1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This is the parent TargetLowering class for hardware code gen
13 //===----------------------------------------------------------------------===//
15 #include "AMDGPUISelLowering.h"
17 #include "AMDGPUCallLowering.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPURegisterInfo.h"
20 #include "AMDGPUSubtarget.h"
21 #include "AMDGPUTargetMachine.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "R600MachineFunctionInfo.h"
24 #include "SIInstrInfo.h"
25 #include "SIMachineFunctionInfo.h"
26 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/CallingConvLower.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DiagnosticInfo.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
39 #include "AMDGPUGenCallingConv.inc"
41 // Find a larger type to do a load / store of a vector with.
42 EVT
AMDGPUTargetLowering::getEquivalentMemType(LLVMContext
&Ctx
, EVT VT
) {
43 unsigned StoreSize
= VT
.getStoreSizeInBits();
45 return EVT::getIntegerVT(Ctx
, StoreSize
);
47 assert(StoreSize
% 32 == 0 && "Store size not a multiple of 32");
48 return EVT::getVectorVT(Ctx
, MVT::i32
, StoreSize
/ 32);
51 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op
, SelectionDAG
&DAG
) {
52 EVT VT
= Op
.getValueType();
53 KnownBits Known
= DAG
.computeKnownBits(Op
);
54 return VT
.getSizeInBits() - Known
.countMinLeadingZeros();
57 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op
, SelectionDAG
&DAG
) {
58 EVT VT
= Op
.getValueType();
60 // In order for this to be a signed 24-bit value, bit 23, must
62 return VT
.getSizeInBits() - DAG
.ComputeNumSignBits(Op
);
65 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine
&TM
,
66 const AMDGPUSubtarget
&STI
)
67 : TargetLowering(TM
), Subtarget(&STI
) {
68 // Lower floating point store/load to integer store/load to reduce the number
69 // of patterns in tablegen.
70 setOperationAction(ISD::LOAD
, MVT::f32
, Promote
);
71 AddPromotedToType(ISD::LOAD
, MVT::f32
, MVT::i32
);
73 setOperationAction(ISD::LOAD
, MVT::v2f32
, Promote
);
74 AddPromotedToType(ISD::LOAD
, MVT::v2f32
, MVT::v2i32
);
76 setOperationAction(ISD::LOAD
, MVT::v3f32
, Promote
);
77 AddPromotedToType(ISD::LOAD
, MVT::v3f32
, MVT::v3i32
);
79 setOperationAction(ISD::LOAD
, MVT::v4f32
, Promote
);
80 AddPromotedToType(ISD::LOAD
, MVT::v4f32
, MVT::v4i32
);
82 setOperationAction(ISD::LOAD
, MVT::v5f32
, Promote
);
83 AddPromotedToType(ISD::LOAD
, MVT::v5f32
, MVT::v5i32
);
85 setOperationAction(ISD::LOAD
, MVT::v8f32
, Promote
);
86 AddPromotedToType(ISD::LOAD
, MVT::v8f32
, MVT::v8i32
);
88 setOperationAction(ISD::LOAD
, MVT::v16f32
, Promote
);
89 AddPromotedToType(ISD::LOAD
, MVT::v16f32
, MVT::v16i32
);
91 setOperationAction(ISD::LOAD
, MVT::v32f32
, Promote
);
92 AddPromotedToType(ISD::LOAD
, MVT::v32f32
, MVT::v32i32
);
94 setOperationAction(ISD::LOAD
, MVT::i64
, Promote
);
95 AddPromotedToType(ISD::LOAD
, MVT::i64
, MVT::v2i32
);
97 setOperationAction(ISD::LOAD
, MVT::v2i64
, Promote
);
98 AddPromotedToType(ISD::LOAD
, MVT::v2i64
, MVT::v4i32
);
100 setOperationAction(ISD::LOAD
, MVT::f64
, Promote
);
101 AddPromotedToType(ISD::LOAD
, MVT::f64
, MVT::v2i32
);
103 setOperationAction(ISD::LOAD
, MVT::v2f64
, Promote
);
104 AddPromotedToType(ISD::LOAD
, MVT::v2f64
, MVT::v4i32
);
106 // There are no 64-bit extloads. These should be done as a 32-bit extload and
107 // an extension to 64-bit.
108 for (MVT VT
: MVT::integer_valuetypes()) {
109 setLoadExtAction(ISD::EXTLOAD
, MVT::i64
, VT
, Expand
);
110 setLoadExtAction(ISD::SEXTLOAD
, MVT::i64
, VT
, Expand
);
111 setLoadExtAction(ISD::ZEXTLOAD
, MVT::i64
, VT
, Expand
);
114 for (MVT VT
: MVT::integer_valuetypes()) {
118 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
119 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i8
, Legal
);
120 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i16
, Legal
);
121 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i32
, Expand
);
123 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
124 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i8
, Legal
);
125 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i16
, Legal
);
126 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i32
, Expand
);
128 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
129 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i8
, Legal
);
130 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i16
, Legal
);
131 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i32
, Expand
);
134 for (MVT VT
: MVT::integer_fixedlen_vector_valuetypes()) {
135 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v2i8
, Expand
);
136 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v2i8
, Expand
);
137 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v2i8
, Expand
);
138 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v4i8
, Expand
);
139 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v4i8
, Expand
);
140 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v4i8
, Expand
);
141 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v2i16
, Expand
);
142 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v2i16
, Expand
);
143 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v2i16
, Expand
);
144 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v3i16
, Expand
);
145 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v3i16
, Expand
);
146 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v3i16
, Expand
);
147 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v4i16
, Expand
);
148 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v4i16
, Expand
);
149 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v4i16
, Expand
);
152 setLoadExtAction(ISD::EXTLOAD
, MVT::f32
, MVT::f16
, Expand
);
153 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f32
, MVT::v2f16
, Expand
);
154 setLoadExtAction(ISD::EXTLOAD
, MVT::v3f32
, MVT::v3f16
, Expand
);
155 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f32
, MVT::v4f16
, Expand
);
156 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f32
, MVT::v8f16
, Expand
);
157 setLoadExtAction(ISD::EXTLOAD
, MVT::v16f32
, MVT::v16f16
, Expand
);
158 setLoadExtAction(ISD::EXTLOAD
, MVT::v32f32
, MVT::v32f16
, Expand
);
160 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f32
, Expand
);
161 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f64
, MVT::v2f32
, Expand
);
162 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f64
, MVT::v4f32
, Expand
);
163 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f64
, MVT::v8f32
, Expand
);
165 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f16
, Expand
);
166 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f64
, MVT::v2f16
, Expand
);
167 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f64
, MVT::v4f16
, Expand
);
168 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f64
, MVT::v8f16
, Expand
);
170 setOperationAction(ISD::STORE
, MVT::f32
, Promote
);
171 AddPromotedToType(ISD::STORE
, MVT::f32
, MVT::i32
);
173 setOperationAction(ISD::STORE
, MVT::v2f32
, Promote
);
174 AddPromotedToType(ISD::STORE
, MVT::v2f32
, MVT::v2i32
);
176 setOperationAction(ISD::STORE
, MVT::v3f32
, Promote
);
177 AddPromotedToType(ISD::STORE
, MVT::v3f32
, MVT::v3i32
);
179 setOperationAction(ISD::STORE
, MVT::v4f32
, Promote
);
180 AddPromotedToType(ISD::STORE
, MVT::v4f32
, MVT::v4i32
);
182 setOperationAction(ISD::STORE
, MVT::v5f32
, Promote
);
183 AddPromotedToType(ISD::STORE
, MVT::v5f32
, MVT::v5i32
);
185 setOperationAction(ISD::STORE
, MVT::v8f32
, Promote
);
186 AddPromotedToType(ISD::STORE
, MVT::v8f32
, MVT::v8i32
);
188 setOperationAction(ISD::STORE
, MVT::v16f32
, Promote
);
189 AddPromotedToType(ISD::STORE
, MVT::v16f32
, MVT::v16i32
);
191 setOperationAction(ISD::STORE
, MVT::v32f32
, Promote
);
192 AddPromotedToType(ISD::STORE
, MVT::v32f32
, MVT::v32i32
);
194 setOperationAction(ISD::STORE
, MVT::i64
, Promote
);
195 AddPromotedToType(ISD::STORE
, MVT::i64
, MVT::v2i32
);
197 setOperationAction(ISD::STORE
, MVT::v2i64
, Promote
);
198 AddPromotedToType(ISD::STORE
, MVT::v2i64
, MVT::v4i32
);
200 setOperationAction(ISD::STORE
, MVT::f64
, Promote
);
201 AddPromotedToType(ISD::STORE
, MVT::f64
, MVT::v2i32
);
203 setOperationAction(ISD::STORE
, MVT::v2f64
, Promote
);
204 AddPromotedToType(ISD::STORE
, MVT::v2f64
, MVT::v4i32
);
206 setTruncStoreAction(MVT::i64
, MVT::i1
, Expand
);
207 setTruncStoreAction(MVT::i64
, MVT::i8
, Expand
);
208 setTruncStoreAction(MVT::i64
, MVT::i16
, Expand
);
209 setTruncStoreAction(MVT::i64
, MVT::i32
, Expand
);
211 setTruncStoreAction(MVT::v2i64
, MVT::v2i1
, Expand
);
212 setTruncStoreAction(MVT::v2i64
, MVT::v2i8
, Expand
);
213 setTruncStoreAction(MVT::v2i64
, MVT::v2i16
, Expand
);
214 setTruncStoreAction(MVT::v2i64
, MVT::v2i32
, Expand
);
216 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
217 setTruncStoreAction(MVT::v2f32
, MVT::v2f16
, Expand
);
218 setTruncStoreAction(MVT::v3f32
, MVT::v3f16
, Expand
);
219 setTruncStoreAction(MVT::v4f32
, MVT::v4f16
, Expand
);
220 setTruncStoreAction(MVT::v8f32
, MVT::v8f16
, Expand
);
221 setTruncStoreAction(MVT::v16f32
, MVT::v16f16
, Expand
);
222 setTruncStoreAction(MVT::v32f32
, MVT::v32f16
, Expand
);
224 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
225 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
227 setTruncStoreAction(MVT::v2f64
, MVT::v2f32
, Expand
);
228 setTruncStoreAction(MVT::v2f64
, MVT::v2f16
, Expand
);
230 setTruncStoreAction(MVT::v4f64
, MVT::v4f32
, Expand
);
231 setTruncStoreAction(MVT::v4f64
, MVT::v4f16
, Expand
);
233 setTruncStoreAction(MVT::v8f64
, MVT::v8f32
, Expand
);
234 setTruncStoreAction(MVT::v8f64
, MVT::v8f16
, Expand
);
237 setOperationAction(ISD::Constant
, MVT::i32
, Legal
);
238 setOperationAction(ISD::Constant
, MVT::i64
, Legal
);
239 setOperationAction(ISD::ConstantFP
, MVT::f32
, Legal
);
240 setOperationAction(ISD::ConstantFP
, MVT::f64
, Legal
);
242 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
243 setOperationAction(ISD::BRIND
, MVT::Other
, Expand
);
245 // This is totally unsupported, just custom lower to produce an error.
246 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
248 // Library functions. These default to Expand, but we have instructions
250 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
251 setOperationAction(ISD::FEXP2
, MVT::f32
, Legal
);
252 setOperationAction(ISD::FPOW
, MVT::f32
, Legal
);
253 setOperationAction(ISD::FLOG2
, MVT::f32
, Legal
);
254 setOperationAction(ISD::FABS
, MVT::f32
, Legal
);
255 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
256 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
257 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
258 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
259 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
261 setOperationAction(ISD::FROUND
, MVT::f32
, Custom
);
262 setOperationAction(ISD::FROUND
, MVT::f64
, Custom
);
264 setOperationAction(ISD::FLOG
, MVT::f32
, Custom
);
265 setOperationAction(ISD::FLOG10
, MVT::f32
, Custom
);
266 setOperationAction(ISD::FEXP
, MVT::f32
, Custom
);
269 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Custom
);
270 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Custom
);
272 setOperationAction(ISD::FREM
, MVT::f32
, Custom
);
273 setOperationAction(ISD::FREM
, MVT::f64
, Custom
);
275 // Expand to fneg + fadd.
276 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
278 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v3i32
, Custom
);
279 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v3f32
, Custom
);
280 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v4i32
, Custom
);
281 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v4f32
, Custom
);
282 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v5i32
, Custom
);
283 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v5f32
, Custom
);
284 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v8i32
, Custom
);
285 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v8f32
, Custom
);
286 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v2f32
, Custom
);
287 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v2i32
, Custom
);
288 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v3f32
, Custom
);
289 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v3i32
, Custom
);
290 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v4f32
, Custom
);
291 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v4i32
, Custom
);
292 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v5f32
, Custom
);
293 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v5i32
, Custom
);
294 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v8f32
, Custom
);
295 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v8i32
, Custom
);
296 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v16f32
, Custom
);
297 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v16i32
, Custom
);
298 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v32f32
, Custom
);
299 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v32i32
, Custom
);
301 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
302 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Custom
);
303 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Custom
);
305 const MVT ScalarIntVTs
[] = { MVT::i32
, MVT::i64
};
306 for (MVT VT
: ScalarIntVTs
) {
307 // These should use [SU]DIVREM, so set them to expand
308 setOperationAction(ISD::SDIV
, VT
, Expand
);
309 setOperationAction(ISD::UDIV
, VT
, Expand
);
310 setOperationAction(ISD::SREM
, VT
, Expand
);
311 setOperationAction(ISD::UREM
, VT
, Expand
);
313 // GPU does not have divrem function for signed or unsigned.
314 setOperationAction(ISD::SDIVREM
, VT
, Custom
);
315 setOperationAction(ISD::UDIVREM
, VT
, Custom
);
317 // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
318 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
319 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
321 setOperationAction(ISD::BSWAP
, VT
, Expand
);
322 setOperationAction(ISD::CTTZ
, VT
, Expand
);
323 setOperationAction(ISD::CTLZ
, VT
, Expand
);
325 // AMDGPU uses ADDC/SUBC/ADDE/SUBE
326 setOperationAction(ISD::ADDC
, VT
, Legal
);
327 setOperationAction(ISD::SUBC
, VT
, Legal
);
328 setOperationAction(ISD::ADDE
, VT
, Legal
);
329 setOperationAction(ISD::SUBE
, VT
, Legal
);
332 // The hardware supports 32-bit ROTR, but not ROTL.
333 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
334 setOperationAction(ISD::ROTL
, MVT::i64
, Expand
);
335 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
337 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
338 setOperationAction(ISD::MULHU
, MVT::i64
, Expand
);
339 setOperationAction(ISD::MULHS
, MVT::i64
, Expand
);
340 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Custom
);
341 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
342 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
343 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Custom
);
344 setOperationAction(ISD::SELECT_CC
, MVT::i64
, Expand
);
346 setOperationAction(ISD::SMIN
, MVT::i32
, Legal
);
347 setOperationAction(ISD::UMIN
, MVT::i32
, Legal
);
348 setOperationAction(ISD::SMAX
, MVT::i32
, Legal
);
349 setOperationAction(ISD::UMAX
, MVT::i32
, Legal
);
351 setOperationAction(ISD::CTTZ
, MVT::i64
, Custom
);
352 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::i64
, Custom
);
353 setOperationAction(ISD::CTLZ
, MVT::i64
, Custom
);
354 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i64
, Custom
);
356 static const MVT::SimpleValueType VectorIntTypes
[] = {
357 MVT::v2i32
, MVT::v3i32
, MVT::v4i32
, MVT::v5i32
360 for (MVT VT
: VectorIntTypes
) {
361 // Expand the following operations for the current type by default.
362 setOperationAction(ISD::ADD
, VT
, Expand
);
363 setOperationAction(ISD::AND
, VT
, Expand
);
364 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
365 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
366 setOperationAction(ISD::MUL
, VT
, Expand
);
367 setOperationAction(ISD::MULHU
, VT
, Expand
);
368 setOperationAction(ISD::MULHS
, VT
, Expand
);
369 setOperationAction(ISD::OR
, VT
, Expand
);
370 setOperationAction(ISD::SHL
, VT
, Expand
);
371 setOperationAction(ISD::SRA
, VT
, Expand
);
372 setOperationAction(ISD::SRL
, VT
, Expand
);
373 setOperationAction(ISD::ROTL
, VT
, Expand
);
374 setOperationAction(ISD::ROTR
, VT
, Expand
);
375 setOperationAction(ISD::SUB
, VT
, Expand
);
376 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
377 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
378 setOperationAction(ISD::SDIV
, VT
, Expand
);
379 setOperationAction(ISD::UDIV
, VT
, Expand
);
380 setOperationAction(ISD::SREM
, VT
, Expand
);
381 setOperationAction(ISD::UREM
, VT
, Expand
);
382 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
383 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
384 setOperationAction(ISD::SDIVREM
, VT
, Custom
);
385 setOperationAction(ISD::UDIVREM
, VT
, Expand
);
386 setOperationAction(ISD::SELECT
, VT
, Expand
);
387 setOperationAction(ISD::VSELECT
, VT
, Expand
);
388 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
389 setOperationAction(ISD::XOR
, VT
, Expand
);
390 setOperationAction(ISD::BSWAP
, VT
, Expand
);
391 setOperationAction(ISD::CTPOP
, VT
, Expand
);
392 setOperationAction(ISD::CTTZ
, VT
, Expand
);
393 setOperationAction(ISD::CTLZ
, VT
, Expand
);
394 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Expand
);
395 setOperationAction(ISD::SETCC
, VT
, Expand
);
398 static const MVT::SimpleValueType FloatVectorTypes
[] = {
399 MVT::v2f32
, MVT::v3f32
, MVT::v4f32
, MVT::v5f32
402 for (MVT VT
: FloatVectorTypes
) {
403 setOperationAction(ISD::FABS
, VT
, Expand
);
404 setOperationAction(ISD::FMINNUM
, VT
, Expand
);
405 setOperationAction(ISD::FMAXNUM
, VT
, Expand
);
406 setOperationAction(ISD::FADD
, VT
, Expand
);
407 setOperationAction(ISD::FCEIL
, VT
, Expand
);
408 setOperationAction(ISD::FCOS
, VT
, Expand
);
409 setOperationAction(ISD::FDIV
, VT
, Expand
);
410 setOperationAction(ISD::FEXP2
, VT
, Expand
);
411 setOperationAction(ISD::FEXP
, VT
, Expand
);
412 setOperationAction(ISD::FLOG2
, VT
, Expand
);
413 setOperationAction(ISD::FREM
, VT
, Expand
);
414 setOperationAction(ISD::FLOG
, VT
, Expand
);
415 setOperationAction(ISD::FLOG10
, VT
, Expand
);
416 setOperationAction(ISD::FPOW
, VT
, Expand
);
417 setOperationAction(ISD::FFLOOR
, VT
, Expand
);
418 setOperationAction(ISD::FTRUNC
, VT
, Expand
);
419 setOperationAction(ISD::FMUL
, VT
, Expand
);
420 setOperationAction(ISD::FMA
, VT
, Expand
);
421 setOperationAction(ISD::FRINT
, VT
, Expand
);
422 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
423 setOperationAction(ISD::FSQRT
, VT
, Expand
);
424 setOperationAction(ISD::FSIN
, VT
, Expand
);
425 setOperationAction(ISD::FSUB
, VT
, Expand
);
426 setOperationAction(ISD::FNEG
, VT
, Expand
);
427 setOperationAction(ISD::VSELECT
, VT
, Expand
);
428 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
429 setOperationAction(ISD::FCOPYSIGN
, VT
, Expand
);
430 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Expand
);
431 setOperationAction(ISD::SETCC
, VT
, Expand
);
432 setOperationAction(ISD::FCANONICALIZE
, VT
, Expand
);
435 // This causes using an unrolled select operation rather than expansion with
436 // bit operations. This is in general better, but the alternative using BFI
437 // instructions may be better if the select sources are SGPRs.
438 setOperationAction(ISD::SELECT
, MVT::v2f32
, Promote
);
439 AddPromotedToType(ISD::SELECT
, MVT::v2f32
, MVT::v2i32
);
441 setOperationAction(ISD::SELECT
, MVT::v3f32
, Promote
);
442 AddPromotedToType(ISD::SELECT
, MVT::v3f32
, MVT::v3i32
);
444 setOperationAction(ISD::SELECT
, MVT::v4f32
, Promote
);
445 AddPromotedToType(ISD::SELECT
, MVT::v4f32
, MVT::v4i32
);
447 setOperationAction(ISD::SELECT
, MVT::v5f32
, Promote
);
448 AddPromotedToType(ISD::SELECT
, MVT::v5f32
, MVT::v5i32
);
450 // There are no libcalls of any kind.
451 for (int I
= 0; I
< RTLIB::UNKNOWN_LIBCALL
; ++I
)
452 setLibcallName(static_cast<RTLIB::Libcall
>(I
), nullptr);
454 setBooleanContents(ZeroOrNegativeOneBooleanContent
);
455 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
457 setSchedulingPreference(Sched::RegPressure
);
458 setJumpIsExpensive(true);
460 // FIXME: This is only partially true. If we have to do vector compares, any
461 // SGPR pair can be a condition register. If we have a uniform condition, we
462 // are better off doing SALU operations, where there is only one SCC. For now,
463 // we don't have a way of knowing during instruction selection if a condition
464 // will be uniform and we always use vector compares. Assume we are using
465 // vector compares until that is fixed.
466 setHasMultipleConditionRegisters(true);
468 setMinCmpXchgSizeInBits(32);
469 setSupportsUnalignedAtomics(false);
471 PredictableSelectIsExpensive
= false;
473 // We want to find all load dependencies for long chains of stores to enable
474 // merging into very wide vectors. The problem is with vectors with > 4
475 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
476 // vectors are a legal type, even though we have to split the loads
477 // usually. When we can more precisely specify load legality per address
478 // space, we should be able to make FindBetterChain/MergeConsecutiveStores
479 // smarter so that they can figure out what to do in 2 iterations without all
480 // N > 4 stores on the same chain.
481 GatherAllAliasesMaxDepth
= 16;
483 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
484 // about these during lowering.
485 MaxStoresPerMemcpy
= 0xffffffff;
486 MaxStoresPerMemmove
= 0xffffffff;
487 MaxStoresPerMemset
= 0xffffffff;
489 setTargetDAGCombine(ISD::BITCAST
);
490 setTargetDAGCombine(ISD::SHL
);
491 setTargetDAGCombine(ISD::SRA
);
492 setTargetDAGCombine(ISD::SRL
);
493 setTargetDAGCombine(ISD::TRUNCATE
);
494 setTargetDAGCombine(ISD::MUL
);
495 setTargetDAGCombine(ISD::MULHU
);
496 setTargetDAGCombine(ISD::MULHS
);
497 setTargetDAGCombine(ISD::SELECT
);
498 setTargetDAGCombine(ISD::SELECT_CC
);
499 setTargetDAGCombine(ISD::STORE
);
500 setTargetDAGCombine(ISD::FADD
);
501 setTargetDAGCombine(ISD::FSUB
);
502 setTargetDAGCombine(ISD::FNEG
);
503 setTargetDAGCombine(ISD::FABS
);
504 setTargetDAGCombine(ISD::AssertZext
);
505 setTargetDAGCombine(ISD::AssertSext
);
506 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
509 //===----------------------------------------------------------------------===//
510 // Target Information
511 //===----------------------------------------------------------------------===//
514 static bool fnegFoldsIntoOp(unsigned Opc
) {
523 case ISD::FMINNUM_IEEE
:
524 case ISD::FMAXNUM_IEEE
:
528 case ISD::FNEARBYINT
:
529 case ISD::FCANONICALIZE
:
531 case AMDGPUISD::RCP_LEGACY
:
532 case AMDGPUISD::RCP_IFLAG
:
533 case AMDGPUISD::SIN_HW
:
534 case AMDGPUISD::FMUL_LEGACY
:
535 case AMDGPUISD::FMIN_LEGACY
:
536 case AMDGPUISD::FMAX_LEGACY
:
537 case AMDGPUISD::FMED3
:
544 /// \p returns true if the operation will definitely need to use a 64-bit
545 /// encoding, and thus will use a VOP3 encoding regardless of the source
548 static bool opMustUseVOP3Encoding(const SDNode
*N
, MVT VT
) {
549 return N
->getNumOperands() > 2 || VT
== MVT::f64
;
552 // Most FP instructions support source modifiers, but this could be refined
555 static bool hasSourceMods(const SDNode
*N
) {
556 if (isa
<MemSDNode
>(N
))
559 switch (N
->getOpcode()) {
565 case ISD::INLINEASM_BR
:
566 case AMDGPUISD::DIV_SCALE
:
567 case ISD::INTRINSIC_W_CHAIN
:
569 // TODO: Should really be looking at the users of the bitcast. These are
570 // problematic because bitcasts are used to legalize all stores to integer
574 case ISD::INTRINSIC_WO_CHAIN
: {
575 switch (cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue()) {
576 case Intrinsic::amdgcn_interp_p1
:
577 case Intrinsic::amdgcn_interp_p2
:
578 case Intrinsic::amdgcn_interp_mov
:
579 case Intrinsic::amdgcn_interp_p1_f16
:
580 case Intrinsic::amdgcn_interp_p2_f16
:
591 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode
*N
,
592 unsigned CostThreshold
) {
593 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
594 // it is truly free to use a source modifier in all cases. If there are
595 // multiple users but for each one will necessitate using VOP3, there will be
596 // a code size increase. Try to avoid increasing code size unless we know it
597 // will save on the instruction count.
598 unsigned NumMayIncreaseSize
= 0;
599 MVT VT
= N
->getValueType(0).getScalarType().getSimpleVT();
601 // XXX - Should this limit number of uses to check?
602 for (const SDNode
*U
: N
->uses()) {
603 if (!hasSourceMods(U
))
606 if (!opMustUseVOP3Encoding(U
, VT
)) {
607 if (++NumMayIncreaseSize
> CostThreshold
)
615 MVT
AMDGPUTargetLowering::getVectorIdxTy(const DataLayout
&) const {
619 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType
) const {
623 // The backend supports 32 and 64 bit floating point immediates.
624 // FIXME: Why are we reporting vectors of FP immediates as legal?
625 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
626 bool ForCodeSize
) const {
627 EVT ScalarVT
= VT
.getScalarType();
628 return (ScalarVT
== MVT::f32
|| ScalarVT
== MVT::f64
||
629 (ScalarVT
== MVT::f16
&& Subtarget
->has16BitInsts()));
632 // We don't want to shrink f64 / f32 constants.
633 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT
) const {
634 EVT ScalarVT
= VT
.getScalarType();
635 return (ScalarVT
!= MVT::f32
&& ScalarVT
!= MVT::f64
);
638 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode
*N
,
639 ISD::LoadExtType ExtTy
,
641 // TODO: This may be worth removing. Check regression tests for diffs.
642 if (!TargetLoweringBase::shouldReduceLoadWidth(N
, ExtTy
, NewVT
))
645 unsigned NewSize
= NewVT
.getStoreSizeInBits();
647 // If we are reducing to a 32-bit load, this is always better.
651 EVT OldVT
= N
->getValueType(0);
652 unsigned OldSize
= OldVT
.getStoreSizeInBits();
654 MemSDNode
*MN
= cast
<MemSDNode
>(N
);
655 unsigned AS
= MN
->getAddressSpace();
656 // Do not shrink an aligned scalar load to sub-dword.
657 // Scalar engine cannot do sub-dword loads.
658 if (OldSize
>= 32 && NewSize
< 32 && MN
->getAlignment() >= 4 &&
659 (AS
== AMDGPUAS::CONSTANT_ADDRESS
||
660 AS
== AMDGPUAS::CONSTANT_ADDRESS_32BIT
||
661 (isa
<LoadSDNode
>(N
) &&
662 AS
== AMDGPUAS::GLOBAL_ADDRESS
&& MN
->isInvariant())) &&
663 AMDGPUInstrInfo::isUniformMMO(MN
->getMemOperand()))
666 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
667 // extloads, so doing one requires using a buffer_load. In cases where we
668 // still couldn't use a scalar load, using the wider load shouldn't really
671 // If the old size already had to be an extload, there's no harm in continuing
672 // to reduce the width.
673 return (OldSize
< 32);
676 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy
, EVT CastTy
,
677 const SelectionDAG
&DAG
,
678 const MachineMemOperand
&MMO
) const {
680 assert(LoadTy
.getSizeInBits() == CastTy
.getSizeInBits());
682 if (LoadTy
.getScalarType() == MVT::i32
)
685 unsigned LScalarSize
= LoadTy
.getScalarSizeInBits();
686 unsigned CastScalarSize
= CastTy
.getScalarSizeInBits();
688 if ((LScalarSize
>= CastScalarSize
) && (CastScalarSize
< 32))
692 return allowsMemoryAccessForAlignment(*DAG
.getContext(), DAG
.getDataLayout(),
693 CastTy
, MMO
, &Fast
) &&
697 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
698 // profitable with the expansion for 64-bit since it's generally good to
700 // FIXME: These should really have the size as a parameter.
701 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
705 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
709 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode
* N
) const {
710 switch (N
->getOpcode()) {
713 case ISD::EntryToken
:
714 case ISD::TokenFactor
:
716 case ISD::INTRINSIC_WO_CHAIN
:
718 unsigned IntrID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
722 case Intrinsic::amdgcn_readfirstlane
:
723 case Intrinsic::amdgcn_readlane
:
730 if (cast
<LoadSDNode
>(N
)->getMemOperand()->getAddrSpace() ==
731 AMDGPUAS::CONSTANT_ADDRESS_32BIT
)
739 //===---------------------------------------------------------------------===//
741 //===---------------------------------------------------------------------===//
743 bool AMDGPUTargetLowering::isFAbsFree(EVT VT
) const {
744 assert(VT
.isFloatingPoint());
746 // Packed operations do not have a fabs modifier.
747 return VT
== MVT::f32
|| VT
== MVT::f64
||
748 (Subtarget
->has16BitInsts() && VT
== MVT::f16
);
751 bool AMDGPUTargetLowering::isFNegFree(EVT VT
) const {
752 assert(VT
.isFloatingPoint());
753 return VT
== MVT::f32
|| VT
== MVT::f64
||
754 (Subtarget
->has16BitInsts() && VT
== MVT::f16
) ||
755 (Subtarget
->hasVOP3PInsts() && VT
== MVT::v2f16
);
758 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT
,
764 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT
) const {
765 // There are few operations which truly have vector input operands. Any vector
766 // operation is going to involve operations on each component, and a
767 // build_vector will be a copy per element, so it always makes sense to use a
768 // build_vector input in place of the extracted element to avoid a copy into a
771 // We should probably only do this if all users are extracts only, but this
772 // should be the common case.
776 bool AMDGPUTargetLowering::isTruncateFree(EVT Source
, EVT Dest
) const {
777 // Truncate is just accessing a subregister.
779 unsigned SrcSize
= Source
.getSizeInBits();
780 unsigned DestSize
= Dest
.getSizeInBits();
782 return DestSize
< SrcSize
&& DestSize
% 32 == 0 ;
785 bool AMDGPUTargetLowering::isTruncateFree(Type
*Source
, Type
*Dest
) const {
786 // Truncate is just accessing a subregister.
788 unsigned SrcSize
= Source
->getScalarSizeInBits();
789 unsigned DestSize
= Dest
->getScalarSizeInBits();
791 if (DestSize
== 16 && Subtarget
->has16BitInsts())
792 return SrcSize
>= 32;
794 return DestSize
< SrcSize
&& DestSize
% 32 == 0;
797 bool AMDGPUTargetLowering::isZExtFree(Type
*Src
, Type
*Dest
) const {
798 unsigned SrcSize
= Src
->getScalarSizeInBits();
799 unsigned DestSize
= Dest
->getScalarSizeInBits();
801 if (SrcSize
== 16 && Subtarget
->has16BitInsts())
802 return DestSize
>= 32;
804 return SrcSize
== 32 && DestSize
== 64;
807 bool AMDGPUTargetLowering::isZExtFree(EVT Src
, EVT Dest
) const {
808 // Any register load of a 64-bit value really requires 2 32-bit moves. For all
809 // practical purposes, the extra mov 0 to load a 64-bit is free. As used,
810 // this will enable reducing 64-bit operations the 32-bit, which is always
814 return Dest
== MVT::i32
||Dest
== MVT::i64
;
816 return Src
== MVT::i32
&& Dest
== MVT::i64
;
819 bool AMDGPUTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
820 return isZExtFree(Val
.getValueType(), VT2
);
823 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT
, EVT DestVT
) const {
824 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
825 // limited number of native 64-bit operations. Shrinking an operation to fit
826 // in a single 32-bit register should always be helpful. As currently used,
827 // this is much less general than the name suggests, and is only used in
828 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
829 // not profitable, and may actually be harmful.
830 return SrcVT
.getSizeInBits() > 32 && DestVT
.getSizeInBits() == 32;
833 //===---------------------------------------------------------------------===//
834 // TargetLowering Callbacks
835 //===---------------------------------------------------------------------===//
837 CCAssignFn
*AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC
,
840 case CallingConv::AMDGPU_VS
:
841 case CallingConv::AMDGPU_GS
:
842 case CallingConv::AMDGPU_PS
:
843 case CallingConv::AMDGPU_CS
:
844 case CallingConv::AMDGPU_HS
:
845 case CallingConv::AMDGPU_ES
:
846 case CallingConv::AMDGPU_LS
:
849 case CallingConv::Fast
:
850 case CallingConv::Cold
:
851 return CC_AMDGPU_Func
;
852 case CallingConv::AMDGPU_KERNEL
:
853 case CallingConv::SPIR_KERNEL
:
855 report_fatal_error("Unsupported calling convention for call");
859 CCAssignFn
*AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC
,
862 case CallingConv::AMDGPU_KERNEL
:
863 case CallingConv::SPIR_KERNEL
:
864 llvm_unreachable("kernels should not be handled here");
865 case CallingConv::AMDGPU_VS
:
866 case CallingConv::AMDGPU_GS
:
867 case CallingConv::AMDGPU_PS
:
868 case CallingConv::AMDGPU_CS
:
869 case CallingConv::AMDGPU_HS
:
870 case CallingConv::AMDGPU_ES
:
871 case CallingConv::AMDGPU_LS
:
872 return RetCC_SI_Shader
;
874 case CallingConv::Fast
:
875 case CallingConv::Cold
:
876 return RetCC_AMDGPU_Func
;
878 report_fatal_error("Unsupported calling convention.");
882 /// The SelectionDAGBuilder will automatically promote function arguments
883 /// with illegal types. However, this does not work for the AMDGPU targets
884 /// since the function arguments are stored in memory as these illegal types.
885 /// In order to handle this properly we need to get the original types sizes
886 /// from the LLVM IR Function and fixup the ISD:InputArg values before
887 /// passing them to AnalyzeFormalArguments()
889 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
890 /// input values across multiple registers. Each item in the Ins array
891 /// represents a single value that will be stored in registers. Ins[x].VT is
892 /// the value type of the value that will be stored in the register, so
893 /// whatever SDNode we lower the argument to needs to be this type.
895 /// In order to correctly lower the arguments we need to know the size of each
896 /// argument. Since Ins[x].VT gives us the size of the register that will
897 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
898 /// for the orignal function argument so that we can deduce the correct memory
899 /// type to use for Ins[x]. In most cases the correct memory type will be
900 /// Ins[x].ArgVT. However, this will not always be the case. If, for example,
901 /// we have a kernel argument of type v8i8, this argument will be split into
902 /// 8 parts and each part will be represented by its own item in the Ins array.
903 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
904 /// the argument before it was split. From this, we deduce that the memory type
905 /// for each individual part is i8. We pass the memory type as LocVT to the
906 /// calling convention analysis function and the register type (Ins[x].VT) as
908 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
910 const SmallVectorImpl
<ISD::InputArg
> &Ins
) const {
911 const MachineFunction
&MF
= State
.getMachineFunction();
912 const Function
&Fn
= MF
.getFunction();
913 LLVMContext
&Ctx
= Fn
.getParent()->getContext();
914 const AMDGPUSubtarget
&ST
= AMDGPUSubtarget::get(MF
);
915 const unsigned ExplicitOffset
= ST
.getExplicitKernelArgOffset(Fn
);
916 CallingConv::ID CC
= Fn
.getCallingConv();
918 unsigned MaxAlign
= 1;
919 uint64_t ExplicitArgOffset
= 0;
920 const DataLayout
&DL
= Fn
.getParent()->getDataLayout();
922 unsigned InIndex
= 0;
924 for (const Argument
&Arg
: Fn
.args()) {
925 Type
*BaseArgTy
= Arg
.getType();
926 unsigned Align
= DL
.getABITypeAlignment(BaseArgTy
);
927 MaxAlign
= std::max(Align
, MaxAlign
);
928 unsigned AllocSize
= DL
.getTypeAllocSize(BaseArgTy
);
930 uint64_t ArgOffset
= alignTo(ExplicitArgOffset
, Align
) + ExplicitOffset
;
931 ExplicitArgOffset
= alignTo(ExplicitArgOffset
, Align
) + AllocSize
;
933 // We're basically throwing away everything passed into us and starting over
934 // to get accurate in-memory offsets. The "PartOffset" is completely useless
935 // to us as computed in Ins.
937 // We also need to figure out what type legalization is trying to do to get
938 // the correct memory offsets.
940 SmallVector
<EVT
, 16> ValueVTs
;
941 SmallVector
<uint64_t, 16> Offsets
;
942 ComputeValueVTs(*this, DL
, BaseArgTy
, ValueVTs
, &Offsets
, ArgOffset
);
944 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
945 Value
!= NumValues
; ++Value
) {
946 uint64_t BasePartOffset
= Offsets
[Value
];
948 EVT ArgVT
= ValueVTs
[Value
];
950 MVT RegisterVT
= getRegisterTypeForCallingConv(Ctx
, CC
, ArgVT
);
951 unsigned NumRegs
= getNumRegistersForCallingConv(Ctx
, CC
, ArgVT
);
954 // This argument is not split, so the IR type is the memory type.
955 if (ArgVT
.isExtended()) {
956 // We have an extended type, like i24, so we should just use the
962 } else if (ArgVT
.isVector() && RegisterVT
.isVector() &&
963 ArgVT
.getScalarType() == RegisterVT
.getScalarType()) {
964 assert(ArgVT
.getVectorNumElements() > RegisterVT
.getVectorNumElements());
965 // We have a vector value which has been split into a vector with
966 // the same scalar type, but fewer elements. This should handle
967 // all the floating-point vector types.
969 } else if (ArgVT
.isVector() &&
970 ArgVT
.getVectorNumElements() == NumRegs
) {
971 // This arg has been split so that each element is stored in a separate
973 MemVT
= ArgVT
.getScalarType();
974 } else if (ArgVT
.isExtended()) {
975 // We have an extended type, like i65.
978 unsigned MemoryBits
= ArgVT
.getStoreSizeInBits() / NumRegs
;
979 assert(ArgVT
.getStoreSizeInBits() % NumRegs
== 0);
980 if (RegisterVT
.isInteger()) {
981 MemVT
= EVT::getIntegerVT(State
.getContext(), MemoryBits
);
982 } else if (RegisterVT
.isVector()) {
983 assert(!RegisterVT
.getScalarType().isFloatingPoint());
984 unsigned NumElements
= RegisterVT
.getVectorNumElements();
985 assert(MemoryBits
% NumElements
== 0);
986 // This vector type has been split into another vector type with
987 // a different elements size.
988 EVT ScalarVT
= EVT::getIntegerVT(State
.getContext(),
989 MemoryBits
/ NumElements
);
990 MemVT
= EVT::getVectorVT(State
.getContext(), ScalarVT
, NumElements
);
992 llvm_unreachable("cannot deduce memory type.");
996 // Convert one element vectors to scalar.
997 if (MemVT
.isVector() && MemVT
.getVectorNumElements() == 1)
998 MemVT
= MemVT
.getScalarType();
1000 // Round up vec3/vec5 argument.
1001 if (MemVT
.isVector() && !MemVT
.isPow2VectorType()) {
1002 assert(MemVT
.getVectorNumElements() == 3 ||
1003 MemVT
.getVectorNumElements() == 5);
1004 MemVT
= MemVT
.getPow2VectorType(State
.getContext());
1007 unsigned PartOffset
= 0;
1008 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
1009 State
.addLoc(CCValAssign::getCustomMem(InIndex
++, RegisterVT
,
1010 BasePartOffset
+ PartOffset
,
1011 MemVT
.getSimpleVT(),
1012 CCValAssign::Full
));
1013 PartOffset
+= MemVT
.getStoreSize();
1019 SDValue
AMDGPUTargetLowering::LowerReturn(
1020 SDValue Chain
, CallingConv::ID CallConv
,
1022 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1023 const SmallVectorImpl
<SDValue
> &OutVals
,
1024 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
1025 // FIXME: Fails for r600 tests
1026 //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1027 // "wave terminate should not have return values");
1028 return DAG
.getNode(AMDGPUISD::ENDPGM
, DL
, MVT::Other
, Chain
);
1031 //===---------------------------------------------------------------------===//
1032 // Target specific lowering
1033 //===---------------------------------------------------------------------===//
1035 /// Selects the correct CCAssignFn for a given CallingConvention value.
1036 CCAssignFn
*AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1038 return AMDGPUCallLowering::CCAssignFnForCall(CC
, IsVarArg
);
1041 CCAssignFn
*AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1043 return AMDGPUCallLowering::CCAssignFnForReturn(CC
, IsVarArg
);
1046 SDValue
AMDGPUTargetLowering::addTokenForArgument(SDValue Chain
,
1048 MachineFrameInfo
&MFI
,
1049 int ClobberedFI
) const {
1050 SmallVector
<SDValue
, 8> ArgChains
;
1051 int64_t FirstByte
= MFI
.getObjectOffset(ClobberedFI
);
1052 int64_t LastByte
= FirstByte
+ MFI
.getObjectSize(ClobberedFI
) - 1;
1054 // Include the original chain at the beginning of the list. When this is
1055 // used by target LowerCall hooks, this helps legalize find the
1056 // CALLSEQ_BEGIN node.
1057 ArgChains
.push_back(Chain
);
1059 // Add a chain value for each stack argument corresponding
1060 for (SDNode::use_iterator U
= DAG
.getEntryNode().getNode()->use_begin(),
1061 UE
= DAG
.getEntryNode().getNode()->use_end();
1063 if (LoadSDNode
*L
= dyn_cast
<LoadSDNode
>(*U
)) {
1064 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(L
->getBasePtr())) {
1065 if (FI
->getIndex() < 0) {
1066 int64_t InFirstByte
= MFI
.getObjectOffset(FI
->getIndex());
1067 int64_t InLastByte
= InFirstByte
;
1068 InLastByte
+= MFI
.getObjectSize(FI
->getIndex()) - 1;
1070 if ((InFirstByte
<= FirstByte
&& FirstByte
<= InLastByte
) ||
1071 (FirstByte
<= InFirstByte
&& InFirstByte
<= LastByte
))
1072 ArgChains
.push_back(SDValue(L
, 1));
1078 // Build a tokenfactor for all the chains.
1079 return DAG
.getNode(ISD::TokenFactor
, SDLoc(Chain
), MVT::Other
, ArgChains
);
1082 SDValue
AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo
&CLI
,
1083 SmallVectorImpl
<SDValue
> &InVals
,
1084 StringRef Reason
) const {
1085 SDValue Callee
= CLI
.Callee
;
1086 SelectionDAG
&DAG
= CLI
.DAG
;
1088 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1090 StringRef
FuncName("<unknown>");
1092 if (const ExternalSymbolSDNode
*G
= dyn_cast
<ExternalSymbolSDNode
>(Callee
))
1093 FuncName
= G
->getSymbol();
1094 else if (const GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
1095 FuncName
= G
->getGlobal()->getName();
1097 DiagnosticInfoUnsupported
NoCalls(
1098 Fn
, Reason
+ FuncName
, CLI
.DL
.getDebugLoc());
1099 DAG
.getContext()->diagnose(NoCalls
);
1101 if (!CLI
.IsTailCall
) {
1102 for (unsigned I
= 0, E
= CLI
.Ins
.size(); I
!= E
; ++I
)
1103 InVals
.push_back(DAG
.getUNDEF(CLI
.Ins
[I
].VT
));
1106 return DAG
.getEntryNode();
1109 SDValue
AMDGPUTargetLowering::LowerCall(CallLoweringInfo
&CLI
,
1110 SmallVectorImpl
<SDValue
> &InVals
) const {
1111 return lowerUnhandledCall(CLI
, InVals
, "unsupported call to function ");
1114 SDValue
AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
1115 SelectionDAG
&DAG
) const {
1116 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1118 DiagnosticInfoUnsupported
NoDynamicAlloca(Fn
, "unsupported dynamic alloca",
1119 SDLoc(Op
).getDebugLoc());
1120 DAG
.getContext()->diagnose(NoDynamicAlloca
);
1121 auto Ops
= {DAG
.getConstant(0, SDLoc(), Op
.getValueType()), Op
.getOperand(0)};
1122 return DAG
.getMergeValues(Ops
, SDLoc());
1125 SDValue
AMDGPUTargetLowering::LowerOperation(SDValue Op
,
1126 SelectionDAG
&DAG
) const {
1127 switch (Op
.getOpcode()) {
1129 Op
->print(errs(), &DAG
);
1130 llvm_unreachable("Custom lowering code for this"
1131 "instruction is not implemented yet!");
1133 case ISD::SIGN_EXTEND_INREG
: return LowerSIGN_EXTEND_INREG(Op
, DAG
);
1134 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
);
1135 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
);
1136 case ISD::UDIVREM
: return LowerUDIVREM(Op
, DAG
);
1137 case ISD::SDIVREM
: return LowerSDIVREM(Op
, DAG
);
1138 case ISD::FREM
: return LowerFREM(Op
, DAG
);
1139 case ISD::FCEIL
: return LowerFCEIL(Op
, DAG
);
1140 case ISD::FTRUNC
: return LowerFTRUNC(Op
, DAG
);
1141 case ISD::FRINT
: return LowerFRINT(Op
, DAG
);
1142 case ISD::FNEARBYINT
: return LowerFNEARBYINT(Op
, DAG
);
1143 case ISD::FROUND
: return LowerFROUND(Op
, DAG
);
1144 case ISD::FFLOOR
: return LowerFFLOOR(Op
, DAG
);
1146 return LowerFLOG(Op
, DAG
, 1.0F
/ numbers::log2ef
);
1148 return LowerFLOG(Op
, DAG
, numbers::ln2f
/ numbers::ln10f
);
1150 return lowerFEXP(Op
, DAG
);
1151 case ISD::SINT_TO_FP
: return LowerSINT_TO_FP(Op
, DAG
);
1152 case ISD::UINT_TO_FP
: return LowerUINT_TO_FP(Op
, DAG
);
1153 case ISD::FP_TO_FP16
: return LowerFP_TO_FP16(Op
, DAG
);
1154 case ISD::FP_TO_SINT
: return LowerFP_TO_SINT(Op
, DAG
);
1155 case ISD::FP_TO_UINT
: return LowerFP_TO_UINT(Op
, DAG
);
1157 case ISD::CTTZ_ZERO_UNDEF
:
1159 case ISD::CTLZ_ZERO_UNDEF
:
1160 return LowerCTLZ_CTTZ(Op
, DAG
);
1161 case ISD::DYNAMIC_STACKALLOC
: return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
1166 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode
*N
,
1167 SmallVectorImpl
<SDValue
> &Results
,
1168 SelectionDAG
&DAG
) const {
1169 switch (N
->getOpcode()) {
1170 case ISD::SIGN_EXTEND_INREG
:
1171 // Different parts of legalization seem to interpret which type of
1172 // sign_extend_inreg is the one to check for custom lowering. The extended
1173 // from type is what really matters, but some places check for custom
1174 // lowering of the result type. This results in trying to use
1175 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1176 // nothing here and let the illegal result integer be handled normally.
1183 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue
*GV
) {
1184 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
);
1185 if (!GVar
|| !GVar
->hasInitializer())
1188 return !isa
<UndefValue
>(GVar
->getInitializer());
1191 SDValue
AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction
* MFI
,
1193 SelectionDAG
&DAG
) const {
1195 const DataLayout
&DL
= DAG
.getDataLayout();
1196 GlobalAddressSDNode
*G
= cast
<GlobalAddressSDNode
>(Op
);
1197 const GlobalValue
*GV
= G
->getGlobal();
1199 if (G
->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS
||
1200 G
->getAddressSpace() == AMDGPUAS::REGION_ADDRESS
) {
1201 if (!MFI
->isEntryFunction()) {
1202 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1203 DiagnosticInfoUnsupported
BadLDSDecl(
1204 Fn
, "local memory global used by non-kernel function", SDLoc(Op
).getDebugLoc());
1205 DAG
.getContext()->diagnose(BadLDSDecl
);
1208 // XXX: What does the value of G->getOffset() mean?
1209 assert(G
->getOffset() == 0 &&
1210 "Do not know what to do with an non-zero offset");
1212 // TODO: We could emit code to handle the initialization somewhere.
1213 if (!hasDefinedInitializer(GV
)) {
1214 unsigned Offset
= MFI
->allocateLDSGlobal(DL
, *GV
);
1215 return DAG
.getConstant(Offset
, SDLoc(Op
), Op
.getValueType());
1219 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1220 DiagnosticInfoUnsupported
BadInit(
1221 Fn
, "unsupported initializer for address space", SDLoc(Op
).getDebugLoc());
1222 DAG
.getContext()->diagnose(BadInit
);
1226 SDValue
AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op
,
1227 SelectionDAG
&DAG
) const {
1228 SmallVector
<SDValue
, 8> Args
;
1230 EVT VT
= Op
.getValueType();
1231 if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
1233 SDValue Lo
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Op
.getOperand(0));
1234 SDValue Hi
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Op
.getOperand(1));
1236 SDValue BV
= DAG
.getBuildVector(MVT::v2i32
, SL
, { Lo
, Hi
});
1237 return DAG
.getNode(ISD::BITCAST
, SL
, VT
, BV
);
1240 for (const SDUse
&U
: Op
->ops())
1241 DAG
.ExtractVectorElements(U
.get(), Args
);
1243 return DAG
.getBuildVector(Op
.getValueType(), SDLoc(Op
), Args
);
1246 SDValue
AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op
,
1247 SelectionDAG
&DAG
) const {
1249 SmallVector
<SDValue
, 8> Args
;
1250 unsigned Start
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
1251 EVT VT
= Op
.getValueType();
1252 DAG
.ExtractVectorElements(Op
.getOperand(0), Args
, Start
,
1253 VT
.getVectorNumElements());
1255 return DAG
.getBuildVector(Op
.getValueType(), SDLoc(Op
), Args
);
1258 /// Generate Min/Max node
1259 SDValue
AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc
&DL
, EVT VT
,
1260 SDValue LHS
, SDValue RHS
,
1261 SDValue True
, SDValue False
,
1263 DAGCombinerInfo
&DCI
) const {
1264 if (!(LHS
== True
&& RHS
== False
) && !(LHS
== False
&& RHS
== True
))
1267 SelectionDAG
&DAG
= DCI
.DAG
;
1268 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
1277 case ISD::SETFALSE2
:
1286 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, RHS
, LHS
);
1287 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, LHS
, RHS
);
1293 // Ordered. Assume ordered for undefined.
1295 // Only do this after legalization to avoid interfering with other combines
1296 // which might occur.
1297 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
&&
1298 !DCI
.isCalledByLegalizer())
1301 // We need to permute the operands to get the correct NaN behavior. The
1302 // selected operand is the second one based on the failing compare with NaN,
1303 // so permute it based on the compare type the hardware uses.
1305 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, LHS
, RHS
);
1306 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, RHS
, LHS
);
1311 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, RHS
, LHS
);
1312 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, LHS
, RHS
);
1318 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
&&
1319 !DCI
.isCalledByLegalizer())
1323 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, LHS
, RHS
);
1324 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, RHS
, LHS
);
1326 case ISD::SETCC_INVALID
:
1327 llvm_unreachable("Invalid setcc condcode!");
1332 std::pair
<SDValue
, SDValue
>
1333 AMDGPUTargetLowering::split64BitValue(SDValue Op
, SelectionDAG
&DAG
) const {
1336 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1338 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
1339 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
1341 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
1342 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
1344 return std::make_pair(Lo
, Hi
);
1347 SDValue
AMDGPUTargetLowering::getLoHalf64(SDValue Op
, SelectionDAG
&DAG
) const {
1350 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1351 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
1352 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
1355 SDValue
AMDGPUTargetLowering::getHiHalf64(SDValue Op
, SelectionDAG
&DAG
) const {
1358 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1359 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
1360 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
1363 // Split a vector type into two parts. The first part is a power of two vector.
1364 // The second part is whatever is left over, and is a scalar if it would
1365 // otherwise be a 1-vector.
1367 AMDGPUTargetLowering::getSplitDestVTs(const EVT
&VT
, SelectionDAG
&DAG
) const {
1369 EVT EltVT
= VT
.getVectorElementType();
1370 unsigned NumElts
= VT
.getVectorNumElements();
1371 unsigned LoNumElts
= PowerOf2Ceil((NumElts
+ 1) / 2);
1372 LoVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, LoNumElts
);
1373 HiVT
= NumElts
- LoNumElts
== 1
1375 : EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
- LoNumElts
);
1376 return std::make_pair(LoVT
, HiVT
);
1379 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1381 std::pair
<SDValue
, SDValue
>
1382 AMDGPUTargetLowering::splitVector(const SDValue
&N
, const SDLoc
&DL
,
1383 const EVT
&LoVT
, const EVT
&HiVT
,
1384 SelectionDAG
&DAG
) const {
1385 assert(LoVT
.getVectorNumElements() +
1386 (HiVT
.isVector() ? HiVT
.getVectorNumElements() : 1) <=
1387 N
.getValueType().getVectorNumElements() &&
1388 "More vector elements requested than available!");
1389 auto IdxTy
= getVectorIdxTy(DAG
.getDataLayout());
1390 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, LoVT
, N
,
1391 DAG
.getConstant(0, DL
, IdxTy
));
1392 SDValue Hi
= DAG
.getNode(
1393 HiVT
.isVector() ? ISD::EXTRACT_SUBVECTOR
: ISD::EXTRACT_VECTOR_ELT
, DL
,
1394 HiVT
, N
, DAG
.getConstant(LoVT
.getVectorNumElements(), DL
, IdxTy
));
1395 return std::make_pair(Lo
, Hi
);
1398 SDValue
AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op
,
1399 SelectionDAG
&DAG
) const {
1400 LoadSDNode
*Load
= cast
<LoadSDNode
>(Op
);
1401 EVT VT
= Op
.getValueType();
1404 // If this is a 2 element vector, we really want to scalarize and not create
1405 // weird 1 element vectors.
1406 if (VT
.getVectorNumElements() == 2)
1407 return scalarizeVectorLoad(Load
, DAG
);
1409 SDValue BasePtr
= Load
->getBasePtr();
1410 EVT MemVT
= Load
->getMemoryVT();
1413 const MachinePointerInfo
&SrcValue
= Load
->getMemOperand()->getPointerInfo();
1416 EVT LoMemVT
, HiMemVT
;
1419 std::tie(LoVT
, HiVT
) = getSplitDestVTs(VT
, DAG
);
1420 std::tie(LoMemVT
, HiMemVT
) = getSplitDestVTs(MemVT
, DAG
);
1421 std::tie(Lo
, Hi
) = splitVector(Op
, SL
, LoVT
, HiVT
, DAG
);
1423 unsigned Size
= LoMemVT
.getStoreSize();
1424 unsigned BaseAlign
= Load
->getAlignment();
1425 unsigned HiAlign
= MinAlign(BaseAlign
, Size
);
1427 SDValue LoLoad
= DAG
.getExtLoad(Load
->getExtensionType(), SL
, LoVT
,
1428 Load
->getChain(), BasePtr
, SrcValue
, LoMemVT
,
1429 BaseAlign
, Load
->getMemOperand()->getFlags());
1430 SDValue HiPtr
= DAG
.getObjectPtrOffset(SL
, BasePtr
, Size
);
1432 DAG
.getExtLoad(Load
->getExtensionType(), SL
, HiVT
, Load
->getChain(),
1433 HiPtr
, SrcValue
.getWithOffset(LoMemVT
.getStoreSize()),
1434 HiMemVT
, HiAlign
, Load
->getMemOperand()->getFlags());
1436 auto IdxTy
= getVectorIdxTy(DAG
.getDataLayout());
1439 // This is the case that the vector is power of two so was evenly split.
1440 Join
= DAG
.getNode(ISD::CONCAT_VECTORS
, SL
, VT
, LoLoad
, HiLoad
);
1442 Join
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SL
, VT
, DAG
.getUNDEF(VT
), LoLoad
,
1443 DAG
.getConstant(0, SL
, IdxTy
));
1444 Join
= DAG
.getNode(HiVT
.isVector() ? ISD::INSERT_SUBVECTOR
1445 : ISD::INSERT_VECTOR_ELT
,
1446 SL
, VT
, Join
, HiLoad
,
1447 DAG
.getConstant(LoVT
.getVectorNumElements(), SL
, IdxTy
));
1450 SDValue Ops
[] = {Join
, DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
,
1451 LoLoad
.getValue(1), HiLoad
.getValue(1))};
1453 return DAG
.getMergeValues(Ops
, SL
);
1456 // Widen a vector load from vec3 to vec4.
1457 SDValue
AMDGPUTargetLowering::WidenVectorLoad(SDValue Op
,
1458 SelectionDAG
&DAG
) const {
1459 LoadSDNode
*Load
= cast
<LoadSDNode
>(Op
);
1460 EVT VT
= Op
.getValueType();
1461 assert(VT
.getVectorNumElements() == 3);
1462 SDValue BasePtr
= Load
->getBasePtr();
1463 EVT MemVT
= Load
->getMemoryVT();
1465 const MachinePointerInfo
&SrcValue
= Load
->getMemOperand()->getPointerInfo();
1466 unsigned BaseAlign
= Load
->getAlignment();
1469 EVT::getVectorVT(*DAG
.getContext(), VT
.getVectorElementType(), 4);
1471 EVT::getVectorVT(*DAG
.getContext(), MemVT
.getVectorElementType(), 4);
1472 SDValue WideLoad
= DAG
.getExtLoad(
1473 Load
->getExtensionType(), SL
, WideVT
, Load
->getChain(), BasePtr
, SrcValue
,
1474 WideMemVT
, BaseAlign
, Load
->getMemOperand()->getFlags());
1475 return DAG
.getMergeValues(
1476 {DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SL
, VT
, WideLoad
,
1477 DAG
.getConstant(0, SL
, getVectorIdxTy(DAG
.getDataLayout()))),
1478 WideLoad
.getValue(1)},
1482 SDValue
AMDGPUTargetLowering::SplitVectorStore(SDValue Op
,
1483 SelectionDAG
&DAG
) const {
1484 StoreSDNode
*Store
= cast
<StoreSDNode
>(Op
);
1485 SDValue Val
= Store
->getValue();
1486 EVT VT
= Val
.getValueType();
1488 // If this is a 2 element vector, we really want to scalarize and not create
1489 // weird 1 element vectors.
1490 if (VT
.getVectorNumElements() == 2)
1491 return scalarizeVectorStore(Store
, DAG
);
1493 EVT MemVT
= Store
->getMemoryVT();
1494 SDValue Chain
= Store
->getChain();
1495 SDValue BasePtr
= Store
->getBasePtr();
1499 EVT LoMemVT
, HiMemVT
;
1502 std::tie(LoVT
, HiVT
) = getSplitDestVTs(VT
, DAG
);
1503 std::tie(LoMemVT
, HiMemVT
) = getSplitDestVTs(MemVT
, DAG
);
1504 std::tie(Lo
, Hi
) = splitVector(Val
, SL
, LoVT
, HiVT
, DAG
);
1506 SDValue HiPtr
= DAG
.getObjectPtrOffset(SL
, BasePtr
, LoMemVT
.getStoreSize());
1508 const MachinePointerInfo
&SrcValue
= Store
->getMemOperand()->getPointerInfo();
1509 unsigned BaseAlign
= Store
->getAlignment();
1510 unsigned Size
= LoMemVT
.getStoreSize();
1511 unsigned HiAlign
= MinAlign(BaseAlign
, Size
);
1514 DAG
.getTruncStore(Chain
, SL
, Lo
, BasePtr
, SrcValue
, LoMemVT
, BaseAlign
,
1515 Store
->getMemOperand()->getFlags());
1517 DAG
.getTruncStore(Chain
, SL
, Hi
, HiPtr
, SrcValue
.getWithOffset(Size
),
1518 HiMemVT
, HiAlign
, Store
->getMemOperand()->getFlags());
1520 return DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
, LoStore
, HiStore
);
1523 // This is a shortcut for integer division because we have fast i32<->f32
1524 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1525 // float is enough to accurately represent up to a 24-bit signed integer.
1526 SDValue
AMDGPUTargetLowering::LowerDIVREM24(SDValue Op
, SelectionDAG
&DAG
,
1529 EVT VT
= Op
.getValueType();
1530 SDValue LHS
= Op
.getOperand(0);
1531 SDValue RHS
= Op
.getOperand(1);
1532 MVT IntVT
= MVT::i32
;
1533 MVT FltVT
= MVT::f32
;
1535 unsigned LHSSignBits
= DAG
.ComputeNumSignBits(LHS
);
1536 if (LHSSignBits
< 9)
1539 unsigned RHSSignBits
= DAG
.ComputeNumSignBits(RHS
);
1540 if (RHSSignBits
< 9)
1543 unsigned BitSize
= VT
.getSizeInBits();
1544 unsigned SignBits
= std::min(LHSSignBits
, RHSSignBits
);
1545 unsigned DivBits
= BitSize
- SignBits
;
1549 ISD::NodeType ToFp
= Sign
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
;
1550 ISD::NodeType ToInt
= Sign
? ISD::FP_TO_SINT
: ISD::FP_TO_UINT
;
1552 SDValue jq
= DAG
.getConstant(1, DL
, IntVT
);
1555 // char|short jq = ia ^ ib;
1556 jq
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHS
, RHS
);
1558 // jq = jq >> (bitsize - 2)
1559 jq
= DAG
.getNode(ISD::SRA
, DL
, VT
, jq
,
1560 DAG
.getConstant(BitSize
- 2, DL
, VT
));
1563 jq
= DAG
.getNode(ISD::OR
, DL
, VT
, jq
, DAG
.getConstant(1, DL
, VT
));
1566 // int ia = (int)LHS;
1569 // int ib, (int)RHS;
1572 // float fa = (float)ia;
1573 SDValue fa
= DAG
.getNode(ToFp
, DL
, FltVT
, ia
);
1575 // float fb = (float)ib;
1576 SDValue fb
= DAG
.getNode(ToFp
, DL
, FltVT
, ib
);
1578 SDValue fq
= DAG
.getNode(ISD::FMUL
, DL
, FltVT
,
1579 fa
, DAG
.getNode(AMDGPUISD::RCP
, DL
, FltVT
, fb
));
1582 fq
= DAG
.getNode(ISD::FTRUNC
, DL
, FltVT
, fq
);
1584 // float fqneg = -fq;
1585 SDValue fqneg
= DAG
.getNode(ISD::FNEG
, DL
, FltVT
, fq
);
1587 // float fr = mad(fqneg, fb, fa);
1588 unsigned OpCode
= Subtarget
->hasFP32Denormals() ?
1589 (unsigned)AMDGPUISD::FMAD_FTZ
:
1590 (unsigned)ISD::FMAD
;
1591 SDValue fr
= DAG
.getNode(OpCode
, DL
, FltVT
, fqneg
, fb
, fa
);
1593 // int iq = (int)fq;
1594 SDValue iq
= DAG
.getNode(ToInt
, DL
, IntVT
, fq
);
1597 fr
= DAG
.getNode(ISD::FABS
, DL
, FltVT
, fr
);
1600 fb
= DAG
.getNode(ISD::FABS
, DL
, FltVT
, fb
);
1602 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
1604 // int cv = fr >= fb;
1605 SDValue cv
= DAG
.getSetCC(DL
, SetCCVT
, fr
, fb
, ISD::SETOGE
);
1607 // jq = (cv ? jq : 0);
1608 jq
= DAG
.getNode(ISD::SELECT
, DL
, VT
, cv
, jq
, DAG
.getConstant(0, DL
, VT
));
1611 SDValue Div
= DAG
.getNode(ISD::ADD
, DL
, VT
, iq
, jq
);
1613 // Rem needs compensation, it's easier to recompute it
1614 SDValue Rem
= DAG
.getNode(ISD::MUL
, DL
, VT
, Div
, RHS
);
1615 Rem
= DAG
.getNode(ISD::SUB
, DL
, VT
, LHS
, Rem
);
1617 // Truncate to number of bits this divide really is.
1620 = DAG
.getValueType(EVT::getIntegerVT(*DAG
.getContext(), DivBits
));
1621 Div
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Div
, InRegSize
);
1622 Rem
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Rem
, InRegSize
);
1624 SDValue TruncMask
= DAG
.getConstant((UINT64_C(1) << DivBits
) - 1, DL
, VT
);
1625 Div
= DAG
.getNode(ISD::AND
, DL
, VT
, Div
, TruncMask
);
1626 Rem
= DAG
.getNode(ISD::AND
, DL
, VT
, Rem
, TruncMask
);
1629 return DAG
.getMergeValues({ Div
, Rem
}, DL
);
1632 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op
,
1634 SmallVectorImpl
<SDValue
> &Results
) const {
1636 EVT VT
= Op
.getValueType();
1638 assert(VT
== MVT::i64
&& "LowerUDIVREM64 expects an i64");
1640 EVT HalfVT
= VT
.getHalfSizedIntegerVT(*DAG
.getContext());
1642 SDValue One
= DAG
.getConstant(1, DL
, HalfVT
);
1643 SDValue Zero
= DAG
.getConstant(0, DL
, HalfVT
);
1646 SDValue LHS
= Op
.getOperand(0);
1647 SDValue LHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, Zero
);
1648 SDValue LHS_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, One
);
1650 SDValue RHS
= Op
.getOperand(1);
1651 SDValue RHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, Zero
);
1652 SDValue RHS_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, One
);
1654 if (DAG
.MaskedValueIsZero(RHS
, APInt::getHighBitsSet(64, 32)) &&
1655 DAG
.MaskedValueIsZero(LHS
, APInt::getHighBitsSet(64, 32))) {
1657 SDValue Res
= DAG
.getNode(ISD::UDIVREM
, DL
, DAG
.getVTList(HalfVT
, HalfVT
),
1660 SDValue DIV
= DAG
.getBuildVector(MVT::v2i32
, DL
, {Res
.getValue(0), Zero
});
1661 SDValue REM
= DAG
.getBuildVector(MVT::v2i32
, DL
, {Res
.getValue(1), Zero
});
1663 Results
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, DIV
));
1664 Results
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, REM
));
1668 if (isTypeLegal(MVT::i64
)) {
1669 // Compute denominator reciprocal.
1670 unsigned FMAD
= Subtarget
->hasFP32Denormals() ?
1671 (unsigned)AMDGPUISD::FMAD_FTZ
:
1672 (unsigned)ISD::FMAD
;
1674 SDValue Cvt_Lo
= DAG
.getNode(ISD::UINT_TO_FP
, DL
, MVT::f32
, RHS_Lo
);
1675 SDValue Cvt_Hi
= DAG
.getNode(ISD::UINT_TO_FP
, DL
, MVT::f32
, RHS_Hi
);
1676 SDValue Mad1
= DAG
.getNode(FMAD
, DL
, MVT::f32
, Cvt_Hi
,
1677 DAG
.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL
, MVT::f32
),
1679 SDValue Rcp
= DAG
.getNode(AMDGPUISD::RCP
, DL
, MVT::f32
, Mad1
);
1680 SDValue Mul1
= DAG
.getNode(ISD::FMUL
, DL
, MVT::f32
, Rcp
,
1681 DAG
.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL
, MVT::f32
));
1682 SDValue Mul2
= DAG
.getNode(ISD::FMUL
, DL
, MVT::f32
, Mul1
,
1683 DAG
.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL
, MVT::f32
));
1684 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, DL
, MVT::f32
, Mul2
);
1685 SDValue Mad2
= DAG
.getNode(FMAD
, DL
, MVT::f32
, Trunc
,
1686 DAG
.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL
, MVT::f32
),
1688 SDValue Rcp_Lo
= DAG
.getNode(ISD::FP_TO_UINT
, DL
, HalfVT
, Mad2
);
1689 SDValue Rcp_Hi
= DAG
.getNode(ISD::FP_TO_UINT
, DL
, HalfVT
, Trunc
);
1690 SDValue Rcp64
= DAG
.getBitcast(VT
,
1691 DAG
.getBuildVector(MVT::v2i32
, DL
, {Rcp_Lo
, Rcp_Hi
}));
1693 SDValue Zero64
= DAG
.getConstant(0, DL
, VT
);
1694 SDValue One64
= DAG
.getConstant(1, DL
, VT
);
1695 SDValue Zero1
= DAG
.getConstant(0, DL
, MVT::i1
);
1696 SDVTList HalfCarryVT
= DAG
.getVTList(HalfVT
, MVT::i1
);
1698 SDValue Neg_RHS
= DAG
.getNode(ISD::SUB
, DL
, VT
, Zero64
, RHS
);
1699 SDValue Mullo1
= DAG
.getNode(ISD::MUL
, DL
, VT
, Neg_RHS
, Rcp64
);
1700 SDValue Mulhi1
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Rcp64
, Mullo1
);
1701 SDValue Mulhi1_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi1
,
1703 SDValue Mulhi1_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi1
,
1706 SDValue Add1_Lo
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Rcp_Lo
,
1708 SDValue Add1_Hi
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Rcp_Hi
,
1709 Mulhi1_Hi
, Add1_Lo
.getValue(1));
1710 SDValue Add1_HiNc
= DAG
.getNode(ISD::ADD
, DL
, HalfVT
, Rcp_Hi
, Mulhi1_Hi
);
1711 SDValue Add1
= DAG
.getBitcast(VT
,
1712 DAG
.getBuildVector(MVT::v2i32
, DL
, {Add1_Lo
, Add1_Hi
}));
1714 SDValue Mullo2
= DAG
.getNode(ISD::MUL
, DL
, VT
, Neg_RHS
, Add1
);
1715 SDValue Mulhi2
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Add1
, Mullo2
);
1716 SDValue Mulhi2_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi2
,
1718 SDValue Mulhi2_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi2
,
1721 SDValue Add2_Lo
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Add1_Lo
,
1723 SDValue Add2_HiC
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Add1_HiNc
,
1724 Mulhi2_Hi
, Add1_Lo
.getValue(1));
1725 SDValue Add2_Hi
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Add2_HiC
,
1726 Zero
, Add2_Lo
.getValue(1));
1727 SDValue Add2
= DAG
.getBitcast(VT
,
1728 DAG
.getBuildVector(MVT::v2i32
, DL
, {Add2_Lo
, Add2_Hi
}));
1729 SDValue Mulhi3
= DAG
.getNode(ISD::MULHU
, DL
, VT
, LHS
, Add2
);
1731 SDValue Mul3
= DAG
.getNode(ISD::MUL
, DL
, VT
, RHS
, Mulhi3
);
1733 SDValue Mul3_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mul3
, Zero
);
1734 SDValue Mul3_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mul3
, One
);
1735 SDValue Sub1_Lo
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, LHS_Lo
,
1737 SDValue Sub1_Hi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, LHS_Hi
,
1738 Mul3_Hi
, Sub1_Lo
.getValue(1));
1739 SDValue Sub1_Mi
= DAG
.getNode(ISD::SUB
, DL
, HalfVT
, LHS_Hi
, Mul3_Hi
);
1740 SDValue Sub1
= DAG
.getBitcast(VT
,
1741 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub1_Lo
, Sub1_Hi
}));
1743 SDValue MinusOne
= DAG
.getConstant(0xffffffffu
, DL
, HalfVT
);
1744 SDValue C1
= DAG
.getSelectCC(DL
, Sub1_Hi
, RHS_Hi
, MinusOne
, Zero
,
1746 SDValue C2
= DAG
.getSelectCC(DL
, Sub1_Lo
, RHS_Lo
, MinusOne
, Zero
,
1748 SDValue C3
= DAG
.getSelectCC(DL
, Sub1_Hi
, RHS_Hi
, C2
, C1
, ISD::SETEQ
);
1750 // TODO: Here and below portions of the code can be enclosed into if/endif.
1751 // Currently control flow is unconditional and we have 4 selects after
1752 // potential endif to substitute PHIs.
1755 SDValue Sub2_Lo
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub1_Lo
,
1757 SDValue Sub2_Mi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub1_Mi
,
1758 RHS_Hi
, Sub1_Lo
.getValue(1));
1759 SDValue Sub2_Hi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub2_Mi
,
1760 Zero
, Sub2_Lo
.getValue(1));
1761 SDValue Sub2
= DAG
.getBitcast(VT
,
1762 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub2_Lo
, Sub2_Hi
}));
1764 SDValue Add3
= DAG
.getNode(ISD::ADD
, DL
, VT
, Mulhi3
, One64
);
1766 SDValue C4
= DAG
.getSelectCC(DL
, Sub2_Hi
, RHS_Hi
, MinusOne
, Zero
,
1768 SDValue C5
= DAG
.getSelectCC(DL
, Sub2_Lo
, RHS_Lo
, MinusOne
, Zero
,
1770 SDValue C6
= DAG
.getSelectCC(DL
, Sub2_Hi
, RHS_Hi
, C5
, C4
, ISD::SETEQ
);
1773 SDValue Add4
= DAG
.getNode(ISD::ADD
, DL
, VT
, Add3
, One64
);
1775 SDValue Sub3_Lo
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub2_Lo
,
1777 SDValue Sub3_Mi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub2_Mi
,
1778 RHS_Hi
, Sub2_Lo
.getValue(1));
1779 SDValue Sub3_Hi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub3_Mi
,
1780 Zero
, Sub3_Lo
.getValue(1));
1781 SDValue Sub3
= DAG
.getBitcast(VT
,
1782 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub3_Lo
, Sub3_Hi
}));
1787 SDValue Sel1
= DAG
.getSelectCC(DL
, C6
, Zero
, Add4
, Add3
, ISD::SETNE
);
1788 SDValue Div
= DAG
.getSelectCC(DL
, C3
, Zero
, Sel1
, Mulhi3
, ISD::SETNE
);
1790 SDValue Sel2
= DAG
.getSelectCC(DL
, C6
, Zero
, Sub3
, Sub2
, ISD::SETNE
);
1791 SDValue Rem
= DAG
.getSelectCC(DL
, C3
, Zero
, Sel2
, Sub1
, ISD::SETNE
);
1793 Results
.push_back(Div
);
1794 Results
.push_back(Rem
);
1800 // Get Speculative values
1801 SDValue DIV_Part
= DAG
.getNode(ISD::UDIV
, DL
, HalfVT
, LHS_Hi
, RHS_Lo
);
1802 SDValue REM_Part
= DAG
.getNode(ISD::UREM
, DL
, HalfVT
, LHS_Hi
, RHS_Lo
);
1804 SDValue REM_Lo
= DAG
.getSelectCC(DL
, RHS_Hi
, Zero
, REM_Part
, LHS_Hi
, ISD::SETEQ
);
1805 SDValue REM
= DAG
.getBuildVector(MVT::v2i32
, DL
, {REM_Lo
, Zero
});
1806 REM
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, REM
);
1808 SDValue DIV_Hi
= DAG
.getSelectCC(DL
, RHS_Hi
, Zero
, DIV_Part
, Zero
, ISD::SETEQ
);
1809 SDValue DIV_Lo
= Zero
;
1811 const unsigned halfBitWidth
= HalfVT
.getSizeInBits();
1813 for (unsigned i
= 0; i
< halfBitWidth
; ++i
) {
1814 const unsigned bitPos
= halfBitWidth
- i
- 1;
1815 SDValue POS
= DAG
.getConstant(bitPos
, DL
, HalfVT
);
1816 // Get value of high bit
1817 SDValue HBit
= DAG
.getNode(ISD::SRL
, DL
, HalfVT
, LHS_Lo
, POS
);
1818 HBit
= DAG
.getNode(ISD::AND
, DL
, HalfVT
, HBit
, One
);
1819 HBit
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, HBit
);
1822 REM
= DAG
.getNode(ISD::SHL
, DL
, VT
, REM
, DAG
.getConstant(1, DL
, VT
));
1824 REM
= DAG
.getNode(ISD::OR
, DL
, VT
, REM
, HBit
);
1826 SDValue BIT
= DAG
.getConstant(1ULL << bitPos
, DL
, HalfVT
);
1827 SDValue realBIT
= DAG
.getSelectCC(DL
, REM
, RHS
, BIT
, Zero
, ISD::SETUGE
);
1829 DIV_Lo
= DAG
.getNode(ISD::OR
, DL
, HalfVT
, DIV_Lo
, realBIT
);
1832 SDValue REM_sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, REM
, RHS
);
1833 REM
= DAG
.getSelectCC(DL
, REM
, RHS
, REM_sub
, REM
, ISD::SETUGE
);
1836 SDValue DIV
= DAG
.getBuildVector(MVT::v2i32
, DL
, {DIV_Lo
, DIV_Hi
});
1837 DIV
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, DIV
);
1838 Results
.push_back(DIV
);
1839 Results
.push_back(REM
);
1842 SDValue
AMDGPUTargetLowering::LowerUDIVREM(SDValue Op
,
1843 SelectionDAG
&DAG
) const {
1845 EVT VT
= Op
.getValueType();
1847 if (VT
== MVT::i64
) {
1848 SmallVector
<SDValue
, 2> Results
;
1849 LowerUDIVREM64(Op
, DAG
, Results
);
1850 return DAG
.getMergeValues(Results
, DL
);
1853 if (VT
== MVT::i32
) {
1854 if (SDValue Res
= LowerDIVREM24(Op
, DAG
, false))
1858 SDValue Num
= Op
.getOperand(0);
1859 SDValue Den
= Op
.getOperand(1);
1861 // RCP = URECIP(Den) = 2^32 / Den + e
1862 // e is rounding error.
1863 SDValue RCP
= DAG
.getNode(AMDGPUISD::URECIP
, DL
, VT
, Den
);
1865 // RCP_LO = mul(RCP, Den) */
1866 SDValue RCP_LO
= DAG
.getNode(ISD::MUL
, DL
, VT
, RCP
, Den
);
1868 // RCP_HI = mulhu (RCP, Den) */
1869 SDValue RCP_HI
= DAG
.getNode(ISD::MULHU
, DL
, VT
, RCP
, Den
);
1871 // NEG_RCP_LO = -RCP_LO
1872 SDValue NEG_RCP_LO
= DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
1875 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1876 SDValue ABS_RCP_LO
= DAG
.getSelectCC(DL
, RCP_HI
, DAG
.getConstant(0, DL
, VT
),
1879 // Calculate the rounding error from the URECIP instruction
1880 // E = mulhu(ABS_RCP_LO, RCP)
1881 SDValue E
= DAG
.getNode(ISD::MULHU
, DL
, VT
, ABS_RCP_LO
, RCP
);
1883 // RCP_A_E = RCP + E
1884 SDValue RCP_A_E
= DAG
.getNode(ISD::ADD
, DL
, VT
, RCP
, E
);
1886 // RCP_S_E = RCP - E
1887 SDValue RCP_S_E
= DAG
.getNode(ISD::SUB
, DL
, VT
, RCP
, E
);
1889 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1890 SDValue Tmp0
= DAG
.getSelectCC(DL
, RCP_HI
, DAG
.getConstant(0, DL
, VT
),
1893 // Quotient = mulhu(Tmp0, Num)
1894 SDValue Quotient
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Tmp0
, Num
);
1896 // Num_S_Remainder = Quotient * Den
1897 SDValue Num_S_Remainder
= DAG
.getNode(ISD::MUL
, DL
, VT
, Quotient
, Den
);
1899 // Remainder = Num - Num_S_Remainder
1900 SDValue Remainder
= DAG
.getNode(ISD::SUB
, DL
, VT
, Num
, Num_S_Remainder
);
1902 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1903 SDValue Remainder_GE_Den
= DAG
.getSelectCC(DL
, Remainder
, Den
,
1904 DAG
.getConstant(-1, DL
, VT
),
1905 DAG
.getConstant(0, DL
, VT
),
1907 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1908 SDValue Remainder_GE_Zero
= DAG
.getSelectCC(DL
, Num
,
1910 DAG
.getConstant(-1, DL
, VT
),
1911 DAG
.getConstant(0, DL
, VT
),
1913 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1914 SDValue Tmp1
= DAG
.getNode(ISD::AND
, DL
, VT
, Remainder_GE_Den
,
1917 // Calculate Division result:
1919 // Quotient_A_One = Quotient + 1
1920 SDValue Quotient_A_One
= DAG
.getNode(ISD::ADD
, DL
, VT
, Quotient
,
1921 DAG
.getConstant(1, DL
, VT
));
1923 // Quotient_S_One = Quotient - 1
1924 SDValue Quotient_S_One
= DAG
.getNode(ISD::SUB
, DL
, VT
, Quotient
,
1925 DAG
.getConstant(1, DL
, VT
));
1927 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1928 SDValue Div
= DAG
.getSelectCC(DL
, Tmp1
, DAG
.getConstant(0, DL
, VT
),
1929 Quotient
, Quotient_A_One
, ISD::SETEQ
);
1931 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1932 Div
= DAG
.getSelectCC(DL
, Remainder_GE_Zero
, DAG
.getConstant(0, DL
, VT
),
1933 Quotient_S_One
, Div
, ISD::SETEQ
);
1935 // Calculate Rem result:
1937 // Remainder_S_Den = Remainder - Den
1938 SDValue Remainder_S_Den
= DAG
.getNode(ISD::SUB
, DL
, VT
, Remainder
, Den
);
1940 // Remainder_A_Den = Remainder + Den
1941 SDValue Remainder_A_Den
= DAG
.getNode(ISD::ADD
, DL
, VT
, Remainder
, Den
);
1943 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1944 SDValue Rem
= DAG
.getSelectCC(DL
, Tmp1
, DAG
.getConstant(0, DL
, VT
),
1945 Remainder
, Remainder_S_Den
, ISD::SETEQ
);
1947 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1948 Rem
= DAG
.getSelectCC(DL
, Remainder_GE_Zero
, DAG
.getConstant(0, DL
, VT
),
1949 Remainder_A_Den
, Rem
, ISD::SETEQ
);
1954 return DAG
.getMergeValues(Ops
, DL
);
1957 SDValue
AMDGPUTargetLowering::LowerSDIVREM(SDValue Op
,
1958 SelectionDAG
&DAG
) const {
1960 EVT VT
= Op
.getValueType();
1962 SDValue LHS
= Op
.getOperand(0);
1963 SDValue RHS
= Op
.getOperand(1);
1965 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
1966 SDValue NegOne
= DAG
.getConstant(-1, DL
, VT
);
1968 if (VT
== MVT::i32
) {
1969 if (SDValue Res
= LowerDIVREM24(Op
, DAG
, true))
1973 if (VT
== MVT::i64
&&
1974 DAG
.ComputeNumSignBits(LHS
) > 32 &&
1975 DAG
.ComputeNumSignBits(RHS
) > 32) {
1976 EVT HalfVT
= VT
.getHalfSizedIntegerVT(*DAG
.getContext());
1979 SDValue LHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, Zero
);
1980 SDValue RHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, Zero
);
1981 SDValue DIVREM
= DAG
.getNode(ISD::SDIVREM
, DL
, DAG
.getVTList(HalfVT
, HalfVT
),
1984 DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, DIVREM
.getValue(0)),
1985 DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, DIVREM
.getValue(1))
1987 return DAG
.getMergeValues(Res
, DL
);
1990 SDValue LHSign
= DAG
.getSelectCC(DL
, LHS
, Zero
, NegOne
, Zero
, ISD::SETLT
);
1991 SDValue RHSign
= DAG
.getSelectCC(DL
, RHS
, Zero
, NegOne
, Zero
, ISD::SETLT
);
1992 SDValue DSign
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHSign
, RHSign
);
1993 SDValue RSign
= LHSign
; // Remainder sign is the same as LHS
1995 LHS
= DAG
.getNode(ISD::ADD
, DL
, VT
, LHS
, LHSign
);
1996 RHS
= DAG
.getNode(ISD::ADD
, DL
, VT
, RHS
, RHSign
);
1998 LHS
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHS
, LHSign
);
1999 RHS
= DAG
.getNode(ISD::XOR
, DL
, VT
, RHS
, RHSign
);
2001 SDValue Div
= DAG
.getNode(ISD::UDIVREM
, DL
, DAG
.getVTList(VT
, VT
), LHS
, RHS
);
2002 SDValue Rem
= Div
.getValue(1);
2004 Div
= DAG
.getNode(ISD::XOR
, DL
, VT
, Div
, DSign
);
2005 Rem
= DAG
.getNode(ISD::XOR
, DL
, VT
, Rem
, RSign
);
2007 Div
= DAG
.getNode(ISD::SUB
, DL
, VT
, Div
, DSign
);
2008 Rem
= DAG
.getNode(ISD::SUB
, DL
, VT
, Rem
, RSign
);
2014 return DAG
.getMergeValues(Res
, DL
);
2017 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2018 SDValue
AMDGPUTargetLowering::LowerFREM(SDValue Op
, SelectionDAG
&DAG
) const {
2020 EVT VT
= Op
.getValueType();
2021 SDValue X
= Op
.getOperand(0);
2022 SDValue Y
= Op
.getOperand(1);
2024 // TODO: Should this propagate fast-math-flags?
2026 SDValue Div
= DAG
.getNode(ISD::FDIV
, SL
, VT
, X
, Y
);
2027 SDValue Floor
= DAG
.getNode(ISD::FTRUNC
, SL
, VT
, Div
);
2028 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, VT
, Floor
, Y
);
2030 return DAG
.getNode(ISD::FSUB
, SL
, VT
, X
, Mul
);
2033 SDValue
AMDGPUTargetLowering::LowerFCEIL(SDValue Op
, SelectionDAG
&DAG
) const {
2035 SDValue Src
= Op
.getOperand(0);
2037 // result = trunc(src)
2038 // if (src > 0.0 && src != result)
2041 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
2043 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, MVT::f64
);
2044 const SDValue One
= DAG
.getConstantFP(1.0, SL
, MVT::f64
);
2047 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2049 SDValue Lt0
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Zero
, ISD::SETOGT
);
2050 SDValue NeTrunc
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Trunc
, ISD::SETONE
);
2051 SDValue And
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lt0
, NeTrunc
);
2053 SDValue Add
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, And
, One
, Zero
);
2054 // TODO: Should this propagate fast-math-flags?
2055 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Trunc
, Add
);
2058 static SDValue
extractF64Exponent(SDValue Hi
, const SDLoc
&SL
,
2059 SelectionDAG
&DAG
) {
2060 const unsigned FractBits
= 52;
2061 const unsigned ExpBits
= 11;
2063 SDValue ExpPart
= DAG
.getNode(AMDGPUISD::BFE_U32
, SL
, MVT::i32
,
2065 DAG
.getConstant(FractBits
- 32, SL
, MVT::i32
),
2066 DAG
.getConstant(ExpBits
, SL
, MVT::i32
));
2067 SDValue Exp
= DAG
.getNode(ISD::SUB
, SL
, MVT::i32
, ExpPart
,
2068 DAG
.getConstant(1023, SL
, MVT::i32
));
2073 SDValue
AMDGPUTargetLowering::LowerFTRUNC(SDValue Op
, SelectionDAG
&DAG
) const {
2075 SDValue Src
= Op
.getOperand(0);
2077 assert(Op
.getValueType() == MVT::f64
);
2079 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2080 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2082 SDValue VecSrc
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Src
);
2084 // Extract the upper half, since this is where we will find the sign and
2086 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, VecSrc
, One
);
2088 SDValue Exp
= extractF64Exponent(Hi
, SL
, DAG
);
2090 const unsigned FractBits
= 52;
2092 // Extract the sign bit.
2093 const SDValue SignBitMask
= DAG
.getConstant(UINT32_C(1) << 31, SL
, MVT::i32
);
2094 SDValue SignBit
= DAG
.getNode(ISD::AND
, SL
, MVT::i32
, Hi
, SignBitMask
);
2096 // Extend back to 64-bits.
2097 SDValue SignBit64
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Zero
, SignBit
});
2098 SignBit64
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, SignBit64
);
2100 SDValue BcInt
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Src
);
2101 const SDValue FractMask
2102 = DAG
.getConstant((UINT64_C(1) << FractBits
) - 1, SL
, MVT::i64
);
2104 SDValue Shr
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, FractMask
, Exp
);
2105 SDValue Not
= DAG
.getNOT(SL
, Shr
, MVT::i64
);
2106 SDValue Tmp0
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, BcInt
, Not
);
2109 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::i32
);
2111 const SDValue FiftyOne
= DAG
.getConstant(FractBits
- 1, SL
, MVT::i32
);
2113 SDValue ExpLt0
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, Zero
, ISD::SETLT
);
2114 SDValue ExpGt51
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, FiftyOne
, ISD::SETGT
);
2116 SDValue Tmp1
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, ExpLt0
, SignBit64
, Tmp0
);
2117 SDValue Tmp2
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, ExpGt51
, BcInt
, Tmp1
);
2119 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::f64
, Tmp2
);
2122 SDValue
AMDGPUTargetLowering::LowerFRINT(SDValue Op
, SelectionDAG
&DAG
) const {
2124 SDValue Src
= Op
.getOperand(0);
2126 assert(Op
.getValueType() == MVT::f64
);
2128 APFloat
C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2129 SDValue C1
= DAG
.getConstantFP(C1Val
, SL
, MVT::f64
);
2130 SDValue CopySign
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, MVT::f64
, C1
, Src
);
2132 // TODO: Should this propagate fast-math-flags?
2134 SDValue Tmp1
= DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Src
, CopySign
);
2135 SDValue Tmp2
= DAG
.getNode(ISD::FSUB
, SL
, MVT::f64
, Tmp1
, CopySign
);
2137 SDValue Fabs
= DAG
.getNode(ISD::FABS
, SL
, MVT::f64
, Src
);
2139 APFloat
C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2140 SDValue C2
= DAG
.getConstantFP(C2Val
, SL
, MVT::f64
);
2143 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2144 SDValue Cond
= DAG
.getSetCC(SL
, SetCCVT
, Fabs
, C2
, ISD::SETOGT
);
2146 return DAG
.getSelect(SL
, MVT::f64
, Cond
, Src
, Tmp2
);
2149 SDValue
AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op
, SelectionDAG
&DAG
) const {
2150 // FNEARBYINT and FRINT are the same, except in their handling of FP
2151 // exceptions. Those aren't really meaningful for us, and OpenCL only has
2152 // rint, so just treat them as equivalent.
2153 return DAG
.getNode(ISD::FRINT
, SDLoc(Op
), Op
.getValueType(), Op
.getOperand(0));
2156 // XXX - May require not supporting f32 denormals?
2158 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2159 // compare and vselect end up producing worse code than scalarizing the whole
2161 SDValue
AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op
, SelectionDAG
&DAG
) const {
2163 SDValue X
= Op
.getOperand(0);
2164 EVT VT
= Op
.getValueType();
2166 SDValue T
= DAG
.getNode(ISD::FTRUNC
, SL
, VT
, X
);
2168 // TODO: Should this propagate fast-math-flags?
2170 SDValue Diff
= DAG
.getNode(ISD::FSUB
, SL
, VT
, X
, T
);
2172 SDValue AbsDiff
= DAG
.getNode(ISD::FABS
, SL
, VT
, Diff
);
2174 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, VT
);
2175 const SDValue One
= DAG
.getConstantFP(1.0, SL
, VT
);
2176 const SDValue Half
= DAG
.getConstantFP(0.5, SL
, VT
);
2178 SDValue SignOne
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, VT
, One
, X
);
2181 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
2183 SDValue Cmp
= DAG
.getSetCC(SL
, SetCCVT
, AbsDiff
, Half
, ISD::SETOGE
);
2185 SDValue Sel
= DAG
.getNode(ISD::SELECT
, SL
, VT
, Cmp
, SignOne
, Zero
);
2187 return DAG
.getNode(ISD::FADD
, SL
, VT
, T
, Sel
);
2190 SDValue
AMDGPUTargetLowering::LowerFROUND64(SDValue Op
, SelectionDAG
&DAG
) const {
2192 SDValue X
= Op
.getOperand(0);
2194 SDValue L
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, X
);
2196 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2197 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2198 const SDValue NegOne
= DAG
.getConstant(-1, SL
, MVT::i32
);
2199 const SDValue FiftyOne
= DAG
.getConstant(51, SL
, MVT::i32
);
2201 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::i32
);
2203 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, X
);
2205 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, BC
, One
);
2207 SDValue Exp
= extractF64Exponent(Hi
, SL
, DAG
);
2209 const SDValue Mask
= DAG
.getConstant(INT64_C(0x000fffffffffffff), SL
,
2212 SDValue M
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, Mask
, Exp
);
2213 SDValue D
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
,
2214 DAG
.getConstant(INT64_C(0x0008000000000000), SL
,
2218 SDValue Tmp0
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, L
, M
);
2219 SDValue Tmp1
= DAG
.getSetCC(SL
, SetCCVT
,
2220 DAG
.getConstant(0, SL
, MVT::i64
), Tmp0
,
2223 SDValue Tmp2
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, Tmp1
,
2224 D
, DAG
.getConstant(0, SL
, MVT::i64
));
2225 SDValue K
= DAG
.getNode(ISD::ADD
, SL
, MVT::i64
, L
, Tmp2
);
2227 K
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, K
, DAG
.getNOT(SL
, M
, MVT::i64
));
2228 K
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::f64
, K
);
2230 SDValue ExpLt0
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, Zero
, ISD::SETLT
);
2231 SDValue ExpGt51
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, FiftyOne
, ISD::SETGT
);
2232 SDValue ExpEqNegOne
= DAG
.getSetCC(SL
, SetCCVT
, NegOne
, Exp
, ISD::SETEQ
);
2234 SDValue Mag
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
,
2236 DAG
.getConstantFP(1.0, SL
, MVT::f64
),
2237 DAG
.getConstantFP(0.0, SL
, MVT::f64
));
2239 SDValue S
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, MVT::f64
, Mag
, X
);
2241 K
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, ExpLt0
, S
, K
);
2242 K
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, ExpGt51
, X
, K
);
2247 SDValue
AMDGPUTargetLowering::LowerFROUND(SDValue Op
, SelectionDAG
&DAG
) const {
2248 EVT VT
= Op
.getValueType();
2250 if (VT
== MVT::f32
|| VT
== MVT::f16
)
2251 return LowerFROUND32_16(Op
, DAG
);
2254 return LowerFROUND64(Op
, DAG
);
2256 llvm_unreachable("unhandled type");
2259 SDValue
AMDGPUTargetLowering::LowerFFLOOR(SDValue Op
, SelectionDAG
&DAG
) const {
2261 SDValue Src
= Op
.getOperand(0);
2263 // result = trunc(src);
2264 // if (src < 0.0 && src != result)
2267 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
2269 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, MVT::f64
);
2270 const SDValue NegOne
= DAG
.getConstantFP(-1.0, SL
, MVT::f64
);
2273 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2275 SDValue Lt0
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Zero
, ISD::SETOLT
);
2276 SDValue NeTrunc
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Trunc
, ISD::SETONE
);
2277 SDValue And
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lt0
, NeTrunc
);
2279 SDValue Add
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, And
, NegOne
, Zero
);
2280 // TODO: Should this propagate fast-math-flags?
2281 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Trunc
, Add
);
2284 SDValue
AMDGPUTargetLowering::LowerFLOG(SDValue Op
, SelectionDAG
&DAG
,
2285 double Log2BaseInverted
) const {
2286 EVT VT
= Op
.getValueType();
2289 SDValue Operand
= Op
.getOperand(0);
2290 SDValue Log2Operand
= DAG
.getNode(ISD::FLOG2
, SL
, VT
, Operand
);
2291 SDValue Log2BaseInvertedOperand
= DAG
.getConstantFP(Log2BaseInverted
, SL
, VT
);
2293 return DAG
.getNode(ISD::FMUL
, SL
, VT
, Log2Operand
, Log2BaseInvertedOperand
);
2296 // exp2(M_LOG2E_F * f);
2297 SDValue
AMDGPUTargetLowering::lowerFEXP(SDValue Op
, SelectionDAG
&DAG
) const {
2298 EVT VT
= Op
.getValueType();
2300 SDValue Src
= Op
.getOperand(0);
2302 const SDValue K
= DAG
.getConstantFP(numbers::log2e
, SL
, VT
);
2303 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, VT
, Src
, K
, Op
->getFlags());
2304 return DAG
.getNode(ISD::FEXP2
, SL
, VT
, Mul
, Op
->getFlags());
2307 static bool isCtlzOpc(unsigned Opc
) {
2308 return Opc
== ISD::CTLZ
|| Opc
== ISD::CTLZ_ZERO_UNDEF
;
2311 static bool isCttzOpc(unsigned Opc
) {
2312 return Opc
== ISD::CTTZ
|| Opc
== ISD::CTTZ_ZERO_UNDEF
;
2315 SDValue
AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op
, SelectionDAG
&DAG
) const {
2317 SDValue Src
= Op
.getOperand(0);
2318 bool ZeroUndef
= Op
.getOpcode() == ISD::CTTZ_ZERO_UNDEF
||
2319 Op
.getOpcode() == ISD::CTLZ_ZERO_UNDEF
;
2321 unsigned ISDOpc
, NewOpc
;
2322 if (isCtlzOpc(Op
.getOpcode())) {
2323 ISDOpc
= ISD::CTLZ_ZERO_UNDEF
;
2324 NewOpc
= AMDGPUISD::FFBH_U32
;
2325 } else if (isCttzOpc(Op
.getOpcode())) {
2326 ISDOpc
= ISD::CTTZ_ZERO_UNDEF
;
2327 NewOpc
= AMDGPUISD::FFBL_B32
;
2329 llvm_unreachable("Unexpected OPCode!!!");
2332 if (ZeroUndef
&& Src
.getValueType() == MVT::i32
)
2333 return DAG
.getNode(NewOpc
, SL
, MVT::i32
, Src
);
2335 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Src
);
2337 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2338 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2340 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
2341 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
2343 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(),
2344 *DAG
.getContext(), MVT::i32
);
2346 SDValue HiOrLo
= isCtlzOpc(Op
.getOpcode()) ? Hi
: Lo
;
2347 SDValue Hi0orLo0
= DAG
.getSetCC(SL
, SetCCVT
, HiOrLo
, Zero
, ISD::SETEQ
);
2349 SDValue OprLo
= DAG
.getNode(ISDOpc
, SL
, MVT::i32
, Lo
);
2350 SDValue OprHi
= DAG
.getNode(ISDOpc
, SL
, MVT::i32
, Hi
);
2352 const SDValue Bits32
= DAG
.getConstant(32, SL
, MVT::i32
);
2353 SDValue Add
, NewOpr
;
2354 if (isCtlzOpc(Op
.getOpcode())) {
2355 Add
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, OprLo
, Bits32
);
2356 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2357 NewOpr
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i32
, Hi0orLo0
, Add
, OprHi
);
2359 Add
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, OprHi
, Bits32
);
2360 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2361 NewOpr
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i32
, Hi0orLo0
, Add
, OprLo
);
2365 // Test if the full 64-bit input is zero.
2367 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2368 // which we probably don't want.
2369 SDValue LoOrHi
= isCtlzOpc(Op
.getOpcode()) ? Lo
: Hi
;
2370 SDValue Lo0OrHi0
= DAG
.getSetCC(SL
, SetCCVT
, LoOrHi
, Zero
, ISD::SETEQ
);
2371 SDValue SrcIsZero
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lo0OrHi0
, Hi0orLo0
);
2373 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2374 // with the same cycles, otherwise it is slower.
2375 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2376 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2378 const SDValue Bits32
= DAG
.getConstant(64, SL
, MVT::i32
);
2380 // The instruction returns -1 for 0 input, but the defined intrinsic
2381 // behavior is to return the number of bits.
2382 NewOpr
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i32
,
2383 SrcIsZero
, Bits32
, NewOpr
);
2386 return DAG
.getNode(ISD::ZERO_EXTEND
, SL
, MVT::i64
, NewOpr
);
2389 SDValue
AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op
, SelectionDAG
&DAG
,
2390 bool Signed
) const {
2394 // uint lz = clz(u);
2395 // uint e = (u != 0) ? 127U + 63U - lz : 0;
2396 // u = (u << lz) & 0x7fffffffffffffffUL;
2397 // ulong t = u & 0xffffffffffUL;
2398 // uint v = (e << 23) | (uint)(u >> 40);
2399 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2400 // return as_float(v + r);
2405 // long s = l >> 63;
2406 // float r = cul2f((l + s) ^ s);
2407 // return s ? -r : r;
2411 SDValue Src
= Op
.getOperand(0);
2416 const SDValue SignBit
= DAG
.getConstant(63, SL
, MVT::i64
);
2417 S
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, L
, SignBit
);
2419 SDValue LPlusS
= DAG
.getNode(ISD::ADD
, SL
, MVT::i64
, L
, S
);
2420 L
= DAG
.getNode(ISD::XOR
, SL
, MVT::i64
, LPlusS
, S
);
2423 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(),
2424 *DAG
.getContext(), MVT::f32
);
2427 SDValue ZeroI32
= DAG
.getConstant(0, SL
, MVT::i32
);
2428 SDValue ZeroI64
= DAG
.getConstant(0, SL
, MVT::i64
);
2429 SDValue LZ
= DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SL
, MVT::i64
, L
);
2430 LZ
= DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, LZ
);
2432 SDValue K
= DAG
.getConstant(127U + 63U, SL
, MVT::i32
);
2433 SDValue E
= DAG
.getSelect(SL
, MVT::i32
,
2434 DAG
.getSetCC(SL
, SetCCVT
, L
, ZeroI64
, ISD::SETNE
),
2435 DAG
.getNode(ISD::SUB
, SL
, MVT::i32
, K
, LZ
),
2438 SDValue U
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
,
2439 DAG
.getNode(ISD::SHL
, SL
, MVT::i64
, L
, LZ
),
2440 DAG
.getConstant((-1ULL) >> 1, SL
, MVT::i64
));
2442 SDValue T
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, U
,
2443 DAG
.getConstant(0xffffffffffULL
, SL
, MVT::i64
));
2445 SDValue UShl
= DAG
.getNode(ISD::SRL
, SL
, MVT::i64
,
2446 U
, DAG
.getConstant(40, SL
, MVT::i64
));
2448 SDValue V
= DAG
.getNode(ISD::OR
, SL
, MVT::i32
,
2449 DAG
.getNode(ISD::SHL
, SL
, MVT::i32
, E
, DAG
.getConstant(23, SL
, MVT::i32
)),
2450 DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, UShl
));
2452 SDValue C
= DAG
.getConstant(0x8000000000ULL
, SL
, MVT::i64
);
2453 SDValue RCmp
= DAG
.getSetCC(SL
, SetCCVT
, T
, C
, ISD::SETUGT
);
2454 SDValue TCmp
= DAG
.getSetCC(SL
, SetCCVT
, T
, C
, ISD::SETEQ
);
2456 SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2458 SDValue VTrunc1
= DAG
.getNode(ISD::AND
, SL
, MVT::i32
, V
, One
);
2460 SDValue R
= DAG
.getSelect(SL
, MVT::i32
,
2463 DAG
.getSelect(SL
, MVT::i32
, TCmp
, VTrunc1
, ZeroI32
));
2464 R
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, V
, R
);
2465 R
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::f32
, R
);
2470 SDValue RNeg
= DAG
.getNode(ISD::FNEG
, SL
, MVT::f32
, R
);
2471 return DAG
.getSelect(SL
, MVT::f32
, DAG
.getSExtOrTrunc(S
, SL
, SetCCVT
), RNeg
, R
);
2474 SDValue
AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op
, SelectionDAG
&DAG
,
2475 bool Signed
) const {
2477 SDValue Src
= Op
.getOperand(0);
2479 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Src
);
2481 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, BC
,
2482 DAG
.getConstant(0, SL
, MVT::i32
));
2483 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, BC
,
2484 DAG
.getConstant(1, SL
, MVT::i32
));
2486 SDValue CvtHi
= DAG
.getNode(Signed
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
,
2489 SDValue CvtLo
= DAG
.getNode(ISD::UINT_TO_FP
, SL
, MVT::f64
, Lo
);
2491 SDValue LdExp
= DAG
.getNode(AMDGPUISD::LDEXP
, SL
, MVT::f64
, CvtHi
,
2492 DAG
.getConstant(32, SL
, MVT::i32
));
2493 // TODO: Should this propagate fast-math-flags?
2494 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, LdExp
, CvtLo
);
2497 SDValue
AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op
,
2498 SelectionDAG
&DAG
) const {
2499 assert(Op
.getOperand(0).getValueType() == MVT::i64
&&
2500 "operation should be legal");
2502 // TODO: Factor out code common with LowerSINT_TO_FP.
2504 EVT DestVT
= Op
.getValueType();
2505 if (Subtarget
->has16BitInsts() && DestVT
== MVT::f16
) {
2507 SDValue Src
= Op
.getOperand(0);
2509 SDValue IntToFp32
= DAG
.getNode(Op
.getOpcode(), DL
, MVT::f32
, Src
);
2510 SDValue FPRoundFlag
= DAG
.getIntPtrConstant(0, SDLoc(Op
));
2512 DAG
.getNode(ISD::FP_ROUND
, DL
, MVT::f16
, IntToFp32
, FPRoundFlag
);
2517 if (DestVT
== MVT::f32
)
2518 return LowerINT_TO_FP32(Op
, DAG
, false);
2520 assert(DestVT
== MVT::f64
);
2521 return LowerINT_TO_FP64(Op
, DAG
, false);
2524 SDValue
AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op
,
2525 SelectionDAG
&DAG
) const {
2526 assert(Op
.getOperand(0).getValueType() == MVT::i64
&&
2527 "operation should be legal");
2529 // TODO: Factor out code common with LowerUINT_TO_FP.
2531 EVT DestVT
= Op
.getValueType();
2532 if (Subtarget
->has16BitInsts() && DestVT
== MVT::f16
) {
2534 SDValue Src
= Op
.getOperand(0);
2536 SDValue IntToFp32
= DAG
.getNode(Op
.getOpcode(), DL
, MVT::f32
, Src
);
2537 SDValue FPRoundFlag
= DAG
.getIntPtrConstant(0, SDLoc(Op
));
2539 DAG
.getNode(ISD::FP_ROUND
, DL
, MVT::f16
, IntToFp32
, FPRoundFlag
);
2544 if (DestVT
== MVT::f32
)
2545 return LowerINT_TO_FP32(Op
, DAG
, true);
2547 assert(DestVT
== MVT::f64
);
2548 return LowerINT_TO_FP64(Op
, DAG
, true);
2551 SDValue
AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op
, SelectionDAG
&DAG
,
2552 bool Signed
) const {
2555 SDValue Src
= Op
.getOperand(0);
2557 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
2559 SDValue K0
= DAG
.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL
,
2561 SDValue K1
= DAG
.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL
,
2563 // TODO: Should this propagate fast-math-flags?
2564 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, MVT::f64
, Trunc
, K0
);
2566 SDValue FloorMul
= DAG
.getNode(ISD::FFLOOR
, SL
, MVT::f64
, Mul
);
2569 SDValue Fma
= DAG
.getNode(ISD::FMA
, SL
, MVT::f64
, FloorMul
, K1
, Trunc
);
2571 SDValue Hi
= DAG
.getNode(Signed
? ISD::FP_TO_SINT
: ISD::FP_TO_UINT
, SL
,
2572 MVT::i32
, FloorMul
);
2573 SDValue Lo
= DAG
.getNode(ISD::FP_TO_UINT
, SL
, MVT::i32
, Fma
);
2575 SDValue Result
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Lo
, Hi
});
2577 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Result
);
2580 SDValue
AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op
, SelectionDAG
&DAG
) const {
2582 SDValue N0
= Op
.getOperand(0);
2584 // Convert to target node to get known bits
2585 if (N0
.getValueType() == MVT::f32
)
2586 return DAG
.getNode(AMDGPUISD::FP_TO_FP16
, DL
, Op
.getValueType(), N0
);
2588 if (getTargetMachine().Options
.UnsafeFPMath
) {
2589 // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2593 assert(N0
.getSimpleValueType() == MVT::f64
);
2595 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2596 const unsigned ExpMask
= 0x7ff;
2597 const unsigned ExpBiasf64
= 1023;
2598 const unsigned ExpBiasf16
= 15;
2599 SDValue Zero
= DAG
.getConstant(0, DL
, MVT::i32
);
2600 SDValue One
= DAG
.getConstant(1, DL
, MVT::i32
);
2601 SDValue U
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, N0
);
2602 SDValue UH
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, U
,
2603 DAG
.getConstant(32, DL
, MVT::i64
));
2604 UH
= DAG
.getZExtOrTrunc(UH
, DL
, MVT::i32
);
2605 U
= DAG
.getZExtOrTrunc(U
, DL
, MVT::i32
);
2606 SDValue E
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2607 DAG
.getConstant(20, DL
, MVT::i64
));
2608 E
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, E
,
2609 DAG
.getConstant(ExpMask
, DL
, MVT::i32
));
2610 // Subtract the fp64 exponent bias (1023) to get the real exponent and
2611 // add the f16 bias (15) to get the biased exponent for the f16 format.
2612 E
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, E
,
2613 DAG
.getConstant(-ExpBiasf64
+ ExpBiasf16
, DL
, MVT::i32
));
2615 SDValue M
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2616 DAG
.getConstant(8, DL
, MVT::i32
));
2617 M
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, M
,
2618 DAG
.getConstant(0xffe, DL
, MVT::i32
));
2620 SDValue MaskedSig
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, UH
,
2621 DAG
.getConstant(0x1ff, DL
, MVT::i32
));
2622 MaskedSig
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, MaskedSig
, U
);
2624 SDValue Lo40Set
= DAG
.getSelectCC(DL
, MaskedSig
, Zero
, Zero
, One
, ISD::SETEQ
);
2625 M
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
, Lo40Set
);
2627 // (M != 0 ? 0x0200 : 0) | 0x7c00;
2628 SDValue I
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
,
2629 DAG
.getSelectCC(DL
, M
, Zero
, DAG
.getConstant(0x0200, DL
, MVT::i32
),
2630 Zero
, ISD::SETNE
), DAG
.getConstant(0x7c00, DL
, MVT::i32
));
2632 // N = M | (E << 12);
2633 SDValue N
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
,
2634 DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, E
,
2635 DAG
.getConstant(12, DL
, MVT::i32
)));
2637 // B = clamp(1-E, 0, 13);
2638 SDValue OneSubExp
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
2640 SDValue B
= DAG
.getNode(ISD::SMAX
, DL
, MVT::i32
, OneSubExp
, Zero
);
2641 B
= DAG
.getNode(ISD::SMIN
, DL
, MVT::i32
, B
,
2642 DAG
.getConstant(13, DL
, MVT::i32
));
2644 SDValue SigSetHigh
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
,
2645 DAG
.getConstant(0x1000, DL
, MVT::i32
));
2647 SDValue D
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SigSetHigh
, B
);
2648 SDValue D0
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, D
, B
);
2649 SDValue D1
= DAG
.getSelectCC(DL
, D0
, SigSetHigh
, One
, Zero
, ISD::SETNE
);
2650 D
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, D
, D1
);
2652 SDValue V
= DAG
.getSelectCC(DL
, E
, One
, D
, N
, ISD::SETLT
);
2653 SDValue VLow3
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, V
,
2654 DAG
.getConstant(0x7, DL
, MVT::i32
));
2655 V
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, V
,
2656 DAG
.getConstant(2, DL
, MVT::i32
));
2657 SDValue V0
= DAG
.getSelectCC(DL
, VLow3
, DAG
.getConstant(3, DL
, MVT::i32
),
2658 One
, Zero
, ISD::SETEQ
);
2659 SDValue V1
= DAG
.getSelectCC(DL
, VLow3
, DAG
.getConstant(5, DL
, MVT::i32
),
2660 One
, Zero
, ISD::SETGT
);
2661 V1
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, V0
, V1
);
2662 V
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, V
, V1
);
2664 V
= DAG
.getSelectCC(DL
, E
, DAG
.getConstant(30, DL
, MVT::i32
),
2665 DAG
.getConstant(0x7c00, DL
, MVT::i32
), V
, ISD::SETGT
);
2666 V
= DAG
.getSelectCC(DL
, E
, DAG
.getConstant(1039, DL
, MVT::i32
),
2669 // Extract the sign bit.
2670 SDValue Sign
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2671 DAG
.getConstant(16, DL
, MVT::i32
));
2672 Sign
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Sign
,
2673 DAG
.getConstant(0x8000, DL
, MVT::i32
));
2675 V
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Sign
, V
);
2676 return DAG
.getZExtOrTrunc(V
, DL
, Op
.getValueType());
2679 SDValue
AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op
,
2680 SelectionDAG
&DAG
) const {
2681 SDValue Src
= Op
.getOperand(0);
2683 // TODO: Factor out code common with LowerFP_TO_UINT.
2685 EVT SrcVT
= Src
.getValueType();
2686 if (Subtarget
->has16BitInsts() && SrcVT
== MVT::f16
) {
2689 SDValue FPExtend
= DAG
.getNode(ISD::FP_EXTEND
, DL
, MVT::f32
, Src
);
2691 DAG
.getNode(Op
.getOpcode(), DL
, MVT::i64
, FPExtend
);
2696 if (Op
.getValueType() == MVT::i64
&& Src
.getValueType() == MVT::f64
)
2697 return LowerFP64_TO_INT(Op
, DAG
, true);
2702 SDValue
AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op
,
2703 SelectionDAG
&DAG
) const {
2704 SDValue Src
= Op
.getOperand(0);
2706 // TODO: Factor out code common with LowerFP_TO_SINT.
2708 EVT SrcVT
= Src
.getValueType();
2709 if (Subtarget
->has16BitInsts() && SrcVT
== MVT::f16
) {
2712 SDValue FPExtend
= DAG
.getNode(ISD::FP_EXTEND
, DL
, MVT::f32
, Src
);
2714 DAG
.getNode(Op
.getOpcode(), DL
, MVT::i64
, FPExtend
);
2719 if (Op
.getValueType() == MVT::i64
&& Src
.getValueType() == MVT::f64
)
2720 return LowerFP64_TO_INT(Op
, DAG
, false);
2725 SDValue
AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op
,
2726 SelectionDAG
&DAG
) const {
2727 EVT ExtraVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
2728 MVT VT
= Op
.getSimpleValueType();
2729 MVT ScalarVT
= VT
.getScalarType();
2731 assert(VT
.isVector());
2733 SDValue Src
= Op
.getOperand(0);
2736 // TODO: Don't scalarize on Evergreen?
2737 unsigned NElts
= VT
.getVectorNumElements();
2738 SmallVector
<SDValue
, 8> Args
;
2739 DAG
.ExtractVectorElements(Src
, Args
, 0, NElts
);
2741 SDValue VTOp
= DAG
.getValueType(ExtraVT
.getScalarType());
2742 for (unsigned I
= 0; I
< NElts
; ++I
)
2743 Args
[I
] = DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, ScalarVT
, Args
[I
], VTOp
);
2745 return DAG
.getBuildVector(VT
, DL
, Args
);
2748 //===----------------------------------------------------------------------===//
2749 // Custom DAG optimizations
2750 //===----------------------------------------------------------------------===//
2752 static bool isU24(SDValue Op
, SelectionDAG
&DAG
) {
2753 return AMDGPUTargetLowering::numBitsUnsigned(Op
, DAG
) <= 24;
2756 static bool isI24(SDValue Op
, SelectionDAG
&DAG
) {
2757 EVT VT
= Op
.getValueType();
2758 return VT
.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2759 // as unsigned 24-bit values.
2760 AMDGPUTargetLowering::numBitsSigned(Op
, DAG
) < 24;
2763 static SDValue
simplifyI24(SDNode
*Node24
,
2764 TargetLowering::DAGCombinerInfo
&DCI
) {
2765 SelectionDAG
&DAG
= DCI
.DAG
;
2766 bool IsIntrin
= Node24
->getOpcode() == ISD::INTRINSIC_WO_CHAIN
;
2768 SDValue LHS
= IsIntrin
? Node24
->getOperand(1) : Node24
->getOperand(0);
2769 SDValue RHS
= IsIntrin
? Node24
->getOperand(2) : Node24
->getOperand(1);
2770 unsigned NewOpcode
= Node24
->getOpcode();
2772 unsigned IID
= cast
<ConstantSDNode
>(Node24
->getOperand(0))->getZExtValue();
2773 NewOpcode
= IID
== Intrinsic::amdgcn_mul_i24
?
2774 AMDGPUISD::MUL_I24
: AMDGPUISD::MUL_U24
;
2777 APInt Demanded
= APInt::getLowBitsSet(LHS
.getValueSizeInBits(), 24);
2779 // First try to simplify using GetDemandedBits which allows the operands to
2780 // have other uses, but will only perform simplifications that involve
2781 // bypassing some nodes for this user.
2782 SDValue DemandedLHS
= DAG
.GetDemandedBits(LHS
, Demanded
);
2783 SDValue DemandedRHS
= DAG
.GetDemandedBits(RHS
, Demanded
);
2784 if (DemandedLHS
|| DemandedRHS
)
2785 return DAG
.getNode(NewOpcode
, SDLoc(Node24
), Node24
->getVTList(),
2786 DemandedLHS
? DemandedLHS
: LHS
,
2787 DemandedRHS
? DemandedRHS
: RHS
);
2789 // Now try SimplifyDemandedBits which can simplify the nodes used by our
2790 // operands if this node is the only user.
2791 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2792 if (TLI
.SimplifyDemandedBits(LHS
, Demanded
, DCI
))
2793 return SDValue(Node24
, 0);
2794 if (TLI
.SimplifyDemandedBits(RHS
, Demanded
, DCI
))
2795 return SDValue(Node24
, 0);
2800 template <typename IntTy
>
2801 static SDValue
constantFoldBFE(SelectionDAG
&DAG
, IntTy Src0
, uint32_t Offset
,
2802 uint32_t Width
, const SDLoc
&DL
) {
2803 if (Width
+ Offset
< 32) {
2804 uint32_t Shl
= static_cast<uint32_t>(Src0
) << (32 - Offset
- Width
);
2805 IntTy Result
= static_cast<IntTy
>(Shl
) >> (32 - Width
);
2806 return DAG
.getConstant(Result
, DL
, MVT::i32
);
2809 return DAG
.getConstant(Src0
>> Offset
, DL
, MVT::i32
);
2812 static bool hasVolatileUser(SDNode
*Val
) {
2813 for (SDNode
*U
: Val
->uses()) {
2814 if (MemSDNode
*M
= dyn_cast
<MemSDNode
>(U
)) {
2815 if (M
->isVolatile())
2823 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT
) const {
2824 // i32 vectors are the canonical memory type.
2825 if (VT
.getScalarType() == MVT::i32
|| isTypeLegal(VT
))
2828 if (!VT
.isByteSized())
2831 unsigned Size
= VT
.getStoreSize();
2833 if ((Size
== 1 || Size
== 2 || Size
== 4) && !VT
.isVector())
2836 if (Size
== 3 || (Size
> 4 && (Size
% 4 != 0)))
2842 // Replace load of an illegal type with a store of a bitcast to a friendlier
2844 SDValue
AMDGPUTargetLowering::performLoadCombine(SDNode
*N
,
2845 DAGCombinerInfo
&DCI
) const {
2846 if (!DCI
.isBeforeLegalize())
2849 LoadSDNode
*LN
= cast
<LoadSDNode
>(N
);
2850 if (LN
->isVolatile() || !ISD::isNormalLoad(LN
) || hasVolatileUser(LN
))
2854 SelectionDAG
&DAG
= DCI
.DAG
;
2855 EVT VT
= LN
->getMemoryVT();
2857 unsigned Size
= VT
.getStoreSize();
2858 unsigned Align
= LN
->getAlignment();
2859 if (Align
< Size
&& isTypeLegal(VT
)) {
2861 unsigned AS
= LN
->getAddressSpace();
2863 // Expand unaligned loads earlier than legalization. Due to visitation order
2864 // problems during legalization, the emitted instructions to pack and unpack
2865 // the bytes again are not eliminated in the case of an unaligned copy.
2866 if (!allowsMisalignedMemoryAccesses(
2867 VT
, AS
, Align
, LN
->getMemOperand()->getFlags(), &IsFast
)) {
2869 return scalarizeVectorLoad(LN
, DAG
);
2872 std::tie(Ops
[0], Ops
[1]) = expandUnalignedLoad(LN
, DAG
);
2873 return DAG
.getMergeValues(Ops
, SDLoc(N
));
2880 if (!shouldCombineMemoryType(VT
))
2883 EVT NewVT
= getEquivalentMemType(*DAG
.getContext(), VT
);
2886 = DAG
.getLoad(NewVT
, SL
, LN
->getChain(),
2887 LN
->getBasePtr(), LN
->getMemOperand());
2889 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, VT
, NewLoad
);
2890 DCI
.CombineTo(N
, BC
, NewLoad
.getValue(1));
2891 return SDValue(N
, 0);
2894 // Replace store of an illegal type with a store of a bitcast to a friendlier
2896 SDValue
AMDGPUTargetLowering::performStoreCombine(SDNode
*N
,
2897 DAGCombinerInfo
&DCI
) const {
2898 if (!DCI
.isBeforeLegalize())
2901 StoreSDNode
*SN
= cast
<StoreSDNode
>(N
);
2902 if (SN
->isVolatile() || !ISD::isNormalStore(SN
))
2905 EVT VT
= SN
->getMemoryVT();
2906 unsigned Size
= VT
.getStoreSize();
2909 SelectionDAG
&DAG
= DCI
.DAG
;
2910 unsigned Align
= SN
->getAlignment();
2911 if (Align
< Size
&& isTypeLegal(VT
)) {
2913 unsigned AS
= SN
->getAddressSpace();
2915 // Expand unaligned stores earlier than legalization. Due to visitation
2916 // order problems during legalization, the emitted instructions to pack and
2917 // unpack the bytes again are not eliminated in the case of an unaligned
2919 if (!allowsMisalignedMemoryAccesses(
2920 VT
, AS
, Align
, SN
->getMemOperand()->getFlags(), &IsFast
)) {
2922 return scalarizeVectorStore(SN
, DAG
);
2924 return expandUnalignedStore(SN
, DAG
);
2931 if (!shouldCombineMemoryType(VT
))
2934 EVT NewVT
= getEquivalentMemType(*DAG
.getContext(), VT
);
2935 SDValue Val
= SN
->getValue();
2937 //DCI.AddToWorklist(Val.getNode());
2939 bool OtherUses
= !Val
.hasOneUse();
2940 SDValue CastVal
= DAG
.getNode(ISD::BITCAST
, SL
, NewVT
, Val
);
2942 SDValue CastBack
= DAG
.getNode(ISD::BITCAST
, SL
, VT
, CastVal
);
2943 DAG
.ReplaceAllUsesOfValueWith(Val
, CastBack
);
2946 return DAG
.getStore(SN
->getChain(), SL
, CastVal
,
2947 SN
->getBasePtr(), SN
->getMemOperand());
2950 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
2951 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
2953 SDValue
AMDGPUTargetLowering::performAssertSZExtCombine(SDNode
*N
,
2954 DAGCombinerInfo
&DCI
) const {
2955 SelectionDAG
&DAG
= DCI
.DAG
;
2956 SDValue N0
= N
->getOperand(0);
2958 // (vt2 (assertzext (truncate vt0:x), vt1)) ->
2959 // (vt2 (truncate (assertzext vt0:x, vt1)))
2960 if (N0
.getOpcode() == ISD::TRUNCATE
) {
2961 SDValue N1
= N
->getOperand(1);
2962 EVT ExtVT
= cast
<VTSDNode
>(N1
)->getVT();
2965 SDValue Src
= N0
.getOperand(0);
2966 EVT SrcVT
= Src
.getValueType();
2967 if (SrcVT
.bitsGE(ExtVT
)) {
2968 SDValue NewInReg
= DAG
.getNode(N
->getOpcode(), SL
, SrcVT
, Src
, N1
);
2969 return DAG
.getNode(ISD::TRUNCATE
, SL
, N
->getValueType(0), NewInReg
);
2976 SDValue
AMDGPUTargetLowering::performIntrinsicWOChainCombine(
2977 SDNode
*N
, DAGCombinerInfo
&DCI
) const {
2978 unsigned IID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
2980 case Intrinsic::amdgcn_mul_i24
:
2981 case Intrinsic::amdgcn_mul_u24
:
2982 return simplifyI24(N
, DCI
);
2988 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
2989 /// binary operation \p Opc to it with the corresponding constant operands.
2990 SDValue
AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
2991 DAGCombinerInfo
&DCI
, const SDLoc
&SL
,
2992 unsigned Opc
, SDValue LHS
,
2993 uint32_t ValLo
, uint32_t ValHi
) const {
2994 SelectionDAG
&DAG
= DCI
.DAG
;
2996 std::tie(Lo
, Hi
) = split64BitValue(LHS
, DAG
);
2998 SDValue LoRHS
= DAG
.getConstant(ValLo
, SL
, MVT::i32
);
2999 SDValue HiRHS
= DAG
.getConstant(ValHi
, SL
, MVT::i32
);
3001 SDValue LoAnd
= DAG
.getNode(Opc
, SL
, MVT::i32
, Lo
, LoRHS
);
3002 SDValue HiAnd
= DAG
.getNode(Opc
, SL
, MVT::i32
, Hi
, HiRHS
);
3004 // Re-visit the ands. It's possible we eliminated one of them and it could
3005 // simplify the vector.
3006 DCI
.AddToWorklist(Lo
.getNode());
3007 DCI
.AddToWorklist(Hi
.getNode());
3009 SDValue Vec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {LoAnd
, HiAnd
});
3010 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Vec
);
3013 SDValue
AMDGPUTargetLowering::performShlCombine(SDNode
*N
,
3014 DAGCombinerInfo
&DCI
) const {
3015 EVT VT
= N
->getValueType(0);
3017 ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3021 SDValue LHS
= N
->getOperand(0);
3022 unsigned RHSVal
= RHS
->getZExtValue();
3027 SelectionDAG
&DAG
= DCI
.DAG
;
3029 switch (LHS
->getOpcode()) {
3032 case ISD::ZERO_EXTEND
:
3033 case ISD::SIGN_EXTEND
:
3034 case ISD::ANY_EXTEND
: {
3035 SDValue X
= LHS
->getOperand(0);
3037 if (VT
== MVT::i32
&& RHSVal
== 16 && X
.getValueType() == MVT::i16
&&
3038 isOperationLegal(ISD::BUILD_VECTOR
, MVT::v2i16
)) {
3039 // Prefer build_vector as the canonical form if packed types are legal.
3040 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3041 SDValue Vec
= DAG
.getBuildVector(MVT::v2i16
, SL
,
3042 { DAG
.getConstant(0, SL
, MVT::i16
), LHS
->getOperand(0) });
3043 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Vec
);
3046 // shl (ext x) => zext (shl x), if shift does not overflow int
3049 KnownBits Known
= DAG
.computeKnownBits(X
);
3050 unsigned LZ
= Known
.countMinLeadingZeros();
3053 EVT XVT
= X
.getValueType();
3054 SDValue Shl
= DAG
.getNode(ISD::SHL
, SL
, XVT
, X
, SDValue(RHS
, 0));
3055 return DAG
.getZExtOrTrunc(Shl
, SL
, VT
);
3062 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3064 // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3065 // common case, splitting this into a move and a 32-bit shift is faster and
3066 // the same code size.
3070 SDValue ShiftAmt
= DAG
.getConstant(RHSVal
- 32, SL
, MVT::i32
);
3072 SDValue Lo
= DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, LHS
);
3073 SDValue NewShift
= DAG
.getNode(ISD::SHL
, SL
, MVT::i32
, Lo
, ShiftAmt
);
3075 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
3077 SDValue Vec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Zero
, NewShift
});
3078 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Vec
);
3081 SDValue
AMDGPUTargetLowering::performSraCombine(SDNode
*N
,
3082 DAGCombinerInfo
&DCI
) const {
3083 if (N
->getValueType(0) != MVT::i64
)
3086 const ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3090 SelectionDAG
&DAG
= DCI
.DAG
;
3092 unsigned RHSVal
= RHS
->getZExtValue();
3094 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3096 SDValue Hi
= getHiHalf64(N
->getOperand(0), DAG
);
3097 SDValue NewShift
= DAG
.getNode(ISD::SRA
, SL
, MVT::i32
, Hi
,
3098 DAG
.getConstant(31, SL
, MVT::i32
));
3100 SDValue BuildVec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Hi
, NewShift
});
3101 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildVec
);
3104 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3106 SDValue Hi
= getHiHalf64(N
->getOperand(0), DAG
);
3107 SDValue NewShift
= DAG
.getNode(ISD::SRA
, SL
, MVT::i32
, Hi
,
3108 DAG
.getConstant(31, SL
, MVT::i32
));
3109 SDValue BuildVec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {NewShift
, NewShift
});
3110 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildVec
);
3116 SDValue
AMDGPUTargetLowering::performSrlCombine(SDNode
*N
,
3117 DAGCombinerInfo
&DCI
) const {
3118 auto *RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3122 EVT VT
= N
->getValueType(0);
3123 SDValue LHS
= N
->getOperand(0);
3124 unsigned ShiftAmt
= RHS
->getZExtValue();
3125 SelectionDAG
&DAG
= DCI
.DAG
;
3128 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3129 // this improves the ability to match BFE patterns in isel.
3130 if (LHS
.getOpcode() == ISD::AND
) {
3131 if (auto *Mask
= dyn_cast
<ConstantSDNode
>(LHS
.getOperand(1))) {
3132 if (Mask
->getAPIntValue().isShiftedMask() &&
3133 Mask
->getAPIntValue().countTrailingZeros() == ShiftAmt
) {
3136 DAG
.getNode(ISD::SRL
, SL
, VT
, LHS
.getOperand(0), N
->getOperand(1)),
3137 DAG
.getNode(ISD::SRL
, SL
, VT
, LHS
.getOperand(1), N
->getOperand(1)));
3148 // srl i64:x, C for C >= 32
3150 // build_pair (srl hi_32(x), C - 32), 0
3151 SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
3152 SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
3154 SDValue VecOp
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, LHS
);
3155 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, VecOp
, One
);
3157 SDValue NewConst
= DAG
.getConstant(ShiftAmt
- 32, SL
, MVT::i32
);
3158 SDValue NewShift
= DAG
.getNode(ISD::SRL
, SL
, MVT::i32
, Hi
, NewConst
);
3160 SDValue BuildPair
= DAG
.getBuildVector(MVT::v2i32
, SL
, {NewShift
, Zero
});
3162 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildPair
);
3165 SDValue
AMDGPUTargetLowering::performTruncateCombine(
3166 SDNode
*N
, DAGCombinerInfo
&DCI
) const {
3168 SelectionDAG
&DAG
= DCI
.DAG
;
3169 EVT VT
= N
->getValueType(0);
3170 SDValue Src
= N
->getOperand(0);
3172 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3173 if (Src
.getOpcode() == ISD::BITCAST
&& !VT
.isVector()) {
3174 SDValue Vec
= Src
.getOperand(0);
3175 if (Vec
.getOpcode() == ISD::BUILD_VECTOR
) {
3176 SDValue Elt0
= Vec
.getOperand(0);
3177 EVT EltVT
= Elt0
.getValueType();
3178 if (VT
.getSizeInBits() <= EltVT
.getSizeInBits()) {
3179 if (EltVT
.isFloatingPoint()) {
3180 Elt0
= DAG
.getNode(ISD::BITCAST
, SL
,
3181 EltVT
.changeTypeToInteger(), Elt0
);
3184 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, Elt0
);
3189 // Equivalent of above for accessing the high element of a vector as an
3190 // integer operation.
3191 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3192 if (Src
.getOpcode() == ISD::SRL
&& !VT
.isVector()) {
3193 if (auto K
= isConstOrConstSplat(Src
.getOperand(1))) {
3194 if (2 * K
->getZExtValue() == Src
.getValueType().getScalarSizeInBits()) {
3195 SDValue BV
= stripBitcast(Src
.getOperand(0));
3196 if (BV
.getOpcode() == ISD::BUILD_VECTOR
&&
3197 BV
.getValueType().getVectorNumElements() == 2) {
3198 SDValue SrcElt
= BV
.getOperand(1);
3199 EVT SrcEltVT
= SrcElt
.getValueType();
3200 if (SrcEltVT
.isFloatingPoint()) {
3201 SrcElt
= DAG
.getNode(ISD::BITCAST
, SL
,
3202 SrcEltVT
.changeTypeToInteger(), SrcElt
);
3205 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, SrcElt
);
3211 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3213 // i16 (trunc (srl i64:x, K)), K <= 16 ->
3214 // i16 (trunc (srl (i32 (trunc x), K)))
3215 if (VT
.getScalarSizeInBits() < 32) {
3216 EVT SrcVT
= Src
.getValueType();
3217 if (SrcVT
.getScalarSizeInBits() > 32 &&
3218 (Src
.getOpcode() == ISD::SRL
||
3219 Src
.getOpcode() == ISD::SRA
||
3220 Src
.getOpcode() == ISD::SHL
)) {
3221 SDValue Amt
= Src
.getOperand(1);
3222 KnownBits Known
= DAG
.computeKnownBits(Amt
);
3223 unsigned Size
= VT
.getScalarSizeInBits();
3224 if ((Known
.isConstant() && Known
.getConstant().ule(Size
)) ||
3225 (Known
.getBitWidth() - Known
.countMinLeadingZeros() <= Log2_32(Size
))) {
3226 EVT MidVT
= VT
.isVector() ?
3227 EVT::getVectorVT(*DAG
.getContext(), MVT::i32
,
3228 VT
.getVectorNumElements()) : MVT::i32
;
3230 EVT NewShiftVT
= getShiftAmountTy(MidVT
, DAG
.getDataLayout());
3231 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, MidVT
,
3233 DCI
.AddToWorklist(Trunc
.getNode());
3235 if (Amt
.getValueType() != NewShiftVT
) {
3236 Amt
= DAG
.getZExtOrTrunc(Amt
, SL
, NewShiftVT
);
3237 DCI
.AddToWorklist(Amt
.getNode());
3240 SDValue ShrunkShift
= DAG
.getNode(Src
.getOpcode(), SL
, MidVT
,
3242 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, ShrunkShift
);
3250 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3251 // instructions. If we only match on the legalized i64 mul expansion,
3252 // SimplifyDemandedBits will be unable to remove them because there will be
3253 // multiple uses due to the separate mul + mulh[su].
3254 static SDValue
getMul24(SelectionDAG
&DAG
, const SDLoc
&SL
,
3255 SDValue N0
, SDValue N1
, unsigned Size
, bool Signed
) {
3257 unsigned MulOpc
= Signed
? AMDGPUISD::MUL_I24
: AMDGPUISD::MUL_U24
;
3258 return DAG
.getNode(MulOpc
, SL
, MVT::i32
, N0
, N1
);
3261 // Because we want to eliminate extension instructions before the
3262 // operation, we need to create a single user here (i.e. not the separate
3263 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3265 unsigned MulOpc
= Signed
? AMDGPUISD::MUL_LOHI_I24
: AMDGPUISD::MUL_LOHI_U24
;
3267 SDValue Mul
= DAG
.getNode(MulOpc
, SL
,
3268 DAG
.getVTList(MVT::i32
, MVT::i32
), N0
, N1
);
3270 return DAG
.getNode(ISD::BUILD_PAIR
, SL
, MVT::i64
,
3271 Mul
.getValue(0), Mul
.getValue(1));
3274 SDValue
AMDGPUTargetLowering::performMulCombine(SDNode
*N
,
3275 DAGCombinerInfo
&DCI
) const {
3276 EVT VT
= N
->getValueType(0);
3278 unsigned Size
= VT
.getSizeInBits();
3279 if (VT
.isVector() || Size
> 64)
3282 // There are i16 integer mul/mad.
3283 if (Subtarget
->has16BitInsts() && VT
.getScalarType().bitsLE(MVT::i16
))
3286 SelectionDAG
&DAG
= DCI
.DAG
;
3289 SDValue N0
= N
->getOperand(0);
3290 SDValue N1
= N
->getOperand(1);
3292 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3293 // in the source into any_extends if the result of the mul is truncated. Since
3294 // we can assume the high bits are whatever we want, use the underlying value
3295 // to avoid the unknown high bits from interfering.
3296 if (N0
.getOpcode() == ISD::ANY_EXTEND
)
3297 N0
= N0
.getOperand(0);
3299 if (N1
.getOpcode() == ISD::ANY_EXTEND
)
3300 N1
= N1
.getOperand(0);
3304 if (Subtarget
->hasMulU24() && isU24(N0
, DAG
) && isU24(N1
, DAG
)) {
3305 N0
= DAG
.getZExtOrTrunc(N0
, DL
, MVT::i32
);
3306 N1
= DAG
.getZExtOrTrunc(N1
, DL
, MVT::i32
);
3307 Mul
= getMul24(DAG
, DL
, N0
, N1
, Size
, false);
3308 } else if (Subtarget
->hasMulI24() && isI24(N0
, DAG
) && isI24(N1
, DAG
)) {
3309 N0
= DAG
.getSExtOrTrunc(N0
, DL
, MVT::i32
);
3310 N1
= DAG
.getSExtOrTrunc(N1
, DL
, MVT::i32
);
3311 Mul
= getMul24(DAG
, DL
, N0
, N1
, Size
, true);
3316 // We need to use sext even for MUL_U24, because MUL_U24 is used
3317 // for signed multiply of 8 and 16-bit types.
3318 return DAG
.getSExtOrTrunc(Mul
, DL
, VT
);
3321 SDValue
AMDGPUTargetLowering::performMulhsCombine(SDNode
*N
,
3322 DAGCombinerInfo
&DCI
) const {
3323 EVT VT
= N
->getValueType(0);
3325 if (!Subtarget
->hasMulI24() || VT
.isVector())
3328 SelectionDAG
&DAG
= DCI
.DAG
;
3331 SDValue N0
= N
->getOperand(0);
3332 SDValue N1
= N
->getOperand(1);
3334 if (!isI24(N0
, DAG
) || !isI24(N1
, DAG
))
3337 N0
= DAG
.getSExtOrTrunc(N0
, DL
, MVT::i32
);
3338 N1
= DAG
.getSExtOrTrunc(N1
, DL
, MVT::i32
);
3340 SDValue Mulhi
= DAG
.getNode(AMDGPUISD::MULHI_I24
, DL
, MVT::i32
, N0
, N1
);
3341 DCI
.AddToWorklist(Mulhi
.getNode());
3342 return DAG
.getSExtOrTrunc(Mulhi
, DL
, VT
);
3345 SDValue
AMDGPUTargetLowering::performMulhuCombine(SDNode
*N
,
3346 DAGCombinerInfo
&DCI
) const {
3347 EVT VT
= N
->getValueType(0);
3349 if (!Subtarget
->hasMulU24() || VT
.isVector() || VT
.getSizeInBits() > 32)
3352 SelectionDAG
&DAG
= DCI
.DAG
;
3355 SDValue N0
= N
->getOperand(0);
3356 SDValue N1
= N
->getOperand(1);
3358 if (!isU24(N0
, DAG
) || !isU24(N1
, DAG
))
3361 N0
= DAG
.getZExtOrTrunc(N0
, DL
, MVT::i32
);
3362 N1
= DAG
.getZExtOrTrunc(N1
, DL
, MVT::i32
);
3364 SDValue Mulhi
= DAG
.getNode(AMDGPUISD::MULHI_U24
, DL
, MVT::i32
, N0
, N1
);
3365 DCI
.AddToWorklist(Mulhi
.getNode());
3366 return DAG
.getZExtOrTrunc(Mulhi
, DL
, VT
);
3369 SDValue
AMDGPUTargetLowering::performMulLoHi24Combine(
3370 SDNode
*N
, DAGCombinerInfo
&DCI
) const {
3371 SelectionDAG
&DAG
= DCI
.DAG
;
3373 // Simplify demanded bits before splitting into multiple users.
3374 if (SDValue V
= simplifyI24(N
, DCI
))
3377 SDValue N0
= N
->getOperand(0);
3378 SDValue N1
= N
->getOperand(1);
3380 bool Signed
= (N
->getOpcode() == AMDGPUISD::MUL_LOHI_I24
);
3382 unsigned MulLoOpc
= Signed
? AMDGPUISD::MUL_I24
: AMDGPUISD::MUL_U24
;
3383 unsigned MulHiOpc
= Signed
? AMDGPUISD::MULHI_I24
: AMDGPUISD::MULHI_U24
;
3387 SDValue MulLo
= DAG
.getNode(MulLoOpc
, SL
, MVT::i32
, N0
, N1
);
3388 SDValue MulHi
= DAG
.getNode(MulHiOpc
, SL
, MVT::i32
, N0
, N1
);
3389 return DAG
.getMergeValues({ MulLo
, MulHi
}, SL
);
3392 static bool isNegativeOne(SDValue Val
) {
3393 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
))
3394 return C
->isAllOnesValue();
3398 SDValue
AMDGPUTargetLowering::getFFBX_U32(SelectionDAG
&DAG
,
3401 unsigned Opc
) const {
3402 EVT VT
= Op
.getValueType();
3403 EVT LegalVT
= getTypeToTransformTo(*DAG
.getContext(), VT
);
3404 if (LegalVT
!= MVT::i32
&& (Subtarget
->has16BitInsts() &&
3405 LegalVT
!= MVT::i16
))
3409 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, Op
);
3411 SDValue FFBX
= DAG
.getNode(Opc
, DL
, MVT::i32
, Op
);
3413 FFBX
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, FFBX
);
3418 // The native instructions return -1 on 0 input. Optimize out a select that
3419 // produces -1 on 0.
3421 // TODO: If zero is not undef, we could also do this if the output is compared
3422 // against the bitwidth.
3424 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3425 SDValue
AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc
&SL
, SDValue Cond
,
3426 SDValue LHS
, SDValue RHS
,
3427 DAGCombinerInfo
&DCI
) const {
3428 ConstantSDNode
*CmpRhs
= dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
3429 if (!CmpRhs
|| !CmpRhs
->isNullValue())
3432 SelectionDAG
&DAG
= DCI
.DAG
;
3433 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
3434 SDValue CmpLHS
= Cond
.getOperand(0);
3436 unsigned Opc
= isCttzOpc(RHS
.getOpcode()) ? AMDGPUISD::FFBL_B32
:
3437 AMDGPUISD::FFBH_U32
;
3439 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3440 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3441 if (CCOpcode
== ISD::SETEQ
&&
3442 (isCtlzOpc(RHS
.getOpcode()) || isCttzOpc(RHS
.getOpcode())) &&
3443 RHS
.getOperand(0) == CmpLHS
&&
3444 isNegativeOne(LHS
)) {
3445 return getFFBX_U32(DAG
, CmpLHS
, SL
, Opc
);
3448 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3449 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3450 if (CCOpcode
== ISD::SETNE
&&
3451 (isCtlzOpc(LHS
.getOpcode()) || isCttzOpc(RHS
.getOpcode())) &&
3452 LHS
.getOperand(0) == CmpLHS
&&
3453 isNegativeOne(RHS
)) {
3454 return getFFBX_U32(DAG
, CmpLHS
, SL
, Opc
);
3460 static SDValue
distributeOpThroughSelect(TargetLowering::DAGCombinerInfo
&DCI
,
3466 SelectionDAG
&DAG
= DCI
.DAG
;
3467 EVT VT
= N1
.getValueType();
3469 SDValue NewSelect
= DAG
.getNode(ISD::SELECT
, SL
, VT
, Cond
,
3470 N1
.getOperand(0), N2
.getOperand(0));
3471 DCI
.AddToWorklist(NewSelect
.getNode());
3472 return DAG
.getNode(Op
, SL
, VT
, NewSelect
);
3475 // Pull a free FP operation out of a select so it may fold into uses.
3477 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3478 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3480 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3481 // select c, (fabs x), +k -> fabs (select c, x, k)
3482 static SDValue
foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo
&DCI
,
3484 SelectionDAG
&DAG
= DCI
.DAG
;
3485 SDValue Cond
= N
.getOperand(0);
3486 SDValue LHS
= N
.getOperand(1);
3487 SDValue RHS
= N
.getOperand(2);
3489 EVT VT
= N
.getValueType();
3490 if ((LHS
.getOpcode() == ISD::FABS
&& RHS
.getOpcode() == ISD::FABS
) ||
3491 (LHS
.getOpcode() == ISD::FNEG
&& RHS
.getOpcode() == ISD::FNEG
)) {
3492 return distributeOpThroughSelect(DCI
, LHS
.getOpcode(),
3493 SDLoc(N
), Cond
, LHS
, RHS
);
3497 if (RHS
.getOpcode() == ISD::FABS
|| RHS
.getOpcode() == ISD::FNEG
) {
3498 std::swap(LHS
, RHS
);
3502 // TODO: Support vector constants.
3503 ConstantFPSDNode
*CRHS
= dyn_cast
<ConstantFPSDNode
>(RHS
);
3504 if ((LHS
.getOpcode() == ISD::FNEG
|| LHS
.getOpcode() == ISD::FABS
) && CRHS
) {
3506 // If one side is an fneg/fabs and the other is a constant, we can push the
3507 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3508 SDValue NewLHS
= LHS
.getOperand(0);
3509 SDValue NewRHS
= RHS
;
3511 // Careful: if the neg can be folded up, don't try to pull it back down.
3512 bool ShouldFoldNeg
= true;
3514 if (NewLHS
.hasOneUse()) {
3515 unsigned Opc
= NewLHS
.getOpcode();
3516 if (LHS
.getOpcode() == ISD::FNEG
&& fnegFoldsIntoOp(Opc
))
3517 ShouldFoldNeg
= false;
3518 if (LHS
.getOpcode() == ISD::FABS
&& Opc
== ISD::FMUL
)
3519 ShouldFoldNeg
= false;
3522 if (ShouldFoldNeg
) {
3523 if (LHS
.getOpcode() == ISD::FNEG
)
3524 NewRHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3525 else if (CRHS
->isNegative())
3529 std::swap(NewLHS
, NewRHS
);
3531 SDValue NewSelect
= DAG
.getNode(ISD::SELECT
, SL
, VT
,
3532 Cond
, NewLHS
, NewRHS
);
3533 DCI
.AddToWorklist(NewSelect
.getNode());
3534 return DAG
.getNode(LHS
.getOpcode(), SL
, VT
, NewSelect
);
3542 SDValue
AMDGPUTargetLowering::performSelectCombine(SDNode
*N
,
3543 DAGCombinerInfo
&DCI
) const {
3544 if (SDValue Folded
= foldFreeOpFromSelect(DCI
, SDValue(N
, 0)))
3547 SDValue Cond
= N
->getOperand(0);
3548 if (Cond
.getOpcode() != ISD::SETCC
)
3551 EVT VT
= N
->getValueType(0);
3552 SDValue LHS
= Cond
.getOperand(0);
3553 SDValue RHS
= Cond
.getOperand(1);
3554 SDValue CC
= Cond
.getOperand(2);
3556 SDValue True
= N
->getOperand(1);
3557 SDValue False
= N
->getOperand(2);
3559 if (Cond
.hasOneUse()) { // TODO: Look for multiple select uses.
3560 SelectionDAG
&DAG
= DCI
.DAG
;
3561 if (DAG
.isConstantValueOfAnyType(True
) &&
3562 !DAG
.isConstantValueOfAnyType(False
)) {
3563 // Swap cmp + select pair to move constant to false input.
3564 // This will allow using VOPC cndmasks more often.
3565 // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3568 ISD::CondCode NewCC
= getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
3569 LHS
.getValueType().isInteger());
3571 SDValue NewCond
= DAG
.getSetCC(SL
, Cond
.getValueType(), LHS
, RHS
, NewCC
);
3572 return DAG
.getNode(ISD::SELECT
, SL
, VT
, NewCond
, False
, True
);
3575 if (VT
== MVT::f32
&& Subtarget
->hasFminFmaxLegacy()) {
3577 = combineFMinMaxLegacy(SDLoc(N
), VT
, LHS
, RHS
, True
, False
, CC
, DCI
);
3578 // Revisit this node so we can catch min3/max3/med3 patterns.
3579 //DCI.AddToWorklist(MinMax.getNode());
3584 // There's no reason to not do this if the condition has other uses.
3585 return performCtlz_CttzCombine(SDLoc(N
), Cond
, True
, False
, DCI
);
3588 static bool isInv2Pi(const APFloat
&APF
) {
3589 static const APFloat
KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3590 static const APFloat
KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3591 static const APFloat
KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3593 return APF
.bitwiseIsEqual(KF16
) ||
3594 APF
.bitwiseIsEqual(KF32
) ||
3595 APF
.bitwiseIsEqual(KF64
);
3598 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3599 // additional cost to negate them.
3600 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N
) const {
3601 if (const ConstantFPSDNode
*C
= isConstOrConstSplatFP(N
)) {
3602 if (C
->isZero() && !C
->isNegative())
3605 if (Subtarget
->hasInv2PiInlineImm() && isInv2Pi(C
->getValueAPF()))
3612 static unsigned inverseMinMax(unsigned Opc
) {
3615 return ISD::FMINNUM
;
3617 return ISD::FMAXNUM
;
3618 case ISD::FMAXNUM_IEEE
:
3619 return ISD::FMINNUM_IEEE
;
3620 case ISD::FMINNUM_IEEE
:
3621 return ISD::FMAXNUM_IEEE
;
3622 case AMDGPUISD::FMAX_LEGACY
:
3623 return AMDGPUISD::FMIN_LEGACY
;
3624 case AMDGPUISD::FMIN_LEGACY
:
3625 return AMDGPUISD::FMAX_LEGACY
;
3627 llvm_unreachable("invalid min/max opcode");
3631 SDValue
AMDGPUTargetLowering::performFNegCombine(SDNode
*N
,
3632 DAGCombinerInfo
&DCI
) const {
3633 SelectionDAG
&DAG
= DCI
.DAG
;
3634 SDValue N0
= N
->getOperand(0);
3635 EVT VT
= N
->getValueType(0);
3637 unsigned Opc
= N0
.getOpcode();
3639 // If the input has multiple uses and we can either fold the negate down, or
3640 // the other uses cannot, give up. This both prevents unprofitable
3641 // transformations and infinite loops: we won't repeatedly try to fold around
3642 // a negate that has no 'good' form.
3643 if (N0
.hasOneUse()) {
3644 // This may be able to fold into the source, but at a code size cost. Don't
3645 // fold if the fold into the user is free.
3646 if (allUsesHaveSourceMods(N
, 0))
3649 if (fnegFoldsIntoOp(Opc
) &&
3650 (allUsesHaveSourceMods(N
) || !allUsesHaveSourceMods(N0
.getNode())))
3657 if (!mayIgnoreSignedZero(N0
))
3660 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3661 SDValue LHS
= N0
.getOperand(0);
3662 SDValue RHS
= N0
.getOperand(1);
3664 if (LHS
.getOpcode() != ISD::FNEG
)
3665 LHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, LHS
);
3667 LHS
= LHS
.getOperand(0);
3669 if (RHS
.getOpcode() != ISD::FNEG
)
3670 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3672 RHS
= RHS
.getOperand(0);
3674 SDValue Res
= DAG
.getNode(ISD::FADD
, SL
, VT
, LHS
, RHS
, N0
->getFlags());
3675 if (Res
.getOpcode() != ISD::FADD
)
3676 return SDValue(); // Op got folded away.
3677 if (!N0
.hasOneUse())
3678 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3682 case AMDGPUISD::FMUL_LEGACY
: {
3683 // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3684 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3685 SDValue LHS
= N0
.getOperand(0);
3686 SDValue RHS
= N0
.getOperand(1);
3688 if (LHS
.getOpcode() == ISD::FNEG
)
3689 LHS
= LHS
.getOperand(0);
3690 else if (RHS
.getOpcode() == ISD::FNEG
)
3691 RHS
= RHS
.getOperand(0);
3693 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3695 SDValue Res
= DAG
.getNode(Opc
, SL
, VT
, LHS
, RHS
, N0
->getFlags());
3696 if (Res
.getOpcode() != Opc
)
3697 return SDValue(); // Op got folded away.
3698 if (!N0
.hasOneUse())
3699 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3704 if (!mayIgnoreSignedZero(N0
))
3707 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3708 SDValue LHS
= N0
.getOperand(0);
3709 SDValue MHS
= N0
.getOperand(1);
3710 SDValue RHS
= N0
.getOperand(2);
3712 if (LHS
.getOpcode() == ISD::FNEG
)
3713 LHS
= LHS
.getOperand(0);
3714 else if (MHS
.getOpcode() == ISD::FNEG
)
3715 MHS
= MHS
.getOperand(0);
3717 MHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, MHS
);
3719 if (RHS
.getOpcode() != ISD::FNEG
)
3720 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3722 RHS
= RHS
.getOperand(0);
3724 SDValue Res
= DAG
.getNode(Opc
, SL
, VT
, LHS
, MHS
, RHS
);
3725 if (Res
.getOpcode() != Opc
)
3726 return SDValue(); // Op got folded away.
3727 if (!N0
.hasOneUse())
3728 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3733 case ISD::FMAXNUM_IEEE
:
3734 case ISD::FMINNUM_IEEE
:
3735 case AMDGPUISD::FMAX_LEGACY
:
3736 case AMDGPUISD::FMIN_LEGACY
: {
3737 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3738 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3739 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3740 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3742 SDValue LHS
= N0
.getOperand(0);
3743 SDValue RHS
= N0
.getOperand(1);
3745 // 0 doesn't have a negated inline immediate.
3746 // TODO: This constant check should be generalized to other operations.
3747 if (isConstantCostlierToNegate(RHS
))
3750 SDValue NegLHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, LHS
);
3751 SDValue NegRHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3752 unsigned Opposite
= inverseMinMax(Opc
);
3754 SDValue Res
= DAG
.getNode(Opposite
, SL
, VT
, NegLHS
, NegRHS
, N0
->getFlags());
3755 if (Res
.getOpcode() != Opposite
)
3756 return SDValue(); // Op got folded away.
3757 if (!N0
.hasOneUse())
3758 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3761 case AMDGPUISD::FMED3
: {
3763 for (unsigned I
= 0; I
< 3; ++I
)
3764 Ops
[I
] = DAG
.getNode(ISD::FNEG
, SL
, VT
, N0
->getOperand(I
), N0
->getFlags());
3766 SDValue Res
= DAG
.getNode(AMDGPUISD::FMED3
, SL
, VT
, Ops
, N0
->getFlags());
3767 if (Res
.getOpcode() != AMDGPUISD::FMED3
)
3768 return SDValue(); // Op got folded away.
3769 if (!N0
.hasOneUse())
3770 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3773 case ISD::FP_EXTEND
:
3776 case ISD::FNEARBYINT
: // XXX - Should fround be handled?
3778 case ISD::FCANONICALIZE
:
3779 case AMDGPUISD::RCP
:
3780 case AMDGPUISD::RCP_LEGACY
:
3781 case AMDGPUISD::RCP_IFLAG
:
3782 case AMDGPUISD::SIN_HW
: {
3783 SDValue CvtSrc
= N0
.getOperand(0);
3784 if (CvtSrc
.getOpcode() == ISD::FNEG
) {
3785 // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3786 // (fneg (rcp (fneg x))) -> (rcp x)
3787 return DAG
.getNode(Opc
, SL
, VT
, CvtSrc
.getOperand(0));
3790 if (!N0
.hasOneUse())
3793 // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3794 // (fneg (rcp x)) -> (rcp (fneg x))
3795 SDValue Neg
= DAG
.getNode(ISD::FNEG
, SL
, CvtSrc
.getValueType(), CvtSrc
);
3796 return DAG
.getNode(Opc
, SL
, VT
, Neg
, N0
->getFlags());
3798 case ISD::FP_ROUND
: {
3799 SDValue CvtSrc
= N0
.getOperand(0);
3801 if (CvtSrc
.getOpcode() == ISD::FNEG
) {
3802 // (fneg (fp_round (fneg x))) -> (fp_round x)
3803 return DAG
.getNode(ISD::FP_ROUND
, SL
, VT
,
3804 CvtSrc
.getOperand(0), N0
.getOperand(1));
3807 if (!N0
.hasOneUse())
3810 // (fneg (fp_round x)) -> (fp_round (fneg x))
3811 SDValue Neg
= DAG
.getNode(ISD::FNEG
, SL
, CvtSrc
.getValueType(), CvtSrc
);
3812 return DAG
.getNode(ISD::FP_ROUND
, SL
, VT
, Neg
, N0
.getOperand(1));
3814 case ISD::FP16_TO_FP
: {
3815 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3816 // f16, but legalization of f16 fneg ends up pulling it out of the source.
3817 // Put the fneg back as a legal source operation that can be matched later.
3820 SDValue Src
= N0
.getOperand(0);
3821 EVT SrcVT
= Src
.getValueType();
3823 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3824 SDValue IntFNeg
= DAG
.getNode(ISD::XOR
, SL
, SrcVT
, Src
,
3825 DAG
.getConstant(0x8000, SL
, SrcVT
));
3826 return DAG
.getNode(ISD::FP16_TO_FP
, SL
, N
->getValueType(0), IntFNeg
);
3833 SDValue
AMDGPUTargetLowering::performFAbsCombine(SDNode
*N
,
3834 DAGCombinerInfo
&DCI
) const {
3835 SelectionDAG
&DAG
= DCI
.DAG
;
3836 SDValue N0
= N
->getOperand(0);
3838 if (!N0
.hasOneUse())
3841 switch (N0
.getOpcode()) {
3842 case ISD::FP16_TO_FP
: {
3843 assert(!Subtarget
->has16BitInsts() && "should only see if f16 is illegal");
3845 SDValue Src
= N0
.getOperand(0);
3846 EVT SrcVT
= Src
.getValueType();
3848 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3849 SDValue IntFAbs
= DAG
.getNode(ISD::AND
, SL
, SrcVT
, Src
,
3850 DAG
.getConstant(0x7fff, SL
, SrcVT
));
3851 return DAG
.getNode(ISD::FP16_TO_FP
, SL
, N
->getValueType(0), IntFAbs
);
3858 SDValue
AMDGPUTargetLowering::performRcpCombine(SDNode
*N
,
3859 DAGCombinerInfo
&DCI
) const {
3860 const auto *CFP
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0));
3864 // XXX - Should this flush denormals?
3865 const APFloat
&Val
= CFP
->getValueAPF();
3866 APFloat
One(Val
.getSemantics(), "1.0");
3867 return DCI
.DAG
.getConstantFP(One
/ Val
, SDLoc(N
), N
->getValueType(0));
3870 SDValue
AMDGPUTargetLowering::PerformDAGCombine(SDNode
*N
,
3871 DAGCombinerInfo
&DCI
) const {
3872 SelectionDAG
&DAG
= DCI
.DAG
;
3875 switch(N
->getOpcode()) {
3878 case ISD::BITCAST
: {
3879 EVT DestVT
= N
->getValueType(0);
3881 // Push casts through vector builds. This helps avoid emitting a large
3882 // number of copies when materializing floating point vector constants.
3884 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3885 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3886 if (DestVT
.isVector()) {
3887 SDValue Src
= N
->getOperand(0);
3888 if (Src
.getOpcode() == ISD::BUILD_VECTOR
) {
3889 EVT SrcVT
= Src
.getValueType();
3890 unsigned NElts
= DestVT
.getVectorNumElements();
3892 if (SrcVT
.getVectorNumElements() == NElts
) {
3893 EVT DestEltVT
= DestVT
.getVectorElementType();
3895 SmallVector
<SDValue
, 8> CastedElts
;
3897 for (unsigned I
= 0, E
= SrcVT
.getVectorNumElements(); I
!= E
; ++I
) {
3898 SDValue Elt
= Src
.getOperand(I
);
3899 CastedElts
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, DestEltVT
, Elt
));
3902 return DAG
.getBuildVector(DestVT
, SL
, CastedElts
);
3907 if (DestVT
.getSizeInBits() != 64 && !DestVT
.isVector())
3910 // Fold bitcasts of constants.
3912 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3913 // TODO: Generalize and move to DAGCombiner
3914 SDValue Src
= N
->getOperand(0);
3915 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Src
)) {
3916 if (Src
.getValueType() == MVT::i64
) {
3918 uint64_t CVal
= C
->getZExtValue();
3919 SDValue BV
= DAG
.getNode(ISD::BUILD_VECTOR
, SL
, MVT::v2i32
,
3920 DAG
.getConstant(Lo_32(CVal
), SL
, MVT::i32
),
3921 DAG
.getConstant(Hi_32(CVal
), SL
, MVT::i32
));
3922 return DAG
.getNode(ISD::BITCAST
, SL
, DestVT
, BV
);
3926 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Src
)) {
3927 const APInt
&Val
= C
->getValueAPF().bitcastToAPInt();
3929 uint64_t CVal
= Val
.getZExtValue();
3930 SDValue Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, SL
, MVT::v2i32
,
3931 DAG
.getConstant(Lo_32(CVal
), SL
, MVT::i32
),
3932 DAG
.getConstant(Hi_32(CVal
), SL
, MVT::i32
));
3934 return DAG
.getNode(ISD::BITCAST
, SL
, DestVT
, Vec
);
3940 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
3943 return performShlCombine(N
, DCI
);
3946 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
3949 return performSrlCombine(N
, DCI
);
3952 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
3955 return performSraCombine(N
, DCI
);
3958 return performTruncateCombine(N
, DCI
);
3960 return performMulCombine(N
, DCI
);
3962 return performMulhsCombine(N
, DCI
);
3964 return performMulhuCombine(N
, DCI
);
3965 case AMDGPUISD::MUL_I24
:
3966 case AMDGPUISD::MUL_U24
:
3967 case AMDGPUISD::MULHI_I24
:
3968 case AMDGPUISD::MULHI_U24
: {
3969 if (SDValue V
= simplifyI24(N
, DCI
))
3973 case AMDGPUISD::MUL_LOHI_I24
:
3974 case AMDGPUISD::MUL_LOHI_U24
:
3975 return performMulLoHi24Combine(N
, DCI
);
3977 return performSelectCombine(N
, DCI
);
3979 return performFNegCombine(N
, DCI
);
3981 return performFAbsCombine(N
, DCI
);
3982 case AMDGPUISD::BFE_I32
:
3983 case AMDGPUISD::BFE_U32
: {
3984 assert(!N
->getValueType(0).isVector() &&
3985 "Vector handling of BFE not implemented");
3986 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(N
->getOperand(2));
3990 uint32_t WidthVal
= Width
->getZExtValue() & 0x1f;
3992 return DAG
.getConstant(0, DL
, MVT::i32
);
3994 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3998 SDValue BitsFrom
= N
->getOperand(0);
3999 uint32_t OffsetVal
= Offset
->getZExtValue() & 0x1f;
4001 bool Signed
= N
->getOpcode() == AMDGPUISD::BFE_I32
;
4003 if (OffsetVal
== 0) {
4004 // This is already sign / zero extended, so try to fold away extra BFEs.
4005 unsigned SignBits
= Signed
? (32 - WidthVal
+ 1) : (32 - WidthVal
);
4007 unsigned OpSignBits
= DAG
.ComputeNumSignBits(BitsFrom
);
4008 if (OpSignBits
>= SignBits
)
4011 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), WidthVal
);
4013 // This is a sign_extend_inreg. Replace it to take advantage of existing
4014 // DAG Combines. If not eliminated, we will match back to BFE during
4017 // TODO: The sext_inreg of extended types ends, although we can could
4018 // handle them in a single BFE.
4019 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, MVT::i32
, BitsFrom
,
4020 DAG
.getValueType(SmallVT
));
4023 return DAG
.getZeroExtendInReg(BitsFrom
, DL
, SmallVT
);
4026 if (ConstantSDNode
*CVal
= dyn_cast
<ConstantSDNode
>(BitsFrom
)) {
4028 return constantFoldBFE
<int32_t>(DAG
,
4029 CVal
->getSExtValue(),
4035 return constantFoldBFE
<uint32_t>(DAG
,
4036 CVal
->getZExtValue(),
4042 if ((OffsetVal
+ WidthVal
) >= 32 &&
4043 !(Subtarget
->hasSDWA() && OffsetVal
== 16 && WidthVal
== 16)) {
4044 SDValue ShiftVal
= DAG
.getConstant(OffsetVal
, DL
, MVT::i32
);
4045 return DAG
.getNode(Signed
? ISD::SRA
: ISD::SRL
, DL
, MVT::i32
,
4046 BitsFrom
, ShiftVal
);
4049 if (BitsFrom
.hasOneUse()) {
4050 APInt Demanded
= APInt::getBitsSet(32,
4052 OffsetVal
+ WidthVal
);
4055 TargetLowering::TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
4056 !DCI
.isBeforeLegalizeOps());
4057 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4058 if (TLI
.ShrinkDemandedConstant(BitsFrom
, Demanded
, TLO
) ||
4059 TLI
.SimplifyDemandedBits(BitsFrom
, Demanded
, Known
, TLO
)) {
4060 DCI
.CommitTargetLoweringOpt(TLO
);
4067 return performLoadCombine(N
, DCI
);
4069 return performStoreCombine(N
, DCI
);
4070 case AMDGPUISD::RCP
:
4071 case AMDGPUISD::RCP_IFLAG
:
4072 return performRcpCombine(N
, DCI
);
4073 case ISD::AssertZext
:
4074 case ISD::AssertSext
:
4075 return performAssertSZExtCombine(N
, DCI
);
4076 case ISD::INTRINSIC_WO_CHAIN
:
4077 return performIntrinsicWOChainCombine(N
, DCI
);
4082 //===----------------------------------------------------------------------===//
4084 //===----------------------------------------------------------------------===//
4086 SDValue
AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG
&DAG
,
4087 const TargetRegisterClass
*RC
,
4088 unsigned Reg
, EVT VT
,
4090 bool RawReg
) const {
4091 MachineFunction
&MF
= DAG
.getMachineFunction();
4092 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
4095 if (!MRI
.isLiveIn(Reg
)) {
4096 VReg
= MRI
.createVirtualRegister(RC
);
4097 MRI
.addLiveIn(Reg
, VReg
);
4099 VReg
= MRI
.getLiveInVirtReg(Reg
);
4103 return DAG
.getRegister(VReg
, VT
);
4105 return DAG
.getCopyFromReg(DAG
.getEntryNode(), SL
, VReg
, VT
);
4108 // This may be called multiple times, and nothing prevents creating multiple
4109 // objects at the same offset. See if we already defined this object.
4110 static int getOrCreateFixedStackObject(MachineFrameInfo
&MFI
, unsigned Size
,
4112 for (int I
= MFI
.getObjectIndexBegin(); I
< 0; ++I
) {
4113 if (MFI
.getObjectOffset(I
) == Offset
) {
4114 assert(MFI
.getObjectSize(I
) == Size
);
4119 return MFI
.CreateFixedObject(Size
, Offset
, true);
4122 SDValue
AMDGPUTargetLowering::loadStackInputValue(SelectionDAG
&DAG
,
4125 int64_t Offset
) const {
4126 MachineFunction
&MF
= DAG
.getMachineFunction();
4127 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4128 int FI
= getOrCreateFixedStackObject(MFI
, VT
.getStoreSize(), Offset
);
4130 auto SrcPtrInfo
= MachinePointerInfo::getStack(MF
, Offset
);
4131 SDValue Ptr
= DAG
.getFrameIndex(FI
, MVT::i32
);
4133 return DAG
.getLoad(VT
, SL
, DAG
.getEntryNode(), Ptr
, SrcPtrInfo
, 4,
4134 MachineMemOperand::MODereferenceable
|
4135 MachineMemOperand::MOInvariant
);
4138 SDValue
AMDGPUTargetLowering::storeStackInputValue(SelectionDAG
&DAG
,
4142 int64_t Offset
) const {
4143 MachineFunction
&MF
= DAG
.getMachineFunction();
4144 MachinePointerInfo DstInfo
= MachinePointerInfo::getStack(MF
, Offset
);
4146 SDValue Ptr
= DAG
.getConstant(Offset
, SL
, MVT::i32
);
4147 SDValue Store
= DAG
.getStore(Chain
, SL
, ArgVal
, Ptr
, DstInfo
, 4,
4148 MachineMemOperand::MODereferenceable
);
4152 SDValue
AMDGPUTargetLowering::loadInputValue(SelectionDAG
&DAG
,
4153 const TargetRegisterClass
*RC
,
4154 EVT VT
, const SDLoc
&SL
,
4155 const ArgDescriptor
&Arg
) const {
4156 assert(Arg
&& "Attempting to load missing argument");
4158 SDValue V
= Arg
.isRegister() ?
4159 CreateLiveInRegister(DAG
, RC
, Arg
.getRegister(), VT
, SL
) :
4160 loadStackInputValue(DAG
, VT
, SL
, Arg
.getStackOffset());
4162 if (!Arg
.isMasked())
4165 unsigned Mask
= Arg
.getMask();
4166 unsigned Shift
= countTrailingZeros
<unsigned>(Mask
);
4167 V
= DAG
.getNode(ISD::SRL
, SL
, VT
, V
,
4168 DAG
.getShiftAmountConstant(Shift
, VT
, SL
));
4169 return DAG
.getNode(ISD::AND
, SL
, VT
, V
,
4170 DAG
.getConstant(Mask
>> Shift
, SL
, VT
));
4173 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4174 const MachineFunction
&MF
, const ImplicitParameter Param
) const {
4175 const AMDGPUMachineFunction
*MFI
= MF
.getInfo
<AMDGPUMachineFunction
>();
4176 const AMDGPUSubtarget
&ST
=
4177 AMDGPUSubtarget::get(getTargetMachine(), MF
.getFunction());
4178 unsigned ExplicitArgOffset
= ST
.getExplicitKernelArgOffset(MF
.getFunction());
4179 const Align Alignment
= ST
.getAlignmentForImplicitArgPtr();
4180 uint64_t ArgOffset
= alignTo(MFI
->getExplicitKernArgSize(), Alignment
) +
4186 return ArgOffset
+ 4;
4188 llvm_unreachable("unexpected implicit parameter type");
4191 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4193 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode
) const {
4194 switch ((AMDGPUISD::NodeType
)Opcode
) {
4195 case AMDGPUISD::FIRST_NUMBER
: break;
4197 NODE_NAME_CASE(UMUL
);
4198 NODE_NAME_CASE(BRANCH_COND
);
4202 NODE_NAME_CASE(ELSE
)
4203 NODE_NAME_CASE(LOOP
)
4204 NODE_NAME_CASE(CALL
)
4205 NODE_NAME_CASE(TC_RETURN
)
4206 NODE_NAME_CASE(TRAP
)
4207 NODE_NAME_CASE(RET_FLAG
)
4208 NODE_NAME_CASE(RETURN_TO_EPILOG
)
4209 NODE_NAME_CASE(ENDPGM
)
4210 NODE_NAME_CASE(DWORDADDR
)
4211 NODE_NAME_CASE(FRACT
)
4212 NODE_NAME_CASE(SETCC
)
4213 NODE_NAME_CASE(SETREG
)
4214 NODE_NAME_CASE(DENORM_MODE
)
4215 NODE_NAME_CASE(FMA_W_CHAIN
)
4216 NODE_NAME_CASE(FMUL_W_CHAIN
)
4217 NODE_NAME_CASE(CLAMP
)
4218 NODE_NAME_CASE(COS_HW
)
4219 NODE_NAME_CASE(SIN_HW
)
4220 NODE_NAME_CASE(FMAX_LEGACY
)
4221 NODE_NAME_CASE(FMIN_LEGACY
)
4222 NODE_NAME_CASE(FMAX3
)
4223 NODE_NAME_CASE(SMAX3
)
4224 NODE_NAME_CASE(UMAX3
)
4225 NODE_NAME_CASE(FMIN3
)
4226 NODE_NAME_CASE(SMIN3
)
4227 NODE_NAME_CASE(UMIN3
)
4228 NODE_NAME_CASE(FMED3
)
4229 NODE_NAME_CASE(SMED3
)
4230 NODE_NAME_CASE(UMED3
)
4231 NODE_NAME_CASE(FDOT2
)
4232 NODE_NAME_CASE(URECIP
)
4233 NODE_NAME_CASE(DIV_SCALE
)
4234 NODE_NAME_CASE(DIV_FMAS
)
4235 NODE_NAME_CASE(DIV_FIXUP
)
4236 NODE_NAME_CASE(FMAD_FTZ
)
4237 NODE_NAME_CASE(TRIG_PREOP
)
4240 NODE_NAME_CASE(RCP_LEGACY
)
4241 NODE_NAME_CASE(RSQ_LEGACY
)
4242 NODE_NAME_CASE(RCP_IFLAG
)
4243 NODE_NAME_CASE(FMUL_LEGACY
)
4244 NODE_NAME_CASE(RSQ_CLAMP
)
4245 NODE_NAME_CASE(LDEXP
)
4246 NODE_NAME_CASE(FP_CLASS
)
4247 NODE_NAME_CASE(DOT4
)
4248 NODE_NAME_CASE(CARRY
)
4249 NODE_NAME_CASE(BORROW
)
4250 NODE_NAME_CASE(BFE_U32
)
4251 NODE_NAME_CASE(BFE_I32
)
4254 NODE_NAME_CASE(FFBH_U32
)
4255 NODE_NAME_CASE(FFBH_I32
)
4256 NODE_NAME_CASE(FFBL_B32
)
4257 NODE_NAME_CASE(MUL_U24
)
4258 NODE_NAME_CASE(MUL_I24
)
4259 NODE_NAME_CASE(MULHI_U24
)
4260 NODE_NAME_CASE(MULHI_I24
)
4261 NODE_NAME_CASE(MUL_LOHI_U24
)
4262 NODE_NAME_CASE(MUL_LOHI_I24
)
4263 NODE_NAME_CASE(MAD_U24
)
4264 NODE_NAME_CASE(MAD_I24
)
4265 NODE_NAME_CASE(MAD_I64_I32
)
4266 NODE_NAME_CASE(MAD_U64_U32
)
4267 NODE_NAME_CASE(PERM
)
4268 NODE_NAME_CASE(TEXTURE_FETCH
)
4269 NODE_NAME_CASE(EXPORT
)
4270 NODE_NAME_CASE(EXPORT_DONE
)
4271 NODE_NAME_CASE(R600_EXPORT
)
4272 NODE_NAME_CASE(CONST_ADDRESS
)
4273 NODE_NAME_CASE(REGISTER_LOAD
)
4274 NODE_NAME_CASE(REGISTER_STORE
)
4275 NODE_NAME_CASE(SAMPLE
)
4276 NODE_NAME_CASE(SAMPLEB
)
4277 NODE_NAME_CASE(SAMPLED
)
4278 NODE_NAME_CASE(SAMPLEL
)
4279 NODE_NAME_CASE(CVT_F32_UBYTE0
)
4280 NODE_NAME_CASE(CVT_F32_UBYTE1
)
4281 NODE_NAME_CASE(CVT_F32_UBYTE2
)
4282 NODE_NAME_CASE(CVT_F32_UBYTE3
)
4283 NODE_NAME_CASE(CVT_PKRTZ_F16_F32
)
4284 NODE_NAME_CASE(CVT_PKNORM_I16_F32
)
4285 NODE_NAME_CASE(CVT_PKNORM_U16_F32
)
4286 NODE_NAME_CASE(CVT_PK_I16_I32
)
4287 NODE_NAME_CASE(CVT_PK_U16_U32
)
4288 NODE_NAME_CASE(FP_TO_FP16
)
4289 NODE_NAME_CASE(FP16_ZEXT
)
4290 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR
)
4291 NODE_NAME_CASE(CONST_DATA_PTR
)
4292 NODE_NAME_CASE(PC_ADD_REL_OFFSET
)
4294 NODE_NAME_CASE(KILL
)
4295 NODE_NAME_CASE(DUMMY_CHAIN
)
4296 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER
: break;
4297 NODE_NAME_CASE(INTERP_P1LL_F16
)
4298 NODE_NAME_CASE(INTERP_P1LV_F16
)
4299 NODE_NAME_CASE(INTERP_P2_F16
)
4300 NODE_NAME_CASE(LOAD_D16_HI
)
4301 NODE_NAME_CASE(LOAD_D16_LO
)
4302 NODE_NAME_CASE(LOAD_D16_HI_I8
)
4303 NODE_NAME_CASE(LOAD_D16_HI_U8
)
4304 NODE_NAME_CASE(LOAD_D16_LO_I8
)
4305 NODE_NAME_CASE(LOAD_D16_LO_U8
)
4306 NODE_NAME_CASE(STORE_MSKOR
)
4307 NODE_NAME_CASE(LOAD_CONSTANT
)
4308 NODE_NAME_CASE(TBUFFER_STORE_FORMAT
)
4309 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16
)
4310 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT
)
4311 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16
)
4312 NODE_NAME_CASE(DS_ORDERED_COUNT
)
4313 NODE_NAME_CASE(ATOMIC_CMP_SWAP
)
4314 NODE_NAME_CASE(ATOMIC_INC
)
4315 NODE_NAME_CASE(ATOMIC_DEC
)
4316 NODE_NAME_CASE(ATOMIC_LOAD_FMIN
)
4317 NODE_NAME_CASE(ATOMIC_LOAD_FMAX
)
4318 NODE_NAME_CASE(BUFFER_LOAD
)
4319 NODE_NAME_CASE(BUFFER_LOAD_UBYTE
)
4320 NODE_NAME_CASE(BUFFER_LOAD_USHORT
)
4321 NODE_NAME_CASE(BUFFER_LOAD_BYTE
)
4322 NODE_NAME_CASE(BUFFER_LOAD_SHORT
)
4323 NODE_NAME_CASE(BUFFER_LOAD_FORMAT
)
4324 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16
)
4325 NODE_NAME_CASE(SBUFFER_LOAD
)
4326 NODE_NAME_CASE(BUFFER_STORE
)
4327 NODE_NAME_CASE(BUFFER_STORE_BYTE
)
4328 NODE_NAME_CASE(BUFFER_STORE_SHORT
)
4329 NODE_NAME_CASE(BUFFER_STORE_FORMAT
)
4330 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16
)
4331 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP
)
4332 NODE_NAME_CASE(BUFFER_ATOMIC_ADD
)
4333 NODE_NAME_CASE(BUFFER_ATOMIC_SUB
)
4334 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN
)
4335 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN
)
4336 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX
)
4337 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX
)
4338 NODE_NAME_CASE(BUFFER_ATOMIC_AND
)
4339 NODE_NAME_CASE(BUFFER_ATOMIC_OR
)
4340 NODE_NAME_CASE(BUFFER_ATOMIC_XOR
)
4341 NODE_NAME_CASE(BUFFER_ATOMIC_INC
)
4342 NODE_NAME_CASE(BUFFER_ATOMIC_DEC
)
4343 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP
)
4344 NODE_NAME_CASE(BUFFER_ATOMIC_FADD
)
4345 NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD
)
4346 NODE_NAME_CASE(ATOMIC_FADD
)
4347 NODE_NAME_CASE(ATOMIC_PK_FADD
)
4349 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER
: break;
4354 SDValue
AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand
,
4355 SelectionDAG
&DAG
, int Enabled
,
4356 int &RefinementSteps
,
4357 bool &UseOneConstNR
,
4358 bool Reciprocal
) const {
4359 EVT VT
= Operand
.getValueType();
4361 if (VT
== MVT::f32
) {
4362 RefinementSteps
= 0;
4363 return DAG
.getNode(AMDGPUISD::RSQ
, SDLoc(Operand
), VT
, Operand
);
4366 // TODO: There is also f64 rsq instruction, but the documentation is less
4367 // clear on its precision.
4372 SDValue
AMDGPUTargetLowering::getRecipEstimate(SDValue Operand
,
4373 SelectionDAG
&DAG
, int Enabled
,
4374 int &RefinementSteps
) const {
4375 EVT VT
= Operand
.getValueType();
4377 if (VT
== MVT::f32
) {
4378 // Reciprocal, < 1 ulp error.
4380 // This reciprocal approximation converges to < 0.5 ulp error with one
4381 // newton rhapson performed with two fused multiple adds (FMAs).
4383 RefinementSteps
= 0;
4384 return DAG
.getNode(AMDGPUISD::RCP
, SDLoc(Operand
), VT
, Operand
);
4387 // TODO: There is also f64 rcp instruction, but the documentation is less
4388 // clear on its precision.
4393 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4394 const SDValue Op
, KnownBits
&Known
,
4395 const APInt
&DemandedElts
, const SelectionDAG
&DAG
, unsigned Depth
) const {
4397 Known
.resetAll(); // Don't know anything.
4399 unsigned Opc
= Op
.getOpcode();
4404 case AMDGPUISD::CARRY
:
4405 case AMDGPUISD::BORROW
: {
4406 Known
.Zero
= APInt::getHighBitsSet(32, 31);
4410 case AMDGPUISD::BFE_I32
:
4411 case AMDGPUISD::BFE_U32
: {
4412 ConstantSDNode
*CWidth
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4416 uint32_t Width
= CWidth
->getZExtValue() & 0x1f;
4418 if (Opc
== AMDGPUISD::BFE_U32
)
4419 Known
.Zero
= APInt::getHighBitsSet(32, 32 - Width
);
4423 case AMDGPUISD::FP_TO_FP16
:
4424 case AMDGPUISD::FP16_ZEXT
: {
4425 unsigned BitWidth
= Known
.getBitWidth();
4427 // High bits are zero.
4428 Known
.Zero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 16);
4431 case AMDGPUISD::MUL_U24
:
4432 case AMDGPUISD::MUL_I24
: {
4433 KnownBits LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
4434 KnownBits RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+ 1);
4435 unsigned TrailZ
= LHSKnown
.countMinTrailingZeros() +
4436 RHSKnown
.countMinTrailingZeros();
4437 Known
.Zero
.setLowBits(std::min(TrailZ
, 32u));
4439 // Truncate to 24 bits.
4440 LHSKnown
= LHSKnown
.trunc(24);
4441 RHSKnown
= RHSKnown
.trunc(24);
4443 bool Negative
= false;
4444 if (Opc
== AMDGPUISD::MUL_I24
) {
4445 unsigned LHSValBits
= 24 - LHSKnown
.countMinSignBits();
4446 unsigned RHSValBits
= 24 - RHSKnown
.countMinSignBits();
4447 unsigned MaxValBits
= std::min(LHSValBits
+ RHSValBits
, 32u);
4448 if (MaxValBits
>= 32)
4450 bool LHSNegative
= LHSKnown
.isNegative();
4451 bool LHSPositive
= LHSKnown
.isNonNegative();
4452 bool RHSNegative
= RHSKnown
.isNegative();
4453 bool RHSPositive
= RHSKnown
.isNonNegative();
4454 if ((!LHSNegative
&& !LHSPositive
) || (!RHSNegative
&& !RHSPositive
))
4456 Negative
= (LHSNegative
&& RHSPositive
) || (LHSPositive
&& RHSNegative
);
4458 Known
.One
.setHighBits(32 - MaxValBits
);
4460 Known
.Zero
.setHighBits(32 - MaxValBits
);
4462 unsigned LHSValBits
= 24 - LHSKnown
.countMinLeadingZeros();
4463 unsigned RHSValBits
= 24 - RHSKnown
.countMinLeadingZeros();
4464 unsigned MaxValBits
= std::min(LHSValBits
+ RHSValBits
, 32u);
4465 if (MaxValBits
>= 32)
4467 Known
.Zero
.setHighBits(32 - MaxValBits
);
4471 case AMDGPUISD::PERM
: {
4472 ConstantSDNode
*CMask
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4476 KnownBits LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
4477 KnownBits RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+ 1);
4478 unsigned Sel
= CMask
->getZExtValue();
4480 for (unsigned I
= 0; I
< 32; I
+= 8) {
4481 unsigned SelBits
= Sel
& 0xff;
4484 Known
.One
|= ((RHSKnown
.One
.getZExtValue() >> SelBits
) & 0xff) << I
;
4485 Known
.Zero
|= ((RHSKnown
.Zero
.getZExtValue() >> SelBits
) & 0xff) << I
;
4486 } else if (SelBits
< 7) {
4487 SelBits
= (SelBits
& 3) * 8;
4488 Known
.One
|= ((LHSKnown
.One
.getZExtValue() >> SelBits
) & 0xff) << I
;
4489 Known
.Zero
|= ((LHSKnown
.Zero
.getZExtValue() >> SelBits
) & 0xff) << I
;
4490 } else if (SelBits
== 0x0c) {
4491 Known
.Zero
|= 0xFFull
<< I
;
4492 } else if (SelBits
> 0x0c) {
4493 Known
.One
|= 0xFFull
<< I
;
4499 case AMDGPUISD::BUFFER_LOAD_UBYTE
: {
4500 Known
.Zero
.setHighBits(24);
4503 case AMDGPUISD::BUFFER_LOAD_USHORT
: {
4504 Known
.Zero
.setHighBits(16);
4507 case AMDGPUISD::LDS
: {
4508 auto GA
= cast
<GlobalAddressSDNode
>(Op
.getOperand(0).getNode());
4509 unsigned Align
= GA
->getGlobal()->getAlignment();
4511 Known
.Zero
.setHighBits(16);
4513 Known
.Zero
.setLowBits(Log2_32(Align
));
4516 case ISD::INTRINSIC_WO_CHAIN
: {
4517 unsigned IID
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
4519 case Intrinsic::amdgcn_mbcnt_lo
:
4520 case Intrinsic::amdgcn_mbcnt_hi
: {
4521 const GCNSubtarget
&ST
=
4522 DAG
.getMachineFunction().getSubtarget
<GCNSubtarget
>();
4523 // These return at most the wavefront size - 1.
4524 unsigned Size
= Op
.getValueType().getSizeInBits();
4525 Known
.Zero
.setHighBits(Size
- ST
.getWavefrontSizeLog2());
4535 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4536 SDValue Op
, const APInt
&DemandedElts
, const SelectionDAG
&DAG
,
4537 unsigned Depth
) const {
4538 switch (Op
.getOpcode()) {
4539 case AMDGPUISD::BFE_I32
: {
4540 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4544 unsigned SignBits
= 32 - Width
->getZExtValue() + 1;
4545 if (!isNullConstant(Op
.getOperand(1)))
4548 // TODO: Could probably figure something out with non-0 offsets.
4549 unsigned Op0SignBits
= DAG
.ComputeNumSignBits(Op
.getOperand(0), Depth
+ 1);
4550 return std::max(SignBits
, Op0SignBits
);
4553 case AMDGPUISD::BFE_U32
: {
4554 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4555 return Width
? 32 - (Width
->getZExtValue() & 0x1f) : 1;
4558 case AMDGPUISD::CARRY
:
4559 case AMDGPUISD::BORROW
:
4561 case AMDGPUISD::BUFFER_LOAD_BYTE
:
4563 case AMDGPUISD::BUFFER_LOAD_SHORT
:
4565 case AMDGPUISD::BUFFER_LOAD_UBYTE
:
4567 case AMDGPUISD::BUFFER_LOAD_USHORT
:
4569 case AMDGPUISD::FP_TO_FP16
:
4570 case AMDGPUISD::FP16_ZEXT
:
4577 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op
,
4578 const SelectionDAG
&DAG
,
4580 unsigned Depth
) const {
4581 unsigned Opcode
= Op
.getOpcode();
4583 case AMDGPUISD::FMIN_LEGACY
:
4584 case AMDGPUISD::FMAX_LEGACY
: {
4588 // TODO: Can check no nans on one of the operands for each one, but which
4592 case AMDGPUISD::FMUL_LEGACY
:
4593 case AMDGPUISD::CVT_PKRTZ_F16_F32
: {
4596 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
4597 DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
4599 case AMDGPUISD::FMED3
:
4600 case AMDGPUISD::FMIN3
:
4601 case AMDGPUISD::FMAX3
:
4602 case AMDGPUISD::FMAD_FTZ
: {
4605 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
4606 DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
4607 DAG
.isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
4609 case AMDGPUISD::CVT_F32_UBYTE0
:
4610 case AMDGPUISD::CVT_F32_UBYTE1
:
4611 case AMDGPUISD::CVT_F32_UBYTE2
:
4612 case AMDGPUISD::CVT_F32_UBYTE3
:
4615 case AMDGPUISD::RCP
:
4616 case AMDGPUISD::RSQ
:
4617 case AMDGPUISD::RCP_LEGACY
:
4618 case AMDGPUISD::RSQ_LEGACY
:
4619 case AMDGPUISD::RSQ_CLAMP
: {
4623 // TODO: Need is known positive check.
4626 case AMDGPUISD::LDEXP
:
4627 case AMDGPUISD::FRACT
: {
4630 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
4632 case AMDGPUISD::DIV_SCALE
:
4633 case AMDGPUISD::DIV_FMAS
:
4634 case AMDGPUISD::DIV_FIXUP
:
4635 case AMDGPUISD::TRIG_PREOP
:
4636 // TODO: Refine on operands.
4638 case AMDGPUISD::SIN_HW
:
4639 case AMDGPUISD::COS_HW
: {
4640 // TODO: Need check for infinity
4643 case ISD::INTRINSIC_WO_CHAIN
: {
4644 unsigned IntrinsicID
4645 = cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
4646 // TODO: Handle more intrinsics
4647 switch (IntrinsicID
) {
4648 case Intrinsic::amdgcn_cubeid
:
4651 case Intrinsic::amdgcn_frexp_mant
: {
4654 return DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
4656 case Intrinsic::amdgcn_cvt_pkrtz
: {
4659 return DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
4660 DAG
.isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
4662 case Intrinsic::amdgcn_fdot2
:
4663 // TODO: Refine on operand
4674 TargetLowering::AtomicExpansionKind
4675 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*RMW
) const {
4676 switch (RMW
->getOperation()) {
4677 case AtomicRMWInst::Nand
:
4678 case AtomicRMWInst::FAdd
:
4679 case AtomicRMWInst::FSub
:
4680 return AtomicExpansionKind::CmpXChg
;
4682 return AtomicExpansionKind::None
;