[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Target / AMDGPU / AMDGPUCodeGenPrepare.cpp
blob1640a4a59ee27cc22e839f69fb2cc7b9262fd259
1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass does misc. AMDGPU optimizations on IR before instruction
11 /// selection.
13 //===----------------------------------------------------------------------===//
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstVisitor.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Casting.h"
43 #include <cassert>
44 #include <iterator>
46 #define DEBUG_TYPE "amdgpu-codegenprepare"
48 using namespace llvm;
50 namespace {
52 static cl::opt<bool> WidenLoads(
53 "amdgpu-codegenprepare-widen-constant-loads",
54 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
55 cl::ReallyHidden,
56 cl::init(true));
58 static cl::opt<bool> UseMul24Intrin(
59 "amdgpu-codegenprepare-mul24",
60 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
61 cl::ReallyHidden,
62 cl::init(true));
64 class AMDGPUCodeGenPrepare : public FunctionPass,
65 public InstVisitor<AMDGPUCodeGenPrepare, bool> {
66 const GCNSubtarget *ST = nullptr;
67 AssumptionCache *AC = nullptr;
68 LegacyDivergenceAnalysis *DA = nullptr;
69 Module *Mod = nullptr;
70 const DataLayout *DL = nullptr;
71 bool HasUnsafeFPMath = false;
73 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
74 /// binary operation \p V.
75 ///
76 /// \returns Binary operation \p V.
77 /// \returns \p T's base element bit width.
78 unsigned getBaseElementBitWidth(const Type *T) const;
80 /// \returns Equivalent 32 bit integer type for given type \p T. For example,
81 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
82 /// is returned.
83 Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
85 /// \returns True if binary operation \p I is a signed binary operation, false
86 /// otherwise.
87 bool isSigned(const BinaryOperator &I) const;
89 /// \returns True if the condition of 'select' operation \p I comes from a
90 /// signed 'icmp' operation, false otherwise.
91 bool isSigned(const SelectInst &I) const;
93 /// \returns True if type \p T needs to be promoted to 32 bit integer type,
94 /// false otherwise.
95 bool needsPromotionToI32(const Type *T) const;
97 /// Promotes uniform binary operation \p I to equivalent 32 bit binary
98 /// operation.
99 ///
100 /// \details \p I's base element bit width must be greater than 1 and less
101 /// than or equal 16. Promotion is done by sign or zero extending operands to
102 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
103 /// truncating the result of 32 bit binary operation back to \p I's original
104 /// type. Division operation is not promoted.
106 /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
107 /// false otherwise.
108 bool promoteUniformOpToI32(BinaryOperator &I) const;
110 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
112 /// \details \p I's base element bit width must be greater than 1 and less
113 /// than or equal 16. Promotion is done by sign or zero extending operands to
114 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
116 /// \returns True.
117 bool promoteUniformOpToI32(ICmpInst &I) const;
119 /// Promotes uniform 'select' operation \p I to 32 bit 'select'
120 /// operation.
122 /// \details \p I's base element bit width must be greater than 1 and less
123 /// than or equal 16. Promotion is done by sign or zero extending operands to
124 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
125 /// result of 32 bit 'select' operation back to \p I's original type.
127 /// \returns True.
128 bool promoteUniformOpToI32(SelectInst &I) const;
130 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
131 /// intrinsic.
133 /// \details \p I's base element bit width must be greater than 1 and less
134 /// than or equal 16. Promotion is done by zero extending the operand to 32
135 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
136 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
137 /// shift amount is 32 minus \p I's base element bit width), and truncating
138 /// the result of the shift operation back to \p I's original type.
140 /// \returns True.
141 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
144 unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const;
145 unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const;
146 bool isI24(Value *V, unsigned ScalarSize) const;
147 bool isU24(Value *V, unsigned ScalarSize) const;
149 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
150 /// SelectionDAG has an issue where an and asserting the bits are known
151 bool replaceMulWithMul24(BinaryOperator &I) const;
153 /// Expands 24 bit div or rem.
154 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
155 Value *Num, Value *Den,
156 bool IsDiv, bool IsSigned) const;
158 /// Expands 32 bit div or rem.
159 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
160 Value *Num, Value *Den) const;
162 /// Widen a scalar load.
164 /// \details \p Widen scalar load for uniform, small type loads from constant
165 // memory / to a full 32-bits and then truncate the input to allow a scalar
166 // load instead of a vector load.
168 /// \returns True.
170 bool canWidenScalarExtLoad(LoadInst &I) const;
172 public:
173 static char ID;
175 AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
177 bool visitFDiv(BinaryOperator &I);
179 bool visitInstruction(Instruction &I) { return false; }
180 bool visitBinaryOperator(BinaryOperator &I);
181 bool visitLoadInst(LoadInst &I);
182 bool visitICmpInst(ICmpInst &I);
183 bool visitSelectInst(SelectInst &I);
185 bool visitIntrinsicInst(IntrinsicInst &I);
186 bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
188 bool doInitialization(Module &M) override;
189 bool runOnFunction(Function &F) override;
191 StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
193 void getAnalysisUsage(AnalysisUsage &AU) const override {
194 AU.addRequired<AssumptionCacheTracker>();
195 AU.addRequired<LegacyDivergenceAnalysis>();
196 AU.setPreservesAll();
200 } // end anonymous namespace
202 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
203 assert(needsPromotionToI32(T) && "T does not need promotion to i32");
205 if (T->isIntegerTy())
206 return T->getIntegerBitWidth();
207 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
210 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
211 assert(needsPromotionToI32(T) && "T does not need promotion to i32");
213 if (T->isIntegerTy())
214 return B.getInt32Ty();
215 return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements());
218 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
219 return I.getOpcode() == Instruction::AShr ||
220 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
223 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
224 return isa<ICmpInst>(I.getOperand(0)) ?
225 cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
228 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
229 const IntegerType *IntTy = dyn_cast<IntegerType>(T);
230 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
231 return true;
233 if (const VectorType *VT = dyn_cast<VectorType>(T)) {
234 // TODO: The set of packed operations is more limited, so may want to
235 // promote some anyway.
236 if (ST->hasVOP3PInsts())
237 return false;
239 return needsPromotionToI32(VT->getElementType());
242 return false;
245 // Return true if the op promoted to i32 should have nsw set.
246 static bool promotedOpIsNSW(const Instruction &I) {
247 switch (I.getOpcode()) {
248 case Instruction::Shl:
249 case Instruction::Add:
250 case Instruction::Sub:
251 return true;
252 case Instruction::Mul:
253 return I.hasNoUnsignedWrap();
254 default:
255 return false;
259 // Return true if the op promoted to i32 should have nuw set.
260 static bool promotedOpIsNUW(const Instruction &I) {
261 switch (I.getOpcode()) {
262 case Instruction::Shl:
263 case Instruction::Add:
264 case Instruction::Mul:
265 return true;
266 case Instruction::Sub:
267 return I.hasNoUnsignedWrap();
268 default:
269 return false;
273 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
274 Type *Ty = I.getType();
275 const DataLayout &DL = Mod->getDataLayout();
276 int TySize = DL.getTypeSizeInBits(Ty);
277 unsigned Align = I.getAlignment() ?
278 I.getAlignment() : DL.getABITypeAlignment(Ty);
280 return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I);
283 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
284 assert(needsPromotionToI32(I.getType()) &&
285 "I does not need promotion to i32");
287 if (I.getOpcode() == Instruction::SDiv ||
288 I.getOpcode() == Instruction::UDiv ||
289 I.getOpcode() == Instruction::SRem ||
290 I.getOpcode() == Instruction::URem)
291 return false;
293 IRBuilder<> Builder(&I);
294 Builder.SetCurrentDebugLocation(I.getDebugLoc());
296 Type *I32Ty = getI32Ty(Builder, I.getType());
297 Value *ExtOp0 = nullptr;
298 Value *ExtOp1 = nullptr;
299 Value *ExtRes = nullptr;
300 Value *TruncRes = nullptr;
302 if (isSigned(I)) {
303 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
304 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
305 } else {
306 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
307 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
310 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
311 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
312 if (promotedOpIsNSW(cast<Instruction>(I)))
313 Inst->setHasNoSignedWrap();
315 if (promotedOpIsNUW(cast<Instruction>(I)))
316 Inst->setHasNoUnsignedWrap();
318 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
319 Inst->setIsExact(ExactOp->isExact());
322 TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
324 I.replaceAllUsesWith(TruncRes);
325 I.eraseFromParent();
327 return true;
330 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
331 assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
332 "I does not need promotion to i32");
334 IRBuilder<> Builder(&I);
335 Builder.SetCurrentDebugLocation(I.getDebugLoc());
337 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
338 Value *ExtOp0 = nullptr;
339 Value *ExtOp1 = nullptr;
340 Value *NewICmp = nullptr;
342 if (I.isSigned()) {
343 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
344 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
345 } else {
346 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
347 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
349 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
351 I.replaceAllUsesWith(NewICmp);
352 I.eraseFromParent();
354 return true;
357 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
358 assert(needsPromotionToI32(I.getType()) &&
359 "I does not need promotion to i32");
361 IRBuilder<> Builder(&I);
362 Builder.SetCurrentDebugLocation(I.getDebugLoc());
364 Type *I32Ty = getI32Ty(Builder, I.getType());
365 Value *ExtOp1 = nullptr;
366 Value *ExtOp2 = nullptr;
367 Value *ExtRes = nullptr;
368 Value *TruncRes = nullptr;
370 if (isSigned(I)) {
371 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
372 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
373 } else {
374 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
375 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
377 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
378 TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
380 I.replaceAllUsesWith(TruncRes);
381 I.eraseFromParent();
383 return true;
386 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
387 IntrinsicInst &I) const {
388 assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
389 "I must be bitreverse intrinsic");
390 assert(needsPromotionToI32(I.getType()) &&
391 "I does not need promotion to i32");
393 IRBuilder<> Builder(&I);
394 Builder.SetCurrentDebugLocation(I.getDebugLoc());
396 Type *I32Ty = getI32Ty(Builder, I.getType());
397 Function *I32 =
398 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
399 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
400 Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
401 Value *LShrOp =
402 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
403 Value *TruncRes =
404 Builder.CreateTrunc(LShrOp, I.getType());
406 I.replaceAllUsesWith(TruncRes);
407 I.eraseFromParent();
409 return true;
412 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op,
413 unsigned ScalarSize) const {
414 KnownBits Known = computeKnownBits(Op, *DL, 0, AC);
415 return ScalarSize - Known.countMinLeadingZeros();
418 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op,
419 unsigned ScalarSize) const {
420 // In order for this to be a signed 24-bit value, bit 23, must
421 // be a sign bit.
422 return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC);
425 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const {
426 return ScalarSize >= 24 && // Types less than 24-bit should be treated
427 // as unsigned 24-bit values.
428 numBitsSigned(V, ScalarSize) < 24;
431 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const {
432 return numBitsUnsigned(V, ScalarSize) <= 24;
435 static void extractValues(IRBuilder<> &Builder,
436 SmallVectorImpl<Value *> &Values, Value *V) {
437 VectorType *VT = dyn_cast<VectorType>(V->getType());
438 if (!VT) {
439 Values.push_back(V);
440 return;
443 for (int I = 0, E = VT->getNumElements(); I != E; ++I)
444 Values.push_back(Builder.CreateExtractElement(V, I));
447 static Value *insertValues(IRBuilder<> &Builder,
448 Type *Ty,
449 SmallVectorImpl<Value *> &Values) {
450 if (Values.size() == 1)
451 return Values[0];
453 Value *NewVal = UndefValue::get(Ty);
454 for (int I = 0, E = Values.size(); I != E; ++I)
455 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
457 return NewVal;
460 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const {
461 if (I.getOpcode() != Instruction::Mul)
462 return false;
464 Type *Ty = I.getType();
465 unsigned Size = Ty->getScalarSizeInBits();
466 if (Size <= 16 && ST->has16BitInsts())
467 return false;
469 // Prefer scalar if this could be s_mul_i32
470 if (DA->isUniform(&I))
471 return false;
473 Value *LHS = I.getOperand(0);
474 Value *RHS = I.getOperand(1);
475 IRBuilder<> Builder(&I);
476 Builder.SetCurrentDebugLocation(I.getDebugLoc());
478 Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
480 // TODO: Should this try to match mulhi24?
481 if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) {
482 IntrID = Intrinsic::amdgcn_mul_u24;
483 } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) {
484 IntrID = Intrinsic::amdgcn_mul_i24;
485 } else
486 return false;
488 SmallVector<Value *, 4> LHSVals;
489 SmallVector<Value *, 4> RHSVals;
490 SmallVector<Value *, 4> ResultVals;
491 extractValues(Builder, LHSVals, LHS);
492 extractValues(Builder, RHSVals, RHS);
495 IntegerType *I32Ty = Builder.getInt32Ty();
496 FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID);
497 for (int I = 0, E = LHSVals.size(); I != E; ++I) {
498 Value *LHS, *RHS;
499 if (IntrID == Intrinsic::amdgcn_mul_u24) {
500 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
501 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
502 } else {
503 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
504 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
507 Value *Result = Builder.CreateCall(Intrin, {LHS, RHS});
509 if (IntrID == Intrinsic::amdgcn_mul_u24) {
510 ResultVals.push_back(Builder.CreateZExtOrTrunc(Result,
511 LHSVals[I]->getType()));
512 } else {
513 ResultVals.push_back(Builder.CreateSExtOrTrunc(Result,
514 LHSVals[I]->getType()));
518 Value *NewVal = insertValues(Builder, Ty, ResultVals);
519 NewVal->takeName(&I);
520 I.replaceAllUsesWith(NewVal);
521 I.eraseFromParent();
523 return true;
526 static bool shouldKeepFDivF32(Value *Num, bool UnsafeDiv, bool HasDenormals) {
527 const ConstantFP *CNum = dyn_cast<ConstantFP>(Num);
528 if (!CNum)
529 return HasDenormals;
531 if (UnsafeDiv)
532 return true;
534 bool IsOne = CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0);
536 // Reciprocal f32 is handled separately without denormals.
537 return HasDenormals ^ IsOne;
540 // Insert an intrinsic for fast fdiv for safe math situations where we can
541 // reduce precision. Leave fdiv for situations where the generic node is
542 // expected to be optimized.
543 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
544 Type *Ty = FDiv.getType();
546 if (!Ty->getScalarType()->isFloatTy())
547 return false;
549 MDNode *FPMath = FDiv.getMetadata(LLVMContext::MD_fpmath);
550 if (!FPMath)
551 return false;
553 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
554 float ULP = FPOp->getFPAccuracy();
555 if (ULP < 2.5f)
556 return false;
558 FastMathFlags FMF = FPOp->getFastMathFlags();
559 bool UnsafeDiv = HasUnsafeFPMath || FMF.isFast() ||
560 FMF.allowReciprocal();
562 // With UnsafeDiv node will be optimized to just rcp and mul.
563 if (UnsafeDiv)
564 return false;
566 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()), FPMath);
567 Builder.setFastMathFlags(FMF);
568 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
570 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
572 Value *Num = FDiv.getOperand(0);
573 Value *Den = FDiv.getOperand(1);
575 Value *NewFDiv = nullptr;
577 bool HasDenormals = ST->hasFP32Denormals();
578 if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
579 NewFDiv = UndefValue::get(VT);
581 // FIXME: Doesn't do the right thing for cases where the vector is partially
582 // constant. This works when the scalarizer pass is run first.
583 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
584 Value *NumEltI = Builder.CreateExtractElement(Num, I);
585 Value *DenEltI = Builder.CreateExtractElement(Den, I);
586 Value *NewElt;
588 if (shouldKeepFDivF32(NumEltI, UnsafeDiv, HasDenormals)) {
589 NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
590 } else {
591 NewElt = Builder.CreateCall(Decl, { NumEltI, DenEltI });
594 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
596 } else {
597 if (!shouldKeepFDivF32(Num, UnsafeDiv, HasDenormals))
598 NewFDiv = Builder.CreateCall(Decl, { Num, Den });
601 if (NewFDiv) {
602 FDiv.replaceAllUsesWith(NewFDiv);
603 NewFDiv->takeName(&FDiv);
604 FDiv.eraseFromParent();
607 return !!NewFDiv;
610 static bool hasUnsafeFPMath(const Function &F) {
611 Attribute Attr = F.getFnAttribute("unsafe-fp-math");
612 return Attr.getValueAsString() == "true";
615 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
616 Value *LHS, Value *RHS) {
617 Type *I32Ty = Builder.getInt32Ty();
618 Type *I64Ty = Builder.getInt64Ty();
620 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
621 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
622 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
623 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
624 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
625 Hi = Builder.CreateTrunc(Hi, I32Ty);
626 return std::make_pair(Lo, Hi);
629 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
630 return getMul64(Builder, LHS, RHS).second;
633 // The fractional part of a float is enough to accurately represent up to
634 // a 24-bit signed integer.
635 Value* AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
636 BinaryOperator &I,
637 Value *Num, Value *Den,
638 bool IsDiv, bool IsSigned) const {
639 assert(Num->getType()->isIntegerTy(32));
641 const DataLayout &DL = Mod->getDataLayout();
642 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
643 if (LHSSignBits < 9)
644 return nullptr;
646 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
647 if (RHSSignBits < 9)
648 return nullptr;
651 unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
652 unsigned DivBits = 32 - SignBits;
653 if (IsSigned)
654 ++DivBits;
656 Type *Ty = Num->getType();
657 Type *I32Ty = Builder.getInt32Ty();
658 Type *F32Ty = Builder.getFloatTy();
659 ConstantInt *One = Builder.getInt32(1);
660 Value *JQ = One;
662 if (IsSigned) {
663 // char|short jq = ia ^ ib;
664 JQ = Builder.CreateXor(Num, Den);
666 // jq = jq >> (bitsize - 2)
667 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
669 // jq = jq | 0x1
670 JQ = Builder.CreateOr(JQ, One);
673 // int ia = (int)LHS;
674 Value *IA = Num;
676 // int ib, (int)RHS;
677 Value *IB = Den;
679 // float fa = (float)ia;
680 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
681 : Builder.CreateUIToFP(IA, F32Ty);
683 // float fb = (float)ib;
684 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
685 : Builder.CreateUIToFP(IB,F32Ty);
687 Value *RCP = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), FB);
688 Value *FQM = Builder.CreateFMul(FA, RCP);
690 // fq = trunc(fqm);
691 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
692 FQ->copyFastMathFlags(Builder.getFastMathFlags());
694 // float fqneg = -fq;
695 Value *FQNeg = Builder.CreateFNeg(FQ);
697 // float fr = mad(fqneg, fb, fa);
698 Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz,
699 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
701 // int iq = (int)fq;
702 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
703 : Builder.CreateFPToUI(FQ, I32Ty);
705 // fr = fabs(fr);
706 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
708 // fb = fabs(fb);
709 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
711 // int cv = fr >= fb;
712 Value *CV = Builder.CreateFCmpOGE(FR, FB);
714 // jq = (cv ? jq : 0);
715 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
717 // dst = iq + jq;
718 Value *Div = Builder.CreateAdd(IQ, JQ);
720 Value *Res = Div;
721 if (!IsDiv) {
722 // Rem needs compensation, it's easier to recompute it
723 Value *Rem = Builder.CreateMul(Div, Den);
724 Res = Builder.CreateSub(Num, Rem);
727 // Truncate to number of bits this divide really is.
728 if (IsSigned) {
729 Res = Builder.CreateTrunc(Res, Builder.getIntNTy(DivBits));
730 Res = Builder.CreateSExt(Res, Ty);
731 } else {
732 ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
733 Res = Builder.CreateAnd(Res, TruncMask);
736 return Res;
739 Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
740 BinaryOperator &I,
741 Value *Num, Value *Den) const {
742 Instruction::BinaryOps Opc = I.getOpcode();
743 assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
744 Opc == Instruction::SRem || Opc == Instruction::SDiv);
746 FastMathFlags FMF;
747 FMF.setFast();
748 Builder.setFastMathFlags(FMF);
750 if (isa<Constant>(Den))
751 return nullptr; // Keep it for optimization
753 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
754 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
756 Type *Ty = Num->getType();
757 Type *I32Ty = Builder.getInt32Ty();
758 Type *F32Ty = Builder.getFloatTy();
760 if (Ty->getScalarSizeInBits() < 32) {
761 if (IsSigned) {
762 Num = Builder.CreateSExt(Num, I32Ty);
763 Den = Builder.CreateSExt(Den, I32Ty);
764 } else {
765 Num = Builder.CreateZExt(Num, I32Ty);
766 Den = Builder.CreateZExt(Den, I32Ty);
770 if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) {
771 Res = Builder.CreateTrunc(Res, Ty);
772 return Res;
775 ConstantInt *Zero = Builder.getInt32(0);
776 ConstantInt *One = Builder.getInt32(1);
777 ConstantInt *MinusOne = Builder.getInt32(~0);
779 Value *Sign = nullptr;
780 if (IsSigned) {
781 ConstantInt *K31 = Builder.getInt32(31);
782 Value *LHSign = Builder.CreateAShr(Num, K31);
783 Value *RHSign = Builder.CreateAShr(Den, K31);
784 // Remainder sign is the same as LHS
785 Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign;
787 Num = Builder.CreateAdd(Num, LHSign);
788 Den = Builder.CreateAdd(Den, RHSign);
790 Num = Builder.CreateXor(Num, LHSign);
791 Den = Builder.CreateXor(Den, RHSign);
794 // RCP = URECIP(Den) = 2^32 / Den + e
795 // e is rounding error.
796 Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty);
797 Value *RCP_F32 = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), DEN_F32);
798 Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000));
799 Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1);
800 Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty);
802 // RCP_LO, RCP_HI = mul(RCP, Den) */
803 Value *RCP_LO, *RCP_HI;
804 std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den);
806 // NEG_RCP_LO = -RCP_LO
807 Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO);
809 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
810 Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero);
811 Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO);
813 // Calculate the rounding error from the URECIP instruction
814 // E = mulhu(ABS_RCP_LO, RCP)
815 Value *E = getMulHu(Builder, ABS_RCP_LO, RCP);
817 // RCP_A_E = RCP + E
818 Value *RCP_A_E = Builder.CreateAdd(RCP, E);
820 // RCP_S_E = RCP - E
821 Value *RCP_S_E = Builder.CreateSub(RCP, E);
823 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
824 Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E);
826 // Quotient = mulhu(Tmp0, Num)
827 Value *Quotient = getMulHu(Builder, Tmp0, Num);
829 // Num_S_Remainder = Quotient * Den
830 Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den);
832 // Remainder = Num - Num_S_Remainder
833 Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder);
835 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
836 Value *Rem_GE_Den_CC = Builder.CreateICmpUGE(Remainder, Den);
837 Value *Remainder_GE_Den = Builder.CreateSelect(Rem_GE_Den_CC, MinusOne, Zero);
839 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
840 Value *Num_GE_Num_S_Rem_CC = Builder.CreateICmpUGE(Num, Num_S_Remainder);
841 Value *Remainder_GE_Zero = Builder.CreateSelect(Num_GE_Num_S_Rem_CC,
842 MinusOne, Zero);
844 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
845 Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero);
846 Value *Tmp1_0_CC = Builder.CreateICmpEQ(Tmp1, Zero);
848 Value *Res;
849 if (IsDiv) {
850 // Quotient_A_One = Quotient + 1
851 Value *Quotient_A_One = Builder.CreateAdd(Quotient, One);
853 // Quotient_S_One = Quotient - 1
854 Value *Quotient_S_One = Builder.CreateSub(Quotient, One);
856 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
857 Value *Div = Builder.CreateSelect(Tmp1_0_CC, Quotient, Quotient_A_One);
859 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
860 Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Div, Quotient_S_One);
861 } else {
862 // Remainder_S_Den = Remainder - Den
863 Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den);
865 // Remainder_A_Den = Remainder + Den
866 Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den);
868 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
869 Value *Rem = Builder.CreateSelect(Tmp1_0_CC, Remainder, Remainder_S_Den);
871 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
872 Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Rem, Remainder_A_Den);
875 if (IsSigned) {
876 Res = Builder.CreateXor(Res, Sign);
877 Res = Builder.CreateSub(Res, Sign);
880 Res = Builder.CreateTrunc(Res, Ty);
882 return Res;
885 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
886 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
887 DA->isUniform(&I) && promoteUniformOpToI32(I))
888 return true;
890 if (UseMul24Intrin && replaceMulWithMul24(I))
891 return true;
893 bool Changed = false;
894 Instruction::BinaryOps Opc = I.getOpcode();
895 Type *Ty = I.getType();
896 Value *NewDiv = nullptr;
897 if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
898 Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
899 Ty->getScalarSizeInBits() <= 32) {
900 Value *Num = I.getOperand(0);
901 Value *Den = I.getOperand(1);
902 IRBuilder<> Builder(&I);
903 Builder.SetCurrentDebugLocation(I.getDebugLoc());
905 if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
906 NewDiv = UndefValue::get(VT);
908 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
909 Value *NumEltN = Builder.CreateExtractElement(Num, N);
910 Value *DenEltN = Builder.CreateExtractElement(Den, N);
911 Value *NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
912 if (!NewElt)
913 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
914 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
916 } else {
917 NewDiv = expandDivRem32(Builder, I, Num, Den);
920 if (NewDiv) {
921 I.replaceAllUsesWith(NewDiv);
922 I.eraseFromParent();
923 Changed = true;
927 return Changed;
930 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
931 if (!WidenLoads)
932 return false;
934 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
935 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
936 canWidenScalarExtLoad(I)) {
937 IRBuilder<> Builder(&I);
938 Builder.SetCurrentDebugLocation(I.getDebugLoc());
940 Type *I32Ty = Builder.getInt32Ty();
941 Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
942 Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
943 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
944 WidenLoad->copyMetadata(I);
946 // If we have range metadata, we need to convert the type, and not make
947 // assumptions about the high bits.
948 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
949 ConstantInt *Lower =
950 mdconst::extract<ConstantInt>(Range->getOperand(0));
952 if (Lower->getValue().isNullValue()) {
953 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
954 } else {
955 Metadata *LowAndHigh[] = {
956 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
957 // Don't make assumptions about the high bits.
958 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
961 WidenLoad->setMetadata(LLVMContext::MD_range,
962 MDNode::get(Mod->getContext(), LowAndHigh));
966 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
967 Type *IntNTy = Builder.getIntNTy(TySize);
968 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
969 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
970 I.replaceAllUsesWith(ValOrig);
971 I.eraseFromParent();
972 return true;
975 return false;
978 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
979 bool Changed = false;
981 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
982 DA->isUniform(&I))
983 Changed |= promoteUniformOpToI32(I);
985 return Changed;
988 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
989 bool Changed = false;
991 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
992 DA->isUniform(&I))
993 Changed |= promoteUniformOpToI32(I);
995 return Changed;
998 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
999 switch (I.getIntrinsicID()) {
1000 case Intrinsic::bitreverse:
1001 return visitBitreverseIntrinsicInst(I);
1002 default:
1003 return false;
1007 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
1008 bool Changed = false;
1010 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1011 DA->isUniform(&I))
1012 Changed |= promoteUniformBitreverseToI32(I);
1014 return Changed;
1017 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
1018 Mod = &M;
1019 DL = &Mod->getDataLayout();
1020 return false;
1023 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
1024 if (skipFunction(F))
1025 return false;
1027 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1028 if (!TPC)
1029 return false;
1031 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
1032 ST = &TM.getSubtarget<GCNSubtarget>(F);
1033 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1034 DA = &getAnalysis<LegacyDivergenceAnalysis>();
1035 HasUnsafeFPMath = hasUnsafeFPMath(F);
1037 bool MadeChange = false;
1039 for (BasicBlock &BB : F) {
1040 BasicBlock::iterator Next;
1041 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) {
1042 Next = std::next(I);
1043 MadeChange |= visit(*I);
1047 return MadeChange;
1050 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
1051 "AMDGPU IR optimizations", false, false)
1052 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1053 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
1054 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
1055 false, false)
1057 char AMDGPUCodeGenPrepare::ID = 0;
1059 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
1060 return new AMDGPUCodeGenPrepare();