,
184                               WriteIM32,WriteIM64]>;
185 def : ReadAdvance<ReadIMA, 2, [WriteImm,WriteI,
186                                WriteISReg, WriteIEReg,WriteIS,
187                                WriteID32,WriteID64,
188                                WriteIM32,WriteIM64]>;
190 // Div
191 def : ReadAdvance<ReadID, 1, [WriteImm,WriteI,
192                               WriteISReg, WriteIEReg,WriteIS,
193                               WriteID32,WriteID64,
194                               WriteIM32,WriteIM64]>;
196 //===----------------------------------------------------------------------===//
197 // Subtarget-specific InstRWs.
199 //---
200 // Miscellaneous
201 //---
202 def : InstRW<[WriteI], (instrs COPY)>;
204 //---
205 // Vector Loads
206 //---
207 def : InstRW<[A53WriteVLD1], (instregex "LD1i(8|16|32|64)$")>;
208 def : InstRW<[A53WriteVLD1], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
209 def : InstRW<[A53WriteVLD1], (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
210 def : InstRW<[A53WriteVLD2], (instregex "LD1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
211 def : InstRW<[A53WriteVLD3], (instregex "LD1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
212 def : InstRW<[A53WriteVLD4], (instregex "LD1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
213 def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD1i(8|16|32|64)_POST$")>;
214 def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
215 def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
216 def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
217 def : InstRW<[A53WriteVLD3, WriteAdr], (instregex "LD1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
218 def : InstRW<[A53WriteVLD4, WriteAdr], (instregex "LD1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
220 def : InstRW<[A53WriteVLD1], (instregex "LD2i(8|16|32|64)$")>;
221 def : InstRW<[A53WriteVLD1], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
222 def : InstRW<[A53WriteVLD2], (instregex "LD2Twov(8b|4h|2s)$")>;
223 def : InstRW<[A53WriteVLD4], (instregex "LD2Twov(16b|8h|4s|2d)$")>;
224 def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD2i(8|16|32|64)_POST$")>;
225 def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
226 def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD2Twov(8b|4h|2s)_POST$")>;
227 def : InstRW<[A53WriteVLD4, WriteAdr], (instregex "LD2Twov(16b|8h|4s|2d)_POST$")>;
229 def : InstRW<[A53WriteVLD2], (instregex "LD3i(8|16|32|64)$")>;
230 def : InstRW<[A53WriteVLD2], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
231 def : InstRW<[A53WriteVLD4], (instregex "LD3Threev(8b|4h|2s|1d|16b|8h|4s)$")>;
232 def : InstRW<[A53WriteVLD3], (instregex "LD3Threev2d$")>;
233 def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD3i(8|16|32|64)_POST$")>;
234 def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
235 def : InstRW<[A53WriteVLD4, WriteAdr], (instregex "LD3Threev(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
236 def : InstRW<[A53WriteVLD3, WriteAdr], (instregex "LD3Threev2d_POST$")>;
238 def : InstRW<[A53WriteVLD2], (instregex "LD4i(8|16|32|64)$")>;
239 def : InstRW<[A53WriteVLD2], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
240 def : InstRW<[A53WriteVLD5], (instregex "LD4Fourv(8b|4h|2s|1d|16b|8h|4s)$")>;
241 def : InstRW<[A53WriteVLD4], (instregex "LD4Fourv(2d)$")>;
242 def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD4i(8|16|32|64)_POST$")>;
243 def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
244 def : InstRW<[A53WriteVLD5, WriteAdr], (instregex "LD4Fourv(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
245 def : InstRW<[A53WriteVLD4, WriteAdr], (instregex "LD4Fourv(2d)_POST$")>;
247 //---
248 // Vector Stores
249 //---
250 def : InstRW<[A53WriteVST1], (instregex "ST1i(8|16|32|64)$")>;
251 def : InstRW<[A53WriteVST1], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
252 def : InstRW<[A53WriteVST1], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
253 def : InstRW<[A53WriteVST2], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
254 def : InstRW<[A53WriteVST2], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
255 def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST1i(8|16|32|64)_POST$")>;
256 def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
257 def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
258 def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
259 def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
261 def : InstRW<[A53WriteVST1], (instregex "ST2i(8|16|32|64)$")>;
262 def : InstRW<[A53WriteVST1], (instregex "ST2Twov(8b|4h|2s)$")>;
263 def : InstRW<[A53WriteVST2], (instregex "ST2Twov(16b|8h|4s|2d)$")>;
264 def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST2i(8|16|32|64)_POST$")>;
265 def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST2Twov(8b|4h|2s)_POST$")>;
266 def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST2Twov(16b|8h|4s|2d)_POST$")>;
268 def : InstRW<[A53WriteVST2], (instregex "ST3i(8|16|32|64)$")>;
269 def : InstRW<[A53WriteVST3], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s)$")>;
270 def : InstRW<[A53WriteVST2], (instregex "ST3Threev(2d)$")>;
271 def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST3i(8|16|32|64)_POST$")>;
272 def : InstRW<[A53WriteVST3, WriteAdr], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
273 def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST3Threev(2d)_POST$")>;
275 def : InstRW<[A53WriteVST2], (instregex "ST4i(8|16|32|64)$")>;
276 def : InstRW<[A53WriteVST3], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s)$")>;
277 def : InstRW<[A53WriteVST2], (instregex "ST4Fourv(2d)$")>;
278 def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST4i(8|16|32|64)_POST$")>;
279 def : InstRW<[A53WriteVST3, WriteAdr], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
280 def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST4Fourv(2d)_POST$")>;
282 //---
283 // Floating Point MAC, DIV, SQRT
284 //---
285 def : InstRW<[A53WriteFMAC], (instregex "^FN?M(ADD|SUB).*")>;
286 def : InstRW<[A53WriteFMAC], (instregex "^FML(A|S).*")>;
287 def : InstRW<[A53WriteFDivSP], (instrs FDIVSrr)>;
288 def : InstRW<[A53WriteFDivDP], (instrs FDIVDrr)>;
289 def : InstRW<[A53WriteFDivSP], (instregex "^FDIVv.*32$")>;
290 def : InstRW<[A53WriteFDivDP], (instregex "^FDIVv.*64$")>;
291 def : InstRW<[A53WriteFSqrtSP], (instregex "^.*SQRT.*32$")>;
292 def : InstRW<[A53WriteFSqrtDP], (instregex "^.*SQRT.*64$")>;