[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Target / AMDGPU / SIISelLowering.cpp
blob56ebf9c06741a4916ea664e0c96e955dba670a7f
1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
12 //===----------------------------------------------------------------------===//
14 #if defined(_MSC_VER) || defined(__MINGW32__)
15 // Provide M_PI.
16 #define _USE_MATH_DEFINES
17 #endif
19 #include "SIISelLowering.h"
20 #include "AMDGPU.h"
21 #include "AMDGPUSubtarget.h"
22 #include "AMDGPUTargetMachine.h"
23 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
24 #include "SIDefines.h"
25 #include "SIInstrInfo.h"
26 #include "SIMachineFunctionInfo.h"
27 #include "SIRegisterInfo.h"
28 #include "Utils/AMDGPUBaseInfo.h"
29 #include "llvm/ADT/APFloat.h"
30 #include "llvm/ADT/APInt.h"
31 #include "llvm/ADT/ArrayRef.h"
32 #include "llvm/ADT/BitVector.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/CallingConvLower.h"
41 #include "llvm/CodeGen/DAGCombine.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/TargetCallingConv.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/DebugLoc.h"
61 #include "llvm/IR/DerivedTypes.h"
62 #include "llvm/IR/DiagnosticInfo.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/GlobalValue.h"
65 #include "llvm/IR/InstrTypes.h"
66 #include "llvm/IR/Instruction.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/IntrinsicInst.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CodeGen.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Compiler.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/KnownBits.h"
76 #include "llvm/Support/MachineValueType.h"
77 #include "llvm/Support/MathExtras.h"
78 #include "llvm/Target/TargetOptions.h"
79 #include <cassert>
80 #include <cmath>
81 #include <cstdint>
82 #include <iterator>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
87 using namespace llvm;
89 #define DEBUG_TYPE "si-lower"
91 STATISTIC(NumTailCalls, "Number of tail calls");
93 static cl::opt<bool> EnableVGPRIndexMode(
94 "amdgpu-vgpr-index-mode",
95 cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
96 cl::init(false));
98 static cl::opt<bool> DisableLoopAlignment(
99 "amdgpu-disable-loop-alignment",
100 cl::desc("Do not align and prefetch loops"),
101 cl::init(false));
103 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
104 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
105 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
106 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
107 return AMDGPU::SGPR0 + Reg;
110 llvm_unreachable("Cannot allocate sgpr");
113 SITargetLowering::SITargetLowering(const TargetMachine &TM,
114 const GCNSubtarget &STI)
115 : AMDGPUTargetLowering(TM, STI),
116 Subtarget(&STI) {
117 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
118 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
120 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
121 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
123 addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
124 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
125 addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
127 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
128 addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass);
130 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
131 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
133 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
134 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
136 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
137 addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass);
139 addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
140 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
142 addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
143 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
145 if (Subtarget->has16BitInsts()) {
146 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
147 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
149 // Unless there are also VOP3P operations, not operations are really legal.
150 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
151 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
152 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
153 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
156 if (Subtarget->hasMAIInsts()) {
157 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
158 addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass);
161 computeRegisterProperties(Subtarget->getRegisterInfo());
163 // We need to custom lower vector stores from local memory
164 setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
165 setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
166 setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
167 setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
168 setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
169 setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
170 setOperationAction(ISD::LOAD, MVT::i1, Custom);
171 setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
173 setOperationAction(ISD::STORE, MVT::v2i32, Custom);
174 setOperationAction(ISD::STORE, MVT::v3i32, Custom);
175 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
176 setOperationAction(ISD::STORE, MVT::v5i32, Custom);
177 setOperationAction(ISD::STORE, MVT::v8i32, Custom);
178 setOperationAction(ISD::STORE, MVT::v16i32, Custom);
179 setOperationAction(ISD::STORE, MVT::i1, Custom);
180 setOperationAction(ISD::STORE, MVT::v32i32, Custom);
182 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
183 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
184 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
185 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
186 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
187 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
188 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
189 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
190 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
191 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
192 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
194 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
195 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
197 setOperationAction(ISD::SELECT, MVT::i1, Promote);
198 setOperationAction(ISD::SELECT, MVT::i64, Custom);
199 setOperationAction(ISD::SELECT, MVT::f64, Promote);
200 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
202 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
203 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
204 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
205 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
206 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
208 setOperationAction(ISD::SETCC, MVT::i1, Promote);
209 setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
210 setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
211 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
213 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
214 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
216 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
217 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
218 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
219 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
220 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
221 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
222 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
223 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
225 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
226 setOperationAction(ISD::BR_CC, MVT::i1, Expand);
227 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
228 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
229 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
230 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
232 setOperationAction(ISD::UADDO, MVT::i32, Legal);
233 setOperationAction(ISD::USUBO, MVT::i32, Legal);
235 setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
236 setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
238 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
239 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
240 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
242 #if 0
243 setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
244 setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
245 #endif
247 // We only support LOAD/STORE and vector manipulation ops for vectors
248 // with > 4 elements.
249 for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
250 MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
251 MVT::v32i32, MVT::v32f32 }) {
252 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
253 switch (Op) {
254 case ISD::LOAD:
255 case ISD::STORE:
256 case ISD::BUILD_VECTOR:
257 case ISD::BITCAST:
258 case ISD::EXTRACT_VECTOR_ELT:
259 case ISD::INSERT_VECTOR_ELT:
260 case ISD::INSERT_SUBVECTOR:
261 case ISD::EXTRACT_SUBVECTOR:
262 case ISD::SCALAR_TO_VECTOR:
263 break;
264 case ISD::CONCAT_VECTORS:
265 setOperationAction(Op, VT, Custom);
266 break;
267 default:
268 setOperationAction(Op, VT, Expand);
269 break;
274 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
276 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
277 // is expanded to avoid having two separate loops in case the index is a VGPR.
279 // Most operations are naturally 32-bit vector operations. We only support
280 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
281 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
282 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
283 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
285 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
286 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
288 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
289 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
291 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
292 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
295 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
296 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
297 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
298 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
300 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
301 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
303 // Avoid stack access for these.
304 // TODO: Generalize to more vector types.
305 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
306 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
307 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
308 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
310 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
311 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
312 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
313 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
314 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
316 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
317 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
318 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
320 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
321 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
322 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
323 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
325 // Deal with vec3 vector operations when widened to vec4.
326 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
327 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
328 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
329 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
331 // Deal with vec5 vector operations when widened to vec8.
332 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
333 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
334 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
335 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
337 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
338 // and output demarshalling
339 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
340 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
342 // We can't return success/failure, only the old value,
343 // let LLVM add the comparison
344 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
345 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
347 if (Subtarget->hasFlatAddressSpace()) {
348 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
349 setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
352 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
353 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
355 // On SI this is s_memtime and s_memrealtime on VI.
356 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
357 setOperationAction(ISD::TRAP, MVT::Other, Custom);
358 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
360 if (Subtarget->has16BitInsts()) {
361 setOperationAction(ISD::FLOG, MVT::f16, Custom);
362 setOperationAction(ISD::FEXP, MVT::f16, Custom);
363 setOperationAction(ISD::FLOG10, MVT::f16, Custom);
366 // v_mad_f32 does not support denormals according to some sources.
367 if (!Subtarget->hasFP32Denormals())
368 setOperationAction(ISD::FMAD, MVT::f32, Legal);
370 if (!Subtarget->hasBFI()) {
371 // fcopysign can be done in a single instruction with BFI.
372 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
373 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
376 if (!Subtarget->hasBCNT(32))
377 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
379 if (!Subtarget->hasBCNT(64))
380 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
382 if (Subtarget->hasFFBH())
383 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
385 if (Subtarget->hasFFBL())
386 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
388 // We only really have 32-bit BFE instructions (and 16-bit on VI).
390 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
391 // effort to match them now. We want this to be false for i64 cases when the
392 // extraction isn't restricted to the upper or lower half. Ideally we would
393 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
394 // span the midpoint are probably relatively rare, so don't worry about them
395 // for now.
396 if (Subtarget->hasBFE())
397 setHasExtractBitsInsn(true);
399 setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
400 setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
401 setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
402 setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
405 // These are really only legal for ieee_mode functions. We should be avoiding
406 // them for functions that don't have ieee_mode enabled, so just say they are
407 // legal.
408 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
409 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
410 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
411 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
414 if (Subtarget->haveRoundOpsF64()) {
415 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
416 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
417 setOperationAction(ISD::FRINT, MVT::f64, Legal);
418 } else {
419 setOperationAction(ISD::FCEIL, MVT::f64, Custom);
420 setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
421 setOperationAction(ISD::FRINT, MVT::f64, Custom);
422 setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
425 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
427 setOperationAction(ISD::FSIN, MVT::f32, Custom);
428 setOperationAction(ISD::FCOS, MVT::f32, Custom);
429 setOperationAction(ISD::FDIV, MVT::f32, Custom);
430 setOperationAction(ISD::FDIV, MVT::f64, Custom);
432 if (Subtarget->has16BitInsts()) {
433 setOperationAction(ISD::Constant, MVT::i16, Legal);
435 setOperationAction(ISD::SMIN, MVT::i16, Legal);
436 setOperationAction(ISD::SMAX, MVT::i16, Legal);
438 setOperationAction(ISD::UMIN, MVT::i16, Legal);
439 setOperationAction(ISD::UMAX, MVT::i16, Legal);
441 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
442 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
444 setOperationAction(ISD::ROTR, MVT::i16, Promote);
445 setOperationAction(ISD::ROTL, MVT::i16, Promote);
447 setOperationAction(ISD::SDIV, MVT::i16, Promote);
448 setOperationAction(ISD::UDIV, MVT::i16, Promote);
449 setOperationAction(ISD::SREM, MVT::i16, Promote);
450 setOperationAction(ISD::UREM, MVT::i16, Promote);
452 setOperationAction(ISD::BSWAP, MVT::i16, Promote);
453 setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
455 setOperationAction(ISD::CTTZ, MVT::i16, Promote);
456 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
457 setOperationAction(ISD::CTLZ, MVT::i16, Promote);
458 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
459 setOperationAction(ISD::CTPOP, MVT::i16, Promote);
461 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
463 setOperationAction(ISD::BR_CC, MVT::i16, Expand);
465 setOperationAction(ISD::LOAD, MVT::i16, Custom);
467 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
469 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
470 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
471 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
472 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
474 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
475 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
476 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
477 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
479 // F16 - Constant Actions.
480 setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
482 // F16 - Load/Store Actions.
483 setOperationAction(ISD::LOAD, MVT::f16, Promote);
484 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
485 setOperationAction(ISD::STORE, MVT::f16, Promote);
486 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
488 // F16 - VOP1 Actions.
489 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
490 setOperationAction(ISD::FCOS, MVT::f16, Promote);
491 setOperationAction(ISD::FSIN, MVT::f16, Promote);
492 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
493 setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
494 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
495 setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
496 setOperationAction(ISD::FROUND, MVT::f16, Custom);
498 // F16 - VOP2 Actions.
499 setOperationAction(ISD::BR_CC, MVT::f16, Expand);
500 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
502 setOperationAction(ISD::FDIV, MVT::f16, Custom);
504 // F16 - VOP3 Actions.
505 setOperationAction(ISD::FMA, MVT::f16, Legal);
506 if (!Subtarget->hasFP16Denormals() && STI.hasMadF16())
507 setOperationAction(ISD::FMAD, MVT::f16, Legal);
509 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
510 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
511 switch (Op) {
512 case ISD::LOAD:
513 case ISD::STORE:
514 case ISD::BUILD_VECTOR:
515 case ISD::BITCAST:
516 case ISD::EXTRACT_VECTOR_ELT:
517 case ISD::INSERT_VECTOR_ELT:
518 case ISD::INSERT_SUBVECTOR:
519 case ISD::EXTRACT_SUBVECTOR:
520 case ISD::SCALAR_TO_VECTOR:
521 break;
522 case ISD::CONCAT_VECTORS:
523 setOperationAction(Op, VT, Custom);
524 break;
525 default:
526 setOperationAction(Op, VT, Expand);
527 break;
532 // XXX - Do these do anything? Vector constants turn into build_vector.
533 setOperationAction(ISD::Constant, MVT::v2i16, Legal);
534 setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
536 setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
537 setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
539 setOperationAction(ISD::STORE, MVT::v2i16, Promote);
540 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
541 setOperationAction(ISD::STORE, MVT::v2f16, Promote);
542 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
544 setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
545 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
546 setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
547 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
549 setOperationAction(ISD::AND, MVT::v2i16, Promote);
550 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
551 setOperationAction(ISD::OR, MVT::v2i16, Promote);
552 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
553 setOperationAction(ISD::XOR, MVT::v2i16, Promote);
554 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
556 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
557 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
558 setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
559 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
561 setOperationAction(ISD::STORE, MVT::v4i16, Promote);
562 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
563 setOperationAction(ISD::STORE, MVT::v4f16, Promote);
564 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
566 setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
567 setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
568 setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
569 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
571 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
572 setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
573 setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
575 if (!Subtarget->hasVOP3PInsts()) {
576 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
577 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
580 setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
581 // This isn't really legal, but this avoids the legalizer unrolling it (and
582 // allows matching fneg (fabs x) patterns)
583 setOperationAction(ISD::FABS, MVT::v2f16, Legal);
585 setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
586 setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
587 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
588 setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
590 setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
591 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
593 setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
594 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
597 if (Subtarget->hasVOP3PInsts()) {
598 setOperationAction(ISD::ADD, MVT::v2i16, Legal);
599 setOperationAction(ISD::SUB, MVT::v2i16, Legal);
600 setOperationAction(ISD::MUL, MVT::v2i16, Legal);
601 setOperationAction(ISD::SHL, MVT::v2i16, Legal);
602 setOperationAction(ISD::SRL, MVT::v2i16, Legal);
603 setOperationAction(ISD::SRA, MVT::v2i16, Legal);
604 setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
605 setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
606 setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
607 setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
609 setOperationAction(ISD::FADD, MVT::v2f16, Legal);
610 setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
611 setOperationAction(ISD::FMA, MVT::v2f16, Legal);
613 setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
614 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
616 setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
618 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
619 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
621 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
622 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
624 setOperationAction(ISD::SHL, MVT::v4i16, Custom);
625 setOperationAction(ISD::SRA, MVT::v4i16, Custom);
626 setOperationAction(ISD::SRL, MVT::v4i16, Custom);
627 setOperationAction(ISD::ADD, MVT::v4i16, Custom);
628 setOperationAction(ISD::SUB, MVT::v4i16, Custom);
629 setOperationAction(ISD::MUL, MVT::v4i16, Custom);
631 setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
632 setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
633 setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
634 setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
636 setOperationAction(ISD::FADD, MVT::v4f16, Custom);
637 setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
638 setOperationAction(ISD::FMA, MVT::v4f16, Custom);
640 setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
641 setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
643 setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
644 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
645 setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
647 setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
648 setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
649 setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
652 setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
653 setOperationAction(ISD::FABS, MVT::v4f16, Custom);
655 if (Subtarget->has16BitInsts()) {
656 setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
657 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
658 setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
659 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
660 } else {
661 // Legalization hack.
662 setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
663 setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
665 setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
666 setOperationAction(ISD::FABS, MVT::v2f16, Custom);
669 for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
670 setOperationAction(ISD::SELECT, VT, Custom);
673 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
674 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
675 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
676 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
677 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
678 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
679 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
681 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
682 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
683 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
684 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
685 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
686 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
687 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
688 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
689 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
691 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
692 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
693 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
694 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
695 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
696 setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
697 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
698 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
700 setTargetDAGCombine(ISD::ADD);
701 setTargetDAGCombine(ISD::ADDCARRY);
702 setTargetDAGCombine(ISD::SUB);
703 setTargetDAGCombine(ISD::SUBCARRY);
704 setTargetDAGCombine(ISD::FADD);
705 setTargetDAGCombine(ISD::FSUB);
706 setTargetDAGCombine(ISD::FMINNUM);
707 setTargetDAGCombine(ISD::FMAXNUM);
708 setTargetDAGCombine(ISD::FMINNUM_IEEE);
709 setTargetDAGCombine(ISD::FMAXNUM_IEEE);
710 setTargetDAGCombine(ISD::FMA);
711 setTargetDAGCombine(ISD::SMIN);
712 setTargetDAGCombine(ISD::SMAX);
713 setTargetDAGCombine(ISD::UMIN);
714 setTargetDAGCombine(ISD::UMAX);
715 setTargetDAGCombine(ISD::SETCC);
716 setTargetDAGCombine(ISD::AND);
717 setTargetDAGCombine(ISD::OR);
718 setTargetDAGCombine(ISD::XOR);
719 setTargetDAGCombine(ISD::SINT_TO_FP);
720 setTargetDAGCombine(ISD::UINT_TO_FP);
721 setTargetDAGCombine(ISD::FCANONICALIZE);
722 setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
723 setTargetDAGCombine(ISD::ZERO_EXTEND);
724 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
725 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
726 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
728 // All memory operations. Some folding on the pointer operand is done to help
729 // matching the constant offsets in the addressing modes.
730 setTargetDAGCombine(ISD::LOAD);
731 setTargetDAGCombine(ISD::STORE);
732 setTargetDAGCombine(ISD::ATOMIC_LOAD);
733 setTargetDAGCombine(ISD::ATOMIC_STORE);
734 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
735 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
736 setTargetDAGCombine(ISD::ATOMIC_SWAP);
737 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
738 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
739 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
740 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
741 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
742 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
743 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
744 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
745 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
746 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
747 setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
749 setSchedulingPreference(Sched::RegPressure);
752 const GCNSubtarget *SITargetLowering::getSubtarget() const {
753 return Subtarget;
756 //===----------------------------------------------------------------------===//
757 // TargetLowering queries
758 //===----------------------------------------------------------------------===//
760 // v_mad_mix* support a conversion from f16 to f32.
762 // There is only one special case when denormals are enabled we don't currently,
763 // where this is OK to use.
764 bool SITargetLowering::isFPExtFoldable(unsigned Opcode,
765 EVT DestVT, EVT SrcVT) const {
766 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
767 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
768 DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() &&
769 SrcVT.getScalarType() == MVT::f16;
772 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
773 // SI has some legal vector types, but no legal vector operations. Say no
774 // shuffles are legal in order to prefer scalarizing some vector operations.
775 return false;
778 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
779 CallingConv::ID CC,
780 EVT VT) const {
781 if (CC == CallingConv::AMDGPU_KERNEL)
782 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
784 if (VT.isVector()) {
785 EVT ScalarVT = VT.getScalarType();
786 unsigned Size = ScalarVT.getSizeInBits();
787 if (Size == 32)
788 return ScalarVT.getSimpleVT();
790 if (Size > 32)
791 return MVT::i32;
793 if (Size == 16 && Subtarget->has16BitInsts())
794 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
795 } else if (VT.getSizeInBits() > 32)
796 return MVT::i32;
798 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
801 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
802 CallingConv::ID CC,
803 EVT VT) const {
804 if (CC == CallingConv::AMDGPU_KERNEL)
805 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
807 if (VT.isVector()) {
808 unsigned NumElts = VT.getVectorNumElements();
809 EVT ScalarVT = VT.getScalarType();
810 unsigned Size = ScalarVT.getSizeInBits();
812 if (Size == 32)
813 return NumElts;
815 if (Size > 32)
816 return NumElts * ((Size + 31) / 32);
818 if (Size == 16 && Subtarget->has16BitInsts())
819 return (NumElts + 1) / 2;
820 } else if (VT.getSizeInBits() > 32)
821 return (VT.getSizeInBits() + 31) / 32;
823 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
826 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
827 LLVMContext &Context, CallingConv::ID CC,
828 EVT VT, EVT &IntermediateVT,
829 unsigned &NumIntermediates, MVT &RegisterVT) const {
830 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
831 unsigned NumElts = VT.getVectorNumElements();
832 EVT ScalarVT = VT.getScalarType();
833 unsigned Size = ScalarVT.getSizeInBits();
834 if (Size == 32) {
835 RegisterVT = ScalarVT.getSimpleVT();
836 IntermediateVT = RegisterVT;
837 NumIntermediates = NumElts;
838 return NumIntermediates;
841 if (Size > 32) {
842 RegisterVT = MVT::i32;
843 IntermediateVT = RegisterVT;
844 NumIntermediates = NumElts * ((Size + 31) / 32);
845 return NumIntermediates;
848 // FIXME: We should fix the ABI to be the same on targets without 16-bit
849 // support, but unless we can properly handle 3-vectors, it will be still be
850 // inconsistent.
851 if (Size == 16 && Subtarget->has16BitInsts()) {
852 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
853 IntermediateVT = RegisterVT;
854 NumIntermediates = (NumElts + 1) / 2;
855 return NumIntermediates;
859 return TargetLowering::getVectorTypeBreakdownForCallingConv(
860 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
863 static MVT memVTFromAggregate(Type *Ty) {
864 // Only limited forms of aggregate type currently expected.
865 assert(Ty->isStructTy() && "Expected struct type");
868 Type *ElementType = nullptr;
869 unsigned NumElts;
870 if (Ty->getContainedType(0)->isVectorTy()) {
871 VectorType *VecComponent = cast<VectorType>(Ty->getContainedType(0));
872 ElementType = VecComponent->getElementType();
873 NumElts = VecComponent->getNumElements();
874 } else {
875 ElementType = Ty->getContainedType(0);
876 NumElts = 1;
879 assert((Ty->getContainedType(1) && Ty->getContainedType(1)->isIntegerTy(32)) && "Expected int32 type");
881 // Calculate the size of the memVT type from the aggregate
882 unsigned Pow2Elts = 0;
883 unsigned ElementSize;
884 switch (ElementType->getTypeID()) {
885 default:
886 llvm_unreachable("Unknown type!");
887 case Type::IntegerTyID:
888 ElementSize = cast<IntegerType>(ElementType)->getBitWidth();
889 break;
890 case Type::HalfTyID:
891 ElementSize = 16;
892 break;
893 case Type::FloatTyID:
894 ElementSize = 32;
895 break;
897 unsigned AdditionalElts = ElementSize == 16 ? 2 : 1;
898 Pow2Elts = 1 << Log2_32_Ceil(NumElts + AdditionalElts);
900 return MVT::getVectorVT(MVT::getVT(ElementType, false),
901 Pow2Elts);
904 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
905 const CallInst &CI,
906 MachineFunction &MF,
907 unsigned IntrID) const {
908 if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
909 AMDGPU::lookupRsrcIntrinsic(IntrID)) {
910 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
911 (Intrinsic::ID)IntrID);
912 if (Attr.hasFnAttribute(Attribute::ReadNone))
913 return false;
915 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
917 if (RsrcIntr->IsImage) {
918 Info.ptrVal = MFI->getImagePSV(
919 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
920 CI.getArgOperand(RsrcIntr->RsrcArg));
921 Info.align.reset();
922 } else {
923 Info.ptrVal = MFI->getBufferPSV(
924 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
925 CI.getArgOperand(RsrcIntr->RsrcArg));
928 Info.flags = MachineMemOperand::MODereferenceable;
929 if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
930 Info.opc = ISD::INTRINSIC_W_CHAIN;
931 Info.memVT = MVT::getVT(CI.getType(), true);
932 if (Info.memVT == MVT::Other) {
933 // Some intrinsics return an aggregate type - special case to work out
934 // the correct memVT
935 Info.memVT = memVTFromAggregate(CI.getType());
937 Info.flags |= MachineMemOperand::MOLoad;
938 } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
939 Info.opc = ISD::INTRINSIC_VOID;
940 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
941 Info.flags |= MachineMemOperand::MOStore;
942 } else {
943 // Atomic
944 Info.opc = ISD::INTRINSIC_W_CHAIN;
945 Info.memVT = MVT::getVT(CI.getType());
946 Info.flags = MachineMemOperand::MOLoad |
947 MachineMemOperand::MOStore |
948 MachineMemOperand::MODereferenceable;
950 // XXX - Should this be volatile without known ordering?
951 Info.flags |= MachineMemOperand::MOVolatile;
953 return true;
956 switch (IntrID) {
957 case Intrinsic::amdgcn_atomic_inc:
958 case Intrinsic::amdgcn_atomic_dec:
959 case Intrinsic::amdgcn_ds_ordered_add:
960 case Intrinsic::amdgcn_ds_ordered_swap:
961 case Intrinsic::amdgcn_ds_fadd:
962 case Intrinsic::amdgcn_ds_fmin:
963 case Intrinsic::amdgcn_ds_fmax: {
964 Info.opc = ISD::INTRINSIC_W_CHAIN;
965 Info.memVT = MVT::getVT(CI.getType());
966 Info.ptrVal = CI.getOperand(0);
967 Info.align.reset();
968 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
970 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
971 if (!Vol->isZero())
972 Info.flags |= MachineMemOperand::MOVolatile;
974 return true;
976 case Intrinsic::amdgcn_buffer_atomic_fadd: {
977 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
979 Info.opc = ISD::INTRINSIC_VOID;
980 Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
981 Info.ptrVal = MFI->getBufferPSV(
982 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
983 CI.getArgOperand(1));
984 Info.align.reset();
985 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
987 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
988 if (!Vol || !Vol->isZero())
989 Info.flags |= MachineMemOperand::MOVolatile;
991 return true;
993 case Intrinsic::amdgcn_global_atomic_fadd: {
994 Info.opc = ISD::INTRINSIC_VOID;
995 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()
996 ->getPointerElementType());
997 Info.ptrVal = CI.getOperand(0);
998 Info.align.reset();
999 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1001 return true;
1003 case Intrinsic::amdgcn_ds_append:
1004 case Intrinsic::amdgcn_ds_consume: {
1005 Info.opc = ISD::INTRINSIC_W_CHAIN;
1006 Info.memVT = MVT::getVT(CI.getType());
1007 Info.ptrVal = CI.getOperand(0);
1008 Info.align.reset();
1009 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1011 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1012 if (!Vol->isZero())
1013 Info.flags |= MachineMemOperand::MOVolatile;
1015 return true;
1017 case Intrinsic::amdgcn_ds_gws_init:
1018 case Intrinsic::amdgcn_ds_gws_barrier:
1019 case Intrinsic::amdgcn_ds_gws_sema_v:
1020 case Intrinsic::amdgcn_ds_gws_sema_br:
1021 case Intrinsic::amdgcn_ds_gws_sema_p:
1022 case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1023 Info.opc = ISD::INTRINSIC_VOID;
1025 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1026 Info.ptrVal =
1027 MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1029 // This is an abstract access, but we need to specify a type and size.
1030 Info.memVT = MVT::i32;
1031 Info.size = 4;
1032 Info.align = Align(4);
1034 Info.flags = MachineMemOperand::MOStore;
1035 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1036 Info.flags = MachineMemOperand::MOLoad;
1037 return true;
1039 default:
1040 return false;
1044 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1045 SmallVectorImpl<Value*> &Ops,
1046 Type *&AccessTy) const {
1047 switch (II->getIntrinsicID()) {
1048 case Intrinsic::amdgcn_atomic_inc:
1049 case Intrinsic::amdgcn_atomic_dec:
1050 case Intrinsic::amdgcn_ds_ordered_add:
1051 case Intrinsic::amdgcn_ds_ordered_swap:
1052 case Intrinsic::amdgcn_ds_fadd:
1053 case Intrinsic::amdgcn_ds_fmin:
1054 case Intrinsic::amdgcn_ds_fmax: {
1055 Value *Ptr = II->getArgOperand(0);
1056 AccessTy = II->getType();
1057 Ops.push_back(Ptr);
1058 return true;
1060 default:
1061 return false;
1065 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1066 if (!Subtarget->hasFlatInstOffsets()) {
1067 // Flat instructions do not have offsets, and only have the register
1068 // address.
1069 return AM.BaseOffs == 0 && AM.Scale == 0;
1072 // GFX9 added a 13-bit signed offset. When using regular flat instructions,
1073 // the sign bit is ignored and is treated as a 12-bit unsigned offset.
1075 // GFX10 shrinked signed offset to 12 bits. When using regular flat
1076 // instructions, the sign bit is also ignored and is treated as 11-bit
1077 // unsigned offset.
1079 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
1080 return isUInt<11>(AM.BaseOffs) && AM.Scale == 0;
1082 // Just r + i
1083 return isUInt<12>(AM.BaseOffs) && AM.Scale == 0;
1086 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1087 if (Subtarget->hasFlatGlobalInsts())
1088 return isInt<13>(AM.BaseOffs) && AM.Scale == 0;
1090 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1091 // Assume the we will use FLAT for all global memory accesses
1092 // on VI.
1093 // FIXME: This assumption is currently wrong. On VI we still use
1094 // MUBUF instructions for the r + i addressing mode. As currently
1095 // implemented, the MUBUF instructions only work on buffer < 4GB.
1096 // It may be possible to support > 4GB buffers with MUBUF instructions,
1097 // by setting the stride value in the resource descriptor which would
1098 // increase the size limit to (stride * 4GB). However, this is risky,
1099 // because it has never been validated.
1100 return isLegalFlatAddressingMode(AM);
1103 return isLegalMUBUFAddressingMode(AM);
1106 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1107 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1108 // additionally can do r + r + i with addr64. 32-bit has more addressing
1109 // mode options. Depending on the resource constant, it can also do
1110 // (i64 r0) + (i32 r1) * (i14 i).
1112 // Private arrays end up using a scratch buffer most of the time, so also
1113 // assume those use MUBUF instructions. Scratch loads / stores are currently
1114 // implemented as mubuf instructions with offen bit set, so slightly
1115 // different than the normal addr64.
1116 if (!isUInt<12>(AM.BaseOffs))
1117 return false;
1119 // FIXME: Since we can split immediate into soffset and immediate offset,
1120 // would it make sense to allow any immediate?
1122 switch (AM.Scale) {
1123 case 0: // r + i or just i, depending on HasBaseReg.
1124 return true;
1125 case 1:
1126 return true; // We have r + r or r + i.
1127 case 2:
1128 if (AM.HasBaseReg) {
1129 // Reject 2 * r + r.
1130 return false;
1133 // Allow 2 * r as r + r
1134 // Or 2 * r + i is allowed as r + r + i.
1135 return true;
1136 default: // Don't allow n * r
1137 return false;
1141 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1142 const AddrMode &AM, Type *Ty,
1143 unsigned AS, Instruction *I) const {
1144 // No global is ever allowed as a base.
1145 if (AM.BaseGV)
1146 return false;
1148 if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1149 return isLegalGlobalAddressingMode(AM);
1151 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1152 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1153 AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1154 // If the offset isn't a multiple of 4, it probably isn't going to be
1155 // correctly aligned.
1156 // FIXME: Can we get the real alignment here?
1157 if (AM.BaseOffs % 4 != 0)
1158 return isLegalMUBUFAddressingMode(AM);
1160 // There are no SMRD extloads, so if we have to do a small type access we
1161 // will use a MUBUF load.
1162 // FIXME?: We also need to do this if unaligned, but we don't know the
1163 // alignment here.
1164 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1165 return isLegalGlobalAddressingMode(AM);
1167 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1168 // SMRD instructions have an 8-bit, dword offset on SI.
1169 if (!isUInt<8>(AM.BaseOffs / 4))
1170 return false;
1171 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1172 // On CI+, this can also be a 32-bit literal constant offset. If it fits
1173 // in 8-bits, it can use a smaller encoding.
1174 if (!isUInt<32>(AM.BaseOffs / 4))
1175 return false;
1176 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1177 // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1178 if (!isUInt<20>(AM.BaseOffs))
1179 return false;
1180 } else
1181 llvm_unreachable("unhandled generation");
1183 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1184 return true;
1186 if (AM.Scale == 1 && AM.HasBaseReg)
1187 return true;
1189 return false;
1191 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1192 return isLegalMUBUFAddressingMode(AM);
1193 } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1194 AS == AMDGPUAS::REGION_ADDRESS) {
1195 // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1196 // field.
1197 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1198 // an 8-bit dword offset but we don't know the alignment here.
1199 if (!isUInt<16>(AM.BaseOffs))
1200 return false;
1202 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1203 return true;
1205 if (AM.Scale == 1 && AM.HasBaseReg)
1206 return true;
1208 return false;
1209 } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1210 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1211 // For an unknown address space, this usually means that this is for some
1212 // reason being used for pure arithmetic, and not based on some addressing
1213 // computation. We don't have instructions that compute pointers with any
1214 // addressing modes, so treat them as having no offset like flat
1215 // instructions.
1216 return isLegalFlatAddressingMode(AM);
1217 } else {
1218 llvm_unreachable("unhandled address space");
1222 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1223 const SelectionDAG &DAG) const {
1224 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1225 return (MemVT.getSizeInBits() <= 4 * 32);
1226 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1227 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1228 return (MemVT.getSizeInBits() <= MaxPrivateBits);
1229 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1230 return (MemVT.getSizeInBits() <= 2 * 32);
1232 return true;
1235 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1236 unsigned Size, unsigned AddrSpace, unsigned Align,
1237 MachineMemOperand::Flags Flags, bool *IsFast) const {
1238 if (IsFast)
1239 *IsFast = false;
1241 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1242 AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1243 // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
1244 // aligned, 8 byte access in a single operation using ds_read2/write2_b32
1245 // with adjacent offsets.
1246 bool AlignedBy4 = (Align % 4 == 0);
1247 if (IsFast)
1248 *IsFast = AlignedBy4;
1250 return AlignedBy4;
1253 // FIXME: We have to be conservative here and assume that flat operations
1254 // will access scratch. If we had access to the IR function, then we
1255 // could determine if any private memory was used in the function.
1256 if (!Subtarget->hasUnalignedScratchAccess() &&
1257 (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
1258 AddrSpace == AMDGPUAS::FLAT_ADDRESS)) {
1259 bool AlignedBy4 = Align >= 4;
1260 if (IsFast)
1261 *IsFast = AlignedBy4;
1263 return AlignedBy4;
1266 if (Subtarget->hasUnalignedBufferAccess()) {
1267 // If we have an uniform constant load, it still requires using a slow
1268 // buffer instruction if unaligned.
1269 if (IsFast) {
1270 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1271 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1272 (Align % 4 == 0) : true;
1275 return true;
1278 // Smaller than dword value must be aligned.
1279 if (Size < 32)
1280 return false;
1282 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1283 // byte-address are ignored, thus forcing Dword alignment.
1284 // This applies to private, global, and constant memory.
1285 if (IsFast)
1286 *IsFast = true;
1288 return Size >= 32 && Align >= 4;
1291 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1292 EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1293 bool *IsFast) const {
1294 if (IsFast)
1295 *IsFast = false;
1297 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1298 // which isn't a simple VT.
1299 // Until MVT is extended to handle this, simply check for the size and
1300 // rely on the condition below: allow accesses if the size is a multiple of 4.
1301 if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1302 VT.getStoreSize() > 16)) {
1303 return false;
1306 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1307 Align, Flags, IsFast);
1310 EVT SITargetLowering::getOptimalMemOpType(
1311 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
1312 bool ZeroMemset, bool MemcpyStrSrc,
1313 const AttributeList &FuncAttributes) const {
1314 // FIXME: Should account for address space here.
1316 // The default fallback uses the private pointer size as a guess for a type to
1317 // use. Make sure we switch these to 64-bit accesses.
1319 if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
1320 return MVT::v4i32;
1322 if (Size >= 8 && DstAlign >= 4)
1323 return MVT::v2i32;
1325 // Use the default.
1326 return MVT::Other;
1329 static bool isFlatGlobalAddrSpace(unsigned AS) {
1330 return AS == AMDGPUAS::GLOBAL_ADDRESS ||
1331 AS == AMDGPUAS::FLAT_ADDRESS ||
1332 AS == AMDGPUAS::CONSTANT_ADDRESS ||
1333 AS > AMDGPUAS::MAX_AMDGPU_ADDRESS;
1336 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
1337 unsigned DestAS) const {
1338 return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
1341 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1342 const MemSDNode *MemNode = cast<MemSDNode>(N);
1343 const Value *Ptr = MemNode->getMemOperand()->getValue();
1344 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1345 return I && I->getMetadata("amdgpu.noclobber");
1348 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1349 unsigned DestAS) const {
1350 // Flat -> private/local is a simple truncate.
1351 // Flat -> global is no-op
1352 if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1353 return true;
1355 return isNoopAddrSpaceCast(SrcAS, DestAS);
1358 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1359 const MemSDNode *MemNode = cast<MemSDNode>(N);
1361 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1364 TargetLoweringBase::LegalizeTypeAction
1365 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1366 int NumElts = VT.getVectorNumElements();
1367 if (NumElts != 1 && VT.getScalarType().bitsLE(MVT::i16))
1368 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1369 return TargetLoweringBase::getPreferredVectorAction(VT);
1372 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1373 Type *Ty) const {
1374 // FIXME: Could be smarter if called for vector constants.
1375 return true;
1378 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1379 if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1380 switch (Op) {
1381 case ISD::LOAD:
1382 case ISD::STORE:
1384 // These operations are done with 32-bit instructions anyway.
1385 case ISD::AND:
1386 case ISD::OR:
1387 case ISD::XOR:
1388 case ISD::SELECT:
1389 // TODO: Extensions?
1390 return true;
1391 default:
1392 return false;
1396 // SimplifySetCC uses this function to determine whether or not it should
1397 // create setcc with i1 operands. We don't have instructions for i1 setcc.
1398 if (VT == MVT::i1 && Op == ISD::SETCC)
1399 return false;
1401 return TargetLowering::isTypeDesirableForOp(Op, VT);
1404 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1405 const SDLoc &SL,
1406 SDValue Chain,
1407 uint64_t Offset) const {
1408 const DataLayout &DL = DAG.getDataLayout();
1409 MachineFunction &MF = DAG.getMachineFunction();
1410 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1412 const ArgDescriptor *InputPtrReg;
1413 const TargetRegisterClass *RC;
1415 std::tie(InputPtrReg, RC)
1416 = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1418 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1419 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1420 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1421 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1423 return DAG.getObjectPtrOffset(SL, BasePtr, Offset);
1426 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1427 const SDLoc &SL) const {
1428 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1429 FIRST_IMPLICIT);
1430 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1433 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1434 const SDLoc &SL, SDValue Val,
1435 bool Signed,
1436 const ISD::InputArg *Arg) const {
1437 // First, if it is a widened vector, narrow it.
1438 if (VT.isVector() &&
1439 VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1440 EVT NarrowedVT =
1441 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1442 VT.getVectorNumElements());
1443 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1444 DAG.getConstant(0, SL, MVT::i32));
1447 // Then convert the vector elements or scalar value.
1448 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1449 VT.bitsLT(MemVT)) {
1450 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1451 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1454 if (MemVT.isFloatingPoint())
1455 Val = getFPExtOrFPTrunc(DAG, Val, SL, VT);
1456 else if (Signed)
1457 Val = DAG.getSExtOrTrunc(Val, SL, VT);
1458 else
1459 Val = DAG.getZExtOrTrunc(Val, SL, VT);
1461 return Val;
1464 SDValue SITargetLowering::lowerKernargMemParameter(
1465 SelectionDAG &DAG, EVT VT, EVT MemVT,
1466 const SDLoc &SL, SDValue Chain,
1467 uint64_t Offset, unsigned Align, bool Signed,
1468 const ISD::InputArg *Arg) const {
1469 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
1470 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
1471 MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
1473 // Try to avoid using an extload by loading earlier than the argument address,
1474 // and extracting the relevant bits. The load should hopefully be merged with
1475 // the previous argument.
1476 if (MemVT.getStoreSize() < 4 && Align < 4) {
1477 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1478 int64_t AlignDownOffset = alignDown(Offset, 4);
1479 int64_t OffsetDiff = Offset - AlignDownOffset;
1481 EVT IntVT = MemVT.changeTypeToInteger();
1483 // TODO: If we passed in the base kernel offset we could have a better
1484 // alignment than 4, but we don't really need it.
1485 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1486 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4,
1487 MachineMemOperand::MODereferenceable |
1488 MachineMemOperand::MOInvariant);
1490 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1491 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1493 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1494 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1495 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1498 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1501 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1502 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align,
1503 MachineMemOperand::MODereferenceable |
1504 MachineMemOperand::MOInvariant);
1506 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1507 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1510 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1511 const SDLoc &SL, SDValue Chain,
1512 const ISD::InputArg &Arg) const {
1513 MachineFunction &MF = DAG.getMachineFunction();
1514 MachineFrameInfo &MFI = MF.getFrameInfo();
1516 if (Arg.Flags.isByVal()) {
1517 unsigned Size = Arg.Flags.getByValSize();
1518 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1519 return DAG.getFrameIndex(FrameIdx, MVT::i32);
1522 unsigned ArgOffset = VA.getLocMemOffset();
1523 unsigned ArgSize = VA.getValVT().getStoreSize();
1525 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1527 // Create load nodes to retrieve arguments from the stack.
1528 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1529 SDValue ArgValue;
1531 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1532 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1533 MVT MemVT = VA.getValVT();
1535 switch (VA.getLocInfo()) {
1536 default:
1537 break;
1538 case CCValAssign::BCvt:
1539 MemVT = VA.getLocVT();
1540 break;
1541 case CCValAssign::SExt:
1542 ExtType = ISD::SEXTLOAD;
1543 break;
1544 case CCValAssign::ZExt:
1545 ExtType = ISD::ZEXTLOAD;
1546 break;
1547 case CCValAssign::AExt:
1548 ExtType = ISD::EXTLOAD;
1549 break;
1552 ArgValue = DAG.getExtLoad(
1553 ExtType, SL, VA.getLocVT(), Chain, FIN,
1554 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1555 MemVT);
1556 return ArgValue;
1559 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1560 const SIMachineFunctionInfo &MFI,
1561 EVT VT,
1562 AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1563 const ArgDescriptor *Reg;
1564 const TargetRegisterClass *RC;
1566 std::tie(Reg, RC) = MFI.getPreloadedValue(PVID);
1567 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1570 static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1571 CallingConv::ID CallConv,
1572 ArrayRef<ISD::InputArg> Ins,
1573 BitVector &Skipped,
1574 FunctionType *FType,
1575 SIMachineFunctionInfo *Info) {
1576 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1577 const ISD::InputArg *Arg = &Ins[I];
1579 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1580 "vector type argument should have been split");
1582 // First check if it's a PS input addr.
1583 if (CallConv == CallingConv::AMDGPU_PS &&
1584 !Arg->Flags.isInReg() && PSInputNum <= 15) {
1585 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1587 // Inconveniently only the first part of the split is marked as isSplit,
1588 // so skip to the end. We only want to increment PSInputNum once for the
1589 // entire split argument.
1590 if (Arg->Flags.isSplit()) {
1591 while (!Arg->Flags.isSplitEnd()) {
1592 assert((!Arg->VT.isVector() ||
1593 Arg->VT.getScalarSizeInBits() == 16) &&
1594 "unexpected vector split in ps argument type");
1595 if (!SkipArg)
1596 Splits.push_back(*Arg);
1597 Arg = &Ins[++I];
1601 if (SkipArg) {
1602 // We can safely skip PS inputs.
1603 Skipped.set(Arg->getOrigArgIndex());
1604 ++PSInputNum;
1605 continue;
1608 Info->markPSInputAllocated(PSInputNum);
1609 if (Arg->Used)
1610 Info->markPSInputEnabled(PSInputNum);
1612 ++PSInputNum;
1615 Splits.push_back(*Arg);
1619 // Allocate special inputs passed in VGPRs.
1620 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1621 MachineFunction &MF,
1622 const SIRegisterInfo &TRI,
1623 SIMachineFunctionInfo &Info) const {
1624 const LLT S32 = LLT::scalar(32);
1625 MachineRegisterInfo &MRI = MF.getRegInfo();
1627 if (Info.hasWorkItemIDX()) {
1628 Register Reg = AMDGPU::VGPR0;
1629 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1631 CCInfo.AllocateReg(Reg);
1632 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
1635 if (Info.hasWorkItemIDY()) {
1636 Register Reg = AMDGPU::VGPR1;
1637 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1639 CCInfo.AllocateReg(Reg);
1640 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1643 if (Info.hasWorkItemIDZ()) {
1644 Register Reg = AMDGPU::VGPR2;
1645 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1647 CCInfo.AllocateReg(Reg);
1648 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1652 // Try to allocate a VGPR at the end of the argument list, or if no argument
1653 // VGPRs are left allocating a stack slot.
1654 // If \p Mask is is given it indicates bitfield position in the register.
1655 // If \p Arg is given use it with new ]p Mask instead of allocating new.
1656 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1657 ArgDescriptor Arg = ArgDescriptor()) {
1658 if (Arg.isSet())
1659 return ArgDescriptor::createArg(Arg, Mask);
1661 ArrayRef<MCPhysReg> ArgVGPRs
1662 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1663 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1664 if (RegIdx == ArgVGPRs.size()) {
1665 // Spill to stack required.
1666 int64_t Offset = CCInfo.AllocateStack(4, 4);
1668 return ArgDescriptor::createStack(Offset, Mask);
1671 unsigned Reg = ArgVGPRs[RegIdx];
1672 Reg = CCInfo.AllocateReg(Reg);
1673 assert(Reg != AMDGPU::NoRegister);
1675 MachineFunction &MF = CCInfo.getMachineFunction();
1676 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1677 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1678 return ArgDescriptor::createRegister(Reg, Mask);
1681 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1682 const TargetRegisterClass *RC,
1683 unsigned NumArgRegs) {
1684 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1685 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1686 if (RegIdx == ArgSGPRs.size())
1687 report_fatal_error("ran out of SGPRs for arguments");
1689 unsigned Reg = ArgSGPRs[RegIdx];
1690 Reg = CCInfo.AllocateReg(Reg);
1691 assert(Reg != AMDGPU::NoRegister);
1693 MachineFunction &MF = CCInfo.getMachineFunction();
1694 MF.addLiveIn(Reg, RC);
1695 return ArgDescriptor::createRegister(Reg);
1698 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
1699 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1702 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
1703 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1706 void SITargetLowering::allocateSpecialInputVGPRs(CCState &CCInfo,
1707 MachineFunction &MF,
1708 const SIRegisterInfo &TRI,
1709 SIMachineFunctionInfo &Info) const {
1710 const unsigned Mask = 0x3ff;
1711 ArgDescriptor Arg;
1713 if (Info.hasWorkItemIDX()) {
1714 Arg = allocateVGPR32Input(CCInfo, Mask);
1715 Info.setWorkItemIDX(Arg);
1718 if (Info.hasWorkItemIDY()) {
1719 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
1720 Info.setWorkItemIDY(Arg);
1723 if (Info.hasWorkItemIDZ())
1724 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
1727 void SITargetLowering::allocateSpecialInputSGPRs(
1728 CCState &CCInfo,
1729 MachineFunction &MF,
1730 const SIRegisterInfo &TRI,
1731 SIMachineFunctionInfo &Info) const {
1732 auto &ArgInfo = Info.getArgInfo();
1734 // TODO: Unify handling with private memory pointers.
1736 if (Info.hasDispatchPtr())
1737 ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
1739 if (Info.hasQueuePtr())
1740 ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
1742 if (Info.hasKernargSegmentPtr())
1743 ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo);
1745 if (Info.hasDispatchID())
1746 ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
1748 // flat_scratch_init is not applicable for non-kernel functions.
1750 if (Info.hasWorkGroupIDX())
1751 ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
1753 if (Info.hasWorkGroupIDY())
1754 ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
1756 if (Info.hasWorkGroupIDZ())
1757 ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
1759 if (Info.hasImplicitArgPtr())
1760 ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
1763 // Allocate special inputs passed in user SGPRs.
1764 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
1765 MachineFunction &MF,
1766 const SIRegisterInfo &TRI,
1767 SIMachineFunctionInfo &Info) const {
1768 if (Info.hasImplicitBufferPtr()) {
1769 unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
1770 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
1771 CCInfo.AllocateReg(ImplicitBufferPtrReg);
1774 // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
1775 if (Info.hasPrivateSegmentBuffer()) {
1776 unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
1777 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
1778 CCInfo.AllocateReg(PrivateSegmentBufferReg);
1781 if (Info.hasDispatchPtr()) {
1782 unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
1783 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
1784 CCInfo.AllocateReg(DispatchPtrReg);
1787 if (Info.hasQueuePtr()) {
1788 unsigned QueuePtrReg = Info.addQueuePtr(TRI);
1789 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
1790 CCInfo.AllocateReg(QueuePtrReg);
1793 if (Info.hasKernargSegmentPtr()) {
1794 MachineRegisterInfo &MRI = MF.getRegInfo();
1795 Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
1796 CCInfo.AllocateReg(InputPtrReg);
1798 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
1799 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
1802 if (Info.hasDispatchID()) {
1803 unsigned DispatchIDReg = Info.addDispatchID(TRI);
1804 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
1805 CCInfo.AllocateReg(DispatchIDReg);
1808 if (Info.hasFlatScratchInit()) {
1809 unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
1810 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
1811 CCInfo.AllocateReg(FlatScratchInitReg);
1814 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
1815 // these from the dispatch pointer.
1818 // Allocate special input registers that are initialized per-wave.
1819 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
1820 MachineFunction &MF,
1821 SIMachineFunctionInfo &Info,
1822 CallingConv::ID CallConv,
1823 bool IsShader) const {
1824 if (Info.hasWorkGroupIDX()) {
1825 unsigned Reg = Info.addWorkGroupIDX();
1826 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1827 CCInfo.AllocateReg(Reg);
1830 if (Info.hasWorkGroupIDY()) {
1831 unsigned Reg = Info.addWorkGroupIDY();
1832 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1833 CCInfo.AllocateReg(Reg);
1836 if (Info.hasWorkGroupIDZ()) {
1837 unsigned Reg = Info.addWorkGroupIDZ();
1838 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1839 CCInfo.AllocateReg(Reg);
1842 if (Info.hasWorkGroupInfo()) {
1843 unsigned Reg = Info.addWorkGroupInfo();
1844 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1845 CCInfo.AllocateReg(Reg);
1848 if (Info.hasPrivateSegmentWaveByteOffset()) {
1849 // Scratch wave offset passed in system SGPR.
1850 unsigned PrivateSegmentWaveByteOffsetReg;
1852 if (IsShader) {
1853 PrivateSegmentWaveByteOffsetReg =
1854 Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
1856 // This is true if the scratch wave byte offset doesn't have a fixed
1857 // location.
1858 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
1859 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
1860 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
1862 } else
1863 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
1865 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
1866 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
1870 static void reservePrivateMemoryRegs(const TargetMachine &TM,
1871 MachineFunction &MF,
1872 const SIRegisterInfo &TRI,
1873 SIMachineFunctionInfo &Info) {
1874 // Now that we've figured out where the scratch register inputs are, see if
1875 // should reserve the arguments and use them directly.
1876 MachineFrameInfo &MFI = MF.getFrameInfo();
1877 bool HasStackObjects = MFI.hasStackObjects();
1878 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1880 // Record that we know we have non-spill stack objects so we don't need to
1881 // check all stack objects later.
1882 if (HasStackObjects)
1883 Info.setHasNonSpillStackObjects(true);
1885 // Everything live out of a block is spilled with fast regalloc, so it's
1886 // almost certain that spilling will be required.
1887 if (TM.getOptLevel() == CodeGenOpt::None)
1888 HasStackObjects = true;
1890 // For now assume stack access is needed in any callee functions, so we need
1891 // the scratch registers to pass in.
1892 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
1894 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
1895 // If we have stack objects, we unquestionably need the private buffer
1896 // resource. For the Code Object V2 ABI, this will be the first 4 user
1897 // SGPR inputs. We can reserve those and use them directly.
1899 Register PrivateSegmentBufferReg =
1900 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
1901 Info.setScratchRSrcReg(PrivateSegmentBufferReg);
1902 } else {
1903 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
1904 // We tentatively reserve the last registers (skipping the last registers
1905 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
1906 // we'll replace these with the ones immediately after those which were
1907 // really allocated. In the prologue copies will be inserted from the
1908 // argument to these reserved registers.
1910 // Without HSA, relocations are used for the scratch pointer and the
1911 // buffer resource setup is always inserted in the prologue. Scratch wave
1912 // offset is still in an input SGPR.
1913 Info.setScratchRSrcReg(ReservedBufferReg);
1916 // hasFP should be accurate for kernels even before the frame is finalized.
1917 if (ST.getFrameLowering()->hasFP(MF)) {
1918 MachineRegisterInfo &MRI = MF.getRegInfo();
1920 // Try to use s32 as the SP, but move it if it would interfere with input
1921 // arguments. This won't work with calls though.
1923 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
1924 // registers.
1925 if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
1926 Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
1927 } else {
1928 assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
1930 if (MFI.hasCalls())
1931 report_fatal_error("call in graphics shader with too many input SGPRs");
1933 for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
1934 if (!MRI.isLiveIn(Reg)) {
1935 Info.setStackPtrOffsetReg(Reg);
1936 break;
1940 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
1941 report_fatal_error("failed to find register for SP");
1944 if (MFI.hasCalls()) {
1945 Info.setScratchWaveOffsetReg(AMDGPU::SGPR33);
1946 Info.setFrameOffsetReg(AMDGPU::SGPR33);
1947 } else {
1948 unsigned ReservedOffsetReg =
1949 TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1950 Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1951 Info.setFrameOffsetReg(ReservedOffsetReg);
1953 } else if (RequiresStackAccess) {
1954 assert(!MFI.hasCalls());
1955 // We know there are accesses and they will be done relative to SP, so just
1956 // pin it to the input.
1958 // FIXME: Should not do this if inline asm is reading/writing these
1959 // registers.
1960 Register PreloadedSP = Info.getPreloadedReg(
1961 AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1963 Info.setStackPtrOffsetReg(PreloadedSP);
1964 Info.setScratchWaveOffsetReg(PreloadedSP);
1965 Info.setFrameOffsetReg(PreloadedSP);
1966 } else {
1967 assert(!MFI.hasCalls());
1969 // There may not be stack access at all. There may still be spills, or
1970 // access of a constant pointer (in which cases an extra copy will be
1971 // emitted in the prolog).
1972 unsigned ReservedOffsetReg
1973 = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1974 Info.setStackPtrOffsetReg(ReservedOffsetReg);
1975 Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1976 Info.setFrameOffsetReg(ReservedOffsetReg);
1980 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
1981 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
1982 return !Info->isEntryFunction();
1985 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
1989 void SITargetLowering::insertCopiesSplitCSR(
1990 MachineBasicBlock *Entry,
1991 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
1992 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1994 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
1995 if (!IStart)
1996 return;
1998 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1999 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2000 MachineBasicBlock::iterator MBBI = Entry->begin();
2001 for (const MCPhysReg *I = IStart; *I; ++I) {
2002 const TargetRegisterClass *RC = nullptr;
2003 if (AMDGPU::SReg_64RegClass.contains(*I))
2004 RC = &AMDGPU::SGPR_64RegClass;
2005 else if (AMDGPU::SReg_32RegClass.contains(*I))
2006 RC = &AMDGPU::SGPR_32RegClass;
2007 else
2008 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2010 Register NewVR = MRI->createVirtualRegister(RC);
2011 // Create copy from CSR to a virtual register.
2012 Entry->addLiveIn(*I);
2013 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2014 .addReg(*I);
2016 // Insert the copy-back instructions right before the terminator.
2017 for (auto *Exit : Exits)
2018 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2019 TII->get(TargetOpcode::COPY), *I)
2020 .addReg(NewVR);
2024 SDValue SITargetLowering::LowerFormalArguments(
2025 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2026 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2027 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2028 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2030 MachineFunction &MF = DAG.getMachineFunction();
2031 const Function &Fn = MF.getFunction();
2032 FunctionType *FType = MF.getFunction().getFunctionType();
2033 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2035 if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
2036 DiagnosticInfoUnsupported NoGraphicsHSA(
2037 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2038 DAG.getContext()->diagnose(NoGraphicsHSA);
2039 return DAG.getEntryNode();
2042 SmallVector<ISD::InputArg, 16> Splits;
2043 SmallVector<CCValAssign, 16> ArgLocs;
2044 BitVector Skipped(Ins.size());
2045 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2046 *DAG.getContext());
2048 bool IsShader = AMDGPU::isShader(CallConv);
2049 bool IsKernel = AMDGPU::isKernel(CallConv);
2050 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2052 if (IsShader) {
2053 processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2055 // At least one interpolation mode must be enabled or else the GPU will
2056 // hang.
2058 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2059 // set PSInputAddr, the user wants to enable some bits after the compilation
2060 // based on run-time states. Since we can't know what the final PSInputEna
2061 // will look like, so we shouldn't do anything here and the user should take
2062 // responsibility for the correct programming.
2064 // Otherwise, the following restrictions apply:
2065 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2066 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2067 // enabled too.
2068 if (CallConv == CallingConv::AMDGPU_PS) {
2069 if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2070 ((Info->getPSInputAddr() & 0xF) == 0 &&
2071 Info->isPSInputAllocated(11))) {
2072 CCInfo.AllocateReg(AMDGPU::VGPR0);
2073 CCInfo.AllocateReg(AMDGPU::VGPR1);
2074 Info->markPSInputAllocated(0);
2075 Info->markPSInputEnabled(0);
2077 if (Subtarget->isAmdPalOS()) {
2078 // For isAmdPalOS, the user does not enable some bits after compilation
2079 // based on run-time states; the register values being generated here are
2080 // the final ones set in hardware. Therefore we need to apply the
2081 // workaround to PSInputAddr and PSInputEnable together. (The case where
2082 // a bit is set in PSInputAddr but not PSInputEnable is where the
2083 // frontend set up an input arg for a particular interpolation mode, but
2084 // nothing uses that input arg. Really we should have an earlier pass
2085 // that removes such an arg.)
2086 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2087 if ((PsInputBits & 0x7F) == 0 ||
2088 ((PsInputBits & 0xF) == 0 &&
2089 (PsInputBits >> 11 & 1)))
2090 Info->markPSInputEnabled(
2091 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2095 assert(!Info->hasDispatchPtr() &&
2096 !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
2097 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2098 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2099 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2100 !Info->hasWorkItemIDZ());
2101 } else if (IsKernel) {
2102 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2103 } else {
2104 Splits.append(Ins.begin(), Ins.end());
2107 if (IsEntryFunc) {
2108 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2109 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2112 if (IsKernel) {
2113 analyzeFormalArgumentsCompute(CCInfo, Ins);
2114 } else {
2115 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2116 CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2119 SmallVector<SDValue, 16> Chains;
2121 // FIXME: This is the minimum kernel argument alignment. We should improve
2122 // this to the maximum alignment of the arguments.
2124 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2125 // kern arg offset.
2126 const unsigned KernelArgBaseAlign = 16;
2128 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2129 const ISD::InputArg &Arg = Ins[i];
2130 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2131 InVals.push_back(DAG.getUNDEF(Arg.VT));
2132 continue;
2135 CCValAssign &VA = ArgLocs[ArgIdx++];
2136 MVT VT = VA.getLocVT();
2138 if (IsEntryFunc && VA.isMemLoc()) {
2139 VT = Ins[i].VT;
2140 EVT MemVT = VA.getLocVT();
2142 const uint64_t Offset = VA.getLocMemOffset();
2143 unsigned Align = MinAlign(KernelArgBaseAlign, Offset);
2145 SDValue Arg = lowerKernargMemParameter(
2146 DAG, VT, MemVT, DL, Chain, Offset, Align, Ins[i].Flags.isSExt(), &Ins[i]);
2147 Chains.push_back(Arg.getValue(1));
2149 auto *ParamTy =
2150 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2151 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2152 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2153 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2154 // On SI local pointers are just offsets into LDS, so they are always
2155 // less than 16-bits. On CI and newer they could potentially be
2156 // real pointers, so we can't guarantee their size.
2157 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2158 DAG.getValueType(MVT::i16));
2161 InVals.push_back(Arg);
2162 continue;
2163 } else if (!IsEntryFunc && VA.isMemLoc()) {
2164 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2165 InVals.push_back(Val);
2166 if (!Arg.Flags.isByVal())
2167 Chains.push_back(Val.getValue(1));
2168 continue;
2171 assert(VA.isRegLoc() && "Parameter must be in a register!");
2173 Register Reg = VA.getLocReg();
2174 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2175 EVT ValVT = VA.getValVT();
2177 Reg = MF.addLiveIn(Reg, RC);
2178 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2180 if (Arg.Flags.isSRet()) {
2181 // The return object should be reasonably addressable.
2183 // FIXME: This helps when the return is a real sret. If it is a
2184 // automatically inserted sret (i.e. CanLowerReturn returns false), an
2185 // extra copy is inserted in SelectionDAGBuilder which obscures this.
2186 unsigned NumBits
2187 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2188 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2189 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2192 // If this is an 8 or 16-bit value, it is really passed promoted
2193 // to 32 bits. Insert an assert[sz]ext to capture this, then
2194 // truncate to the right size.
2195 switch (VA.getLocInfo()) {
2196 case CCValAssign::Full:
2197 break;
2198 case CCValAssign::BCvt:
2199 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2200 break;
2201 case CCValAssign::SExt:
2202 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2203 DAG.getValueType(ValVT));
2204 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2205 break;
2206 case CCValAssign::ZExt:
2207 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2208 DAG.getValueType(ValVT));
2209 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2210 break;
2211 case CCValAssign::AExt:
2212 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2213 break;
2214 default:
2215 llvm_unreachable("Unknown loc info!");
2218 InVals.push_back(Val);
2221 if (!IsEntryFunc) {
2222 // Special inputs come after user arguments.
2223 allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2226 // Start adding system SGPRs.
2227 if (IsEntryFunc) {
2228 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader);
2229 } else {
2230 CCInfo.AllocateReg(Info->getScratchRSrcReg());
2231 CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
2232 CCInfo.AllocateReg(Info->getFrameOffsetReg());
2233 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2236 auto &ArgUsageInfo =
2237 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2238 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2240 unsigned StackArgSize = CCInfo.getNextStackOffset();
2241 Info->setBytesInStackArgArea(StackArgSize);
2243 return Chains.empty() ? Chain :
2244 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2247 // TODO: If return values can't fit in registers, we should return as many as
2248 // possible in registers before passing on stack.
2249 bool SITargetLowering::CanLowerReturn(
2250 CallingConv::ID CallConv,
2251 MachineFunction &MF, bool IsVarArg,
2252 const SmallVectorImpl<ISD::OutputArg> &Outs,
2253 LLVMContext &Context) const {
2254 // Replacing returns with sret/stack usage doesn't make sense for shaders.
2255 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2256 // for shaders. Vector types should be explicitly handled by CC.
2257 if (AMDGPU::isEntryFunctionCC(CallConv))
2258 return true;
2260 SmallVector<CCValAssign, 16> RVLocs;
2261 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2262 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2265 SDValue
2266 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2267 bool isVarArg,
2268 const SmallVectorImpl<ISD::OutputArg> &Outs,
2269 const SmallVectorImpl<SDValue> &OutVals,
2270 const SDLoc &DL, SelectionDAG &DAG) const {
2271 MachineFunction &MF = DAG.getMachineFunction();
2272 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2274 if (AMDGPU::isKernel(CallConv)) {
2275 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2276 OutVals, DL, DAG);
2279 bool IsShader = AMDGPU::isShader(CallConv);
2281 Info->setIfReturnsVoid(Outs.empty());
2282 bool IsWaveEnd = Info->returnsVoid() && IsShader;
2284 // CCValAssign - represent the assignment of the return value to a location.
2285 SmallVector<CCValAssign, 48> RVLocs;
2286 SmallVector<ISD::OutputArg, 48> Splits;
2288 // CCState - Info about the registers and stack slots.
2289 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2290 *DAG.getContext());
2292 // Analyze outgoing return values.
2293 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2295 SDValue Flag;
2296 SmallVector<SDValue, 48> RetOps;
2297 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2299 // Add return address for callable functions.
2300 if (!Info->isEntryFunction()) {
2301 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2302 SDValue ReturnAddrReg = CreateLiveInRegister(
2303 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2305 SDValue ReturnAddrVirtualReg = DAG.getRegister(
2306 MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass),
2307 MVT::i64);
2308 Chain =
2309 DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2310 Flag = Chain.getValue(1);
2311 RetOps.push_back(ReturnAddrVirtualReg);
2314 // Copy the result values into the output registers.
2315 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2316 ++I, ++RealRVLocIdx) {
2317 CCValAssign &VA = RVLocs[I];
2318 assert(VA.isRegLoc() && "Can only return in registers!");
2319 // TODO: Partially return in registers if return values don't fit.
2320 SDValue Arg = OutVals[RealRVLocIdx];
2322 // Copied from other backends.
2323 switch (VA.getLocInfo()) {
2324 case CCValAssign::Full:
2325 break;
2326 case CCValAssign::BCvt:
2327 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2328 break;
2329 case CCValAssign::SExt:
2330 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2331 break;
2332 case CCValAssign::ZExt:
2333 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2334 break;
2335 case CCValAssign::AExt:
2336 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2337 break;
2338 default:
2339 llvm_unreachable("Unknown loc info!");
2342 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2343 Flag = Chain.getValue(1);
2344 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2347 // FIXME: Does sret work properly?
2348 if (!Info->isEntryFunction()) {
2349 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2350 const MCPhysReg *I =
2351 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2352 if (I) {
2353 for (; *I; ++I) {
2354 if (AMDGPU::SReg_64RegClass.contains(*I))
2355 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2356 else if (AMDGPU::SReg_32RegClass.contains(*I))
2357 RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2358 else
2359 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2364 // Update chain and glue.
2365 RetOps[0] = Chain;
2366 if (Flag.getNode())
2367 RetOps.push_back(Flag);
2369 unsigned Opc = AMDGPUISD::ENDPGM;
2370 if (!IsWaveEnd)
2371 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2372 return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2375 SDValue SITargetLowering::LowerCallResult(
2376 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2377 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2378 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2379 SDValue ThisVal) const {
2380 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2382 // Assign locations to each value returned by this call.
2383 SmallVector<CCValAssign, 16> RVLocs;
2384 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2385 *DAG.getContext());
2386 CCInfo.AnalyzeCallResult(Ins, RetCC);
2388 // Copy all of the result registers out of their specified physreg.
2389 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2390 CCValAssign VA = RVLocs[i];
2391 SDValue Val;
2393 if (VA.isRegLoc()) {
2394 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2395 Chain = Val.getValue(1);
2396 InFlag = Val.getValue(2);
2397 } else if (VA.isMemLoc()) {
2398 report_fatal_error("TODO: return values in memory");
2399 } else
2400 llvm_unreachable("unknown argument location type");
2402 switch (VA.getLocInfo()) {
2403 case CCValAssign::Full:
2404 break;
2405 case CCValAssign::BCvt:
2406 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2407 break;
2408 case CCValAssign::ZExt:
2409 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2410 DAG.getValueType(VA.getValVT()));
2411 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2412 break;
2413 case CCValAssign::SExt:
2414 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2415 DAG.getValueType(VA.getValVT()));
2416 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2417 break;
2418 case CCValAssign::AExt:
2419 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2420 break;
2421 default:
2422 llvm_unreachable("Unknown loc info!");
2425 InVals.push_back(Val);
2428 return Chain;
2431 // Add code to pass special inputs required depending on used features separate
2432 // from the explicit user arguments present in the IR.
2433 void SITargetLowering::passSpecialInputs(
2434 CallLoweringInfo &CLI,
2435 CCState &CCInfo,
2436 const SIMachineFunctionInfo &Info,
2437 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2438 SmallVectorImpl<SDValue> &MemOpChains,
2439 SDValue Chain) const {
2440 // If we don't have a call site, this was a call inserted by
2441 // legalization. These can never use special inputs.
2442 if (!CLI.CS)
2443 return;
2445 const Function *CalleeFunc = CLI.CS.getCalledFunction();
2446 assert(CalleeFunc);
2448 SelectionDAG &DAG = CLI.DAG;
2449 const SDLoc &DL = CLI.DL;
2451 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2453 auto &ArgUsageInfo =
2454 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2455 const AMDGPUFunctionArgInfo &CalleeArgInfo
2456 = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2458 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2460 // TODO: Unify with private memory register handling. This is complicated by
2461 // the fact that at least in kernels, the input argument is not necessarily
2462 // in the same location as the input.
2463 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2464 AMDGPUFunctionArgInfo::DISPATCH_PTR,
2465 AMDGPUFunctionArgInfo::QUEUE_PTR,
2466 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR,
2467 AMDGPUFunctionArgInfo::DISPATCH_ID,
2468 AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2469 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2470 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
2471 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR
2474 for (auto InputID : InputRegs) {
2475 const ArgDescriptor *OutgoingArg;
2476 const TargetRegisterClass *ArgRC;
2478 std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID);
2479 if (!OutgoingArg)
2480 continue;
2482 const ArgDescriptor *IncomingArg;
2483 const TargetRegisterClass *IncomingArgRC;
2484 std::tie(IncomingArg, IncomingArgRC)
2485 = CallerArgInfo.getPreloadedValue(InputID);
2486 assert(IncomingArgRC == ArgRC);
2488 // All special arguments are ints for now.
2489 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2490 SDValue InputReg;
2492 if (IncomingArg) {
2493 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2494 } else {
2495 // The implicit arg ptr is special because it doesn't have a corresponding
2496 // input for kernels, and is computed from the kernarg segment pointer.
2497 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
2498 InputReg = getImplicitArgPtr(DAG, DL);
2501 if (OutgoingArg->isRegister()) {
2502 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2503 } else {
2504 unsigned SpecialArgOffset = CCInfo.AllocateStack(ArgVT.getStoreSize(), 4);
2505 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2506 SpecialArgOffset);
2507 MemOpChains.push_back(ArgStore);
2511 // Pack workitem IDs into a single register or pass it as is if already
2512 // packed.
2513 const ArgDescriptor *OutgoingArg;
2514 const TargetRegisterClass *ArgRC;
2516 std::tie(OutgoingArg, ArgRC) =
2517 CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2518 if (!OutgoingArg)
2519 std::tie(OutgoingArg, ArgRC) =
2520 CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2521 if (!OutgoingArg)
2522 std::tie(OutgoingArg, ArgRC) =
2523 CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2524 if (!OutgoingArg)
2525 return;
2527 const ArgDescriptor *IncomingArgX
2528 = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X).first;
2529 const ArgDescriptor *IncomingArgY
2530 = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y).first;
2531 const ArgDescriptor *IncomingArgZ
2532 = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z).first;
2534 SDValue InputReg;
2535 SDLoc SL;
2537 // If incoming ids are not packed we need to pack them.
2538 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo.WorkItemIDX)
2539 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2541 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo.WorkItemIDY) {
2542 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2543 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2544 DAG.getShiftAmountConstant(10, MVT::i32, SL));
2545 InputReg = InputReg.getNode() ?
2546 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2549 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo.WorkItemIDZ) {
2550 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2551 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2552 DAG.getShiftAmountConstant(20, MVT::i32, SL));
2553 InputReg = InputReg.getNode() ?
2554 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2557 if (!InputReg.getNode()) {
2558 // Workitem ids are already packed, any of present incoming arguments
2559 // will carry all required fields.
2560 ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2561 IncomingArgX ? *IncomingArgX :
2562 IncomingArgY ? *IncomingArgY :
2563 *IncomingArgZ, ~0u);
2564 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2567 if (OutgoingArg->isRegister()) {
2568 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2569 } else {
2570 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, 4);
2571 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2572 SpecialArgOffset);
2573 MemOpChains.push_back(ArgStore);
2577 static bool canGuaranteeTCO(CallingConv::ID CC) {
2578 return CC == CallingConv::Fast;
2581 /// Return true if we might ever do TCO for calls with this calling convention.
2582 static bool mayTailCallThisCC(CallingConv::ID CC) {
2583 switch (CC) {
2584 case CallingConv::C:
2585 return true;
2586 default:
2587 return canGuaranteeTCO(CC);
2591 bool SITargetLowering::isEligibleForTailCallOptimization(
2592 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2593 const SmallVectorImpl<ISD::OutputArg> &Outs,
2594 const SmallVectorImpl<SDValue> &OutVals,
2595 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2596 if (!mayTailCallThisCC(CalleeCC))
2597 return false;
2599 MachineFunction &MF = DAG.getMachineFunction();
2600 const Function &CallerF = MF.getFunction();
2601 CallingConv::ID CallerCC = CallerF.getCallingConv();
2602 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2603 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2605 // Kernels aren't callable, and don't have a live in return address so it
2606 // doesn't make sense to do a tail call with entry functions.
2607 if (!CallerPreserved)
2608 return false;
2610 bool CCMatch = CallerCC == CalleeCC;
2612 if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2613 if (canGuaranteeTCO(CalleeCC) && CCMatch)
2614 return true;
2615 return false;
2618 // TODO: Can we handle var args?
2619 if (IsVarArg)
2620 return false;
2622 for (const Argument &Arg : CallerF.args()) {
2623 if (Arg.hasByValAttr())
2624 return false;
2627 LLVMContext &Ctx = *DAG.getContext();
2629 // Check that the call results are passed in the same way.
2630 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2631 CCAssignFnForCall(CalleeCC, IsVarArg),
2632 CCAssignFnForCall(CallerCC, IsVarArg)))
2633 return false;
2635 // The callee has to preserve all registers the caller needs to preserve.
2636 if (!CCMatch) {
2637 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2638 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2639 return false;
2642 // Nothing more to check if the callee is taking no arguments.
2643 if (Outs.empty())
2644 return true;
2646 SmallVector<CCValAssign, 16> ArgLocs;
2647 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2649 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2651 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2652 // If the stack arguments for this call do not fit into our own save area then
2653 // the call cannot be made tail.
2654 // TODO: Is this really necessary?
2655 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2656 return false;
2658 const MachineRegisterInfo &MRI = MF.getRegInfo();
2659 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2662 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2663 if (!CI->isTailCall())
2664 return false;
2666 const Function *ParentFn = CI->getParent()->getParent();
2667 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2668 return false;
2670 auto Attr = ParentFn->getFnAttribute("disable-tail-calls");
2671 return (Attr.getValueAsString() != "true");
2674 // The wave scratch offset register is used as the global base pointer.
2675 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2676 SmallVectorImpl<SDValue> &InVals) const {
2677 SelectionDAG &DAG = CLI.DAG;
2678 const SDLoc &DL = CLI.DL;
2679 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2680 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2681 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2682 SDValue Chain = CLI.Chain;
2683 SDValue Callee = CLI.Callee;
2684 bool &IsTailCall = CLI.IsTailCall;
2685 CallingConv::ID CallConv = CLI.CallConv;
2686 bool IsVarArg = CLI.IsVarArg;
2687 bool IsSibCall = false;
2688 bool IsThisReturn = false;
2689 MachineFunction &MF = DAG.getMachineFunction();
2691 if (Callee.isUndef() || isNullConstant(Callee)) {
2692 if (!CLI.IsTailCall) {
2693 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
2694 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
2697 return Chain;
2700 if (IsVarArg) {
2701 return lowerUnhandledCall(CLI, InVals,
2702 "unsupported call to variadic function ");
2705 if (!CLI.CS.getInstruction())
2706 report_fatal_error("unsupported libcall legalization");
2708 if (!CLI.CS.getCalledFunction()) {
2709 return lowerUnhandledCall(CLI, InVals,
2710 "unsupported indirect call to function ");
2713 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
2714 return lowerUnhandledCall(CLI, InVals,
2715 "unsupported required tail call to function ");
2718 if (AMDGPU::isShader(MF.getFunction().getCallingConv())) {
2719 // Note the issue is with the CC of the calling function, not of the call
2720 // itself.
2721 return lowerUnhandledCall(CLI, InVals,
2722 "unsupported call from graphics shader of function ");
2725 if (IsTailCall) {
2726 IsTailCall = isEligibleForTailCallOptimization(
2727 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2728 if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) {
2729 report_fatal_error("failed to perform tail call elimination on a call "
2730 "site marked musttail");
2733 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2735 // A sibling call is one where we're under the usual C ABI and not planning
2736 // to change that but can still do a tail call:
2737 if (!TailCallOpt && IsTailCall)
2738 IsSibCall = true;
2740 if (IsTailCall)
2741 ++NumTailCalls;
2744 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2746 // Analyze operands of the call, assigning locations to each operand.
2747 SmallVector<CCValAssign, 16> ArgLocs;
2748 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2749 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
2751 CCInfo.AnalyzeCallOperands(Outs, AssignFn);
2753 // Get a count of how many bytes are to be pushed on the stack.
2754 unsigned NumBytes = CCInfo.getNextStackOffset();
2756 if (IsSibCall) {
2757 // Since we're not changing the ABI to make this a tail call, the memory
2758 // operands are already available in the caller's incoming argument space.
2759 NumBytes = 0;
2762 // FPDiff is the byte offset of the call's argument area from the callee's.
2763 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2764 // by this amount for a tail call. In a sibling call it must be 0 because the
2765 // caller will deallocate the entire stack and the callee still expects its
2766 // arguments to begin at SP+0. Completely unused for non-tail calls.
2767 int32_t FPDiff = 0;
2768 MachineFrameInfo &MFI = MF.getFrameInfo();
2769 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2771 // Adjust the stack pointer for the new arguments...
2772 // These operations are automatically eliminated by the prolog/epilog pass
2773 if (!IsSibCall) {
2774 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
2776 SmallVector<SDValue, 4> CopyFromChains;
2778 // In the HSA case, this should be an identity copy.
2779 SDValue ScratchRSrcReg
2780 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
2781 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
2782 CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
2783 Chain = DAG.getTokenFactor(DL, CopyFromChains);
2786 SmallVector<SDValue, 8> MemOpChains;
2787 MVT PtrVT = MVT::i32;
2789 // Walk the register/memloc assignments, inserting copies/loads.
2790 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2791 ++i, ++realArgIdx) {
2792 CCValAssign &VA = ArgLocs[i];
2793 SDValue Arg = OutVals[realArgIdx];
2795 // Promote the value if needed.
2796 switch (VA.getLocInfo()) {
2797 case CCValAssign::Full:
2798 break;
2799 case CCValAssign::BCvt:
2800 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2801 break;
2802 case CCValAssign::ZExt:
2803 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2804 break;
2805 case CCValAssign::SExt:
2806 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2807 break;
2808 case CCValAssign::AExt:
2809 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2810 break;
2811 case CCValAssign::FPExt:
2812 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2813 break;
2814 default:
2815 llvm_unreachable("Unknown loc info!");
2818 if (VA.isRegLoc()) {
2819 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2820 } else {
2821 assert(VA.isMemLoc());
2823 SDValue DstAddr;
2824 MachinePointerInfo DstInfo;
2826 unsigned LocMemOffset = VA.getLocMemOffset();
2827 int32_t Offset = LocMemOffset;
2829 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
2830 MaybeAlign Alignment;
2832 if (IsTailCall) {
2833 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2834 unsigned OpSize = Flags.isByVal() ?
2835 Flags.getByValSize() : VA.getValVT().getStoreSize();
2837 // FIXME: We can have better than the minimum byval required alignment.
2838 Alignment =
2839 Flags.isByVal()
2840 ? MaybeAlign(Flags.getByValAlign())
2841 : commonAlignment(Subtarget->getStackAlignment(), Offset);
2843 Offset = Offset + FPDiff;
2844 int FI = MFI.CreateFixedObject(OpSize, Offset, true);
2846 DstAddr = DAG.getFrameIndex(FI, PtrVT);
2847 DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
2849 // Make sure any stack arguments overlapping with where we're storing
2850 // are loaded before this eventual operation. Otherwise they'll be
2851 // clobbered.
2853 // FIXME: Why is this really necessary? This seems to just result in a
2854 // lot of code to copy the stack and write them back to the same
2855 // locations, which are supposed to be immutable?
2856 Chain = addTokenForArgument(Chain, DAG, MFI, FI);
2857 } else {
2858 DstAddr = PtrOff;
2859 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
2860 Alignment =
2861 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
2864 if (Outs[i].Flags.isByVal()) {
2865 SDValue SizeNode =
2866 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
2867 SDValue Cpy = DAG.getMemcpy(
2868 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
2869 /*isVol = */ false, /*AlwaysInline = */ true,
2870 /*isTailCall = */ false, DstInfo,
2871 MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy(
2872 *DAG.getContext(), AMDGPUAS::PRIVATE_ADDRESS))));
2874 MemOpChains.push_back(Cpy);
2875 } else {
2876 SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo,
2877 Alignment ? Alignment->value() : 0);
2878 MemOpChains.push_back(Store);
2883 // Copy special input registers after user input arguments.
2884 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
2886 if (!MemOpChains.empty())
2887 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2889 // Build a sequence of copy-to-reg nodes chained together with token chain
2890 // and flag operands which copy the outgoing args into the appropriate regs.
2891 SDValue InFlag;
2892 for (auto &RegToPass : RegsToPass) {
2893 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
2894 RegToPass.second, InFlag);
2895 InFlag = Chain.getValue(1);
2899 SDValue PhysReturnAddrReg;
2900 if (IsTailCall) {
2901 // Since the return is being combined with the call, we need to pass on the
2902 // return address.
2904 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2905 SDValue ReturnAddrReg = CreateLiveInRegister(
2906 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2908 PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
2909 MVT::i64);
2910 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
2911 InFlag = Chain.getValue(1);
2914 // We don't usually want to end the call-sequence here because we would tidy
2915 // the frame up *after* the call, however in the ABI-changing tail-call case
2916 // we've carefully laid out the parameters so that when sp is reset they'll be
2917 // in the correct location.
2918 if (IsTailCall && !IsSibCall) {
2919 Chain = DAG.getCALLSEQ_END(Chain,
2920 DAG.getTargetConstant(NumBytes, DL, MVT::i32),
2921 DAG.getTargetConstant(0, DL, MVT::i32),
2922 InFlag, DL);
2923 InFlag = Chain.getValue(1);
2926 std::vector<SDValue> Ops;
2927 Ops.push_back(Chain);
2928 Ops.push_back(Callee);
2929 // Add a redundant copy of the callee global which will not be legalized, as
2930 // we need direct access to the callee later.
2931 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Callee);
2932 const GlobalValue *GV = GSD->getGlobal();
2933 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
2935 if (IsTailCall) {
2936 // Each tail call may have to adjust the stack by a different amount, so
2937 // this information must travel along with the operation for eventual
2938 // consumption by emitEpilogue.
2939 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
2941 Ops.push_back(PhysReturnAddrReg);
2944 // Add argument registers to the end of the list so that they are known live
2945 // into the call.
2946 for (auto &RegToPass : RegsToPass) {
2947 Ops.push_back(DAG.getRegister(RegToPass.first,
2948 RegToPass.second.getValueType()));
2951 // Add a register mask operand representing the call-preserved registers.
2953 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
2954 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2955 assert(Mask && "Missing call preserved mask for calling convention");
2956 Ops.push_back(DAG.getRegisterMask(Mask));
2958 if (InFlag.getNode())
2959 Ops.push_back(InFlag);
2961 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2963 // If we're doing a tall call, use a TC_RETURN here rather than an
2964 // actual call instruction.
2965 if (IsTailCall) {
2966 MFI.setHasTailCall();
2967 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
2970 // Returns a chain and a flag for retval copy to use.
2971 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
2972 Chain = Call.getValue(0);
2973 InFlag = Call.getValue(1);
2975 uint64_t CalleePopBytes = NumBytes;
2976 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
2977 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
2978 InFlag, DL);
2979 if (!Ins.empty())
2980 InFlag = Chain.getValue(1);
2982 // Handle result values, copying them out of physregs into vregs that we
2983 // return.
2984 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2985 InVals, IsThisReturn,
2986 IsThisReturn ? OutVals[0] : SDValue());
2989 Register SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
2990 const MachineFunction &MF) const {
2991 Register Reg = StringSwitch<Register>(RegName)
2992 .Case("m0", AMDGPU::M0)
2993 .Case("exec", AMDGPU::EXEC)
2994 .Case("exec_lo", AMDGPU::EXEC_LO)
2995 .Case("exec_hi", AMDGPU::EXEC_HI)
2996 .Case("flat_scratch", AMDGPU::FLAT_SCR)
2997 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
2998 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
2999 .Default(Register());
3001 if (Reg == AMDGPU::NoRegister) {
3002 report_fatal_error(Twine("invalid register name \""
3003 + StringRef(RegName) + "\"."));
3007 if (!Subtarget->hasFlatScrRegister() &&
3008 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3009 report_fatal_error(Twine("invalid register \""
3010 + StringRef(RegName) + "\" for subtarget."));
3013 switch (Reg) {
3014 case AMDGPU::M0:
3015 case AMDGPU::EXEC_LO:
3016 case AMDGPU::EXEC_HI:
3017 case AMDGPU::FLAT_SCR_LO:
3018 case AMDGPU::FLAT_SCR_HI:
3019 if (VT.getSizeInBits() == 32)
3020 return Reg;
3021 break;
3022 case AMDGPU::EXEC:
3023 case AMDGPU::FLAT_SCR:
3024 if (VT.getSizeInBits() == 64)
3025 return Reg;
3026 break;
3027 default:
3028 llvm_unreachable("missing register type checking");
3031 report_fatal_error(Twine("invalid type for register \""
3032 + StringRef(RegName) + "\"."));
3035 // If kill is not the last instruction, split the block so kill is always a
3036 // proper terminator.
3037 MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
3038 MachineBasicBlock *BB) const {
3039 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3041 MachineBasicBlock::iterator SplitPoint(&MI);
3042 ++SplitPoint;
3044 if (SplitPoint == BB->end()) {
3045 // Don't bother with a new block.
3046 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3047 return BB;
3050 MachineFunction *MF = BB->getParent();
3051 MachineBasicBlock *SplitBB
3052 = MF->CreateMachineBasicBlock(BB->getBasicBlock());
3054 MF->insert(++MachineFunction::iterator(BB), SplitBB);
3055 SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
3057 SplitBB->transferSuccessorsAndUpdatePHIs(BB);
3058 BB->addSuccessor(SplitBB);
3060 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3061 return SplitBB;
3064 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3065 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3066 // be the first instruction in the remainder block.
3068 /// \returns { LoopBody, Remainder }
3069 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3070 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3071 MachineFunction *MF = MBB.getParent();
3072 MachineBasicBlock::iterator I(&MI);
3074 // To insert the loop we need to split the block. Move everything after this
3075 // point to a new block, and insert a new empty block between the two.
3076 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3077 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3078 MachineFunction::iterator MBBI(MBB);
3079 ++MBBI;
3081 MF->insert(MBBI, LoopBB);
3082 MF->insert(MBBI, RemainderBB);
3084 LoopBB->addSuccessor(LoopBB);
3085 LoopBB->addSuccessor(RemainderBB);
3087 // Move the rest of the block into a new block.
3088 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3090 if (InstInLoop) {
3091 auto Next = std::next(I);
3093 // Move instruction to loop body.
3094 LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3096 // Move the rest of the block.
3097 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3098 } else {
3099 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3102 MBB.addSuccessor(LoopBB);
3104 return std::make_pair(LoopBB, RemainderBB);
3107 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3108 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3109 MachineBasicBlock *MBB = MI.getParent();
3110 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3111 auto I = MI.getIterator();
3112 auto E = std::next(I);
3114 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3115 .addImm(0);
3117 MIBundleBuilder Bundler(*MBB, I, E);
3118 finalizeBundle(*MBB, Bundler.begin());
3121 MachineBasicBlock *
3122 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3123 MachineBasicBlock *BB) const {
3124 const DebugLoc &DL = MI.getDebugLoc();
3126 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3128 MachineBasicBlock *LoopBB;
3129 MachineBasicBlock *RemainderBB;
3130 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3132 // Apparently kill flags are only valid if the def is in the same block?
3133 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3134 Src->setIsKill(false);
3136 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3138 MachineBasicBlock::iterator I = LoopBB->end();
3140 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3141 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3143 // Clear TRAP_STS.MEM_VIOL
3144 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3145 .addImm(0)
3146 .addImm(EncodedReg);
3148 bundleInstWithWaitcnt(MI);
3150 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3152 // Load and check TRAP_STS.MEM_VIOL
3153 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3154 .addImm(EncodedReg);
3156 // FIXME: Do we need to use an isel pseudo that may clobber scc?
3157 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3158 .addReg(Reg, RegState::Kill)
3159 .addImm(0);
3160 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3161 .addMBB(LoopBB);
3163 return RemainderBB;
3166 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3167 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3168 // will only do one iteration. In the worst case, this will loop 64 times.
3170 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3171 static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
3172 const SIInstrInfo *TII,
3173 MachineRegisterInfo &MRI,
3174 MachineBasicBlock &OrigBB,
3175 MachineBasicBlock &LoopBB,
3176 const DebugLoc &DL,
3177 const MachineOperand &IdxReg,
3178 unsigned InitReg,
3179 unsigned ResultReg,
3180 unsigned PhiReg,
3181 unsigned InitSaveExecReg,
3182 int Offset,
3183 bool UseGPRIdxMode,
3184 bool IsIndirectSrc) {
3185 MachineFunction *MF = OrigBB.getParent();
3186 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3187 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3188 MachineBasicBlock::iterator I = LoopBB.begin();
3190 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3191 Register PhiExec = MRI.createVirtualRegister(BoolRC);
3192 Register NewExec = MRI.createVirtualRegister(BoolRC);
3193 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3194 Register CondReg = MRI.createVirtualRegister(BoolRC);
3196 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3197 .addReg(InitReg)
3198 .addMBB(&OrigBB)
3199 .addReg(ResultReg)
3200 .addMBB(&LoopBB);
3202 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3203 .addReg(InitSaveExecReg)
3204 .addMBB(&OrigBB)
3205 .addReg(NewExec)
3206 .addMBB(&LoopBB);
3208 // Read the next variant <- also loop target.
3209 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3210 .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
3212 // Compare the just read M0 value to all possible Idx values.
3213 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3214 .addReg(CurrentIdxReg)
3215 .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
3217 // Update EXEC, save the original EXEC value to VCC.
3218 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3219 : AMDGPU::S_AND_SAVEEXEC_B64),
3220 NewExec)
3221 .addReg(CondReg, RegState::Kill);
3223 MRI.setSimpleHint(NewExec, CondReg);
3225 if (UseGPRIdxMode) {
3226 unsigned IdxReg;
3227 if (Offset == 0) {
3228 IdxReg = CurrentIdxReg;
3229 } else {
3230 IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3231 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
3232 .addReg(CurrentIdxReg, RegState::Kill)
3233 .addImm(Offset);
3235 unsigned IdxMode = IsIndirectSrc ?
3236 AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
3237 MachineInstr *SetOn =
3238 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3239 .addReg(IdxReg, RegState::Kill)
3240 .addImm(IdxMode);
3241 SetOn->getOperand(3).setIsUndef();
3242 } else {
3243 // Move index from VCC into M0
3244 if (Offset == 0) {
3245 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3246 .addReg(CurrentIdxReg, RegState::Kill);
3247 } else {
3248 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3249 .addReg(CurrentIdxReg, RegState::Kill)
3250 .addImm(Offset);
3254 // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3255 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3256 MachineInstr *InsertPt =
3257 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3258 : AMDGPU::S_XOR_B64_term), Exec)
3259 .addReg(Exec)
3260 .addReg(NewExec);
3262 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3263 // s_cbranch_scc0?
3265 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3266 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3267 .addMBB(&LoopBB);
3269 return InsertPt->getIterator();
3272 // This has slightly sub-optimal regalloc when the source vector is killed by
3273 // the read. The register allocator does not understand that the kill is
3274 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3275 // subregister from it, using 1 more VGPR than necessary. This was saved when
3276 // this was expanded after register allocation.
3277 static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
3278 MachineBasicBlock &MBB,
3279 MachineInstr &MI,
3280 unsigned InitResultReg,
3281 unsigned PhiReg,
3282 int Offset,
3283 bool UseGPRIdxMode,
3284 bool IsIndirectSrc) {
3285 MachineFunction *MF = MBB.getParent();
3286 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3287 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3288 MachineRegisterInfo &MRI = MF->getRegInfo();
3289 const DebugLoc &DL = MI.getDebugLoc();
3290 MachineBasicBlock::iterator I(&MI);
3292 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3293 Register DstReg = MI.getOperand(0).getReg();
3294 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3295 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3296 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3297 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3299 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3301 // Save the EXEC mask
3302 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3303 .addReg(Exec);
3305 MachineBasicBlock *LoopBB;
3306 MachineBasicBlock *RemainderBB;
3307 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3309 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3311 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3312 InitResultReg, DstReg, PhiReg, TmpExec,
3313 Offset, UseGPRIdxMode, IsIndirectSrc);
3315 MachineBasicBlock::iterator First = RemainderBB->begin();
3316 BuildMI(*RemainderBB, First, DL, TII->get(MovExecOpc), Exec)
3317 .addReg(SaveExec);
3319 return InsPt;
3322 // Returns subreg index, offset
3323 static std::pair<unsigned, int>
3324 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3325 const TargetRegisterClass *SuperRC,
3326 unsigned VecReg,
3327 int Offset) {
3328 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3330 // Skip out of bounds offsets, or else we would end up using an undefined
3331 // register.
3332 if (Offset >= NumElts || Offset < 0)
3333 return std::make_pair(AMDGPU::sub0, Offset);
3335 return std::make_pair(AMDGPU::sub0 + Offset, 0);
3338 // Return true if the index is an SGPR and was set.
3339 static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3340 MachineRegisterInfo &MRI,
3341 MachineInstr &MI,
3342 int Offset,
3343 bool UseGPRIdxMode,
3344 bool IsIndirectSrc) {
3345 MachineBasicBlock *MBB = MI.getParent();
3346 const DebugLoc &DL = MI.getDebugLoc();
3347 MachineBasicBlock::iterator I(&MI);
3349 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3350 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3352 assert(Idx->getReg() != AMDGPU::NoRegister);
3354 if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
3355 return false;
3357 if (UseGPRIdxMode) {
3358 unsigned IdxMode = IsIndirectSrc ?
3359 AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
3360 if (Offset == 0) {
3361 MachineInstr *SetOn =
3362 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3363 .add(*Idx)
3364 .addImm(IdxMode);
3366 SetOn->getOperand(3).setIsUndef();
3367 } else {
3368 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3369 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3370 .add(*Idx)
3371 .addImm(Offset);
3372 MachineInstr *SetOn =
3373 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3374 .addReg(Tmp, RegState::Kill)
3375 .addImm(IdxMode);
3377 SetOn->getOperand(3).setIsUndef();
3380 return true;
3383 if (Offset == 0) {
3384 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3385 .add(*Idx);
3386 } else {
3387 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3388 .add(*Idx)
3389 .addImm(Offset);
3392 return true;
3395 // Control flow needs to be inserted if indexing with a VGPR.
3396 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3397 MachineBasicBlock &MBB,
3398 const GCNSubtarget &ST) {
3399 const SIInstrInfo *TII = ST.getInstrInfo();
3400 const SIRegisterInfo &TRI = TII->getRegisterInfo();
3401 MachineFunction *MF = MBB.getParent();
3402 MachineRegisterInfo &MRI = MF->getRegInfo();
3404 Register Dst = MI.getOperand(0).getReg();
3405 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3406 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3408 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3410 unsigned SubReg;
3411 std::tie(SubReg, Offset)
3412 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3414 bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
3416 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
3417 MachineBasicBlock::iterator I(&MI);
3418 const DebugLoc &DL = MI.getDebugLoc();
3420 if (UseGPRIdxMode) {
3421 // TODO: Look at the uses to avoid the copy. This may require rescheduling
3422 // to avoid interfering with other uses, so probably requires a new
3423 // optimization pass.
3424 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3425 .addReg(SrcReg, RegState::Undef, SubReg)
3426 .addReg(SrcReg, RegState::Implicit)
3427 .addReg(AMDGPU::M0, RegState::Implicit);
3428 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3429 } else {
3430 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3431 .addReg(SrcReg, RegState::Undef, SubReg)
3432 .addReg(SrcReg, RegState::Implicit);
3435 MI.eraseFromParent();
3437 return &MBB;
3440 const DebugLoc &DL = MI.getDebugLoc();
3441 MachineBasicBlock::iterator I(&MI);
3443 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3444 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3446 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3448 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg,
3449 Offset, UseGPRIdxMode, true);
3450 MachineBasicBlock *LoopBB = InsPt->getParent();
3452 if (UseGPRIdxMode) {
3453 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3454 .addReg(SrcReg, RegState::Undef, SubReg)
3455 .addReg(SrcReg, RegState::Implicit)
3456 .addReg(AMDGPU::M0, RegState::Implicit);
3457 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3458 } else {
3459 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3460 .addReg(SrcReg, RegState::Undef, SubReg)
3461 .addReg(SrcReg, RegState::Implicit);
3464 MI.eraseFromParent();
3466 return LoopBB;
3469 static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI,
3470 const TargetRegisterClass *VecRC) {
3471 switch (TRI.getRegSizeInBits(*VecRC)) {
3472 case 32: // 4 bytes
3473 return AMDGPU::V_MOVRELD_B32_V1;
3474 case 64: // 8 bytes
3475 return AMDGPU::V_MOVRELD_B32_V2;
3476 case 128: // 16 bytes
3477 return AMDGPU::V_MOVRELD_B32_V4;
3478 case 256: // 32 bytes
3479 return AMDGPU::V_MOVRELD_B32_V8;
3480 case 512: // 64 bytes
3481 return AMDGPU::V_MOVRELD_B32_V16;
3482 default:
3483 llvm_unreachable("unsupported size for MOVRELD pseudos");
3487 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3488 MachineBasicBlock &MBB,
3489 const GCNSubtarget &ST) {
3490 const SIInstrInfo *TII = ST.getInstrInfo();
3491 const SIRegisterInfo &TRI = TII->getRegisterInfo();
3492 MachineFunction *MF = MBB.getParent();
3493 MachineRegisterInfo &MRI = MF->getRegInfo();
3495 Register Dst = MI.getOperand(0).getReg();
3496 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3497 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3498 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3499 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3500 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3502 // This can be an immediate, but will be folded later.
3503 assert(Val->getReg());
3505 unsigned SubReg;
3506 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3507 SrcVec->getReg(),
3508 Offset);
3509 bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
3511 if (Idx->getReg() == AMDGPU::NoRegister) {
3512 MachineBasicBlock::iterator I(&MI);
3513 const DebugLoc &DL = MI.getDebugLoc();
3515 assert(Offset == 0);
3517 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3518 .add(*SrcVec)
3519 .add(*Val)
3520 .addImm(SubReg);
3522 MI.eraseFromParent();
3523 return &MBB;
3526 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
3527 MachineBasicBlock::iterator I(&MI);
3528 const DebugLoc &DL = MI.getDebugLoc();
3530 if (UseGPRIdxMode) {
3531 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
3532 .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
3533 .add(*Val)
3534 .addReg(Dst, RegState::ImplicitDefine)
3535 .addReg(SrcVec->getReg(), RegState::Implicit)
3536 .addReg(AMDGPU::M0, RegState::Implicit);
3538 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3539 } else {
3540 const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
3542 BuildMI(MBB, I, DL, MovRelDesc)
3543 .addReg(Dst, RegState::Define)
3544 .addReg(SrcVec->getReg())
3545 .add(*Val)
3546 .addImm(SubReg - AMDGPU::sub0);
3549 MI.eraseFromParent();
3550 return &MBB;
3553 if (Val->isReg())
3554 MRI.clearKillFlags(Val->getReg());
3556 const DebugLoc &DL = MI.getDebugLoc();
3558 Register PhiReg = MRI.createVirtualRegister(VecRC);
3560 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
3561 Offset, UseGPRIdxMode, false);
3562 MachineBasicBlock *LoopBB = InsPt->getParent();
3564 if (UseGPRIdxMode) {
3565 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
3566 .addReg(PhiReg, RegState::Undef, SubReg) // vdst
3567 .add(*Val) // src0
3568 .addReg(Dst, RegState::ImplicitDefine)
3569 .addReg(PhiReg, RegState::Implicit)
3570 .addReg(AMDGPU::M0, RegState::Implicit);
3571 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3572 } else {
3573 const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
3575 BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
3576 .addReg(Dst, RegState::Define)
3577 .addReg(PhiReg)
3578 .add(*Val)
3579 .addImm(SubReg - AMDGPU::sub0);
3582 MI.eraseFromParent();
3584 return LoopBB;
3587 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3588 MachineInstr &MI, MachineBasicBlock *BB) const {
3590 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3591 MachineFunction *MF = BB->getParent();
3592 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3594 if (TII->isMIMG(MI)) {
3595 if (MI.memoperands_empty() && MI.mayLoadOrStore()) {
3596 report_fatal_error("missing mem operand from MIMG instruction");
3598 // Add a memoperand for mimg instructions so that they aren't assumed to
3599 // be ordered memory instuctions.
3601 return BB;
3604 switch (MI.getOpcode()) {
3605 case AMDGPU::S_ADD_U64_PSEUDO:
3606 case AMDGPU::S_SUB_U64_PSEUDO: {
3607 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3608 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3609 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3610 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3611 const DebugLoc &DL = MI.getDebugLoc();
3613 MachineOperand &Dest = MI.getOperand(0);
3614 MachineOperand &Src0 = MI.getOperand(1);
3615 MachineOperand &Src1 = MI.getOperand(2);
3617 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3618 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3620 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3621 Src0, BoolRC, AMDGPU::sub0,
3622 &AMDGPU::SReg_32RegClass);
3623 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3624 Src0, BoolRC, AMDGPU::sub1,
3625 &AMDGPU::SReg_32RegClass);
3627 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3628 Src1, BoolRC, AMDGPU::sub0,
3629 &AMDGPU::SReg_32RegClass);
3630 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3631 Src1, BoolRC, AMDGPU::sub1,
3632 &AMDGPU::SReg_32RegClass);
3634 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3636 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3637 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3638 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
3639 .add(Src0Sub0)
3640 .add(Src1Sub0);
3641 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
3642 .add(Src0Sub1)
3643 .add(Src1Sub1);
3644 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3645 .addReg(DestSub0)
3646 .addImm(AMDGPU::sub0)
3647 .addReg(DestSub1)
3648 .addImm(AMDGPU::sub1);
3649 MI.eraseFromParent();
3650 return BB;
3652 case AMDGPU::SI_INIT_M0: {
3653 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
3654 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3655 .add(MI.getOperand(0));
3656 MI.eraseFromParent();
3657 return BB;
3659 case AMDGPU::SI_INIT_EXEC:
3660 // This should be before all vector instructions.
3661 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
3662 AMDGPU::EXEC)
3663 .addImm(MI.getOperand(0).getImm());
3664 MI.eraseFromParent();
3665 return BB;
3667 case AMDGPU::SI_INIT_EXEC_LO:
3668 // This should be before all vector instructions.
3669 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32),
3670 AMDGPU::EXEC_LO)
3671 .addImm(MI.getOperand(0).getImm());
3672 MI.eraseFromParent();
3673 return BB;
3675 case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
3676 // Extract the thread count from an SGPR input and set EXEC accordingly.
3677 // Since BFM can't shift by 64, handle that case with CMP + CMOV.
3679 // S_BFE_U32 count, input, {shift, 7}
3680 // S_BFM_B64 exec, count, 0
3681 // S_CMP_EQ_U32 count, 64
3682 // S_CMOV_B64 exec, -1
3683 MachineInstr *FirstMI = &*BB->begin();
3684 MachineRegisterInfo &MRI = MF->getRegInfo();
3685 Register InputReg = MI.getOperand(0).getReg();
3686 Register CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3687 bool Found = false;
3689 // Move the COPY of the input reg to the beginning, so that we can use it.
3690 for (auto I = BB->begin(); I != &MI; I++) {
3691 if (I->getOpcode() != TargetOpcode::COPY ||
3692 I->getOperand(0).getReg() != InputReg)
3693 continue;
3695 if (I == FirstMI) {
3696 FirstMI = &*++BB->begin();
3697 } else {
3698 I->removeFromParent();
3699 BB->insert(FirstMI, &*I);
3701 Found = true;
3702 break;
3704 assert(Found);
3705 (void)Found;
3707 // This should be before all vector instructions.
3708 unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1;
3709 bool isWave32 = getSubtarget()->isWave32();
3710 unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3711 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
3712 .addReg(InputReg)
3713 .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000);
3714 BuildMI(*BB, FirstMI, DebugLoc(),
3715 TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64),
3716 Exec)
3717 .addReg(CountReg)
3718 .addImm(0);
3719 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
3720 .addReg(CountReg, RegState::Kill)
3721 .addImm(getSubtarget()->getWavefrontSize());
3722 BuildMI(*BB, FirstMI, DebugLoc(),
3723 TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64),
3724 Exec)
3725 .addImm(-1);
3726 MI.eraseFromParent();
3727 return BB;
3730 case AMDGPU::GET_GROUPSTATICSIZE: {
3731 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
3732 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
3733 DebugLoc DL = MI.getDebugLoc();
3734 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
3735 .add(MI.getOperand(0))
3736 .addImm(MFI->getLDSSize());
3737 MI.eraseFromParent();
3738 return BB;
3740 case AMDGPU::SI_INDIRECT_SRC_V1:
3741 case AMDGPU::SI_INDIRECT_SRC_V2:
3742 case AMDGPU::SI_INDIRECT_SRC_V4:
3743 case AMDGPU::SI_INDIRECT_SRC_V8:
3744 case AMDGPU::SI_INDIRECT_SRC_V16:
3745 return emitIndirectSrc(MI, *BB, *getSubtarget());
3746 case AMDGPU::SI_INDIRECT_DST_V1:
3747 case AMDGPU::SI_INDIRECT_DST_V2:
3748 case AMDGPU::SI_INDIRECT_DST_V4:
3749 case AMDGPU::SI_INDIRECT_DST_V8:
3750 case AMDGPU::SI_INDIRECT_DST_V16:
3751 return emitIndirectDst(MI, *BB, *getSubtarget());
3752 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
3753 case AMDGPU::SI_KILL_I1_PSEUDO:
3754 return splitKillBlock(MI, BB);
3755 case AMDGPU::V_CNDMASK_B64_PSEUDO: {
3756 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3757 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3758 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3760 Register Dst = MI.getOperand(0).getReg();
3761 Register Src0 = MI.getOperand(1).getReg();
3762 Register Src1 = MI.getOperand(2).getReg();
3763 const DebugLoc &DL = MI.getDebugLoc();
3764 Register SrcCond = MI.getOperand(3).getReg();
3766 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3767 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3768 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3769 Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
3771 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
3772 .addReg(SrcCond);
3773 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
3774 .addImm(0)
3775 .addReg(Src0, 0, AMDGPU::sub0)
3776 .addImm(0)
3777 .addReg(Src1, 0, AMDGPU::sub0)
3778 .addReg(SrcCondCopy);
3779 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
3780 .addImm(0)
3781 .addReg(Src0, 0, AMDGPU::sub1)
3782 .addImm(0)
3783 .addReg(Src1, 0, AMDGPU::sub1)
3784 .addReg(SrcCondCopy);
3786 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
3787 .addReg(DstLo)
3788 .addImm(AMDGPU::sub0)
3789 .addReg(DstHi)
3790 .addImm(AMDGPU::sub1);
3791 MI.eraseFromParent();
3792 return BB;
3794 case AMDGPU::SI_BR_UNDEF: {
3795 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3796 const DebugLoc &DL = MI.getDebugLoc();
3797 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3798 .add(MI.getOperand(0));
3799 Br->getOperand(1).setIsUndef(true); // read undef SCC
3800 MI.eraseFromParent();
3801 return BB;
3803 case AMDGPU::ADJCALLSTACKUP:
3804 case AMDGPU::ADJCALLSTACKDOWN: {
3805 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
3806 MachineInstrBuilder MIB(*MF, &MI);
3808 // Add an implicit use of the frame offset reg to prevent the restore copy
3809 // inserted after the call from being reorderd after stack operations in the
3810 // the caller's frame.
3811 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
3812 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit)
3813 .addReg(Info->getFrameOffsetReg(), RegState::Implicit);
3814 return BB;
3816 case AMDGPU::SI_CALL_ISEL: {
3817 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3818 const DebugLoc &DL = MI.getDebugLoc();
3820 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
3822 MachineInstrBuilder MIB;
3823 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
3825 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
3826 MIB.add(MI.getOperand(I));
3828 MIB.cloneMemRefs(MI);
3829 MI.eraseFromParent();
3830 return BB;
3832 case AMDGPU::V_ADD_I32_e32:
3833 case AMDGPU::V_SUB_I32_e32:
3834 case AMDGPU::V_SUBREV_I32_e32: {
3835 // TODO: Define distinct V_*_I32_Pseudo instructions instead.
3836 const DebugLoc &DL = MI.getDebugLoc();
3837 unsigned Opc = MI.getOpcode();
3839 bool NeedClampOperand = false;
3840 if (TII->pseudoToMCOpcode(Opc) == -1) {
3841 Opc = AMDGPU::getVOPe64(Opc);
3842 NeedClampOperand = true;
3845 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
3846 if (TII->isVOP3(*I)) {
3847 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3848 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3849 I.addReg(TRI->getVCC(), RegState::Define);
3851 I.add(MI.getOperand(1))
3852 .add(MI.getOperand(2));
3853 if (NeedClampOperand)
3854 I.addImm(0); // clamp bit for e64 encoding
3856 TII->legalizeOperands(*I);
3858 MI.eraseFromParent();
3859 return BB;
3861 case AMDGPU::DS_GWS_INIT:
3862 case AMDGPU::DS_GWS_SEMA_V:
3863 case AMDGPU::DS_GWS_SEMA_BR:
3864 case AMDGPU::DS_GWS_SEMA_P:
3865 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
3866 case AMDGPU::DS_GWS_BARRIER:
3867 // A s_waitcnt 0 is required to be the instruction immediately following.
3868 if (getSubtarget()->hasGWSAutoReplay()) {
3869 bundleInstWithWaitcnt(MI);
3870 return BB;
3873 return emitGWSMemViolTestLoop(MI, BB);
3874 default:
3875 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
3879 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
3880 return isTypeLegal(VT.getScalarType());
3883 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
3884 // This currently forces unfolding various combinations of fsub into fma with
3885 // free fneg'd operands. As long as we have fast FMA (controlled by
3886 // isFMAFasterThanFMulAndFAdd), we should perform these.
3888 // When fma is quarter rate, for f64 where add / sub are at best half rate,
3889 // most of these combines appear to be cycle neutral but save on instruction
3890 // count / code size.
3891 return true;
3894 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
3895 EVT VT) const {
3896 if (!VT.isVector()) {
3897 return MVT::i1;
3899 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
3902 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
3903 // TODO: Should i16 be used always if legal? For now it would force VALU
3904 // shifts.
3905 return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
3908 // Answering this is somewhat tricky and depends on the specific device which
3909 // have different rates for fma or all f64 operations.
3911 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
3912 // regardless of which device (although the number of cycles differs between
3913 // devices), so it is always profitable for f64.
3915 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
3916 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
3917 // which we can always do even without fused FP ops since it returns the same
3918 // result as the separate operations and since it is always full
3919 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
3920 // however does not support denormals, so we do report fma as faster if we have
3921 // a fast fma device and require denormals.
3923 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
3924 VT = VT.getScalarType();
3926 switch (VT.getSimpleVT().SimpleTy) {
3927 case MVT::f32: {
3928 // This is as fast on some subtargets. However, we always have full rate f32
3929 // mad available which returns the same result as the separate operations
3930 // which we should prefer over fma. We can't use this if we want to support
3931 // denormals, so only report this in these cases.
3932 if (Subtarget->hasFP32Denormals())
3933 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
3935 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
3936 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
3938 case MVT::f64:
3939 return true;
3940 case MVT::f16:
3941 return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals();
3942 default:
3943 break;
3946 return false;
3949 //===----------------------------------------------------------------------===//
3950 // Custom DAG Lowering Operations
3951 //===----------------------------------------------------------------------===//
3953 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
3954 // wider vector type is legal.
3955 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
3956 SelectionDAG &DAG) const {
3957 unsigned Opc = Op.getOpcode();
3958 EVT VT = Op.getValueType();
3959 assert(VT == MVT::v4f16);
3961 SDValue Lo, Hi;
3962 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
3964 SDLoc SL(Op);
3965 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
3966 Op->getFlags());
3967 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
3968 Op->getFlags());
3970 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
3973 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
3974 // wider vector type is legal.
3975 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
3976 SelectionDAG &DAG) const {
3977 unsigned Opc = Op.getOpcode();
3978 EVT VT = Op.getValueType();
3979 assert(VT == MVT::v4i16 || VT == MVT::v4f16);
3981 SDValue Lo0, Hi0;
3982 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
3983 SDValue Lo1, Hi1;
3984 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
3986 SDLoc SL(Op);
3988 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
3989 Op->getFlags());
3990 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
3991 Op->getFlags());
3993 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
3996 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
3997 SelectionDAG &DAG) const {
3998 unsigned Opc = Op.getOpcode();
3999 EVT VT = Op.getValueType();
4000 assert(VT == MVT::v4i16 || VT == MVT::v4f16);
4002 SDValue Lo0, Hi0;
4003 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4004 SDValue Lo1, Hi1;
4005 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4006 SDValue Lo2, Hi2;
4007 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4009 SDLoc SL(Op);
4011 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2,
4012 Op->getFlags());
4013 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2,
4014 Op->getFlags());
4016 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4020 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4021 switch (Op.getOpcode()) {
4022 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4023 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4024 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4025 case ISD::LOAD: {
4026 SDValue Result = LowerLOAD(Op, DAG);
4027 assert((!Result.getNode() ||
4028 Result.getNode()->getNumValues() == 2) &&
4029 "Load should return a value and a chain");
4030 return Result;
4033 case ISD::FSIN:
4034 case ISD::FCOS:
4035 return LowerTrig(Op, DAG);
4036 case ISD::SELECT: return LowerSELECT(Op, DAG);
4037 case ISD::FDIV: return LowerFDIV(Op, DAG);
4038 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4039 case ISD::STORE: return LowerSTORE(Op, DAG);
4040 case ISD::GlobalAddress: {
4041 MachineFunction &MF = DAG.getMachineFunction();
4042 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4043 return LowerGlobalAddress(MFI, Op, DAG);
4045 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4046 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4047 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4048 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4049 case ISD::INSERT_SUBVECTOR:
4050 return lowerINSERT_SUBVECTOR(Op, DAG);
4051 case ISD::INSERT_VECTOR_ELT:
4052 return lowerINSERT_VECTOR_ELT(Op, DAG);
4053 case ISD::EXTRACT_VECTOR_ELT:
4054 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4055 case ISD::VECTOR_SHUFFLE:
4056 return lowerVECTOR_SHUFFLE(Op, DAG);
4057 case ISD::BUILD_VECTOR:
4058 return lowerBUILD_VECTOR(Op, DAG);
4059 case ISD::FP_ROUND:
4060 return lowerFP_ROUND(Op, DAG);
4061 case ISD::TRAP:
4062 return lowerTRAP(Op, DAG);
4063 case ISD::DEBUGTRAP:
4064 return lowerDEBUGTRAP(Op, DAG);
4065 case ISD::FABS:
4066 case ISD::FNEG:
4067 case ISD::FCANONICALIZE:
4068 return splitUnaryVectorOp(Op, DAG);
4069 case ISD::FMINNUM:
4070 case ISD::FMAXNUM:
4071 return lowerFMINNUM_FMAXNUM(Op, DAG);
4072 case ISD::FMA:
4073 return splitTernaryVectorOp(Op, DAG);
4074 case ISD::SHL:
4075 case ISD::SRA:
4076 case ISD::SRL:
4077 case ISD::ADD:
4078 case ISD::SUB:
4079 case ISD::MUL:
4080 case ISD::SMIN:
4081 case ISD::SMAX:
4082 case ISD::UMIN:
4083 case ISD::UMAX:
4084 case ISD::FADD:
4085 case ISD::FMUL:
4086 case ISD::FMINNUM_IEEE:
4087 case ISD::FMAXNUM_IEEE:
4088 return splitBinaryVectorOp(Op, DAG);
4090 return SDValue();
4093 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4094 const SDLoc &DL,
4095 SelectionDAG &DAG, bool Unpacked) {
4096 if (!LoadVT.isVector())
4097 return Result;
4099 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4100 // Truncate to v2i16/v4i16.
4101 EVT IntLoadVT = LoadVT.changeTypeToInteger();
4103 // Workaround legalizer not scalarizing truncate after vector op
4104 // legalization byt not creating intermediate vector trunc.
4105 SmallVector<SDValue, 4> Elts;
4106 DAG.ExtractVectorElements(Result, Elts);
4107 for (SDValue &Elt : Elts)
4108 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4110 Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4112 // Bitcast to original type (v2f16/v4f16).
4113 return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
4116 // Cast back to the original packed type.
4117 return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
4120 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4121 MemSDNode *M,
4122 SelectionDAG &DAG,
4123 ArrayRef<SDValue> Ops,
4124 bool IsIntrinsic) const {
4125 SDLoc DL(M);
4127 bool Unpacked = Subtarget->hasUnpackedD16VMem();
4128 EVT LoadVT = M->getValueType(0);
4130 EVT EquivLoadVT = LoadVT;
4131 if (Unpacked && LoadVT.isVector()) {
4132 EquivLoadVT = LoadVT.isVector() ?
4133 EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4134 LoadVT.getVectorNumElements()) : LoadVT;
4137 // Change from v4f16/v2f16 to EquivLoadVT.
4138 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4140 SDValue Load
4141 = DAG.getMemIntrinsicNode(
4142 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4143 VTList, Ops, M->getMemoryVT(),
4144 M->getMemOperand());
4145 if (!Unpacked) // Just adjusted the opcode.
4146 return Load;
4148 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4150 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4153 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4154 SelectionDAG &DAG,
4155 ArrayRef<SDValue> Ops) const {
4156 SDLoc DL(M);
4157 EVT LoadVT = M->getValueType(0);
4158 EVT EltType = LoadVT.getScalarType();
4159 EVT IntVT = LoadVT.changeTypeToInteger();
4161 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4163 unsigned Opc =
4164 IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4166 if (IsD16) {
4167 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4170 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4171 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4172 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4174 if (isTypeLegal(LoadVT)) {
4175 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4176 M->getMemOperand(), DAG);
4179 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4180 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4181 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4182 M->getMemOperand(), DAG);
4183 return DAG.getMergeValues(
4184 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4185 DL);
4188 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4189 SDNode *N, SelectionDAG &DAG) {
4190 EVT VT = N->getValueType(0);
4191 const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4192 int CondCode = CD->getSExtValue();
4193 if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
4194 CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE)
4195 return DAG.getUNDEF(VT);
4197 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4199 SDValue LHS = N->getOperand(1);
4200 SDValue RHS = N->getOperand(2);
4202 SDLoc DL(N);
4204 EVT CmpVT = LHS.getValueType();
4205 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4206 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4207 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4208 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4209 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4212 ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4214 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4215 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4217 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4218 DAG.getCondCode(CCOpcode));
4219 if (VT.bitsEq(CCVT))
4220 return SetCC;
4221 return DAG.getZExtOrTrunc(SetCC, DL, VT);
4224 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4225 SDNode *N, SelectionDAG &DAG) {
4226 EVT VT = N->getValueType(0);
4227 const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4229 int CondCode = CD->getSExtValue();
4230 if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE ||
4231 CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE) {
4232 return DAG.getUNDEF(VT);
4235 SDValue Src0 = N->getOperand(1);
4236 SDValue Src1 = N->getOperand(2);
4237 EVT CmpVT = Src0.getValueType();
4238 SDLoc SL(N);
4240 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4241 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4242 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4245 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4246 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4247 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4248 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4249 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4250 Src1, DAG.getCondCode(CCOpcode));
4251 if (VT.bitsEq(CCVT))
4252 return SetCC;
4253 return DAG.getZExtOrTrunc(SetCC, SL, VT);
4256 void SITargetLowering::ReplaceNodeResults(SDNode *N,
4257 SmallVectorImpl<SDValue> &Results,
4258 SelectionDAG &DAG) const {
4259 switch (N->getOpcode()) {
4260 case ISD::INSERT_VECTOR_ELT: {
4261 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4262 Results.push_back(Res);
4263 return;
4265 case ISD::EXTRACT_VECTOR_ELT: {
4266 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4267 Results.push_back(Res);
4268 return;
4270 case ISD::INTRINSIC_WO_CHAIN: {
4271 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4272 switch (IID) {
4273 case Intrinsic::amdgcn_cvt_pkrtz: {
4274 SDValue Src0 = N->getOperand(1);
4275 SDValue Src1 = N->getOperand(2);
4276 SDLoc SL(N);
4277 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4278 Src0, Src1);
4279 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4280 return;
4282 case Intrinsic::amdgcn_cvt_pknorm_i16:
4283 case Intrinsic::amdgcn_cvt_pknorm_u16:
4284 case Intrinsic::amdgcn_cvt_pk_i16:
4285 case Intrinsic::amdgcn_cvt_pk_u16: {
4286 SDValue Src0 = N->getOperand(1);
4287 SDValue Src1 = N->getOperand(2);
4288 SDLoc SL(N);
4289 unsigned Opcode;
4291 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4292 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4293 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4294 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4295 else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4296 Opcode = AMDGPUISD::CVT_PK_I16_I32;
4297 else
4298 Opcode = AMDGPUISD::CVT_PK_U16_U32;
4300 EVT VT = N->getValueType(0);
4301 if (isTypeLegal(VT))
4302 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4303 else {
4304 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4305 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4307 return;
4310 break;
4312 case ISD::INTRINSIC_W_CHAIN: {
4313 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4314 if (Res.getOpcode() == ISD::MERGE_VALUES) {
4315 // FIXME: Hacky
4316 Results.push_back(Res.getOperand(0));
4317 Results.push_back(Res.getOperand(1));
4318 } else {
4319 Results.push_back(Res);
4320 Results.push_back(Res.getValue(1));
4322 return;
4325 break;
4327 case ISD::SELECT: {
4328 SDLoc SL(N);
4329 EVT VT = N->getValueType(0);
4330 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
4331 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
4332 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
4334 EVT SelectVT = NewVT;
4335 if (NewVT.bitsLT(MVT::i32)) {
4336 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
4337 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
4338 SelectVT = MVT::i32;
4341 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
4342 N->getOperand(0), LHS, RHS);
4344 if (NewVT != SelectVT)
4345 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
4346 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
4347 return;
4349 case ISD::FNEG: {
4350 if (N->getValueType(0) != MVT::v2f16)
4351 break;
4353 SDLoc SL(N);
4354 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4356 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
4358 DAG.getConstant(0x80008000, SL, MVT::i32));
4359 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4360 return;
4362 case ISD::FABS: {
4363 if (N->getValueType(0) != MVT::v2f16)
4364 break;
4366 SDLoc SL(N);
4367 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4369 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
4371 DAG.getConstant(0x7fff7fff, SL, MVT::i32));
4372 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4373 return;
4375 default:
4376 break;
4380 /// Helper function for LowerBRCOND
4381 static SDNode *findUser(SDValue Value, unsigned Opcode) {
4383 SDNode *Parent = Value.getNode();
4384 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
4385 I != E; ++I) {
4387 if (I.getUse().get() != Value)
4388 continue;
4390 if (I->getOpcode() == Opcode)
4391 return *I;
4393 return nullptr;
4396 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
4397 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
4398 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
4399 case Intrinsic::amdgcn_if:
4400 return AMDGPUISD::IF;
4401 case Intrinsic::amdgcn_else:
4402 return AMDGPUISD::ELSE;
4403 case Intrinsic::amdgcn_loop:
4404 return AMDGPUISD::LOOP;
4405 case Intrinsic::amdgcn_end_cf:
4406 llvm_unreachable("should not occur");
4407 default:
4408 return 0;
4412 // break, if_break, else_break are all only used as inputs to loop, not
4413 // directly as branch conditions.
4414 return 0;
4417 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
4418 const Triple &TT = getTargetMachine().getTargetTriple();
4419 return (GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4420 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4421 AMDGPU::shouldEmitConstantsToTextSection(TT);
4424 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
4425 // FIXME: Either avoid relying on address space here or change the default
4426 // address space for functions to avoid the explicit check.
4427 return (GV->getValueType()->isFunctionTy() ||
4428 GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
4429 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4430 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4431 !shouldEmitFixup(GV) &&
4432 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
4435 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
4436 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
4439 /// This transforms the control flow intrinsics to get the branch destination as
4440 /// last parameter, also switches branch target with BR if the need arise
4441 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
4442 SelectionDAG &DAG) const {
4443 SDLoc DL(BRCOND);
4445 SDNode *Intr = BRCOND.getOperand(1).getNode();
4446 SDValue Target = BRCOND.getOperand(2);
4447 SDNode *BR = nullptr;
4448 SDNode *SetCC = nullptr;
4450 if (Intr->getOpcode() == ISD::SETCC) {
4451 // As long as we negate the condition everything is fine
4452 SetCC = Intr;
4453 Intr = SetCC->getOperand(0).getNode();
4455 } else {
4456 // Get the target from BR if we don't negate the condition
4457 BR = findUser(BRCOND, ISD::BR);
4458 Target = BR->getOperand(1);
4461 // FIXME: This changes the types of the intrinsics instead of introducing new
4462 // nodes with the correct types.
4463 // e.g. llvm.amdgcn.loop
4465 // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
4466 // => t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>
4468 unsigned CFNode = isCFIntrinsic(Intr);
4469 if (CFNode == 0) {
4470 // This is a uniform branch so we don't need to legalize.
4471 return BRCOND;
4474 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
4475 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
4477 assert(!SetCC ||
4478 (SetCC->getConstantOperandVal(1) == 1 &&
4479 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
4480 ISD::SETNE));
4482 // operands of the new intrinsic call
4483 SmallVector<SDValue, 4> Ops;
4484 if (HaveChain)
4485 Ops.push_back(BRCOND.getOperand(0));
4487 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end());
4488 Ops.push_back(Target);
4490 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
4492 // build the new intrinsic call
4493 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
4495 if (!HaveChain) {
4496 SDValue Ops[] = {
4497 SDValue(Result, 0),
4498 BRCOND.getOperand(0)
4501 Result = DAG.getMergeValues(Ops, DL).getNode();
4504 if (BR) {
4505 // Give the branch instruction our target
4506 SDValue Ops[] = {
4507 BR->getOperand(0),
4508 BRCOND.getOperand(2)
4510 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
4511 DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
4512 BR = NewBR.getNode();
4515 SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
4517 // Copy the intrinsic results to registers
4518 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
4519 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
4520 if (!CopyToReg)
4521 continue;
4523 Chain = DAG.getCopyToReg(
4524 Chain, DL,
4525 CopyToReg->getOperand(1),
4526 SDValue(Result, i - 1),
4527 SDValue());
4529 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
4532 // Remove the old intrinsic from the chain
4533 DAG.ReplaceAllUsesOfValueWith(
4534 SDValue(Intr, Intr->getNumValues() - 1),
4535 Intr->getOperand(0));
4537 return Chain;
4540 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
4541 SelectionDAG &DAG) const {
4542 MVT VT = Op.getSimpleValueType();
4543 SDLoc DL(Op);
4544 // Checking the depth
4545 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
4546 return DAG.getConstant(0, DL, VT);
4548 MachineFunction &MF = DAG.getMachineFunction();
4549 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4550 // Check for kernel and shader functions
4551 if (Info->isEntryFunction())
4552 return DAG.getConstant(0, DL, VT);
4554 MachineFrameInfo &MFI = MF.getFrameInfo();
4555 // There is a call to @llvm.returnaddress in this function
4556 MFI.setReturnAddressIsTaken(true);
4558 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
4559 // Get the return address reg and mark it as an implicit live-in
4560 unsigned Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
4562 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4565 SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG,
4566 SDValue Op,
4567 const SDLoc &DL,
4568 EVT VT) const {
4569 return Op.getValueType().bitsLE(VT) ?
4570 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
4571 DAG.getNode(ISD::FTRUNC, DL, VT, Op);
4574 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
4575 assert(Op.getValueType() == MVT::f16 &&
4576 "Do not know how to custom lower FP_ROUND for non-f16 type");
4578 SDValue Src = Op.getOperand(0);
4579 EVT SrcVT = Src.getValueType();
4580 if (SrcVT != MVT::f64)
4581 return Op;
4583 SDLoc DL(Op);
4585 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
4586 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
4587 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
4590 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
4591 SelectionDAG &DAG) const {
4592 EVT VT = Op.getValueType();
4593 const MachineFunction &MF = DAG.getMachineFunction();
4594 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4595 bool IsIEEEMode = Info->getMode().IEEE;
4597 // FIXME: Assert during eslection that this is only selected for
4598 // ieee_mode. Currently a combine can produce the ieee version for non-ieee
4599 // mode functions, but this happens to be OK since it's only done in cases
4600 // where there is known no sNaN.
4601 if (IsIEEEMode)
4602 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
4604 if (VT == MVT::v4f16)
4605 return splitBinaryVectorOp(Op, DAG);
4606 return Op;
4609 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
4610 SDLoc SL(Op);
4611 SDValue Chain = Op.getOperand(0);
4613 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
4614 !Subtarget->isTrapHandlerEnabled())
4615 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
4617 MachineFunction &MF = DAG.getMachineFunction();
4618 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4619 unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4620 assert(UserSGPR != AMDGPU::NoRegister);
4621 SDValue QueuePtr = CreateLiveInRegister(
4622 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4623 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
4624 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
4625 QueuePtr, SDValue());
4626 SDValue Ops[] = {
4627 ToReg,
4628 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16),
4629 SGPR01,
4630 ToReg.getValue(1)
4632 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4635 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
4636 SDLoc SL(Op);
4637 SDValue Chain = Op.getOperand(0);
4638 MachineFunction &MF = DAG.getMachineFunction();
4640 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
4641 !Subtarget->isTrapHandlerEnabled()) {
4642 DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
4643 "debugtrap handler not supported",
4644 Op.getDebugLoc(),
4645 DS_Warning);
4646 LLVMContext &Ctx = MF.getFunction().getContext();
4647 Ctx.diagnose(NoTrap);
4648 return Chain;
4651 SDValue Ops[] = {
4652 Chain,
4653 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16)
4655 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4658 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
4659 SelectionDAG &DAG) const {
4660 // FIXME: Use inline constants (src_{shared, private}_base) instead.
4661 if (Subtarget->hasApertureRegs()) {
4662 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
4663 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
4664 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
4665 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
4666 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
4667 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
4668 unsigned Encoding =
4669 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
4670 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
4671 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
4673 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
4674 SDValue ApertureReg = SDValue(
4675 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
4676 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
4677 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
4680 MachineFunction &MF = DAG.getMachineFunction();
4681 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4682 unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4683 assert(UserSGPR != AMDGPU::NoRegister);
4685 SDValue QueuePtr = CreateLiveInRegister(
4686 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4688 // Offset into amd_queue_t for group_segment_aperture_base_hi /
4689 // private_segment_aperture_base_hi.
4690 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
4692 SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset);
4694 // TODO: Use custom target PseudoSourceValue.
4695 // TODO: We should use the value from the IR intrinsic call, but it might not
4696 // be available and how do we get it?
4697 Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
4698 AMDGPUAS::CONSTANT_ADDRESS));
4700 MachinePointerInfo PtrInfo(V, StructOffset);
4701 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
4702 MinAlign(64, StructOffset),
4703 MachineMemOperand::MODereferenceable |
4704 MachineMemOperand::MOInvariant);
4707 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
4708 SelectionDAG &DAG) const {
4709 SDLoc SL(Op);
4710 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
4712 SDValue Src = ASC->getOperand(0);
4713 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
4715 const AMDGPUTargetMachine &TM =
4716 static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
4718 // flat -> local/private
4719 if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
4720 unsigned DestAS = ASC->getDestAddressSpace();
4722 if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
4723 DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
4724 unsigned NullVal = TM.getNullPointerValue(DestAS);
4725 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4726 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
4727 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
4729 return DAG.getNode(ISD::SELECT, SL, MVT::i32,
4730 NonNull, Ptr, SegmentNullPtr);
4734 // local/private -> flat
4735 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
4736 unsigned SrcAS = ASC->getSrcAddressSpace();
4738 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
4739 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
4740 unsigned NullVal = TM.getNullPointerValue(SrcAS);
4741 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4743 SDValue NonNull
4744 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
4746 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
4747 SDValue CvtPtr
4748 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
4750 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
4751 DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
4752 FlatNullPtr);
4756 // global <-> flat are no-ops and never emitted.
4758 const MachineFunction &MF = DAG.getMachineFunction();
4759 DiagnosticInfoUnsupported InvalidAddrSpaceCast(
4760 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
4761 DAG.getContext()->diagnose(InvalidAddrSpaceCast);
4763 return DAG.getUNDEF(ASC->getValueType(0));
4766 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
4767 // the small vector and inserting them into the big vector. That is better than
4768 // the default expansion of doing it via a stack slot. Even though the use of
4769 // the stack slot would be optimized away afterwards, the stack slot itself
4770 // remains.
4771 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
4772 SelectionDAG &DAG) const {
4773 SDValue Vec = Op.getOperand(0);
4774 SDValue Ins = Op.getOperand(1);
4775 SDValue Idx = Op.getOperand(2);
4776 EVT VecVT = Vec.getValueType();
4777 EVT InsVT = Ins.getValueType();
4778 EVT EltVT = VecVT.getVectorElementType();
4779 unsigned InsNumElts = InsVT.getVectorNumElements();
4780 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
4781 SDLoc SL(Op);
4783 for (unsigned I = 0; I != InsNumElts; ++I) {
4784 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
4785 DAG.getConstant(I, SL, MVT::i32));
4786 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
4787 DAG.getConstant(IdxVal + I, SL, MVT::i32));
4789 return Vec;
4792 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4793 SelectionDAG &DAG) const {
4794 SDValue Vec = Op.getOperand(0);
4795 SDValue InsVal = Op.getOperand(1);
4796 SDValue Idx = Op.getOperand(2);
4797 EVT VecVT = Vec.getValueType();
4798 EVT EltVT = VecVT.getVectorElementType();
4799 unsigned VecSize = VecVT.getSizeInBits();
4800 unsigned EltSize = EltVT.getSizeInBits();
4803 assert(VecSize <= 64);
4805 unsigned NumElts = VecVT.getVectorNumElements();
4806 SDLoc SL(Op);
4807 auto KIdx = dyn_cast<ConstantSDNode>(Idx);
4809 if (NumElts == 4 && EltSize == 16 && KIdx) {
4810 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
4812 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
4813 DAG.getConstant(0, SL, MVT::i32));
4814 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
4815 DAG.getConstant(1, SL, MVT::i32));
4817 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
4818 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
4820 unsigned Idx = KIdx->getZExtValue();
4821 bool InsertLo = Idx < 2;
4822 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
4823 InsertLo ? LoVec : HiVec,
4824 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
4825 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
4827 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
4829 SDValue Concat = InsertLo ?
4830 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
4831 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
4833 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
4836 if (isa<ConstantSDNode>(Idx))
4837 return SDValue();
4839 MVT IntVT = MVT::getIntegerVT(VecSize);
4841 // Avoid stack access for dynamic indexing.
4842 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
4844 // Create a congruent vector with the target value in each element so that
4845 // the required element can be masked and ORed into the target vector.
4846 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
4847 DAG.getSplatBuildVector(VecVT, SL, InsVal));
4849 assert(isPowerOf2_32(EltSize));
4850 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
4852 // Convert vector index to bit-index.
4853 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
4855 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
4856 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
4857 DAG.getConstant(0xffff, SL, IntVT),
4858 ScaledIdx);
4860 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
4861 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
4862 DAG.getNOT(SL, BFM, IntVT), BCVec);
4864 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
4865 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
4868 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4869 SelectionDAG &DAG) const {
4870 SDLoc SL(Op);
4872 EVT ResultVT = Op.getValueType();
4873 SDValue Vec = Op.getOperand(0);
4874 SDValue Idx = Op.getOperand(1);
4875 EVT VecVT = Vec.getValueType();
4876 unsigned VecSize = VecVT.getSizeInBits();
4877 EVT EltVT = VecVT.getVectorElementType();
4878 assert(VecSize <= 64);
4880 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
4882 // Make sure we do any optimizations that will make it easier to fold
4883 // source modifiers before obscuring it with bit operations.
4885 // XXX - Why doesn't this get called when vector_shuffle is expanded?
4886 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
4887 return Combined;
4889 unsigned EltSize = EltVT.getSizeInBits();
4890 assert(isPowerOf2_32(EltSize));
4892 MVT IntVT = MVT::getIntegerVT(VecSize);
4893 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
4895 // Convert vector index to bit-index (* EltSize)
4896 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
4898 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
4899 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
4901 if (ResultVT == MVT::f16) {
4902 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
4903 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
4906 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
4909 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
4910 assert(Elt % 2 == 0);
4911 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
4914 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4915 SelectionDAG &DAG) const {
4916 SDLoc SL(Op);
4917 EVT ResultVT = Op.getValueType();
4918 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
4920 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
4921 EVT EltVT = PackVT.getVectorElementType();
4922 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
4924 // vector_shuffle <0,1,6,7> lhs, rhs
4925 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
4927 // vector_shuffle <6,7,2,3> lhs, rhs
4928 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
4930 // vector_shuffle <6,7,0,1> lhs, rhs
4931 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
4933 // Avoid scalarizing when both halves are reading from consecutive elements.
4934 SmallVector<SDValue, 4> Pieces;
4935 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
4936 if (elementPairIsContiguous(SVN->getMask(), I)) {
4937 const int Idx = SVN->getMaskElt(I);
4938 int VecIdx = Idx < SrcNumElts ? 0 : 1;
4939 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
4940 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
4941 PackVT, SVN->getOperand(VecIdx),
4942 DAG.getConstant(EltIdx, SL, MVT::i32));
4943 Pieces.push_back(SubVec);
4944 } else {
4945 const int Idx0 = SVN->getMaskElt(I);
4946 const int Idx1 = SVN->getMaskElt(I + 1);
4947 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
4948 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
4949 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
4950 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
4952 SDValue Vec0 = SVN->getOperand(VecIdx0);
4953 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
4954 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
4956 SDValue Vec1 = SVN->getOperand(VecIdx1);
4957 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
4958 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
4959 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
4963 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
4966 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
4967 SelectionDAG &DAG) const {
4968 SDLoc SL(Op);
4969 EVT VT = Op.getValueType();
4971 if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4972 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
4974 // Turn into pair of packed build_vectors.
4975 // TODO: Special case for constants that can be materialized with s_mov_b64.
4976 SDValue Lo = DAG.getBuildVector(HalfVT, SL,
4977 { Op.getOperand(0), Op.getOperand(1) });
4978 SDValue Hi = DAG.getBuildVector(HalfVT, SL,
4979 { Op.getOperand(2), Op.getOperand(3) });
4981 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
4982 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
4984 SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
4985 return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
4988 assert(VT == MVT::v2f16 || VT == MVT::v2i16);
4989 assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
4991 SDValue Lo = Op.getOperand(0);
4992 SDValue Hi = Op.getOperand(1);
4994 // Avoid adding defined bits with the zero_extend.
4995 if (Hi.isUndef()) {
4996 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
4997 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
4998 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5001 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5002 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5004 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5005 DAG.getConstant(16, SL, MVT::i32));
5006 if (Lo.isUndef())
5007 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5009 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5010 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5012 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5013 return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5016 bool
5017 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5018 // We can fold offsets for anything that doesn't require a GOT relocation.
5019 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5020 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5021 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5022 !shouldEmitGOTReloc(GA->getGlobal());
5025 static SDValue
5026 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5027 const SDLoc &DL, unsigned Offset, EVT PtrVT,
5028 unsigned GAFlags = SIInstrInfo::MO_NONE) {
5029 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5030 // lowered to the following code sequence:
5032 // For constant address space:
5033 // s_getpc_b64 s[0:1]
5034 // s_add_u32 s0, s0, $symbol
5035 // s_addc_u32 s1, s1, 0
5037 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
5038 // a fixup or relocation is emitted to replace $symbol with a literal
5039 // constant, which is a pc-relative offset from the encoding of the $symbol
5040 // operand to the global variable.
5042 // For global address space:
5043 // s_getpc_b64 s[0:1]
5044 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5045 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5047 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
5048 // fixups or relocations are emitted to replace $symbol@*@lo and
5049 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5050 // which is a 64-bit pc-relative offset from the encoding of the $symbol
5051 // operand to the global variable.
5053 // What we want here is an offset from the value returned by s_getpc
5054 // (which is the address of the s_add_u32 instruction) to the global
5055 // variable, but since the encoding of $symbol starts 4 bytes after the start
5056 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5057 // small. This requires us to add 4 to the global variable offset in order to
5058 // compute the correct address.
5059 SDValue PtrLo =
5060 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5061 SDValue PtrHi;
5062 if (GAFlags == SIInstrInfo::MO_NONE) {
5063 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5064 } else {
5065 PtrHi =
5066 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags + 1);
5068 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5071 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5072 SDValue Op,
5073 SelectionDAG &DAG) const {
5074 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5075 const GlobalValue *GV = GSD->getGlobal();
5076 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5077 (!GV->hasExternalLinkage() ||
5078 getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
5079 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL)) ||
5080 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5081 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS)
5082 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5084 SDLoc DL(GSD);
5085 EVT PtrVT = Op.getValueType();
5087 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5088 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5089 SIInstrInfo::MO_ABS32_LO);
5090 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5093 if (shouldEmitFixup(GV))
5094 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
5095 else if (shouldEmitPCReloc(GV))
5096 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
5097 SIInstrInfo::MO_REL32);
5099 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
5100 SIInstrInfo::MO_GOTPCREL32);
5102 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
5103 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
5104 const DataLayout &DataLayout = DAG.getDataLayout();
5105 unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
5106 MachinePointerInfo PtrInfo
5107 = MachinePointerInfo::getGOT(DAG.getMachineFunction());
5109 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
5110 MachineMemOperand::MODereferenceable |
5111 MachineMemOperand::MOInvariant);
5114 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
5115 const SDLoc &DL, SDValue V) const {
5116 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
5117 // the destination register.
5119 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
5120 // so we will end up with redundant moves to m0.
5122 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
5124 // A Null SDValue creates a glue result.
5125 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
5126 V, Chain);
5127 return SDValue(M0, 0);
5130 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
5131 SDValue Op,
5132 MVT VT,
5133 unsigned Offset) const {
5134 SDLoc SL(Op);
5135 SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL,
5136 DAG.getEntryNode(), Offset, 4, false);
5137 // The local size values will have the hi 16-bits as zero.
5138 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
5139 DAG.getValueType(VT));
5142 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5143 EVT VT) {
5144 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5145 "non-hsa intrinsic with hsa target",
5146 DL.getDebugLoc());
5147 DAG.getContext()->diagnose(BadIntrin);
5148 return DAG.getUNDEF(VT);
5151 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5152 EVT VT) {
5153 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5154 "intrinsic not supported on subtarget",
5155 DL.getDebugLoc());
5156 DAG.getContext()->diagnose(BadIntrin);
5157 return DAG.getUNDEF(VT);
5160 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
5161 ArrayRef<SDValue> Elts) {
5162 assert(!Elts.empty());
5163 MVT Type;
5164 unsigned NumElts;
5166 if (Elts.size() == 1) {
5167 Type = MVT::f32;
5168 NumElts = 1;
5169 } else if (Elts.size() == 2) {
5170 Type = MVT::v2f32;
5171 NumElts = 2;
5172 } else if (Elts.size() <= 4) {
5173 Type = MVT::v4f32;
5174 NumElts = 4;
5175 } else if (Elts.size() <= 8) {
5176 Type = MVT::v8f32;
5177 NumElts = 8;
5178 } else {
5179 assert(Elts.size() <= 16);
5180 Type = MVT::v16f32;
5181 NumElts = 16;
5184 SmallVector<SDValue, 16> VecElts(NumElts);
5185 for (unsigned i = 0; i < Elts.size(); ++i) {
5186 SDValue Elt = Elts[i];
5187 if (Elt.getValueType() != MVT::f32)
5188 Elt = DAG.getBitcast(MVT::f32, Elt);
5189 VecElts[i] = Elt;
5191 for (unsigned i = Elts.size(); i < NumElts; ++i)
5192 VecElts[i] = DAG.getUNDEF(MVT::f32);
5194 if (NumElts == 1)
5195 return VecElts[0];
5196 return DAG.getBuildVector(Type, DL, VecElts);
5199 static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG,
5200 SDValue *GLC, SDValue *SLC, SDValue *DLC) {
5201 auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode());
5203 uint64_t Value = CachePolicyConst->getZExtValue();
5204 SDLoc DL(CachePolicy);
5205 if (GLC) {
5206 *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5207 Value &= ~(uint64_t)0x1;
5209 if (SLC) {
5210 *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5211 Value &= ~(uint64_t)0x2;
5213 if (DLC) {
5214 *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32);
5215 Value &= ~(uint64_t)0x4;
5218 return Value == 0;
5221 // Re-construct the required return value for a image load intrinsic.
5222 // This is more complicated due to the optional use TexFailCtrl which means the required
5223 // return type is an aggregate
5224 static SDValue constructRetValue(SelectionDAG &DAG,
5225 MachineSDNode *Result,
5226 ArrayRef<EVT> ResultTypes,
5227 bool IsTexFail, bool Unpacked, bool IsD16,
5228 int DMaskPop, int NumVDataDwords,
5229 const SDLoc &DL, LLVMContext &Context) {
5230 // Determine the required return type. This is the same regardless of IsTexFail flag
5231 EVT ReqRetVT = ResultTypes[0];
5232 EVT ReqRetEltVT = ReqRetVT.isVector() ? ReqRetVT.getVectorElementType() : ReqRetVT;
5233 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
5234 EVT AdjEltVT = Unpacked && IsD16 ? MVT::i32 : ReqRetEltVT;
5235 EVT AdjVT = Unpacked ? ReqRetNumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, ReqRetNumElts)
5236 : AdjEltVT
5237 : ReqRetVT;
5239 // Extract data part of the result
5240 // Bitcast the result to the same type as the required return type
5241 int NumElts;
5242 if (IsD16 && !Unpacked)
5243 NumElts = NumVDataDwords << 1;
5244 else
5245 NumElts = NumVDataDwords;
5247 EVT CastVT = NumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, NumElts)
5248 : AdjEltVT;
5250 // Special case for v6f16. Rather than add support for this, use v3i32 to
5251 // extract the data elements
5252 bool V6F16Special = false;
5253 if (NumElts == 6) {
5254 CastVT = EVT::getVectorVT(Context, MVT::i32, NumElts / 2);
5255 DMaskPop >>= 1;
5256 ReqRetNumElts >>= 1;
5257 V6F16Special = true;
5258 AdjVT = MVT::v2i32;
5261 SDValue N = SDValue(Result, 0);
5262 SDValue CastRes = DAG.getNode(ISD::BITCAST, DL, CastVT, N);
5264 // Iterate over the result
5265 SmallVector<SDValue, 4> BVElts;
5267 if (CastVT.isVector()) {
5268 DAG.ExtractVectorElements(CastRes, BVElts, 0, DMaskPop);
5269 } else {
5270 BVElts.push_back(CastRes);
5272 int ExtraElts = ReqRetNumElts - DMaskPop;
5273 while(ExtraElts--)
5274 BVElts.push_back(DAG.getUNDEF(AdjEltVT));
5276 SDValue PreTFCRes;
5277 if (ReqRetNumElts > 1) {
5278 SDValue NewVec = DAG.getBuildVector(AdjVT, DL, BVElts);
5279 if (IsD16 && Unpacked)
5280 PreTFCRes = adjustLoadValueTypeImpl(NewVec, ReqRetVT, DL, DAG, Unpacked);
5281 else
5282 PreTFCRes = NewVec;
5283 } else {
5284 PreTFCRes = BVElts[0];
5287 if (V6F16Special)
5288 PreTFCRes = DAG.getNode(ISD::BITCAST, DL, MVT::v4f16, PreTFCRes);
5290 if (!IsTexFail) {
5291 if (Result->getNumValues() > 1)
5292 return DAG.getMergeValues({PreTFCRes, SDValue(Result, 1)}, DL);
5293 else
5294 return PreTFCRes;
5297 // Extract the TexFail result and insert into aggregate return
5298 SmallVector<SDValue, 1> TFCElt;
5299 DAG.ExtractVectorElements(N, TFCElt, DMaskPop, 1);
5300 SDValue TFCRes = DAG.getNode(ISD::BITCAST, DL, ResultTypes[1], TFCElt[0]);
5301 return DAG.getMergeValues({PreTFCRes, TFCRes, SDValue(Result, 1)}, DL);
5304 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
5305 SDValue *LWE, bool &IsTexFail) {
5306 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
5308 uint64_t Value = TexFailCtrlConst->getZExtValue();
5309 if (Value) {
5310 IsTexFail = true;
5313 SDLoc DL(TexFailCtrlConst);
5314 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5315 Value &= ~(uint64_t)0x1;
5316 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5317 Value &= ~(uint64_t)0x2;
5319 return Value == 0;
5322 SDValue SITargetLowering::lowerImage(SDValue Op,
5323 const AMDGPU::ImageDimIntrinsicInfo *Intr,
5324 SelectionDAG &DAG) const {
5325 SDLoc DL(Op);
5326 MachineFunction &MF = DAG.getMachineFunction();
5327 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
5328 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
5329 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
5330 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
5331 const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
5332 AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
5333 const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
5334 AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
5335 unsigned IntrOpcode = Intr->BaseOpcode;
5336 bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
5338 SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end());
5339 SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end());
5340 bool IsD16 = false;
5341 bool IsA16 = false;
5342 SDValue VData;
5343 int NumVDataDwords;
5344 bool AdjustRetType = false;
5346 unsigned AddrIdx; // Index of first address argument
5347 unsigned DMask;
5348 unsigned DMaskLanes = 0;
5350 if (BaseOpcode->Atomic) {
5351 VData = Op.getOperand(2);
5353 bool Is64Bit = VData.getValueType() == MVT::i64;
5354 if (BaseOpcode->AtomicX2) {
5355 SDValue VData2 = Op.getOperand(3);
5356 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
5357 {VData, VData2});
5358 if (Is64Bit)
5359 VData = DAG.getBitcast(MVT::v4i32, VData);
5361 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
5362 DMask = Is64Bit ? 0xf : 0x3;
5363 NumVDataDwords = Is64Bit ? 4 : 2;
5364 AddrIdx = 4;
5365 } else {
5366 DMask = Is64Bit ? 0x3 : 0x1;
5367 NumVDataDwords = Is64Bit ? 2 : 1;
5368 AddrIdx = 3;
5370 } else {
5371 unsigned DMaskIdx = BaseOpcode->Store ? 3 : isa<MemSDNode>(Op) ? 2 : 1;
5372 auto DMaskConst = cast<ConstantSDNode>(Op.getOperand(DMaskIdx));
5373 DMask = DMaskConst->getZExtValue();
5374 DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
5376 if (BaseOpcode->Store) {
5377 VData = Op.getOperand(2);
5379 MVT StoreVT = VData.getSimpleValueType();
5380 if (StoreVT.getScalarType() == MVT::f16) {
5381 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
5382 return Op; // D16 is unsupported for this instruction
5384 IsD16 = true;
5385 VData = handleD16VData(VData, DAG);
5388 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
5389 } else {
5390 // Work out the num dwords based on the dmask popcount and underlying type
5391 // and whether packing is supported.
5392 MVT LoadVT = ResultTypes[0].getSimpleVT();
5393 if (LoadVT.getScalarType() == MVT::f16) {
5394 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
5395 return Op; // D16 is unsupported for this instruction
5397 IsD16 = true;
5400 // Confirm that the return type is large enough for the dmask specified
5401 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
5402 (!LoadVT.isVector() && DMaskLanes > 1))
5403 return Op;
5405 if (IsD16 && !Subtarget->hasUnpackedD16VMem())
5406 NumVDataDwords = (DMaskLanes + 1) / 2;
5407 else
5408 NumVDataDwords = DMaskLanes;
5410 AdjustRetType = true;
5413 AddrIdx = DMaskIdx + 1;
5416 unsigned NumGradients = BaseOpcode->Gradients ? DimInfo->NumGradients : 0;
5417 unsigned NumCoords = BaseOpcode->Coordinates ? DimInfo->NumCoords : 0;
5418 unsigned NumLCM = BaseOpcode->LodOrClampOrMip ? 1 : 0;
5419 unsigned NumVAddrs = BaseOpcode->NumExtraArgs + NumGradients +
5420 NumCoords + NumLCM;
5421 unsigned NumMIVAddrs = NumVAddrs;
5423 SmallVector<SDValue, 4> VAddrs;
5425 // Optimize _L to _LZ when _L is zero
5426 if (LZMappingInfo) {
5427 if (auto ConstantLod =
5428 dyn_cast<ConstantFPSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
5429 if (ConstantLod->isZero() || ConstantLod->isNegative()) {
5430 IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l
5431 NumMIVAddrs--; // remove 'lod'
5436 // Optimize _mip away, when 'lod' is zero
5437 if (MIPMappingInfo) {
5438 if (auto ConstantLod =
5439 dyn_cast<ConstantSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
5440 if (ConstantLod->isNullValue()) {
5441 IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip
5442 NumMIVAddrs--; // remove 'lod'
5447 // Check for 16 bit addresses and pack if true.
5448 unsigned DimIdx = AddrIdx + BaseOpcode->NumExtraArgs;
5449 MVT VAddrVT = Op.getOperand(DimIdx).getSimpleValueType();
5450 const MVT VAddrScalarVT = VAddrVT.getScalarType();
5451 if (((VAddrScalarVT == MVT::f16) || (VAddrScalarVT == MVT::i16)) &&
5452 ST->hasFeature(AMDGPU::FeatureR128A16)) {
5453 IsA16 = true;
5454 const MVT VectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
5455 for (unsigned i = AddrIdx; i < (AddrIdx + NumMIVAddrs); ++i) {
5456 SDValue AddrLo, AddrHi;
5457 // Push back extra arguments.
5458 if (i < DimIdx) {
5459 AddrLo = Op.getOperand(i);
5460 } else {
5461 AddrLo = Op.getOperand(i);
5462 // Dz/dh, dz/dv and the last odd coord are packed with undef. Also,
5463 // in 1D, derivatives dx/dh and dx/dv are packed with undef.
5464 if (((i + 1) >= (AddrIdx + NumMIVAddrs)) ||
5465 ((NumGradients / 2) % 2 == 1 &&
5466 (i == DimIdx + (NumGradients / 2) - 1 ||
5467 i == DimIdx + NumGradients - 1))) {
5468 AddrHi = DAG.getUNDEF(MVT::f16);
5469 } else {
5470 AddrHi = Op.getOperand(i + 1);
5471 i++;
5473 AddrLo = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VectorVT,
5474 {AddrLo, AddrHi});
5475 AddrLo = DAG.getBitcast(MVT::i32, AddrLo);
5477 VAddrs.push_back(AddrLo);
5479 } else {
5480 for (unsigned i = 0; i < NumMIVAddrs; ++i)
5481 VAddrs.push_back(Op.getOperand(AddrIdx + i));
5484 // If the register allocator cannot place the address registers contiguously
5485 // without introducing moves, then using the non-sequential address encoding
5486 // is always preferable, since it saves VALU instructions and is usually a
5487 // wash in terms of code size or even better.
5489 // However, we currently have no way of hinting to the register allocator that
5490 // MIMG addresses should be placed contiguously when it is possible to do so,
5491 // so force non-NSA for the common 2-address case as a heuristic.
5493 // SIShrinkInstructions will convert NSA encodings to non-NSA after register
5494 // allocation when possible.
5495 bool UseNSA =
5496 ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3;
5497 SDValue VAddr;
5498 if (!UseNSA)
5499 VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
5501 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
5502 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
5503 unsigned CtrlIdx; // Index of texfailctrl argument
5504 SDValue Unorm;
5505 if (!BaseOpcode->Sampler) {
5506 Unorm = True;
5507 CtrlIdx = AddrIdx + NumVAddrs + 1;
5508 } else {
5509 auto UnormConst =
5510 cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2));
5512 Unorm = UnormConst->getZExtValue() ? True : False;
5513 CtrlIdx = AddrIdx + NumVAddrs + 3;
5516 SDValue TFE;
5517 SDValue LWE;
5518 SDValue TexFail = Op.getOperand(CtrlIdx);
5519 bool IsTexFail = false;
5520 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
5521 return Op;
5523 if (IsTexFail) {
5524 if (!DMaskLanes) {
5525 // Expecting to get an error flag since TFC is on - and dmask is 0
5526 // Force dmask to be at least 1 otherwise the instruction will fail
5527 DMask = 0x1;
5528 DMaskLanes = 1;
5529 NumVDataDwords = 1;
5531 NumVDataDwords += 1;
5532 AdjustRetType = true;
5535 // Has something earlier tagged that the return type needs adjusting
5536 // This happens if the instruction is a load or has set TexFailCtrl flags
5537 if (AdjustRetType) {
5538 // NumVDataDwords reflects the true number of dwords required in the return type
5539 if (DMaskLanes == 0 && !BaseOpcode->Store) {
5540 // This is a no-op load. This can be eliminated
5541 SDValue Undef = DAG.getUNDEF(Op.getValueType());
5542 if (isa<MemSDNode>(Op))
5543 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
5544 return Undef;
5547 EVT NewVT = NumVDataDwords > 1 ?
5548 EVT::getVectorVT(*DAG.getContext(), MVT::f32, NumVDataDwords)
5549 : MVT::f32;
5551 ResultTypes[0] = NewVT;
5552 if (ResultTypes.size() == 3) {
5553 // Original result was aggregate type used for TexFailCtrl results
5554 // The actual instruction returns as a vector type which has now been
5555 // created. Remove the aggregate result.
5556 ResultTypes.erase(&ResultTypes[1]);
5560 SDValue GLC;
5561 SDValue SLC;
5562 SDValue DLC;
5563 if (BaseOpcode->Atomic) {
5564 GLC = True; // TODO no-return optimization
5565 if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC,
5566 IsGFX10 ? &DLC : nullptr))
5567 return Op;
5568 } else {
5569 if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC,
5570 IsGFX10 ? &DLC : nullptr))
5571 return Op;
5574 SmallVector<SDValue, 26> Ops;
5575 if (BaseOpcode->Store || BaseOpcode->Atomic)
5576 Ops.push_back(VData); // vdata
5577 if (UseNSA) {
5578 for (const SDValue &Addr : VAddrs)
5579 Ops.push_back(Addr);
5580 } else {
5581 Ops.push_back(VAddr);
5583 Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc
5584 if (BaseOpcode->Sampler)
5585 Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler
5586 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
5587 if (IsGFX10)
5588 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
5589 Ops.push_back(Unorm);
5590 if (IsGFX10)
5591 Ops.push_back(DLC);
5592 Ops.push_back(GLC);
5593 Ops.push_back(SLC);
5594 Ops.push_back(IsA16 && // a16 or r128
5595 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
5596 Ops.push_back(TFE); // tfe
5597 Ops.push_back(LWE); // lwe
5598 if (!IsGFX10)
5599 Ops.push_back(DimInfo->DA ? True : False);
5600 if (BaseOpcode->HasD16)
5601 Ops.push_back(IsD16 ? True : False);
5602 if (isa<MemSDNode>(Op))
5603 Ops.push_back(Op.getOperand(0)); // chain
5605 int NumVAddrDwords =
5606 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
5607 int Opcode = -1;
5609 if (IsGFX10) {
5610 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
5611 UseNSA ? AMDGPU::MIMGEncGfx10NSA
5612 : AMDGPU::MIMGEncGfx10Default,
5613 NumVDataDwords, NumVAddrDwords);
5614 } else {
5615 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5616 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
5617 NumVDataDwords, NumVAddrDwords);
5618 if (Opcode == -1)
5619 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
5620 NumVDataDwords, NumVAddrDwords);
5622 assert(Opcode != -1);
5624 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
5625 if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
5626 MachineMemOperand *MemRef = MemOp->getMemOperand();
5627 DAG.setNodeMemRefs(NewNode, {MemRef});
5630 if (BaseOpcode->AtomicX2) {
5631 SmallVector<SDValue, 1> Elt;
5632 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
5633 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
5634 } else if (!BaseOpcode->Store) {
5635 return constructRetValue(DAG, NewNode,
5636 OrigResultTypes, IsTexFail,
5637 Subtarget->hasUnpackedD16VMem(), IsD16,
5638 DMaskLanes, NumVDataDwords, DL,
5639 *DAG.getContext());
5642 return SDValue(NewNode, 0);
5645 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
5646 SDValue Offset, SDValue GLC, SDValue DLC,
5647 SelectionDAG &DAG) const {
5648 MachineFunction &MF = DAG.getMachineFunction();
5649 MachineMemOperand *MMO = MF.getMachineMemOperand(
5650 MachinePointerInfo(),
5651 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
5652 MachineMemOperand::MOInvariant,
5653 VT.getStoreSize(), VT.getStoreSize());
5655 if (!Offset->isDivergent()) {
5656 SDValue Ops[] = {
5657 Rsrc,
5658 Offset, // Offset
5659 GLC,
5660 DLC,
5662 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
5663 DAG.getVTList(VT), Ops, VT, MMO);
5666 // We have a divergent offset. Emit a MUBUF buffer load instead. We can
5667 // assume that the buffer is unswizzled.
5668 SmallVector<SDValue, 4> Loads;
5669 unsigned NumLoads = 1;
5670 MVT LoadVT = VT.getSimpleVT();
5671 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
5672 assert((LoadVT.getScalarType() == MVT::i32 ||
5673 LoadVT.getScalarType() == MVT::f32) &&
5674 isPowerOf2_32(NumElts));
5676 if (NumElts == 8 || NumElts == 16) {
5677 NumLoads = NumElts == 16 ? 4 : 2;
5678 LoadVT = MVT::v4i32;
5681 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
5682 unsigned CachePolicy = cast<ConstantSDNode>(GLC)->getZExtValue();
5683 SDValue Ops[] = {
5684 DAG.getEntryNode(), // Chain
5685 Rsrc, // rsrc
5686 DAG.getConstant(0, DL, MVT::i32), // vindex
5687 {}, // voffset
5688 {}, // soffset
5689 {}, // offset
5690 DAG.getTargetConstant(CachePolicy, DL, MVT::i32), // cachepolicy
5691 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
5694 // Use the alignment to ensure that the required offsets will fit into the
5695 // immediate offsets.
5696 setBufferOffsets(Offset, DAG, &Ops[3], NumLoads > 1 ? 16 * NumLoads : 4);
5698 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
5699 for (unsigned i = 0; i < NumLoads; ++i) {
5700 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
5701 Loads.push_back(DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList,
5702 Ops, LoadVT, MMO));
5705 if (VT == MVT::v8i32 || VT == MVT::v16i32)
5706 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
5708 return Loads[0];
5711 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5712 SelectionDAG &DAG) const {
5713 MachineFunction &MF = DAG.getMachineFunction();
5714 auto MFI = MF.getInfo<SIMachineFunctionInfo>();
5716 EVT VT = Op.getValueType();
5717 SDLoc DL(Op);
5718 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5720 // TODO: Should this propagate fast-math-flags?
5722 switch (IntrinsicID) {
5723 case Intrinsic::amdgcn_implicit_buffer_ptr: {
5724 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
5725 return emitNonHSAIntrinsicError(DAG, DL, VT);
5726 return getPreloadedValue(DAG, *MFI, VT,
5727 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
5729 case Intrinsic::amdgcn_dispatch_ptr:
5730 case Intrinsic::amdgcn_queue_ptr: {
5731 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
5732 DiagnosticInfoUnsupported BadIntrin(
5733 MF.getFunction(), "unsupported hsa intrinsic without hsa target",
5734 DL.getDebugLoc());
5735 DAG.getContext()->diagnose(BadIntrin);
5736 return DAG.getUNDEF(VT);
5739 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
5740 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
5741 return getPreloadedValue(DAG, *MFI, VT, RegID);
5743 case Intrinsic::amdgcn_implicitarg_ptr: {
5744 if (MFI->isEntryFunction())
5745 return getImplicitArgPtr(DAG, DL);
5746 return getPreloadedValue(DAG, *MFI, VT,
5747 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
5749 case Intrinsic::amdgcn_kernarg_segment_ptr: {
5750 return getPreloadedValue(DAG, *MFI, VT,
5751 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
5753 case Intrinsic::amdgcn_dispatch_id: {
5754 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
5756 case Intrinsic::amdgcn_rcp:
5757 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
5758 case Intrinsic::amdgcn_rsq:
5759 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
5760 case Intrinsic::amdgcn_rsq_legacy:
5761 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5762 return emitRemovedIntrinsicError(DAG, DL, VT);
5764 return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
5765 case Intrinsic::amdgcn_rcp_legacy:
5766 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5767 return emitRemovedIntrinsicError(DAG, DL, VT);
5768 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
5769 case Intrinsic::amdgcn_rsq_clamp: {
5770 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
5771 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
5773 Type *Type = VT.getTypeForEVT(*DAG.getContext());
5774 APFloat Max = APFloat::getLargest(Type->getFltSemantics());
5775 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
5777 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
5778 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
5779 DAG.getConstantFP(Max, DL, VT));
5780 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
5781 DAG.getConstantFP(Min, DL, VT));
5783 case Intrinsic::r600_read_ngroups_x:
5784 if (Subtarget->isAmdHsaOS())
5785 return emitNonHSAIntrinsicError(DAG, DL, VT);
5787 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5788 SI::KernelInputOffsets::NGROUPS_X, 4, false);
5789 case Intrinsic::r600_read_ngroups_y:
5790 if (Subtarget->isAmdHsaOS())
5791 return emitNonHSAIntrinsicError(DAG, DL, VT);
5793 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5794 SI::KernelInputOffsets::NGROUPS_Y, 4, false);
5795 case Intrinsic::r600_read_ngroups_z:
5796 if (Subtarget->isAmdHsaOS())
5797 return emitNonHSAIntrinsicError(DAG, DL, VT);
5799 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5800 SI::KernelInputOffsets::NGROUPS_Z, 4, false);
5801 case Intrinsic::r600_read_global_size_x:
5802 if (Subtarget->isAmdHsaOS())
5803 return emitNonHSAIntrinsicError(DAG, DL, VT);
5805 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5806 SI::KernelInputOffsets::GLOBAL_SIZE_X, 4, false);
5807 case Intrinsic::r600_read_global_size_y:
5808 if (Subtarget->isAmdHsaOS())
5809 return emitNonHSAIntrinsicError(DAG, DL, VT);
5811 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5812 SI::KernelInputOffsets::GLOBAL_SIZE_Y, 4, false);
5813 case Intrinsic::r600_read_global_size_z:
5814 if (Subtarget->isAmdHsaOS())
5815 return emitNonHSAIntrinsicError(DAG, DL, VT);
5817 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5818 SI::KernelInputOffsets::GLOBAL_SIZE_Z, 4, false);
5819 case Intrinsic::r600_read_local_size_x:
5820 if (Subtarget->isAmdHsaOS())
5821 return emitNonHSAIntrinsicError(DAG, DL, VT);
5823 return lowerImplicitZextParam(DAG, Op, MVT::i16,
5824 SI::KernelInputOffsets::LOCAL_SIZE_X);
5825 case Intrinsic::r600_read_local_size_y:
5826 if (Subtarget->isAmdHsaOS())
5827 return emitNonHSAIntrinsicError(DAG, DL, VT);
5829 return lowerImplicitZextParam(DAG, Op, MVT::i16,
5830 SI::KernelInputOffsets::LOCAL_SIZE_Y);
5831 case Intrinsic::r600_read_local_size_z:
5832 if (Subtarget->isAmdHsaOS())
5833 return emitNonHSAIntrinsicError(DAG, DL, VT);
5835 return lowerImplicitZextParam(DAG, Op, MVT::i16,
5836 SI::KernelInputOffsets::LOCAL_SIZE_Z);
5837 case Intrinsic::amdgcn_workgroup_id_x:
5838 case Intrinsic::r600_read_tgid_x:
5839 return getPreloadedValue(DAG, *MFI, VT,
5840 AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
5841 case Intrinsic::amdgcn_workgroup_id_y:
5842 case Intrinsic::r600_read_tgid_y:
5843 return getPreloadedValue(DAG, *MFI, VT,
5844 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
5845 case Intrinsic::amdgcn_workgroup_id_z:
5846 case Intrinsic::r600_read_tgid_z:
5847 return getPreloadedValue(DAG, *MFI, VT,
5848 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
5849 case Intrinsic::amdgcn_workitem_id_x:
5850 case Intrinsic::r600_read_tidig_x:
5851 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5852 SDLoc(DAG.getEntryNode()),
5853 MFI->getArgInfo().WorkItemIDX);
5854 case Intrinsic::amdgcn_workitem_id_y:
5855 case Intrinsic::r600_read_tidig_y:
5856 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5857 SDLoc(DAG.getEntryNode()),
5858 MFI->getArgInfo().WorkItemIDY);
5859 case Intrinsic::amdgcn_workitem_id_z:
5860 case Intrinsic::r600_read_tidig_z:
5861 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5862 SDLoc(DAG.getEntryNode()),
5863 MFI->getArgInfo().WorkItemIDZ);
5864 case Intrinsic::amdgcn_wavefrontsize:
5865 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
5866 SDLoc(Op), MVT::i32);
5867 case Intrinsic::amdgcn_s_buffer_load: {
5868 bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
5869 SDValue GLC;
5870 SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1);
5871 if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr,
5872 IsGFX10 ? &DLC : nullptr))
5873 return Op;
5874 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), GLC, DLC,
5875 DAG);
5877 case Intrinsic::amdgcn_fdiv_fast:
5878 return lowerFDIV_FAST(Op, DAG);
5879 case Intrinsic::amdgcn_interp_p1_f16: {
5880 SDValue ToM0 = DAG.getCopyToReg(DAG.getEntryNode(), DL, AMDGPU::M0,
5881 Op.getOperand(5), SDValue());
5882 if (getSubtarget()->getLDSBankCount() == 16) {
5883 // 16 bank LDS
5885 // FIXME: This implicitly will insert a second CopyToReg to M0.
5886 SDValue S = DAG.getNode(
5887 ISD::INTRINSIC_WO_CHAIN, DL, MVT::f32,
5888 DAG.getTargetConstant(Intrinsic::amdgcn_interp_mov, DL, MVT::i32),
5889 DAG.getConstant(2, DL, MVT::i32), // P0
5890 Op.getOperand(2), // Attrchan
5891 Op.getOperand(3), // Attr
5892 Op.getOperand(5)); // m0
5894 SDValue Ops[] = {
5895 Op.getOperand(1), // Src0
5896 Op.getOperand(2), // Attrchan
5897 Op.getOperand(3), // Attr
5898 DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
5899 S, // Src2 - holds two f16 values selected by high
5900 DAG.getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
5901 Op.getOperand(4), // high
5902 DAG.getTargetConstant(0, DL, MVT::i1), // $clamp
5903 DAG.getTargetConstant(0, DL, MVT::i32) // $omod
5905 return DAG.getNode(AMDGPUISD::INTERP_P1LV_F16, DL, MVT::f32, Ops);
5906 } else {
5907 // 32 bank LDS
5908 SDValue Ops[] = {
5909 Op.getOperand(1), // Src0
5910 Op.getOperand(2), // Attrchan
5911 Op.getOperand(3), // Attr
5912 DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
5913 Op.getOperand(4), // high
5914 DAG.getTargetConstant(0, DL, MVT::i1), // $clamp
5915 DAG.getTargetConstant(0, DL, MVT::i32), // $omod
5916 ToM0.getValue(1)
5918 return DAG.getNode(AMDGPUISD::INTERP_P1LL_F16, DL, MVT::f32, Ops);
5921 case Intrinsic::amdgcn_interp_p2_f16: {
5922 SDValue ToM0 = DAG.getCopyToReg(DAG.getEntryNode(), DL, AMDGPU::M0,
5923 Op.getOperand(6), SDValue());
5924 SDValue Ops[] = {
5925 Op.getOperand(2), // Src0
5926 Op.getOperand(3), // Attrchan
5927 Op.getOperand(4), // Attr
5928 DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
5929 Op.getOperand(1), // Src2
5930 DAG.getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
5931 Op.getOperand(5), // high
5932 DAG.getTargetConstant(0, DL, MVT::i1), // $clamp
5933 ToM0.getValue(1)
5935 return DAG.getNode(AMDGPUISD::INTERP_P2_F16, DL, MVT::f16, Ops);
5937 case Intrinsic::amdgcn_sin:
5938 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
5940 case Intrinsic::amdgcn_cos:
5941 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
5943 case Intrinsic::amdgcn_mul_u24:
5944 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
5945 case Intrinsic::amdgcn_mul_i24:
5946 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
5948 case Intrinsic::amdgcn_log_clamp: {
5949 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
5950 return SDValue();
5952 DiagnosticInfoUnsupported BadIntrin(
5953 MF.getFunction(), "intrinsic not supported on subtarget",
5954 DL.getDebugLoc());
5955 DAG.getContext()->diagnose(BadIntrin);
5956 return DAG.getUNDEF(VT);
5958 case Intrinsic::amdgcn_ldexp:
5959 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
5960 Op.getOperand(1), Op.getOperand(2));
5962 case Intrinsic::amdgcn_fract:
5963 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
5965 case Intrinsic::amdgcn_class:
5966 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
5967 Op.getOperand(1), Op.getOperand(2));
5968 case Intrinsic::amdgcn_div_fmas:
5969 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
5970 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
5971 Op.getOperand(4));
5973 case Intrinsic::amdgcn_div_fixup:
5974 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
5975 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5977 case Intrinsic::amdgcn_trig_preop:
5978 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
5979 Op.getOperand(1), Op.getOperand(2));
5980 case Intrinsic::amdgcn_div_scale: {
5981 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
5983 // Translate to the operands expected by the machine instruction. The
5984 // first parameter must be the same as the first instruction.
5985 SDValue Numerator = Op.getOperand(1);
5986 SDValue Denominator = Op.getOperand(2);
5988 // Note this order is opposite of the machine instruction's operations,
5989 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
5990 // intrinsic has the numerator as the first operand to match a normal
5991 // division operation.
5993 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
5995 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
5996 Denominator, Numerator);
5998 case Intrinsic::amdgcn_icmp: {
5999 // There is a Pat that handles this variant, so return it as-is.
6000 if (Op.getOperand(1).getValueType() == MVT::i1 &&
6001 Op.getConstantOperandVal(2) == 0 &&
6002 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6003 return Op;
6004 return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6006 case Intrinsic::amdgcn_fcmp: {
6007 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6009 case Intrinsic::amdgcn_fmed3:
6010 return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6011 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6012 case Intrinsic::amdgcn_fdot2:
6013 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6014 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6015 Op.getOperand(4));
6016 case Intrinsic::amdgcn_fmul_legacy:
6017 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6018 Op.getOperand(1), Op.getOperand(2));
6019 case Intrinsic::amdgcn_sffbh:
6020 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6021 case Intrinsic::amdgcn_sbfe:
6022 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6023 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6024 case Intrinsic::amdgcn_ubfe:
6025 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6026 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6027 case Intrinsic::amdgcn_cvt_pkrtz:
6028 case Intrinsic::amdgcn_cvt_pknorm_i16:
6029 case Intrinsic::amdgcn_cvt_pknorm_u16:
6030 case Intrinsic::amdgcn_cvt_pk_i16:
6031 case Intrinsic::amdgcn_cvt_pk_u16: {
6032 // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6033 EVT VT = Op.getValueType();
6034 unsigned Opcode;
6036 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6037 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6038 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6039 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6040 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6041 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6042 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6043 Opcode = AMDGPUISD::CVT_PK_I16_I32;
6044 else
6045 Opcode = AMDGPUISD::CVT_PK_U16_U32;
6047 if (isTypeLegal(VT))
6048 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6050 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6051 Op.getOperand(1), Op.getOperand(2));
6052 return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6054 case Intrinsic::amdgcn_fmad_ftz:
6055 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6056 Op.getOperand(2), Op.getOperand(3));
6058 case Intrinsic::amdgcn_if_break:
6059 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6060 Op->getOperand(1), Op->getOperand(2)), 0);
6062 case Intrinsic::amdgcn_groupstaticsize: {
6063 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6064 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6065 return Op;
6067 const Module *M = MF.getFunction().getParent();
6068 const GlobalValue *GV =
6069 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6070 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6071 SIInstrInfo::MO_ABS32_LO);
6072 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6074 case Intrinsic::amdgcn_is_shared:
6075 case Intrinsic::amdgcn_is_private: {
6076 SDLoc SL(Op);
6077 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6078 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6079 SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6080 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6081 Op.getOperand(1));
6083 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6084 DAG.getConstant(1, SL, MVT::i32));
6085 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6087 default:
6088 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6089 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6090 return lowerImage(Op, ImageDimIntr, DAG);
6092 return Op;
6096 // This function computes an appropriate offset to pass to
6097 // MachineMemOperand::setOffset() based on the offset inputs to
6098 // an intrinsic. If any of the offsets are non-contstant or
6099 // if VIndex is non-zero then this function returns 0. Otherwise,
6100 // it returns the sum of VOffset, SOffset, and Offset.
6101 static unsigned getBufferOffsetForMMO(SDValue VOffset,
6102 SDValue SOffset,
6103 SDValue Offset,
6104 SDValue VIndex = SDValue()) {
6106 if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
6107 !isa<ConstantSDNode>(Offset))
6108 return 0;
6110 if (VIndex) {
6111 if (!isa<ConstantSDNode>(VIndex) || !cast<ConstantSDNode>(VIndex)->isNullValue())
6112 return 0;
6115 return cast<ConstantSDNode>(VOffset)->getSExtValue() +
6116 cast<ConstantSDNode>(SOffset)->getSExtValue() +
6117 cast<ConstantSDNode>(Offset)->getSExtValue();
6120 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
6121 SelectionDAG &DAG) const {
6122 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6123 SDLoc DL(Op);
6125 switch (IntrID) {
6126 case Intrinsic::amdgcn_ds_ordered_add:
6127 case Intrinsic::amdgcn_ds_ordered_swap: {
6128 MemSDNode *M = cast<MemSDNode>(Op);
6129 SDValue Chain = M->getOperand(0);
6130 SDValue M0 = M->getOperand(2);
6131 SDValue Value = M->getOperand(3);
6132 unsigned IndexOperand = M->getConstantOperandVal(7);
6133 unsigned WaveRelease = M->getConstantOperandVal(8);
6134 unsigned WaveDone = M->getConstantOperandVal(9);
6135 unsigned ShaderType;
6136 unsigned Instruction;
6138 unsigned OrderedCountIndex = IndexOperand & 0x3f;
6139 IndexOperand &= ~0x3f;
6140 unsigned CountDw = 0;
6142 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
6143 CountDw = (IndexOperand >> 24) & 0xf;
6144 IndexOperand &= ~(0xf << 24);
6146 if (CountDw < 1 || CountDw > 4) {
6147 report_fatal_error(
6148 "ds_ordered_count: dword count must be between 1 and 4");
6152 if (IndexOperand)
6153 report_fatal_error("ds_ordered_count: bad index operand");
6155 switch (IntrID) {
6156 case Intrinsic::amdgcn_ds_ordered_add:
6157 Instruction = 0;
6158 break;
6159 case Intrinsic::amdgcn_ds_ordered_swap:
6160 Instruction = 1;
6161 break;
6164 if (WaveDone && !WaveRelease)
6165 report_fatal_error("ds_ordered_count: wave_done requires wave_release");
6167 switch (DAG.getMachineFunction().getFunction().getCallingConv()) {
6168 case CallingConv::AMDGPU_CS:
6169 case CallingConv::AMDGPU_KERNEL:
6170 ShaderType = 0;
6171 break;
6172 case CallingConv::AMDGPU_PS:
6173 ShaderType = 1;
6174 break;
6175 case CallingConv::AMDGPU_VS:
6176 ShaderType = 2;
6177 break;
6178 case CallingConv::AMDGPU_GS:
6179 ShaderType = 3;
6180 break;
6181 default:
6182 report_fatal_error("ds_ordered_count unsupported for this calling conv");
6185 unsigned Offset0 = OrderedCountIndex << 2;
6186 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
6187 (Instruction << 4);
6189 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
6190 Offset1 |= (CountDw - 1) << 6;
6192 unsigned Offset = Offset0 | (Offset1 << 8);
6194 SDValue Ops[] = {
6195 Chain,
6196 Value,
6197 DAG.getTargetConstant(Offset, DL, MVT::i16),
6198 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
6200 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
6201 M->getVTList(), Ops, M->getMemoryVT(),
6202 M->getMemOperand());
6204 case Intrinsic::amdgcn_ds_fadd: {
6205 MemSDNode *M = cast<MemSDNode>(Op);
6206 unsigned Opc;
6207 switch (IntrID) {
6208 case Intrinsic::amdgcn_ds_fadd:
6209 Opc = ISD::ATOMIC_LOAD_FADD;
6210 break;
6213 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
6214 M->getOperand(0), M->getOperand(2), M->getOperand(3),
6215 M->getMemOperand());
6217 case Intrinsic::amdgcn_atomic_inc:
6218 case Intrinsic::amdgcn_atomic_dec:
6219 case Intrinsic::amdgcn_ds_fmin:
6220 case Intrinsic::amdgcn_ds_fmax: {
6221 MemSDNode *M = cast<MemSDNode>(Op);
6222 unsigned Opc;
6223 switch (IntrID) {
6224 case Intrinsic::amdgcn_atomic_inc:
6225 Opc = AMDGPUISD::ATOMIC_INC;
6226 break;
6227 case Intrinsic::amdgcn_atomic_dec:
6228 Opc = AMDGPUISD::ATOMIC_DEC;
6229 break;
6230 case Intrinsic::amdgcn_ds_fmin:
6231 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
6232 break;
6233 case Intrinsic::amdgcn_ds_fmax:
6234 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
6235 break;
6236 default:
6237 llvm_unreachable("Unknown intrinsic!");
6239 SDValue Ops[] = {
6240 M->getOperand(0), // Chain
6241 M->getOperand(2), // Ptr
6242 M->getOperand(3) // Value
6245 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
6246 M->getMemoryVT(), M->getMemOperand());
6248 case Intrinsic::amdgcn_buffer_load:
6249 case Intrinsic::amdgcn_buffer_load_format: {
6250 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
6251 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6252 unsigned IdxEn = 1;
6253 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6254 IdxEn = Idx->getZExtValue() != 0;
6255 SDValue Ops[] = {
6256 Op.getOperand(0), // Chain
6257 Op.getOperand(2), // rsrc
6258 Op.getOperand(3), // vindex
6259 SDValue(), // voffset -- will be set by setBufferOffsets
6260 SDValue(), // soffset -- will be set by setBufferOffsets
6261 SDValue(), // offset -- will be set by setBufferOffsets
6262 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6263 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6266 unsigned Offset = setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
6267 // We don't know the offset if vindex is non-zero, so clear it.
6268 if (IdxEn)
6269 Offset = 0;
6271 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
6272 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
6274 EVT VT = Op.getValueType();
6275 EVT IntVT = VT.changeTypeToInteger();
6276 auto *M = cast<MemSDNode>(Op);
6277 M->getMemOperand()->setOffset(Offset);
6278 EVT LoadVT = Op.getValueType();
6280 if (LoadVT.getScalarType() == MVT::f16)
6281 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
6282 M, DAG, Ops);
6284 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
6285 if (LoadVT.getScalarType() == MVT::i8 ||
6286 LoadVT.getScalarType() == MVT::i16)
6287 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
6289 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
6290 M->getMemOperand(), DAG);
6292 case Intrinsic::amdgcn_raw_buffer_load:
6293 case Intrinsic::amdgcn_raw_buffer_load_format: {
6294 const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
6296 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6297 SDValue Ops[] = {
6298 Op.getOperand(0), // Chain
6299 Op.getOperand(2), // rsrc
6300 DAG.getConstant(0, DL, MVT::i32), // vindex
6301 Offsets.first, // voffset
6302 Op.getOperand(4), // soffset
6303 Offsets.second, // offset
6304 Op.getOperand(5), // cachepolicy, swizzled buffer
6305 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6308 auto *M = cast<MemSDNode>(Op);
6309 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5]));
6310 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
6312 case Intrinsic::amdgcn_struct_buffer_load:
6313 case Intrinsic::amdgcn_struct_buffer_load_format: {
6314 const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
6316 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6317 SDValue Ops[] = {
6318 Op.getOperand(0), // Chain
6319 Op.getOperand(2), // rsrc
6320 Op.getOperand(3), // vindex
6321 Offsets.first, // voffset
6322 Op.getOperand(5), // soffset
6323 Offsets.second, // offset
6324 Op.getOperand(6), // cachepolicy, swizzled buffer
6325 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6328 auto *M = cast<MemSDNode>(Op);
6329 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5],
6330 Ops[2]));
6331 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
6333 case Intrinsic::amdgcn_tbuffer_load: {
6334 MemSDNode *M = cast<MemSDNode>(Op);
6335 EVT LoadVT = Op.getValueType();
6337 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6338 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
6339 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
6340 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
6341 unsigned IdxEn = 1;
6342 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6343 IdxEn = Idx->getZExtValue() != 0;
6344 SDValue Ops[] = {
6345 Op.getOperand(0), // Chain
6346 Op.getOperand(2), // rsrc
6347 Op.getOperand(3), // vindex
6348 Op.getOperand(4), // voffset
6349 Op.getOperand(5), // soffset
6350 Op.getOperand(6), // offset
6351 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
6352 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6353 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
6356 if (LoadVT.getScalarType() == MVT::f16)
6357 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6358 M, DAG, Ops);
6359 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6360 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6361 DAG);
6363 case Intrinsic::amdgcn_raw_tbuffer_load: {
6364 MemSDNode *M = cast<MemSDNode>(Op);
6365 EVT LoadVT = Op.getValueType();
6366 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6368 SDValue Ops[] = {
6369 Op.getOperand(0), // Chain
6370 Op.getOperand(2), // rsrc
6371 DAG.getConstant(0, DL, MVT::i32), // vindex
6372 Offsets.first, // voffset
6373 Op.getOperand(4), // soffset
6374 Offsets.second, // offset
6375 Op.getOperand(5), // format
6376 Op.getOperand(6), // cachepolicy, swizzled buffer
6377 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6380 if (LoadVT.getScalarType() == MVT::f16)
6381 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6382 M, DAG, Ops);
6383 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6384 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6385 DAG);
6387 case Intrinsic::amdgcn_struct_tbuffer_load: {
6388 MemSDNode *M = cast<MemSDNode>(Op);
6389 EVT LoadVT = Op.getValueType();
6390 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6392 SDValue Ops[] = {
6393 Op.getOperand(0), // Chain
6394 Op.getOperand(2), // rsrc
6395 Op.getOperand(3), // vindex
6396 Offsets.first, // voffset
6397 Op.getOperand(5), // soffset
6398 Offsets.second, // offset
6399 Op.getOperand(6), // format
6400 Op.getOperand(7), // cachepolicy, swizzled buffer
6401 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6404 if (LoadVT.getScalarType() == MVT::f16)
6405 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6406 M, DAG, Ops);
6407 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6408 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6409 DAG);
6411 case Intrinsic::amdgcn_buffer_atomic_swap:
6412 case Intrinsic::amdgcn_buffer_atomic_add:
6413 case Intrinsic::amdgcn_buffer_atomic_sub:
6414 case Intrinsic::amdgcn_buffer_atomic_smin:
6415 case Intrinsic::amdgcn_buffer_atomic_umin:
6416 case Intrinsic::amdgcn_buffer_atomic_smax:
6417 case Intrinsic::amdgcn_buffer_atomic_umax:
6418 case Intrinsic::amdgcn_buffer_atomic_and:
6419 case Intrinsic::amdgcn_buffer_atomic_or:
6420 case Intrinsic::amdgcn_buffer_atomic_xor: {
6421 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6422 unsigned IdxEn = 1;
6423 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6424 IdxEn = Idx->getZExtValue() != 0;
6425 SDValue Ops[] = {
6426 Op.getOperand(0), // Chain
6427 Op.getOperand(2), // vdata
6428 Op.getOperand(3), // rsrc
6429 Op.getOperand(4), // vindex
6430 SDValue(), // voffset -- will be set by setBufferOffsets
6431 SDValue(), // soffset -- will be set by setBufferOffsets
6432 SDValue(), // offset -- will be set by setBufferOffsets
6433 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
6434 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6436 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
6437 // We don't know the offset if vindex is non-zero, so clear it.
6438 if (IdxEn)
6439 Offset = 0;
6440 EVT VT = Op.getValueType();
6442 auto *M = cast<MemSDNode>(Op);
6443 M->getMemOperand()->setOffset(Offset);
6444 unsigned Opcode = 0;
6446 switch (IntrID) {
6447 case Intrinsic::amdgcn_buffer_atomic_swap:
6448 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6449 break;
6450 case Intrinsic::amdgcn_buffer_atomic_add:
6451 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6452 break;
6453 case Intrinsic::amdgcn_buffer_atomic_sub:
6454 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6455 break;
6456 case Intrinsic::amdgcn_buffer_atomic_smin:
6457 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6458 break;
6459 case Intrinsic::amdgcn_buffer_atomic_umin:
6460 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6461 break;
6462 case Intrinsic::amdgcn_buffer_atomic_smax:
6463 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6464 break;
6465 case Intrinsic::amdgcn_buffer_atomic_umax:
6466 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6467 break;
6468 case Intrinsic::amdgcn_buffer_atomic_and:
6469 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6470 break;
6471 case Intrinsic::amdgcn_buffer_atomic_or:
6472 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6473 break;
6474 case Intrinsic::amdgcn_buffer_atomic_xor:
6475 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6476 break;
6477 default:
6478 llvm_unreachable("unhandled atomic opcode");
6481 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6482 M->getMemOperand());
6484 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
6485 case Intrinsic::amdgcn_raw_buffer_atomic_add:
6486 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
6487 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
6488 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
6489 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
6490 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
6491 case Intrinsic::amdgcn_raw_buffer_atomic_and:
6492 case Intrinsic::amdgcn_raw_buffer_atomic_or:
6493 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
6494 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
6495 case Intrinsic::amdgcn_raw_buffer_atomic_dec: {
6496 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6497 SDValue Ops[] = {
6498 Op.getOperand(0), // Chain
6499 Op.getOperand(2), // vdata
6500 Op.getOperand(3), // rsrc
6501 DAG.getConstant(0, DL, MVT::i32), // vindex
6502 Offsets.first, // voffset
6503 Op.getOperand(5), // soffset
6504 Offsets.second, // offset
6505 Op.getOperand(6), // cachepolicy
6506 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6508 EVT VT = Op.getValueType();
6510 auto *M = cast<MemSDNode>(Op);
6511 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
6512 unsigned Opcode = 0;
6514 switch (IntrID) {
6515 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
6516 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6517 break;
6518 case Intrinsic::amdgcn_raw_buffer_atomic_add:
6519 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6520 break;
6521 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
6522 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6523 break;
6524 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
6525 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6526 break;
6527 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
6528 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6529 break;
6530 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
6531 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6532 break;
6533 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
6534 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6535 break;
6536 case Intrinsic::amdgcn_raw_buffer_atomic_and:
6537 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6538 break;
6539 case Intrinsic::amdgcn_raw_buffer_atomic_or:
6540 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6541 break;
6542 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
6543 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6544 break;
6545 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
6546 Opcode = AMDGPUISD::BUFFER_ATOMIC_INC;
6547 break;
6548 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
6549 Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC;
6550 break;
6551 default:
6552 llvm_unreachable("unhandled atomic opcode");
6555 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6556 M->getMemOperand());
6558 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
6559 case Intrinsic::amdgcn_struct_buffer_atomic_add:
6560 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
6561 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
6562 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
6563 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
6564 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
6565 case Intrinsic::amdgcn_struct_buffer_atomic_and:
6566 case Intrinsic::amdgcn_struct_buffer_atomic_or:
6567 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
6568 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
6569 case Intrinsic::amdgcn_struct_buffer_atomic_dec: {
6570 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6571 SDValue Ops[] = {
6572 Op.getOperand(0), // Chain
6573 Op.getOperand(2), // vdata
6574 Op.getOperand(3), // rsrc
6575 Op.getOperand(4), // vindex
6576 Offsets.first, // voffset
6577 Op.getOperand(6), // soffset
6578 Offsets.second, // offset
6579 Op.getOperand(7), // cachepolicy
6580 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6582 EVT VT = Op.getValueType();
6584 auto *M = cast<MemSDNode>(Op);
6585 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
6586 Ops[3]));
6587 unsigned Opcode = 0;
6589 switch (IntrID) {
6590 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
6591 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6592 break;
6593 case Intrinsic::amdgcn_struct_buffer_atomic_add:
6594 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6595 break;
6596 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
6597 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6598 break;
6599 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
6600 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6601 break;
6602 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
6603 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6604 break;
6605 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
6606 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6607 break;
6608 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
6609 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6610 break;
6611 case Intrinsic::amdgcn_struct_buffer_atomic_and:
6612 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6613 break;
6614 case Intrinsic::amdgcn_struct_buffer_atomic_or:
6615 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6616 break;
6617 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
6618 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6619 break;
6620 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
6621 Opcode = AMDGPUISD::BUFFER_ATOMIC_INC;
6622 break;
6623 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
6624 Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC;
6625 break;
6626 default:
6627 llvm_unreachable("unhandled atomic opcode");
6630 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6631 M->getMemOperand());
6633 case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
6634 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6635 unsigned IdxEn = 1;
6636 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5)))
6637 IdxEn = Idx->getZExtValue() != 0;
6638 SDValue Ops[] = {
6639 Op.getOperand(0), // Chain
6640 Op.getOperand(2), // src
6641 Op.getOperand(3), // cmp
6642 Op.getOperand(4), // rsrc
6643 Op.getOperand(5), // vindex
6644 SDValue(), // voffset -- will be set by setBufferOffsets
6645 SDValue(), // soffset -- will be set by setBufferOffsets
6646 SDValue(), // offset -- will be set by setBufferOffsets
6647 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
6648 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6650 unsigned Offset = setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
6651 // We don't know the offset if vindex is non-zero, so clear it.
6652 if (IdxEn)
6653 Offset = 0;
6654 EVT VT = Op.getValueType();
6655 auto *M = cast<MemSDNode>(Op);
6656 M->getMemOperand()->setOffset(Offset);
6658 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
6659 Op->getVTList(), Ops, VT, M->getMemOperand());
6661 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
6662 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6663 SDValue Ops[] = {
6664 Op.getOperand(0), // Chain
6665 Op.getOperand(2), // src
6666 Op.getOperand(3), // cmp
6667 Op.getOperand(4), // rsrc
6668 DAG.getConstant(0, DL, MVT::i32), // vindex
6669 Offsets.first, // voffset
6670 Op.getOperand(6), // soffset
6671 Offsets.second, // offset
6672 Op.getOperand(7), // cachepolicy
6673 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6675 EVT VT = Op.getValueType();
6676 auto *M = cast<MemSDNode>(Op);
6677 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7]));
6679 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
6680 Op->getVTList(), Ops, VT, M->getMemOperand());
6682 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
6683 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
6684 SDValue Ops[] = {
6685 Op.getOperand(0), // Chain
6686 Op.getOperand(2), // src
6687 Op.getOperand(3), // cmp
6688 Op.getOperand(4), // rsrc
6689 Op.getOperand(5), // vindex
6690 Offsets.first, // voffset
6691 Op.getOperand(7), // soffset
6692 Offsets.second, // offset
6693 Op.getOperand(8), // cachepolicy
6694 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6696 EVT VT = Op.getValueType();
6697 auto *M = cast<MemSDNode>(Op);
6698 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7],
6699 Ops[4]));
6701 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
6702 Op->getVTList(), Ops, VT, M->getMemOperand());
6705 default:
6706 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6707 AMDGPU::getImageDimIntrinsicInfo(IntrID))
6708 return lowerImage(Op, ImageDimIntr, DAG);
6710 return SDValue();
6714 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
6715 // dwordx4 if on SI.
6716 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
6717 SDVTList VTList,
6718 ArrayRef<SDValue> Ops, EVT MemVT,
6719 MachineMemOperand *MMO,
6720 SelectionDAG &DAG) const {
6721 EVT VT = VTList.VTs[0];
6722 EVT WidenedVT = VT;
6723 EVT WidenedMemVT = MemVT;
6724 if (!Subtarget->hasDwordx3LoadStores() &&
6725 (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
6726 WidenedVT = EVT::getVectorVT(*DAG.getContext(),
6727 WidenedVT.getVectorElementType(), 4);
6728 WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
6729 WidenedMemVT.getVectorElementType(), 4);
6730 MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
6733 assert(VTList.NumVTs == 2);
6734 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
6736 auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
6737 WidenedMemVT, MMO);
6738 if (WidenedVT != VT) {
6739 auto Extract = DAG.getNode(
6740 ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
6741 DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout())));
6742 NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
6744 return NewOp;
6747 SDValue SITargetLowering::handleD16VData(SDValue VData,
6748 SelectionDAG &DAG) const {
6749 EVT StoreVT = VData.getValueType();
6751 // No change for f16 and legal vector D16 types.
6752 if (!StoreVT.isVector())
6753 return VData;
6755 SDLoc DL(VData);
6756 assert((StoreVT.getVectorNumElements() != 3) && "Handle v3f16");
6758 if (Subtarget->hasUnpackedD16VMem()) {
6759 // We need to unpack the packed data to store.
6760 EVT IntStoreVT = StoreVT.changeTypeToInteger();
6761 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
6763 EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
6764 StoreVT.getVectorNumElements());
6765 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
6766 return DAG.UnrollVectorOp(ZExt.getNode());
6769 assert(isTypeLegal(StoreVT));
6770 return VData;
6773 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
6774 SelectionDAG &DAG) const {
6775 SDLoc DL(Op);
6776 SDValue Chain = Op.getOperand(0);
6777 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6778 MachineFunction &MF = DAG.getMachineFunction();
6780 switch (IntrinsicID) {
6781 case Intrinsic::amdgcn_exp: {
6782 const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
6783 const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
6784 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8));
6785 const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9));
6787 const SDValue Ops[] = {
6788 Chain,
6789 DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
6790 DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en
6791 Op.getOperand(4), // src0
6792 Op.getOperand(5), // src1
6793 Op.getOperand(6), // src2
6794 Op.getOperand(7), // src3
6795 DAG.getTargetConstant(0, DL, MVT::i1), // compr
6796 DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
6799 unsigned Opc = Done->isNullValue() ?
6800 AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
6801 return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
6803 case Intrinsic::amdgcn_exp_compr: {
6804 const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
6805 const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
6806 SDValue Src0 = Op.getOperand(4);
6807 SDValue Src1 = Op.getOperand(5);
6808 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
6809 const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7));
6811 SDValue Undef = DAG.getUNDEF(MVT::f32);
6812 const SDValue Ops[] = {
6813 Chain,
6814 DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
6815 DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en
6816 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0),
6817 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1),
6818 Undef, // src2
6819 Undef, // src3
6820 DAG.getTargetConstant(1, DL, MVT::i1), // compr
6821 DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
6824 unsigned Opc = Done->isNullValue() ?
6825 AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
6826 return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
6828 case Intrinsic::amdgcn_s_barrier: {
6829 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
6830 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
6831 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
6832 if (WGSize <= ST.getWavefrontSize())
6833 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
6834 Op.getOperand(0)), 0);
6836 return SDValue();
6838 case Intrinsic::amdgcn_tbuffer_store: {
6839 SDValue VData = Op.getOperand(2);
6840 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6841 if (IsD16)
6842 VData = handleD16VData(VData, DAG);
6843 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
6844 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
6845 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
6846 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
6847 unsigned IdxEn = 1;
6848 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6849 IdxEn = Idx->getZExtValue() != 0;
6850 SDValue Ops[] = {
6851 Chain,
6852 VData, // vdata
6853 Op.getOperand(3), // rsrc
6854 Op.getOperand(4), // vindex
6855 Op.getOperand(5), // voffset
6856 Op.getOperand(6), // soffset
6857 Op.getOperand(7), // offset
6858 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
6859 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6860 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idexen
6862 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
6863 AMDGPUISD::TBUFFER_STORE_FORMAT;
6864 MemSDNode *M = cast<MemSDNode>(Op);
6865 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6866 M->getMemoryVT(), M->getMemOperand());
6869 case Intrinsic::amdgcn_struct_tbuffer_store: {
6870 SDValue VData = Op.getOperand(2);
6871 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6872 if (IsD16)
6873 VData = handleD16VData(VData, DAG);
6874 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6875 SDValue Ops[] = {
6876 Chain,
6877 VData, // vdata
6878 Op.getOperand(3), // rsrc
6879 Op.getOperand(4), // vindex
6880 Offsets.first, // voffset
6881 Op.getOperand(6), // soffset
6882 Offsets.second, // offset
6883 Op.getOperand(7), // format
6884 Op.getOperand(8), // cachepolicy, swizzled buffer
6885 DAG.getTargetConstant(1, DL, MVT::i1), // idexen
6887 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
6888 AMDGPUISD::TBUFFER_STORE_FORMAT;
6889 MemSDNode *M = cast<MemSDNode>(Op);
6890 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6891 M->getMemoryVT(), M->getMemOperand());
6894 case Intrinsic::amdgcn_raw_tbuffer_store: {
6895 SDValue VData = Op.getOperand(2);
6896 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6897 if (IsD16)
6898 VData = handleD16VData(VData, DAG);
6899 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6900 SDValue Ops[] = {
6901 Chain,
6902 VData, // vdata
6903 Op.getOperand(3), // rsrc
6904 DAG.getConstant(0, DL, MVT::i32), // vindex
6905 Offsets.first, // voffset
6906 Op.getOperand(5), // soffset
6907 Offsets.second, // offset
6908 Op.getOperand(6), // format
6909 Op.getOperand(7), // cachepolicy, swizzled buffer
6910 DAG.getTargetConstant(0, DL, MVT::i1), // idexen
6912 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
6913 AMDGPUISD::TBUFFER_STORE_FORMAT;
6914 MemSDNode *M = cast<MemSDNode>(Op);
6915 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6916 M->getMemoryVT(), M->getMemOperand());
6919 case Intrinsic::amdgcn_buffer_store:
6920 case Intrinsic::amdgcn_buffer_store_format: {
6921 SDValue VData = Op.getOperand(2);
6922 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6923 if (IsD16)
6924 VData = handleD16VData(VData, DAG);
6925 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6926 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6927 unsigned IdxEn = 1;
6928 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6929 IdxEn = Idx->getZExtValue() != 0;
6930 SDValue Ops[] = {
6931 Chain,
6932 VData,
6933 Op.getOperand(3), // rsrc
6934 Op.getOperand(4), // vindex
6935 SDValue(), // voffset -- will be set by setBufferOffsets
6936 SDValue(), // soffset -- will be set by setBufferOffsets
6937 SDValue(), // offset -- will be set by setBufferOffsets
6938 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6939 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6941 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
6942 // We don't know the offset if vindex is non-zero, so clear it.
6943 if (IdxEn)
6944 Offset = 0;
6945 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
6946 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
6947 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
6948 MemSDNode *M = cast<MemSDNode>(Op);
6949 M->getMemOperand()->setOffset(Offset);
6951 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
6952 EVT VDataType = VData.getValueType().getScalarType();
6953 if (VDataType == MVT::i8 || VDataType == MVT::i16)
6954 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
6956 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6957 M->getMemoryVT(), M->getMemOperand());
6960 case Intrinsic::amdgcn_raw_buffer_store:
6961 case Intrinsic::amdgcn_raw_buffer_store_format: {
6962 const bool IsFormat =
6963 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
6965 SDValue VData = Op.getOperand(2);
6966 EVT VDataVT = VData.getValueType();
6967 EVT EltType = VDataVT.getScalarType();
6968 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
6969 if (IsD16)
6970 VData = handleD16VData(VData, DAG);
6972 if (!isTypeLegal(VDataVT)) {
6973 VData =
6974 DAG.getNode(ISD::BITCAST, DL,
6975 getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
6978 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6979 SDValue Ops[] = {
6980 Chain,
6981 VData,
6982 Op.getOperand(3), // rsrc
6983 DAG.getConstant(0, DL, MVT::i32), // vindex
6984 Offsets.first, // voffset
6985 Op.getOperand(5), // soffset
6986 Offsets.second, // offset
6987 Op.getOperand(6), // cachepolicy, swizzled buffer
6988 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6990 unsigned Opc =
6991 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
6992 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
6993 MemSDNode *M = cast<MemSDNode>(Op);
6994 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
6996 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
6997 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
6998 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
7000 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7001 M->getMemoryVT(), M->getMemOperand());
7004 case Intrinsic::amdgcn_struct_buffer_store:
7005 case Intrinsic::amdgcn_struct_buffer_store_format: {
7006 const bool IsFormat =
7007 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
7009 SDValue VData = Op.getOperand(2);
7010 EVT VDataVT = VData.getValueType();
7011 EVT EltType = VDataVT.getScalarType();
7012 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7014 if (IsD16)
7015 VData = handleD16VData(VData, DAG);
7017 if (!isTypeLegal(VDataVT)) {
7018 VData =
7019 DAG.getNode(ISD::BITCAST, DL,
7020 getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7023 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7024 SDValue Ops[] = {
7025 Chain,
7026 VData,
7027 Op.getOperand(3), // rsrc
7028 Op.getOperand(4), // vindex
7029 Offsets.first, // voffset
7030 Op.getOperand(6), // soffset
7031 Offsets.second, // offset
7032 Op.getOperand(7), // cachepolicy, swizzled buffer
7033 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7035 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
7036 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7037 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7038 MemSDNode *M = cast<MemSDNode>(Op);
7039 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
7040 Ops[3]));
7042 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7043 EVT VDataType = VData.getValueType().getScalarType();
7044 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7045 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7047 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7048 M->getMemoryVT(), M->getMemOperand());
7051 case Intrinsic::amdgcn_buffer_atomic_fadd: {
7052 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7053 unsigned IdxEn = 1;
7054 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7055 IdxEn = Idx->getZExtValue() != 0;
7056 SDValue Ops[] = {
7057 Chain,
7058 Op.getOperand(2), // vdata
7059 Op.getOperand(3), // rsrc
7060 Op.getOperand(4), // vindex
7061 SDValue(), // voffset -- will be set by setBufferOffsets
7062 SDValue(), // soffset -- will be set by setBufferOffsets
7063 SDValue(), // offset -- will be set by setBufferOffsets
7064 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7065 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7067 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7068 // We don't know the offset if vindex is non-zero, so clear it.
7069 if (IdxEn)
7070 Offset = 0;
7071 EVT VT = Op.getOperand(2).getValueType();
7073 auto *M = cast<MemSDNode>(Op);
7074 M->getMemOperand()->setOffset(Offset);
7075 unsigned Opcode = VT.isVector() ? AMDGPUISD::BUFFER_ATOMIC_PK_FADD
7076 : AMDGPUISD::BUFFER_ATOMIC_FADD;
7078 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7079 M->getMemOperand());
7082 case Intrinsic::amdgcn_global_atomic_fadd: {
7083 SDValue Ops[] = {
7084 Chain,
7085 Op.getOperand(2), // ptr
7086 Op.getOperand(3) // vdata
7088 EVT VT = Op.getOperand(3).getValueType();
7090 auto *M = cast<MemSDNode>(Op);
7091 unsigned Opcode = VT.isVector() ? AMDGPUISD::ATOMIC_PK_FADD
7092 : AMDGPUISD::ATOMIC_FADD;
7094 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7095 M->getMemOperand());
7098 case Intrinsic::amdgcn_end_cf:
7099 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
7100 Op->getOperand(2), Chain), 0);
7102 default: {
7103 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7104 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7105 return lowerImage(Op, ImageDimIntr, DAG);
7107 return Op;
7112 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
7113 // offset (the offset that is included in bounds checking and swizzling, to be
7114 // split between the instruction's voffset and immoffset fields) and soffset
7115 // (the offset that is excluded from bounds checking and swizzling, to go in
7116 // the instruction's soffset field). This function takes the first kind of
7117 // offset and figures out how to split it between voffset and immoffset.
7118 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
7119 SDValue Offset, SelectionDAG &DAG) const {
7120 SDLoc DL(Offset);
7121 const unsigned MaxImm = 4095;
7122 SDValue N0 = Offset;
7123 ConstantSDNode *C1 = nullptr;
7125 if ((C1 = dyn_cast<ConstantSDNode>(N0)))
7126 N0 = SDValue();
7127 else if (DAG.isBaseWithConstantOffset(N0)) {
7128 C1 = cast<ConstantSDNode>(N0.getOperand(1));
7129 N0 = N0.getOperand(0);
7132 if (C1) {
7133 unsigned ImmOffset = C1->getZExtValue();
7134 // If the immediate value is too big for the immoffset field, put the value
7135 // and -4096 into the immoffset field so that the value that is copied/added
7136 // for the voffset field is a multiple of 4096, and it stands more chance
7137 // of being CSEd with the copy/add for another similar load/store.
7138 // However, do not do that rounding down to a multiple of 4096 if that is a
7139 // negative number, as it appears to be illegal to have a negative offset
7140 // in the vgpr, even if adding the immediate offset makes it positive.
7141 unsigned Overflow = ImmOffset & ~MaxImm;
7142 ImmOffset -= Overflow;
7143 if ((int32_t)Overflow < 0) {
7144 Overflow += ImmOffset;
7145 ImmOffset = 0;
7147 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
7148 if (Overflow) {
7149 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
7150 if (!N0)
7151 N0 = OverflowVal;
7152 else {
7153 SDValue Ops[] = { N0, OverflowVal };
7154 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
7158 if (!N0)
7159 N0 = DAG.getConstant(0, DL, MVT::i32);
7160 if (!C1)
7161 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
7162 return {N0, SDValue(C1, 0)};
7165 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
7166 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
7167 // pointed to by Offsets.
7168 unsigned SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
7169 SelectionDAG &DAG, SDValue *Offsets,
7170 unsigned Align) const {
7171 SDLoc DL(CombinedOffset);
7172 if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
7173 uint32_t Imm = C->getZExtValue();
7174 uint32_t SOffset, ImmOffset;
7175 if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, Align)) {
7176 Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
7177 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7178 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7179 return SOffset + ImmOffset;
7182 if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
7183 SDValue N0 = CombinedOffset.getOperand(0);
7184 SDValue N1 = CombinedOffset.getOperand(1);
7185 uint32_t SOffset, ImmOffset;
7186 int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
7187 if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
7188 Subtarget, Align)) {
7189 Offsets[0] = N0;
7190 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7191 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7192 return 0;
7195 Offsets[0] = CombinedOffset;
7196 Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
7197 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
7198 return 0;
7201 // Handle 8 bit and 16 bit buffer loads
7202 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
7203 EVT LoadVT, SDLoc DL,
7204 ArrayRef<SDValue> Ops,
7205 MemSDNode *M) const {
7206 EVT IntVT = LoadVT.changeTypeToInteger();
7207 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
7208 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
7210 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
7211 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
7212 Ops, IntVT,
7213 M->getMemOperand());
7214 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
7215 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
7217 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
7220 // Handle 8 bit and 16 bit buffer stores
7221 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
7222 EVT VDataType, SDLoc DL,
7223 SDValue Ops[],
7224 MemSDNode *M) const {
7225 if (VDataType == MVT::f16)
7226 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
7228 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
7229 Ops[1] = BufferStoreExt;
7230 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
7231 AMDGPUISD::BUFFER_STORE_SHORT;
7232 ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
7233 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
7234 M->getMemOperand());
7237 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
7238 ISD::LoadExtType ExtType, SDValue Op,
7239 const SDLoc &SL, EVT VT) {
7240 if (VT.bitsLT(Op.getValueType()))
7241 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
7243 switch (ExtType) {
7244 case ISD::SEXTLOAD:
7245 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
7246 case ISD::ZEXTLOAD:
7247 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
7248 case ISD::EXTLOAD:
7249 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
7250 case ISD::NON_EXTLOAD:
7251 return Op;
7254 llvm_unreachable("invalid ext type");
7257 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
7258 SelectionDAG &DAG = DCI.DAG;
7259 if (Ld->getAlignment() < 4 || Ld->isDivergent())
7260 return SDValue();
7262 // FIXME: Constant loads should all be marked invariant.
7263 unsigned AS = Ld->getAddressSpace();
7264 if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
7265 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
7266 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
7267 return SDValue();
7269 // Don't do this early, since it may interfere with adjacent load merging for
7270 // illegal types. We can avoid losing alignment information for exotic types
7271 // pre-legalize.
7272 EVT MemVT = Ld->getMemoryVT();
7273 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
7274 MemVT.getSizeInBits() >= 32)
7275 return SDValue();
7277 SDLoc SL(Ld);
7279 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
7280 "unexpected vector extload");
7282 // TODO: Drop only high part of range.
7283 SDValue Ptr = Ld->getBasePtr();
7284 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
7285 MVT::i32, SL, Ld->getChain(), Ptr,
7286 Ld->getOffset(),
7287 Ld->getPointerInfo(), MVT::i32,
7288 Ld->getAlignment(),
7289 Ld->getMemOperand()->getFlags(),
7290 Ld->getAAInfo(),
7291 nullptr); // Drop ranges
7293 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
7294 if (MemVT.isFloatingPoint()) {
7295 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
7296 "unexpected fp extload");
7297 TruncVT = MemVT.changeTypeToInteger();
7300 SDValue Cvt = NewLoad;
7301 if (Ld->getExtensionType() == ISD::SEXTLOAD) {
7302 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
7303 DAG.getValueType(TruncVT));
7304 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
7305 Ld->getExtensionType() == ISD::NON_EXTLOAD) {
7306 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
7307 } else {
7308 assert(Ld->getExtensionType() == ISD::EXTLOAD);
7311 EVT VT = Ld->getValueType(0);
7312 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7314 DCI.AddToWorklist(Cvt.getNode());
7316 // We may need to handle exotic cases, such as i16->i64 extloads, so insert
7317 // the appropriate extension from the 32-bit load.
7318 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
7319 DCI.AddToWorklist(Cvt.getNode());
7321 // Handle conversion back to floating point if necessary.
7322 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
7324 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
7327 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7328 SDLoc DL(Op);
7329 LoadSDNode *Load = cast<LoadSDNode>(Op);
7330 ISD::LoadExtType ExtType = Load->getExtensionType();
7331 EVT MemVT = Load->getMemoryVT();
7333 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
7334 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
7335 return SDValue();
7337 // FIXME: Copied from PPC
7338 // First, load into 32 bits, then truncate to 1 bit.
7340 SDValue Chain = Load->getChain();
7341 SDValue BasePtr = Load->getBasePtr();
7342 MachineMemOperand *MMO = Load->getMemOperand();
7344 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
7346 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
7347 BasePtr, RealMemVT, MMO);
7349 if (!MemVT.isVector()) {
7350 SDValue Ops[] = {
7351 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
7352 NewLD.getValue(1)
7355 return DAG.getMergeValues(Ops, DL);
7358 SmallVector<SDValue, 3> Elts;
7359 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
7360 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
7361 DAG.getConstant(I, DL, MVT::i32));
7363 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
7366 SDValue Ops[] = {
7367 DAG.getBuildVector(MemVT, DL, Elts),
7368 NewLD.getValue(1)
7371 return DAG.getMergeValues(Ops, DL);
7374 if (!MemVT.isVector())
7375 return SDValue();
7377 assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
7378 "Custom lowering for non-i32 vectors hasn't been implemented.");
7380 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
7381 MemVT, *Load->getMemOperand())) {
7382 SDValue Ops[2];
7383 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
7384 return DAG.getMergeValues(Ops, DL);
7387 unsigned Alignment = Load->getAlignment();
7388 unsigned AS = Load->getAddressSpace();
7389 if (Subtarget->hasLDSMisalignedBug() &&
7390 AS == AMDGPUAS::FLAT_ADDRESS &&
7391 Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
7392 return SplitVectorLoad(Op, DAG);
7395 MachineFunction &MF = DAG.getMachineFunction();
7396 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
7397 // If there is a possibilty that flat instruction access scratch memory
7398 // then we need to use the same legalization rules we use for private.
7399 if (AS == AMDGPUAS::FLAT_ADDRESS)
7400 AS = MFI->hasFlatScratchInit() ?
7401 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
7403 unsigned NumElements = MemVT.getVectorNumElements();
7405 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7406 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
7407 if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
7408 if (MemVT.isPow2VectorType())
7409 return SDValue();
7410 if (NumElements == 3)
7411 return WidenVectorLoad(Op, DAG);
7412 return SplitVectorLoad(Op, DAG);
7414 // Non-uniform loads will be selected to MUBUF instructions, so they
7415 // have the same legalization requirements as global and private
7416 // loads.
7420 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7421 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
7422 AS == AMDGPUAS::GLOBAL_ADDRESS) {
7423 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
7424 !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load) &&
7425 Alignment >= 4 && NumElements < 32) {
7426 if (MemVT.isPow2VectorType())
7427 return SDValue();
7428 if (NumElements == 3)
7429 return WidenVectorLoad(Op, DAG);
7430 return SplitVectorLoad(Op, DAG);
7432 // Non-uniform loads will be selected to MUBUF instructions, so they
7433 // have the same legalization requirements as global and private
7434 // loads.
7437 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7438 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
7439 AS == AMDGPUAS::GLOBAL_ADDRESS ||
7440 AS == AMDGPUAS::FLAT_ADDRESS) {
7441 if (NumElements > 4)
7442 return SplitVectorLoad(Op, DAG);
7443 // v3 loads not supported on SI.
7444 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7445 return WidenVectorLoad(Op, DAG);
7446 // v3 and v4 loads are supported for private and global memory.
7447 return SDValue();
7449 if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
7450 // Depending on the setting of the private_element_size field in the
7451 // resource descriptor, we can only make private accesses up to a certain
7452 // size.
7453 switch (Subtarget->getMaxPrivateElementSize()) {
7454 case 4:
7455 return scalarizeVectorLoad(Load, DAG);
7456 case 8:
7457 if (NumElements > 2)
7458 return SplitVectorLoad(Op, DAG);
7459 return SDValue();
7460 case 16:
7461 // Same as global/flat
7462 if (NumElements > 4)
7463 return SplitVectorLoad(Op, DAG);
7464 // v3 loads not supported on SI.
7465 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7466 return WidenVectorLoad(Op, DAG);
7467 return SDValue();
7468 default:
7469 llvm_unreachable("unsupported private_element_size");
7471 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
7472 // Use ds_read_b128 if possible.
7473 if (Subtarget->useDS128() && Load->getAlignment() >= 16 &&
7474 MemVT.getStoreSize() == 16)
7475 return SDValue();
7477 if (NumElements > 2)
7478 return SplitVectorLoad(Op, DAG);
7480 // SI has a hardware bug in the LDS / GDS boounds checking: if the base
7481 // address is negative, then the instruction is incorrectly treated as
7482 // out-of-bounds even if base + offsets is in bounds. Split vectorized
7483 // loads here to avoid emitting ds_read2_b32. We may re-combine the
7484 // load later in the SILoadStoreOptimizer.
7485 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
7486 NumElements == 2 && MemVT.getStoreSize() == 8 &&
7487 Load->getAlignment() < 8) {
7488 return SplitVectorLoad(Op, DAG);
7491 return SDValue();
7494 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7495 EVT VT = Op.getValueType();
7496 assert(VT.getSizeInBits() == 64);
7498 SDLoc DL(Op);
7499 SDValue Cond = Op.getOperand(0);
7501 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
7502 SDValue One = DAG.getConstant(1, DL, MVT::i32);
7504 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
7505 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
7507 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
7508 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
7510 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
7512 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
7513 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
7515 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
7517 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
7518 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
7521 // Catch division cases where we can use shortcuts with rcp and rsq
7522 // instructions.
7523 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
7524 SelectionDAG &DAG) const {
7525 SDLoc SL(Op);
7526 SDValue LHS = Op.getOperand(0);
7527 SDValue RHS = Op.getOperand(1);
7528 EVT VT = Op.getValueType();
7529 const SDNodeFlags Flags = Op->getFlags();
7530 bool Unsafe = DAG.getTarget().Options.UnsafeFPMath || Flags.hasAllowReciprocal();
7532 if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals())
7533 return SDValue();
7535 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
7536 if (Unsafe || VT == MVT::f32 || VT == MVT::f16) {
7537 if (CLHS->isExactlyValue(1.0)) {
7538 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
7539 // the CI documentation has a worst case error of 1 ulp.
7540 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
7541 // use it as long as we aren't trying to use denormals.
7543 // v_rcp_f16 and v_rsq_f16 DO support denormals.
7545 // 1.0 / sqrt(x) -> rsq(x)
7547 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
7548 // error seems really high at 2^29 ULP.
7549 if (RHS.getOpcode() == ISD::FSQRT)
7550 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
7552 // 1.0 / x -> rcp(x)
7553 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
7556 // Same as for 1.0, but expand the sign out of the constant.
7557 if (CLHS->isExactlyValue(-1.0)) {
7558 // -1.0 / x -> rcp (fneg x)
7559 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
7560 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
7565 if (Unsafe) {
7566 // Turn into multiply by the reciprocal.
7567 // x / y -> x * (1.0 / y)
7568 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
7569 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
7572 return SDValue();
7575 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
7576 EVT VT, SDValue A, SDValue B, SDValue GlueChain) {
7577 if (GlueChain->getNumValues() <= 1) {
7578 return DAG.getNode(Opcode, SL, VT, A, B);
7581 assert(GlueChain->getNumValues() == 3);
7583 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
7584 switch (Opcode) {
7585 default: llvm_unreachable("no chain equivalent for opcode");
7586 case ISD::FMUL:
7587 Opcode = AMDGPUISD::FMUL_W_CHAIN;
7588 break;
7591 return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B,
7592 GlueChain.getValue(2));
7595 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
7596 EVT VT, SDValue A, SDValue B, SDValue C,
7597 SDValue GlueChain) {
7598 if (GlueChain->getNumValues() <= 1) {
7599 return DAG.getNode(Opcode, SL, VT, A, B, C);
7602 assert(GlueChain->getNumValues() == 3);
7604 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
7605 switch (Opcode) {
7606 default: llvm_unreachable("no chain equivalent for opcode");
7607 case ISD::FMA:
7608 Opcode = AMDGPUISD::FMA_W_CHAIN;
7609 break;
7612 return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C,
7613 GlueChain.getValue(2));
7616 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
7617 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
7618 return FastLowered;
7620 SDLoc SL(Op);
7621 SDValue Src0 = Op.getOperand(0);
7622 SDValue Src1 = Op.getOperand(1);
7624 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
7625 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
7627 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
7628 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
7630 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
7631 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
7633 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
7636 // Faster 2.5 ULP division that does not support denormals.
7637 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
7638 SDLoc SL(Op);
7639 SDValue LHS = Op.getOperand(1);
7640 SDValue RHS = Op.getOperand(2);
7642 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
7644 const APFloat K0Val(BitsToFloat(0x6f800000));
7645 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
7647 const APFloat K1Val(BitsToFloat(0x2f800000));
7648 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
7650 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
7652 EVT SetCCVT =
7653 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
7655 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
7657 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
7659 // TODO: Should this propagate fast-math-flags?
7660 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
7662 // rcp does not support denormals.
7663 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
7665 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
7667 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
7670 // Returns immediate value for setting the F32 denorm mode when using the
7671 // S_DENORM_MODE instruction.
7672 static const SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
7673 const SDLoc &SL, const GCNSubtarget *ST) {
7674 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
7675 int DPDenormModeDefault = ST->hasFP64Denormals()
7676 ? FP_DENORM_FLUSH_NONE
7677 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
7679 int Mode = SPDenormMode | (DPDenormModeDefault << 2);
7680 return DAG.getTargetConstant(Mode, SL, MVT::i32);
7683 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
7684 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
7685 return FastLowered;
7687 SDLoc SL(Op);
7688 SDValue LHS = Op.getOperand(0);
7689 SDValue RHS = Op.getOperand(1);
7691 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
7693 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
7695 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
7696 RHS, RHS, LHS);
7697 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
7698 LHS, RHS, LHS);
7700 // Denominator is scaled to not be denormal, so using rcp is ok.
7701 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
7702 DenominatorScaled);
7703 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
7704 DenominatorScaled);
7706 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
7707 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
7708 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
7709 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16);
7711 if (!Subtarget->hasFP32Denormals()) {
7712 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
7714 SDValue EnableDenorm;
7715 if (Subtarget->hasDenormModeInst()) {
7716 const SDValue EnableDenormValue =
7717 getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
7719 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
7720 DAG.getEntryNode(), EnableDenormValue);
7721 } else {
7722 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
7723 SL, MVT::i32);
7724 EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs,
7725 DAG.getEntryNode(), EnableDenormValue,
7726 BitField);
7729 SDValue Ops[3] = {
7730 NegDivScale0,
7731 EnableDenorm.getValue(0),
7732 EnableDenorm.getValue(1)
7735 NegDivScale0 = DAG.getMergeValues(Ops, SL);
7738 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
7739 ApproxRcp, One, NegDivScale0);
7741 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
7742 ApproxRcp, Fma0);
7744 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
7745 Fma1, Fma1);
7747 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
7748 NumeratorScaled, Mul);
7750 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma2, Fma1, Mul, Fma2);
7752 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
7753 NumeratorScaled, Fma3);
7755 if (!Subtarget->hasFP32Denormals()) {
7757 SDValue DisableDenorm;
7758 if (Subtarget->hasDenormModeInst()) {
7759 const SDValue DisableDenormValue =
7760 getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
7762 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
7763 Fma4.getValue(1), DisableDenormValue,
7764 Fma4.getValue(2));
7765 } else {
7766 const SDValue DisableDenormValue =
7767 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
7769 DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other,
7770 Fma4.getValue(1), DisableDenormValue,
7771 BitField, Fma4.getValue(2));
7774 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
7775 DisableDenorm, DAG.getRoot());
7776 DAG.setRoot(OutputChain);
7779 SDValue Scale = NumeratorScaled.getValue(1);
7780 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
7781 Fma4, Fma1, Fma3, Scale);
7783 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
7786 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
7787 if (DAG.getTarget().Options.UnsafeFPMath)
7788 return lowerFastUnsafeFDIV(Op, DAG);
7790 SDLoc SL(Op);
7791 SDValue X = Op.getOperand(0);
7792 SDValue Y = Op.getOperand(1);
7794 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
7796 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
7798 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
7800 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
7802 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
7804 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
7806 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
7808 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
7810 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
7812 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
7813 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
7815 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
7816 NegDivScale0, Mul, DivScale1);
7818 SDValue Scale;
7820 if (!Subtarget->hasUsableDivScaleConditionOutput()) {
7821 // Workaround a hardware bug on SI where the condition output from div_scale
7822 // is not usable.
7824 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
7826 // Figure out if the scale to use for div_fmas.
7827 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
7828 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
7829 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
7830 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
7832 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
7833 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
7835 SDValue Scale0Hi
7836 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
7837 SDValue Scale1Hi
7838 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
7840 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
7841 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
7842 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
7843 } else {
7844 Scale = DivScale1.getValue(1);
7847 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
7848 Fma4, Fma3, Mul, Scale);
7850 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
7853 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
7854 EVT VT = Op.getValueType();
7856 if (VT == MVT::f32)
7857 return LowerFDIV32(Op, DAG);
7859 if (VT == MVT::f64)
7860 return LowerFDIV64(Op, DAG);
7862 if (VT == MVT::f16)
7863 return LowerFDIV16(Op, DAG);
7865 llvm_unreachable("Unexpected type for fdiv");
7868 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7869 SDLoc DL(Op);
7870 StoreSDNode *Store = cast<StoreSDNode>(Op);
7871 EVT VT = Store->getMemoryVT();
7873 if (VT == MVT::i1) {
7874 return DAG.getTruncStore(Store->getChain(), DL,
7875 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
7876 Store->getBasePtr(), MVT::i1, Store->getMemOperand());
7879 assert(VT.isVector() &&
7880 Store->getValue().getValueType().getScalarType() == MVT::i32);
7882 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
7883 VT, *Store->getMemOperand())) {
7884 return expandUnalignedStore(Store, DAG);
7887 unsigned AS = Store->getAddressSpace();
7888 if (Subtarget->hasLDSMisalignedBug() &&
7889 AS == AMDGPUAS::FLAT_ADDRESS &&
7890 Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
7891 return SplitVectorStore(Op, DAG);
7894 MachineFunction &MF = DAG.getMachineFunction();
7895 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
7896 // If there is a possibilty that flat instruction access scratch memory
7897 // then we need to use the same legalization rules we use for private.
7898 if (AS == AMDGPUAS::FLAT_ADDRESS)
7899 AS = MFI->hasFlatScratchInit() ?
7900 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
7902 unsigned NumElements = VT.getVectorNumElements();
7903 if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
7904 AS == AMDGPUAS::FLAT_ADDRESS) {
7905 if (NumElements > 4)
7906 return SplitVectorStore(Op, DAG);
7907 // v3 stores not supported on SI.
7908 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7909 return SplitVectorStore(Op, DAG);
7910 return SDValue();
7911 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
7912 switch (Subtarget->getMaxPrivateElementSize()) {
7913 case 4:
7914 return scalarizeVectorStore(Store, DAG);
7915 case 8:
7916 if (NumElements > 2)
7917 return SplitVectorStore(Op, DAG);
7918 return SDValue();
7919 case 16:
7920 if (NumElements > 4 || NumElements == 3)
7921 return SplitVectorStore(Op, DAG);
7922 return SDValue();
7923 default:
7924 llvm_unreachable("unsupported private_element_size");
7926 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
7927 // Use ds_write_b128 if possible.
7928 if (Subtarget->useDS128() && Store->getAlignment() >= 16 &&
7929 VT.getStoreSize() == 16 && NumElements != 3)
7930 return SDValue();
7932 if (NumElements > 2)
7933 return SplitVectorStore(Op, DAG);
7935 // SI has a hardware bug in the LDS / GDS boounds checking: if the base
7936 // address is negative, then the instruction is incorrectly treated as
7937 // out-of-bounds even if base + offsets is in bounds. Split vectorized
7938 // stores here to avoid emitting ds_write2_b32. We may re-combine the
7939 // store later in the SILoadStoreOptimizer.
7940 if (!Subtarget->hasUsableDSOffset() &&
7941 NumElements == 2 && VT.getStoreSize() == 8 &&
7942 Store->getAlignment() < 8) {
7943 return SplitVectorStore(Op, DAG);
7946 return SDValue();
7947 } else {
7948 llvm_unreachable("unhandled address space");
7952 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
7953 SDLoc DL(Op);
7954 EVT VT = Op.getValueType();
7955 SDValue Arg = Op.getOperand(0);
7956 SDValue TrigVal;
7958 // TODO: Should this propagate fast-math-flags?
7960 SDValue OneOver2Pi = DAG.getConstantFP(0.5 / M_PI, DL, VT);
7962 if (Subtarget->hasTrigReducedRange()) {
7963 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi);
7964 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal);
7965 } else {
7966 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi);
7969 switch (Op.getOpcode()) {
7970 case ISD::FCOS:
7971 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal);
7972 case ISD::FSIN:
7973 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal);
7974 default:
7975 llvm_unreachable("Wrong trig opcode");
7979 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
7980 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
7981 assert(AtomicNode->isCompareAndSwap());
7982 unsigned AS = AtomicNode->getAddressSpace();
7984 // No custom lowering required for local address space
7985 if (!isFlatGlobalAddrSpace(AS))
7986 return Op;
7988 // Non-local address space requires custom lowering for atomic compare
7989 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
7990 SDLoc DL(Op);
7991 SDValue ChainIn = Op.getOperand(0);
7992 SDValue Addr = Op.getOperand(1);
7993 SDValue Old = Op.getOperand(2);
7994 SDValue New = Op.getOperand(3);
7995 EVT VT = Op.getValueType();
7996 MVT SimpleVT = VT.getSimpleVT();
7997 MVT VecType = MVT::getVectorVT(SimpleVT, 2);
7999 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
8000 SDValue Ops[] = { ChainIn, Addr, NewOld };
8002 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
8003 Ops, VT, AtomicNode->getMemOperand());
8006 //===----------------------------------------------------------------------===//
8007 // Custom DAG optimizations
8008 //===----------------------------------------------------------------------===//
8010 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
8011 DAGCombinerInfo &DCI) const {
8012 EVT VT = N->getValueType(0);
8013 EVT ScalarVT = VT.getScalarType();
8014 if (ScalarVT != MVT::f32)
8015 return SDValue();
8017 SelectionDAG &DAG = DCI.DAG;
8018 SDLoc DL(N);
8020 SDValue Src = N->getOperand(0);
8021 EVT SrcVT = Src.getValueType();
8023 // TODO: We could try to match extracting the higher bytes, which would be
8024 // easier if i8 vectors weren't promoted to i32 vectors, particularly after
8025 // types are legalized. v4i8 -> v4f32 is probably the only case to worry
8026 // about in practice.
8027 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
8028 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
8029 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
8030 DCI.AddToWorklist(Cvt.getNode());
8031 return Cvt;
8035 return SDValue();
8038 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
8040 // This is a variant of
8041 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
8043 // The normal DAG combiner will do this, but only if the add has one use since
8044 // that would increase the number of instructions.
8046 // This prevents us from seeing a constant offset that can be folded into a
8047 // memory instruction's addressing mode. If we know the resulting add offset of
8048 // a pointer can be folded into an addressing offset, we can replace the pointer
8049 // operand with the add of new constant offset. This eliminates one of the uses,
8050 // and may allow the remaining use to also be simplified.
8052 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
8053 unsigned AddrSpace,
8054 EVT MemVT,
8055 DAGCombinerInfo &DCI) const {
8056 SDValue N0 = N->getOperand(0);
8057 SDValue N1 = N->getOperand(1);
8059 // We only do this to handle cases where it's profitable when there are
8060 // multiple uses of the add, so defer to the standard combine.
8061 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
8062 N0->hasOneUse())
8063 return SDValue();
8065 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
8066 if (!CN1)
8067 return SDValue();
8069 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
8070 if (!CAdd)
8071 return SDValue();
8073 // If the resulting offset is too large, we can't fold it into the addressing
8074 // mode offset.
8075 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
8076 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
8078 AddrMode AM;
8079 AM.HasBaseReg = true;
8080 AM.BaseOffs = Offset.getSExtValue();
8081 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
8082 return SDValue();
8084 SelectionDAG &DAG = DCI.DAG;
8085 SDLoc SL(N);
8086 EVT VT = N->getValueType(0);
8088 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
8089 SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
8091 SDNodeFlags Flags;
8092 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
8093 (N0.getOpcode() == ISD::OR ||
8094 N0->getFlags().hasNoUnsignedWrap()));
8096 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
8099 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
8100 DAGCombinerInfo &DCI) const {
8101 SDValue Ptr = N->getBasePtr();
8102 SelectionDAG &DAG = DCI.DAG;
8103 SDLoc SL(N);
8105 // TODO: We could also do this for multiplies.
8106 if (Ptr.getOpcode() == ISD::SHL) {
8107 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(),
8108 N->getMemoryVT(), DCI);
8109 if (NewPtr) {
8110 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
8112 NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
8113 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
8117 return SDValue();
8120 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
8121 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
8122 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
8123 (Opc == ISD::XOR && Val == 0);
8126 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
8127 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
8128 // integer combine opportunities since most 64-bit operations are decomposed
8129 // this way. TODO: We won't want this for SALU especially if it is an inline
8130 // immediate.
8131 SDValue SITargetLowering::splitBinaryBitConstantOp(
8132 DAGCombinerInfo &DCI,
8133 const SDLoc &SL,
8134 unsigned Opc, SDValue LHS,
8135 const ConstantSDNode *CRHS) const {
8136 uint64_t Val = CRHS->getZExtValue();
8137 uint32_t ValLo = Lo_32(Val);
8138 uint32_t ValHi = Hi_32(Val);
8139 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8141 if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
8142 bitOpWithConstantIsReducible(Opc, ValHi)) ||
8143 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
8144 // If we need to materialize a 64-bit immediate, it will be split up later
8145 // anyway. Avoid creating the harder to understand 64-bit immediate
8146 // materialization.
8147 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
8150 return SDValue();
8153 // Returns true if argument is a boolean value which is not serialized into
8154 // memory or argument and does not require v_cmdmask_b32 to be deserialized.
8155 static bool isBoolSGPR(SDValue V) {
8156 if (V.getValueType() != MVT::i1)
8157 return false;
8158 switch (V.getOpcode()) {
8159 default: break;
8160 case ISD::SETCC:
8161 case ISD::AND:
8162 case ISD::OR:
8163 case ISD::XOR:
8164 case AMDGPUISD::FP_CLASS:
8165 return true;
8167 return false;
8170 // If a constant has all zeroes or all ones within each byte return it.
8171 // Otherwise return 0.
8172 static uint32_t getConstantPermuteMask(uint32_t C) {
8173 // 0xff for any zero byte in the mask
8174 uint32_t ZeroByteMask = 0;
8175 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
8176 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
8177 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
8178 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
8179 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
8180 if ((NonZeroByteMask & C) != NonZeroByteMask)
8181 return 0; // Partial bytes selected.
8182 return C;
8185 // Check if a node selects whole bytes from its operand 0 starting at a byte
8186 // boundary while masking the rest. Returns select mask as in the v_perm_b32
8187 // or -1 if not succeeded.
8188 // Note byte select encoding:
8189 // value 0-3 selects corresponding source byte;
8190 // value 0xc selects zero;
8191 // value 0xff selects 0xff.
8192 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
8193 assert(V.getValueSizeInBits() == 32);
8195 if (V.getNumOperands() != 2)
8196 return ~0;
8198 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
8199 if (!N1)
8200 return ~0;
8202 uint32_t C = N1->getZExtValue();
8204 switch (V.getOpcode()) {
8205 default:
8206 break;
8207 case ISD::AND:
8208 if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8209 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
8211 break;
8213 case ISD::OR:
8214 if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8215 return (0x03020100 & ~ConstMask) | ConstMask;
8217 break;
8219 case ISD::SHL:
8220 if (C % 8)
8221 return ~0;
8223 return uint32_t((0x030201000c0c0c0cull << C) >> 32);
8225 case ISD::SRL:
8226 if (C % 8)
8227 return ~0;
8229 return uint32_t(0x0c0c0c0c03020100ull >> C);
8232 return ~0;
8235 SDValue SITargetLowering::performAndCombine(SDNode *N,
8236 DAGCombinerInfo &DCI) const {
8237 if (DCI.isBeforeLegalize())
8238 return SDValue();
8240 SelectionDAG &DAG = DCI.DAG;
8241 EVT VT = N->getValueType(0);
8242 SDValue LHS = N->getOperand(0);
8243 SDValue RHS = N->getOperand(1);
8246 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
8247 if (VT == MVT::i64 && CRHS) {
8248 if (SDValue Split
8249 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
8250 return Split;
8253 if (CRHS && VT == MVT::i32) {
8254 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
8255 // nb = number of trailing zeroes in mask
8256 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
8257 // given that we are selecting 8 or 16 bit fields starting at byte boundary.
8258 uint64_t Mask = CRHS->getZExtValue();
8259 unsigned Bits = countPopulation(Mask);
8260 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
8261 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
8262 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
8263 unsigned Shift = CShift->getZExtValue();
8264 unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
8265 unsigned Offset = NB + Shift;
8266 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
8267 SDLoc SL(N);
8268 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
8269 LHS->getOperand(0),
8270 DAG.getConstant(Offset, SL, MVT::i32),
8271 DAG.getConstant(Bits, SL, MVT::i32));
8272 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8273 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
8274 DAG.getValueType(NarrowVT));
8275 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
8276 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
8277 return Shl;
8282 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
8283 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
8284 isa<ConstantSDNode>(LHS.getOperand(2))) {
8285 uint32_t Sel = getConstantPermuteMask(Mask);
8286 if (!Sel)
8287 return SDValue();
8289 // Select 0xc for all zero bytes
8290 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
8291 SDLoc DL(N);
8292 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
8293 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
8297 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
8298 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
8299 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
8300 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8301 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
8303 SDValue X = LHS.getOperand(0);
8304 SDValue Y = RHS.getOperand(0);
8305 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
8306 return SDValue();
8308 if (LCC == ISD::SETO) {
8309 if (X != LHS.getOperand(1))
8310 return SDValue();
8312 if (RCC == ISD::SETUNE) {
8313 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
8314 if (!C1 || !C1->isInfinity() || C1->isNegative())
8315 return SDValue();
8317 const uint32_t Mask = SIInstrFlags::N_NORMAL |
8318 SIInstrFlags::N_SUBNORMAL |
8319 SIInstrFlags::N_ZERO |
8320 SIInstrFlags::P_ZERO |
8321 SIInstrFlags::P_SUBNORMAL |
8322 SIInstrFlags::P_NORMAL;
8324 static_assert(((~(SIInstrFlags::S_NAN |
8325 SIInstrFlags::Q_NAN |
8326 SIInstrFlags::N_INFINITY |
8327 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
8328 "mask not equal");
8330 SDLoc DL(N);
8331 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
8332 X, DAG.getConstant(Mask, DL, MVT::i32));
8337 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
8338 std::swap(LHS, RHS);
8340 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
8341 RHS.hasOneUse()) {
8342 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8343 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
8344 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
8345 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
8346 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
8347 (RHS.getOperand(0) == LHS.getOperand(0) &&
8348 LHS.getOperand(0) == LHS.getOperand(1))) {
8349 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
8350 unsigned NewMask = LCC == ISD::SETO ?
8351 Mask->getZExtValue() & ~OrdMask :
8352 Mask->getZExtValue() & OrdMask;
8354 SDLoc DL(N);
8355 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
8356 DAG.getConstant(NewMask, DL, MVT::i32));
8360 if (VT == MVT::i32 &&
8361 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
8362 // and x, (sext cc from i1) => select cc, x, 0
8363 if (RHS.getOpcode() != ISD::SIGN_EXTEND)
8364 std::swap(LHS, RHS);
8365 if (isBoolSGPR(RHS.getOperand(0)))
8366 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
8367 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
8370 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
8371 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8372 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
8373 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
8374 uint32_t LHSMask = getPermuteMask(DAG, LHS);
8375 uint32_t RHSMask = getPermuteMask(DAG, RHS);
8376 if (LHSMask != ~0u && RHSMask != ~0u) {
8377 // Canonicalize the expression in an attempt to have fewer unique masks
8378 // and therefore fewer registers used to hold the masks.
8379 if (LHSMask > RHSMask) {
8380 std::swap(LHSMask, RHSMask);
8381 std::swap(LHS, RHS);
8384 // Select 0xc for each lane used from source operand. Zero has 0xc mask
8385 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
8386 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8387 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8389 // Check of we need to combine values from two sources within a byte.
8390 if (!(LHSUsedLanes & RHSUsedLanes) &&
8391 // If we select high and lower word keep it for SDWA.
8392 // TODO: teach SDWA to work with v_perm_b32 and remove the check.
8393 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
8394 // Each byte in each mask is either selector mask 0-3, or has higher
8395 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
8396 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
8397 // mask which is not 0xff wins. By anding both masks we have a correct
8398 // result except that 0x0c shall be corrected to give 0x0c only.
8399 uint32_t Mask = LHSMask & RHSMask;
8400 for (unsigned I = 0; I < 32; I += 8) {
8401 uint32_t ByteSel = 0xff << I;
8402 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
8403 Mask &= (0x0c << I) & 0xffffffff;
8406 // Add 4 to each active LHS lane. It will not affect any existing 0xff
8407 // or 0x0c.
8408 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
8409 SDLoc DL(N);
8411 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
8412 LHS.getOperand(0), RHS.getOperand(0),
8413 DAG.getConstant(Sel, DL, MVT::i32));
8418 return SDValue();
8421 SDValue SITargetLowering::performOrCombine(SDNode *N,
8422 DAGCombinerInfo &DCI) const {
8423 SelectionDAG &DAG = DCI.DAG;
8424 SDValue LHS = N->getOperand(0);
8425 SDValue RHS = N->getOperand(1);
8427 EVT VT = N->getValueType(0);
8428 if (VT == MVT::i1) {
8429 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
8430 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
8431 RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
8432 SDValue Src = LHS.getOperand(0);
8433 if (Src != RHS.getOperand(0))
8434 return SDValue();
8436 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
8437 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
8438 if (!CLHS || !CRHS)
8439 return SDValue();
8441 // Only 10 bits are used.
8442 static const uint32_t MaxMask = 0x3ff;
8444 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
8445 SDLoc DL(N);
8446 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
8447 Src, DAG.getConstant(NewMask, DL, MVT::i32));
8450 return SDValue();
8453 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
8454 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
8455 LHS.getOpcode() == AMDGPUISD::PERM &&
8456 isa<ConstantSDNode>(LHS.getOperand(2))) {
8457 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
8458 if (!Sel)
8459 return SDValue();
8461 Sel |= LHS.getConstantOperandVal(2);
8462 SDLoc DL(N);
8463 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
8464 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
8467 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
8468 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8469 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
8470 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
8471 uint32_t LHSMask = getPermuteMask(DAG, LHS);
8472 uint32_t RHSMask = getPermuteMask(DAG, RHS);
8473 if (LHSMask != ~0u && RHSMask != ~0u) {
8474 // Canonicalize the expression in an attempt to have fewer unique masks
8475 // and therefore fewer registers used to hold the masks.
8476 if (LHSMask > RHSMask) {
8477 std::swap(LHSMask, RHSMask);
8478 std::swap(LHS, RHS);
8481 // Select 0xc for each lane used from source operand. Zero has 0xc mask
8482 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
8483 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8484 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8486 // Check of we need to combine values from two sources within a byte.
8487 if (!(LHSUsedLanes & RHSUsedLanes) &&
8488 // If we select high and lower word keep it for SDWA.
8489 // TODO: teach SDWA to work with v_perm_b32 and remove the check.
8490 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
8491 // Kill zero bytes selected by other mask. Zero value is 0xc.
8492 LHSMask &= ~RHSUsedLanes;
8493 RHSMask &= ~LHSUsedLanes;
8494 // Add 4 to each active LHS lane
8495 LHSMask |= LHSUsedLanes & 0x04040404;
8496 // Combine masks
8497 uint32_t Sel = LHSMask | RHSMask;
8498 SDLoc DL(N);
8500 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
8501 LHS.getOperand(0), RHS.getOperand(0),
8502 DAG.getConstant(Sel, DL, MVT::i32));
8507 if (VT != MVT::i64)
8508 return SDValue();
8510 // TODO: This could be a generic combine with a predicate for extracting the
8511 // high half of an integer being free.
8513 // (or i64:x, (zero_extend i32:y)) ->
8514 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
8515 if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
8516 RHS.getOpcode() != ISD::ZERO_EXTEND)
8517 std::swap(LHS, RHS);
8519 if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
8520 SDValue ExtSrc = RHS.getOperand(0);
8521 EVT SrcVT = ExtSrc.getValueType();
8522 if (SrcVT == MVT::i32) {
8523 SDLoc SL(N);
8524 SDValue LowLHS, HiBits;
8525 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
8526 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
8528 DCI.AddToWorklist(LowOr.getNode());
8529 DCI.AddToWorklist(HiBits.getNode());
8531 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
8532 LowOr, HiBits);
8533 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
8537 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
8538 if (CRHS) {
8539 if (SDValue Split
8540 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
8541 return Split;
8544 return SDValue();
8547 SDValue SITargetLowering::performXorCombine(SDNode *N,
8548 DAGCombinerInfo &DCI) const {
8549 EVT VT = N->getValueType(0);
8550 if (VT != MVT::i64)
8551 return SDValue();
8553 SDValue LHS = N->getOperand(0);
8554 SDValue RHS = N->getOperand(1);
8556 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
8557 if (CRHS) {
8558 if (SDValue Split
8559 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
8560 return Split;
8563 return SDValue();
8566 // Instructions that will be lowered with a final instruction that zeros the
8567 // high result bits.
8568 // XXX - probably only need to list legal operations.
8569 static bool fp16SrcZerosHighBits(unsigned Opc) {
8570 switch (Opc) {
8571 case ISD::FADD:
8572 case ISD::FSUB:
8573 case ISD::FMUL:
8574 case ISD::FDIV:
8575 case ISD::FREM:
8576 case ISD::FMA:
8577 case ISD::FMAD:
8578 case ISD::FCANONICALIZE:
8579 case ISD::FP_ROUND:
8580 case ISD::UINT_TO_FP:
8581 case ISD::SINT_TO_FP:
8582 case ISD::FABS:
8583 // Fabs is lowered to a bit operation, but it's an and which will clear the
8584 // high bits anyway.
8585 case ISD::FSQRT:
8586 case ISD::FSIN:
8587 case ISD::FCOS:
8588 case ISD::FPOWI:
8589 case ISD::FPOW:
8590 case ISD::FLOG:
8591 case ISD::FLOG2:
8592 case ISD::FLOG10:
8593 case ISD::FEXP:
8594 case ISD::FEXP2:
8595 case ISD::FCEIL:
8596 case ISD::FTRUNC:
8597 case ISD::FRINT:
8598 case ISD::FNEARBYINT:
8599 case ISD::FROUND:
8600 case ISD::FFLOOR:
8601 case ISD::FMINNUM:
8602 case ISD::FMAXNUM:
8603 case AMDGPUISD::FRACT:
8604 case AMDGPUISD::CLAMP:
8605 case AMDGPUISD::COS_HW:
8606 case AMDGPUISD::SIN_HW:
8607 case AMDGPUISD::FMIN3:
8608 case AMDGPUISD::FMAX3:
8609 case AMDGPUISD::FMED3:
8610 case AMDGPUISD::FMAD_FTZ:
8611 case AMDGPUISD::RCP:
8612 case AMDGPUISD::RSQ:
8613 case AMDGPUISD::RCP_IFLAG:
8614 case AMDGPUISD::LDEXP:
8615 return true;
8616 default:
8617 // fcopysign, select and others may be lowered to 32-bit bit operations
8618 // which don't zero the high bits.
8619 return false;
8623 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
8624 DAGCombinerInfo &DCI) const {
8625 if (!Subtarget->has16BitInsts() ||
8626 DCI.getDAGCombineLevel() < AfterLegalizeDAG)
8627 return SDValue();
8629 EVT VT = N->getValueType(0);
8630 if (VT != MVT::i32)
8631 return SDValue();
8633 SDValue Src = N->getOperand(0);
8634 if (Src.getValueType() != MVT::i16)
8635 return SDValue();
8637 // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
8638 // FIXME: It is not universally true that the high bits are zeroed on gfx9.
8639 if (Src.getOpcode() == ISD::BITCAST) {
8640 SDValue BCSrc = Src.getOperand(0);
8641 if (BCSrc.getValueType() == MVT::f16 &&
8642 fp16SrcZerosHighBits(BCSrc.getOpcode()))
8643 return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
8646 return SDValue();
8649 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
8650 DAGCombinerInfo &DCI)
8651 const {
8652 SDValue Src = N->getOperand(0);
8653 auto *VTSign = cast<VTSDNode>(N->getOperand(1));
8655 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
8656 VTSign->getVT() == MVT::i8) ||
8657 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
8658 VTSign->getVT() == MVT::i16)) &&
8659 Src.hasOneUse()) {
8660 auto *M = cast<MemSDNode>(Src);
8661 SDValue Ops[] = {
8662 Src.getOperand(0), // Chain
8663 Src.getOperand(1), // rsrc
8664 Src.getOperand(2), // vindex
8665 Src.getOperand(3), // voffset
8666 Src.getOperand(4), // soffset
8667 Src.getOperand(5), // offset
8668 Src.getOperand(6),
8669 Src.getOperand(7)
8671 // replace with BUFFER_LOAD_BYTE/SHORT
8672 SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
8673 Src.getOperand(0).getValueType());
8674 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
8675 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
8676 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
8677 ResList,
8678 Ops, M->getMemoryVT(),
8679 M->getMemOperand());
8680 return DCI.DAG.getMergeValues({BufferLoadSignExt,
8681 BufferLoadSignExt.getValue(1)}, SDLoc(N));
8683 return SDValue();
8686 SDValue SITargetLowering::performClassCombine(SDNode *N,
8687 DAGCombinerInfo &DCI) const {
8688 SelectionDAG &DAG = DCI.DAG;
8689 SDValue Mask = N->getOperand(1);
8691 // fp_class x, 0 -> false
8692 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
8693 if (CMask->isNullValue())
8694 return DAG.getConstant(0, SDLoc(N), MVT::i1);
8697 if (N->getOperand(0).isUndef())
8698 return DAG.getUNDEF(MVT::i1);
8700 return SDValue();
8703 SDValue SITargetLowering::performRcpCombine(SDNode *N,
8704 DAGCombinerInfo &DCI) const {
8705 EVT VT = N->getValueType(0);
8706 SDValue N0 = N->getOperand(0);
8708 if (N0.isUndef())
8709 return N0;
8711 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
8712 N0.getOpcode() == ISD::SINT_TO_FP)) {
8713 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
8714 N->getFlags());
8717 return AMDGPUTargetLowering::performRcpCombine(N, DCI);
8720 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
8721 unsigned MaxDepth) const {
8722 unsigned Opcode = Op.getOpcode();
8723 if (Opcode == ISD::FCANONICALIZE)
8724 return true;
8726 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
8727 auto F = CFP->getValueAPF();
8728 if (F.isNaN() && F.isSignaling())
8729 return false;
8730 return !F.isDenormal() || denormalsEnabledForType(Op.getValueType());
8733 // If source is a result of another standard FP operation it is already in
8734 // canonical form.
8735 if (MaxDepth == 0)
8736 return false;
8738 switch (Opcode) {
8739 // These will flush denorms if required.
8740 case ISD::FADD:
8741 case ISD::FSUB:
8742 case ISD::FMUL:
8743 case ISD::FCEIL:
8744 case ISD::FFLOOR:
8745 case ISD::FMA:
8746 case ISD::FMAD:
8747 case ISD::FSQRT:
8748 case ISD::FDIV:
8749 case ISD::FREM:
8750 case ISD::FP_ROUND:
8751 case ISD::FP_EXTEND:
8752 case AMDGPUISD::FMUL_LEGACY:
8753 case AMDGPUISD::FMAD_FTZ:
8754 case AMDGPUISD::RCP:
8755 case AMDGPUISD::RSQ:
8756 case AMDGPUISD::RSQ_CLAMP:
8757 case AMDGPUISD::RCP_LEGACY:
8758 case AMDGPUISD::RSQ_LEGACY:
8759 case AMDGPUISD::RCP_IFLAG:
8760 case AMDGPUISD::TRIG_PREOP:
8761 case AMDGPUISD::DIV_SCALE:
8762 case AMDGPUISD::DIV_FMAS:
8763 case AMDGPUISD::DIV_FIXUP:
8764 case AMDGPUISD::FRACT:
8765 case AMDGPUISD::LDEXP:
8766 case AMDGPUISD::CVT_PKRTZ_F16_F32:
8767 case AMDGPUISD::CVT_F32_UBYTE0:
8768 case AMDGPUISD::CVT_F32_UBYTE1:
8769 case AMDGPUISD::CVT_F32_UBYTE2:
8770 case AMDGPUISD::CVT_F32_UBYTE3:
8771 return true;
8773 // It can/will be lowered or combined as a bit operation.
8774 // Need to check their input recursively to handle.
8775 case ISD::FNEG:
8776 case ISD::FABS:
8777 case ISD::FCOPYSIGN:
8778 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
8780 case ISD::FSIN:
8781 case ISD::FCOS:
8782 case ISD::FSINCOS:
8783 return Op.getValueType().getScalarType() != MVT::f16;
8785 case ISD::FMINNUM:
8786 case ISD::FMAXNUM:
8787 case ISD::FMINNUM_IEEE:
8788 case ISD::FMAXNUM_IEEE:
8789 case AMDGPUISD::CLAMP:
8790 case AMDGPUISD::FMED3:
8791 case AMDGPUISD::FMAX3:
8792 case AMDGPUISD::FMIN3: {
8793 // FIXME: Shouldn't treat the generic operations different based these.
8794 // However, we aren't really required to flush the result from
8795 // minnum/maxnum..
8797 // snans will be quieted, so we only need to worry about denormals.
8798 if (Subtarget->supportsMinMaxDenormModes() ||
8799 denormalsEnabledForType(Op.getValueType()))
8800 return true;
8802 // Flushing may be required.
8803 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
8804 // targets need to check their input recursively.
8806 // FIXME: Does this apply with clamp? It's implemented with max.
8807 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
8808 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
8809 return false;
8812 return true;
8814 case ISD::SELECT: {
8815 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
8816 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
8818 case ISD::BUILD_VECTOR: {
8819 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
8820 SDValue SrcOp = Op.getOperand(i);
8821 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
8822 return false;
8825 return true;
8827 case ISD::EXTRACT_VECTOR_ELT:
8828 case ISD::EXTRACT_SUBVECTOR: {
8829 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
8831 case ISD::INSERT_VECTOR_ELT: {
8832 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
8833 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
8835 case ISD::UNDEF:
8836 // Could be anything.
8837 return false;
8839 case ISD::BITCAST: {
8840 // Hack round the mess we make when legalizing extract_vector_elt
8841 SDValue Src = Op.getOperand(0);
8842 if (Src.getValueType() == MVT::i16 &&
8843 Src.getOpcode() == ISD::TRUNCATE) {
8844 SDValue TruncSrc = Src.getOperand(0);
8845 if (TruncSrc.getValueType() == MVT::i32 &&
8846 TruncSrc.getOpcode() == ISD::BITCAST &&
8847 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
8848 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
8852 return false;
8854 case ISD::INTRINSIC_WO_CHAIN: {
8855 unsigned IntrinsicID
8856 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8857 // TODO: Handle more intrinsics
8858 switch (IntrinsicID) {
8859 case Intrinsic::amdgcn_cvt_pkrtz:
8860 case Intrinsic::amdgcn_cubeid:
8861 case Intrinsic::amdgcn_frexp_mant:
8862 case Intrinsic::amdgcn_fdot2:
8863 return true;
8864 default:
8865 break;
8868 LLVM_FALLTHROUGH;
8870 default:
8871 return denormalsEnabledForType(Op.getValueType()) &&
8872 DAG.isKnownNeverSNaN(Op);
8875 llvm_unreachable("invalid operation");
8878 // Constant fold canonicalize.
8879 SDValue SITargetLowering::getCanonicalConstantFP(
8880 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
8881 // Flush denormals to 0 if not enabled.
8882 if (C.isDenormal() && !denormalsEnabledForType(VT))
8883 return DAG.getConstantFP(0.0, SL, VT);
8885 if (C.isNaN()) {
8886 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
8887 if (C.isSignaling()) {
8888 // Quiet a signaling NaN.
8889 // FIXME: Is this supposed to preserve payload bits?
8890 return DAG.getConstantFP(CanonicalQNaN, SL, VT);
8893 // Make sure it is the canonical NaN bitpattern.
8895 // TODO: Can we use -1 as the canonical NaN value since it's an inline
8896 // immediate?
8897 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
8898 return DAG.getConstantFP(CanonicalQNaN, SL, VT);
8901 // Already canonical.
8902 return DAG.getConstantFP(C, SL, VT);
8905 static bool vectorEltWillFoldAway(SDValue Op) {
8906 return Op.isUndef() || isa<ConstantFPSDNode>(Op);
8909 SDValue SITargetLowering::performFCanonicalizeCombine(
8910 SDNode *N,
8911 DAGCombinerInfo &DCI) const {
8912 SelectionDAG &DAG = DCI.DAG;
8913 SDValue N0 = N->getOperand(0);
8914 EVT VT = N->getValueType(0);
8916 // fcanonicalize undef -> qnan
8917 if (N0.isUndef()) {
8918 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
8919 return DAG.getConstantFP(QNaN, SDLoc(N), VT);
8922 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
8923 EVT VT = N->getValueType(0);
8924 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
8927 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
8928 // (fcanonicalize k)
8930 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
8932 // TODO: This could be better with wider vectors that will be split to v2f16,
8933 // and to consider uses since there aren't that many packed operations.
8934 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
8935 isTypeLegal(MVT::v2f16)) {
8936 SDLoc SL(N);
8937 SDValue NewElts[2];
8938 SDValue Lo = N0.getOperand(0);
8939 SDValue Hi = N0.getOperand(1);
8940 EVT EltVT = Lo.getValueType();
8942 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
8943 for (unsigned I = 0; I != 2; ++I) {
8944 SDValue Op = N0.getOperand(I);
8945 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
8946 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
8947 CFP->getValueAPF());
8948 } else if (Op.isUndef()) {
8949 // Handled below based on what the other operand is.
8950 NewElts[I] = Op;
8951 } else {
8952 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
8956 // If one half is undef, and one is constant, perfer a splat vector rather
8957 // than the normal qNaN. If it's a register, prefer 0.0 since that's
8958 // cheaper to use and may be free with a packed operation.
8959 if (NewElts[0].isUndef()) {
8960 if (isa<ConstantFPSDNode>(NewElts[1]))
8961 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
8962 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
8965 if (NewElts[1].isUndef()) {
8966 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
8967 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
8970 return DAG.getBuildVector(VT, SL, NewElts);
8974 unsigned SrcOpc = N0.getOpcode();
8976 // If it's free to do so, push canonicalizes further up the source, which may
8977 // find a canonical source.
8979 // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
8980 // sNaNs.
8981 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
8982 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
8983 if (CRHS && N0.hasOneUse()) {
8984 SDLoc SL(N);
8985 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
8986 N0.getOperand(0));
8987 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
8988 DCI.AddToWorklist(Canon0.getNode());
8990 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
8994 return isCanonicalized(DAG, N0) ? N0 : SDValue();
8997 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
8998 switch (Opc) {
8999 case ISD::FMAXNUM:
9000 case ISD::FMAXNUM_IEEE:
9001 return AMDGPUISD::FMAX3;
9002 case ISD::SMAX:
9003 return AMDGPUISD::SMAX3;
9004 case ISD::UMAX:
9005 return AMDGPUISD::UMAX3;
9006 case ISD::FMINNUM:
9007 case ISD::FMINNUM_IEEE:
9008 return AMDGPUISD::FMIN3;
9009 case ISD::SMIN:
9010 return AMDGPUISD::SMIN3;
9011 case ISD::UMIN:
9012 return AMDGPUISD::UMIN3;
9013 default:
9014 llvm_unreachable("Not a min/max opcode");
9018 SDValue SITargetLowering::performIntMed3ImmCombine(
9019 SelectionDAG &DAG, const SDLoc &SL,
9020 SDValue Op0, SDValue Op1, bool Signed) const {
9021 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
9022 if (!K1)
9023 return SDValue();
9025 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
9026 if (!K0)
9027 return SDValue();
9029 if (Signed) {
9030 if (K0->getAPIntValue().sge(K1->getAPIntValue()))
9031 return SDValue();
9032 } else {
9033 if (K0->getAPIntValue().uge(K1->getAPIntValue()))
9034 return SDValue();
9037 EVT VT = K0->getValueType(0);
9038 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
9039 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
9040 return DAG.getNode(Med3Opc, SL, VT,
9041 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
9044 // If there isn't a 16-bit med3 operation, convert to 32-bit.
9045 MVT NVT = MVT::i32;
9046 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9048 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
9049 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
9050 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
9052 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
9053 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
9056 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
9057 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
9058 return C;
9060 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
9061 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
9062 return C;
9065 return nullptr;
9068 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
9069 const SDLoc &SL,
9070 SDValue Op0,
9071 SDValue Op1) const {
9072 ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
9073 if (!K1)
9074 return SDValue();
9076 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
9077 if (!K0)
9078 return SDValue();
9080 // Ordered >= (although NaN inputs should have folded away by now).
9081 APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
9082 if (Cmp == APFloat::cmpGreaterThan)
9083 return SDValue();
9085 const MachineFunction &MF = DAG.getMachineFunction();
9086 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9088 // TODO: Check IEEE bit enabled?
9089 EVT VT = Op0.getValueType();
9090 if (Info->getMode().DX10Clamp) {
9091 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
9092 // hardware fmed3 behavior converting to a min.
9093 // FIXME: Should this be allowing -0.0?
9094 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
9095 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
9098 // med3 for f16 is only available on gfx9+, and not available for v2f16.
9099 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
9100 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
9101 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
9102 // then give the other result, which is different from med3 with a NaN
9103 // input.
9104 SDValue Var = Op0.getOperand(0);
9105 if (!DAG.isKnownNeverSNaN(Var))
9106 return SDValue();
9108 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9110 if ((!K0->hasOneUse() ||
9111 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
9112 (!K1->hasOneUse() ||
9113 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
9114 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
9115 Var, SDValue(K0, 0), SDValue(K1, 0));
9119 return SDValue();
9122 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
9123 DAGCombinerInfo &DCI) const {
9124 SelectionDAG &DAG = DCI.DAG;
9126 EVT VT = N->getValueType(0);
9127 unsigned Opc = N->getOpcode();
9128 SDValue Op0 = N->getOperand(0);
9129 SDValue Op1 = N->getOperand(1);
9131 // Only do this if the inner op has one use since this will just increases
9132 // register pressure for no benefit.
9134 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
9135 !VT.isVector() &&
9136 (VT == MVT::i32 || VT == MVT::f32 ||
9137 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
9138 // max(max(a, b), c) -> max3(a, b, c)
9139 // min(min(a, b), c) -> min3(a, b, c)
9140 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
9141 SDLoc DL(N);
9142 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9144 N->getValueType(0),
9145 Op0.getOperand(0),
9146 Op0.getOperand(1),
9147 Op1);
9150 // Try commuted.
9151 // max(a, max(b, c)) -> max3(a, b, c)
9152 // min(a, min(b, c)) -> min3(a, b, c)
9153 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
9154 SDLoc DL(N);
9155 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9157 N->getValueType(0),
9158 Op0,
9159 Op1.getOperand(0),
9160 Op1.getOperand(1));
9164 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
9165 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
9166 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
9167 return Med3;
9170 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
9171 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
9172 return Med3;
9175 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
9176 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
9177 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
9178 (Opc == AMDGPUISD::FMIN_LEGACY &&
9179 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
9180 (VT == MVT::f32 || VT == MVT::f64 ||
9181 (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
9182 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
9183 Op0.hasOneUse()) {
9184 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
9185 return Res;
9188 return SDValue();
9191 static bool isClampZeroToOne(SDValue A, SDValue B) {
9192 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
9193 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
9194 // FIXME: Should this be allowing -0.0?
9195 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
9196 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
9200 return false;
9203 // FIXME: Should only worry about snans for version with chain.
9204 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
9205 DAGCombinerInfo &DCI) const {
9206 EVT VT = N->getValueType(0);
9207 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
9208 // NaNs. With a NaN input, the order of the operands may change the result.
9210 SelectionDAG &DAG = DCI.DAG;
9211 SDLoc SL(N);
9213 SDValue Src0 = N->getOperand(0);
9214 SDValue Src1 = N->getOperand(1);
9215 SDValue Src2 = N->getOperand(2);
9217 if (isClampZeroToOne(Src0, Src1)) {
9218 // const_a, const_b, x -> clamp is safe in all cases including signaling
9219 // nans.
9220 // FIXME: Should this be allowing -0.0?
9221 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
9224 const MachineFunction &MF = DAG.getMachineFunction();
9225 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9227 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
9228 // handling no dx10-clamp?
9229 if (Info->getMode().DX10Clamp) {
9230 // If NaNs is clamped to 0, we are free to reorder the inputs.
9232 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9233 std::swap(Src0, Src1);
9235 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
9236 std::swap(Src1, Src2);
9238 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9239 std::swap(Src0, Src1);
9241 if (isClampZeroToOne(Src1, Src2))
9242 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
9245 return SDValue();
9248 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
9249 DAGCombinerInfo &DCI) const {
9250 SDValue Src0 = N->getOperand(0);
9251 SDValue Src1 = N->getOperand(1);
9252 if (Src0.isUndef() && Src1.isUndef())
9253 return DCI.DAG.getUNDEF(N->getValueType(0));
9254 return SDValue();
9257 SDValue SITargetLowering::performExtractVectorEltCombine(
9258 SDNode *N, DAGCombinerInfo &DCI) const {
9259 SDValue Vec = N->getOperand(0);
9260 SelectionDAG &DAG = DCI.DAG;
9262 EVT VecVT = Vec.getValueType();
9263 EVT EltVT = VecVT.getVectorElementType();
9265 if ((Vec.getOpcode() == ISD::FNEG ||
9266 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
9267 SDLoc SL(N);
9268 EVT EltVT = N->getValueType(0);
9269 SDValue Idx = N->getOperand(1);
9270 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9271 Vec.getOperand(0), Idx);
9272 return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
9275 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
9276 // =>
9277 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
9278 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
9279 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
9280 if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
9281 SDLoc SL(N);
9282 EVT EltVT = N->getValueType(0);
9283 SDValue Idx = N->getOperand(1);
9284 unsigned Opc = Vec.getOpcode();
9286 switch(Opc) {
9287 default:
9288 break;
9289 // TODO: Support other binary operations.
9290 case ISD::FADD:
9291 case ISD::FSUB:
9292 case ISD::FMUL:
9293 case ISD::ADD:
9294 case ISD::UMIN:
9295 case ISD::UMAX:
9296 case ISD::SMIN:
9297 case ISD::SMAX:
9298 case ISD::FMAXNUM:
9299 case ISD::FMINNUM:
9300 case ISD::FMAXNUM_IEEE:
9301 case ISD::FMINNUM_IEEE: {
9302 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9303 Vec.getOperand(0), Idx);
9304 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9305 Vec.getOperand(1), Idx);
9307 DCI.AddToWorklist(Elt0.getNode());
9308 DCI.AddToWorklist(Elt1.getNode());
9309 return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
9314 unsigned VecSize = VecVT.getSizeInBits();
9315 unsigned EltSize = EltVT.getSizeInBits();
9317 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
9318 // This elminates non-constant index and subsequent movrel or scratch access.
9319 // Sub-dword vectors of size 2 dword or less have better implementation.
9320 // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32
9321 // instructions.
9322 if (VecSize <= 256 && (VecSize > 64 || EltSize >= 32) &&
9323 !isa<ConstantSDNode>(N->getOperand(1))) {
9324 SDLoc SL(N);
9325 SDValue Idx = N->getOperand(1);
9326 EVT IdxVT = Idx.getValueType();
9327 SDValue V;
9328 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
9329 SDValue IC = DAG.getConstant(I, SL, IdxVT);
9330 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
9331 if (I == 0)
9332 V = Elt;
9333 else
9334 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
9336 return V;
9339 if (!DCI.isBeforeLegalize())
9340 return SDValue();
9342 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
9343 // elements. This exposes more load reduction opportunities by replacing
9344 // multiple small extract_vector_elements with a single 32-bit extract.
9345 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9346 if (isa<MemSDNode>(Vec) &&
9347 EltSize <= 16 &&
9348 EltVT.isByteSized() &&
9349 VecSize > 32 &&
9350 VecSize % 32 == 0 &&
9351 Idx) {
9352 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
9354 unsigned BitIndex = Idx->getZExtValue() * EltSize;
9355 unsigned EltIdx = BitIndex / 32;
9356 unsigned LeftoverBitIdx = BitIndex % 32;
9357 SDLoc SL(N);
9359 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
9360 DCI.AddToWorklist(Cast.getNode());
9362 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
9363 DAG.getConstant(EltIdx, SL, MVT::i32));
9364 DCI.AddToWorklist(Elt.getNode());
9365 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
9366 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
9367 DCI.AddToWorklist(Srl.getNode());
9369 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
9370 DCI.AddToWorklist(Trunc.getNode());
9371 return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
9374 return SDValue();
9377 SDValue
9378 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
9379 DAGCombinerInfo &DCI) const {
9380 SDValue Vec = N->getOperand(0);
9381 SDValue Idx = N->getOperand(2);
9382 EVT VecVT = Vec.getValueType();
9383 EVT EltVT = VecVT.getVectorElementType();
9384 unsigned VecSize = VecVT.getSizeInBits();
9385 unsigned EltSize = EltVT.getSizeInBits();
9387 // INSERT_VECTOR_ELT (<n x e>, var-idx)
9388 // => BUILD_VECTOR n x select (e, const-idx)
9389 // This elminates non-constant index and subsequent movrel or scratch access.
9390 // Sub-dword vectors of size 2 dword or less have better implementation.
9391 // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32
9392 // instructions.
9393 if (isa<ConstantSDNode>(Idx) ||
9394 VecSize > 256 || (VecSize <= 64 && EltSize < 32))
9395 return SDValue();
9397 SelectionDAG &DAG = DCI.DAG;
9398 SDLoc SL(N);
9399 SDValue Ins = N->getOperand(1);
9400 EVT IdxVT = Idx.getValueType();
9402 SmallVector<SDValue, 16> Ops;
9403 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
9404 SDValue IC = DAG.getConstant(I, SL, IdxVT);
9405 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
9406 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
9407 Ops.push_back(V);
9410 return DAG.getBuildVector(VecVT, SL, Ops);
9413 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
9414 const SDNode *N0,
9415 const SDNode *N1) const {
9416 EVT VT = N0->getValueType(0);
9418 // Only do this if we are not trying to support denormals. v_mad_f32 does not
9419 // support denormals ever.
9420 if (((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) ||
9421 (VT == MVT::f16 && !Subtarget->hasFP16Denormals() &&
9422 getSubtarget()->hasMadF16())) &&
9423 isOperationLegal(ISD::FMAD, VT))
9424 return ISD::FMAD;
9426 const TargetOptions &Options = DAG.getTarget().Options;
9427 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
9428 (N0->getFlags().hasAllowContract() &&
9429 N1->getFlags().hasAllowContract())) &&
9430 isFMAFasterThanFMulAndFAdd(VT)) {
9431 return ISD::FMA;
9434 return 0;
9437 // For a reassociatable opcode perform:
9438 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
9439 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
9440 SelectionDAG &DAG) const {
9441 EVT VT = N->getValueType(0);
9442 if (VT != MVT::i32 && VT != MVT::i64)
9443 return SDValue();
9445 unsigned Opc = N->getOpcode();
9446 SDValue Op0 = N->getOperand(0);
9447 SDValue Op1 = N->getOperand(1);
9449 if (!(Op0->isDivergent() ^ Op1->isDivergent()))
9450 return SDValue();
9452 if (Op0->isDivergent())
9453 std::swap(Op0, Op1);
9455 if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
9456 return SDValue();
9458 SDValue Op2 = Op1.getOperand(1);
9459 Op1 = Op1.getOperand(0);
9460 if (!(Op1->isDivergent() ^ Op2->isDivergent()))
9461 return SDValue();
9463 if (Op1->isDivergent())
9464 std::swap(Op1, Op2);
9466 // If either operand is constant this will conflict with
9467 // DAGCombiner::ReassociateOps().
9468 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
9469 DAG.isConstantIntBuildVectorOrConstantInt(Op1))
9470 return SDValue();
9472 SDLoc SL(N);
9473 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
9474 return DAG.getNode(Opc, SL, VT, Add1, Op2);
9477 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
9478 EVT VT,
9479 SDValue N0, SDValue N1, SDValue N2,
9480 bool Signed) {
9481 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
9482 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
9483 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
9484 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
9487 SDValue SITargetLowering::performAddCombine(SDNode *N,
9488 DAGCombinerInfo &DCI) const {
9489 SelectionDAG &DAG = DCI.DAG;
9490 EVT VT = N->getValueType(0);
9491 SDLoc SL(N);
9492 SDValue LHS = N->getOperand(0);
9493 SDValue RHS = N->getOperand(1);
9495 if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
9496 && Subtarget->hasMad64_32() &&
9497 !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
9498 VT.getScalarSizeInBits() <= 64) {
9499 if (LHS.getOpcode() != ISD::MUL)
9500 std::swap(LHS, RHS);
9502 SDValue MulLHS = LHS.getOperand(0);
9503 SDValue MulRHS = LHS.getOperand(1);
9504 SDValue AddRHS = RHS;
9506 // TODO: Maybe restrict if SGPR inputs.
9507 if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
9508 numBitsUnsigned(MulRHS, DAG) <= 32) {
9509 MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
9510 MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
9511 AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
9512 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
9515 if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
9516 MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
9517 MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
9518 AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
9519 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
9522 return SDValue();
9525 if (SDValue V = reassociateScalarOps(N, DAG)) {
9526 return V;
9529 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
9530 return SDValue();
9532 // add x, zext (setcc) => addcarry x, 0, setcc
9533 // add x, sext (setcc) => subcarry x, 0, setcc
9534 unsigned Opc = LHS.getOpcode();
9535 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
9536 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
9537 std::swap(RHS, LHS);
9539 Opc = RHS.getOpcode();
9540 switch (Opc) {
9541 default: break;
9542 case ISD::ZERO_EXTEND:
9543 case ISD::SIGN_EXTEND:
9544 case ISD::ANY_EXTEND: {
9545 auto Cond = RHS.getOperand(0);
9546 if (!isBoolSGPR(Cond))
9547 break;
9548 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
9549 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
9550 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
9551 return DAG.getNode(Opc, SL, VTList, Args);
9553 case ISD::ADDCARRY: {
9554 // add x, (addcarry y, 0, cc) => addcarry x, y, cc
9555 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9556 if (!C || C->getZExtValue() != 0) break;
9557 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
9558 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
9561 return SDValue();
9564 SDValue SITargetLowering::performSubCombine(SDNode *N,
9565 DAGCombinerInfo &DCI) const {
9566 SelectionDAG &DAG = DCI.DAG;
9567 EVT VT = N->getValueType(0);
9569 if (VT != MVT::i32)
9570 return SDValue();
9572 SDLoc SL(N);
9573 SDValue LHS = N->getOperand(0);
9574 SDValue RHS = N->getOperand(1);
9576 if (LHS.getOpcode() == ISD::SUBCARRY) {
9577 // sub (subcarry x, 0, cc), y => subcarry x, y, cc
9578 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9579 if (!C || !C->isNullValue())
9580 return SDValue();
9581 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
9582 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
9584 return SDValue();
9587 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
9588 DAGCombinerInfo &DCI) const {
9590 if (N->getValueType(0) != MVT::i32)
9591 return SDValue();
9593 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9594 if (!C || C->getZExtValue() != 0)
9595 return SDValue();
9597 SelectionDAG &DAG = DCI.DAG;
9598 SDValue LHS = N->getOperand(0);
9600 // addcarry (add x, y), 0, cc => addcarry x, y, cc
9601 // subcarry (sub x, y), 0, cc => subcarry x, y, cc
9602 unsigned LHSOpc = LHS.getOpcode();
9603 unsigned Opc = N->getOpcode();
9604 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
9605 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
9606 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
9607 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
9609 return SDValue();
9612 SDValue SITargetLowering::performFAddCombine(SDNode *N,
9613 DAGCombinerInfo &DCI) const {
9614 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9615 return SDValue();
9617 SelectionDAG &DAG = DCI.DAG;
9618 EVT VT = N->getValueType(0);
9620 SDLoc SL(N);
9621 SDValue LHS = N->getOperand(0);
9622 SDValue RHS = N->getOperand(1);
9624 // These should really be instruction patterns, but writing patterns with
9625 // source modiifiers is a pain.
9627 // fadd (fadd (a, a), b) -> mad 2.0, a, b
9628 if (LHS.getOpcode() == ISD::FADD) {
9629 SDValue A = LHS.getOperand(0);
9630 if (A == LHS.getOperand(1)) {
9631 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
9632 if (FusedOp != 0) {
9633 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
9634 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
9639 // fadd (b, fadd (a, a)) -> mad 2.0, a, b
9640 if (RHS.getOpcode() == ISD::FADD) {
9641 SDValue A = RHS.getOperand(0);
9642 if (A == RHS.getOperand(1)) {
9643 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
9644 if (FusedOp != 0) {
9645 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
9646 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
9651 return SDValue();
9654 SDValue SITargetLowering::performFSubCombine(SDNode *N,
9655 DAGCombinerInfo &DCI) const {
9656 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9657 return SDValue();
9659 SelectionDAG &DAG = DCI.DAG;
9660 SDLoc SL(N);
9661 EVT VT = N->getValueType(0);
9662 assert(!VT.isVector());
9664 // Try to get the fneg to fold into the source modifier. This undoes generic
9665 // DAG combines and folds them into the mad.
9667 // Only do this if we are not trying to support denormals. v_mad_f32 does
9668 // not support denormals ever.
9669 SDValue LHS = N->getOperand(0);
9670 SDValue RHS = N->getOperand(1);
9671 if (LHS.getOpcode() == ISD::FADD) {
9672 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
9673 SDValue A = LHS.getOperand(0);
9674 if (A == LHS.getOperand(1)) {
9675 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
9676 if (FusedOp != 0){
9677 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
9678 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
9680 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
9685 if (RHS.getOpcode() == ISD::FADD) {
9686 // (fsub c, (fadd a, a)) -> mad -2.0, a, c
9688 SDValue A = RHS.getOperand(0);
9689 if (A == RHS.getOperand(1)) {
9690 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
9691 if (FusedOp != 0){
9692 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
9693 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
9698 return SDValue();
9701 SDValue SITargetLowering::performFMACombine(SDNode *N,
9702 DAGCombinerInfo &DCI) const {
9703 SelectionDAG &DAG = DCI.DAG;
9704 EVT VT = N->getValueType(0);
9705 SDLoc SL(N);
9707 if (!Subtarget->hasDot2Insts() || VT != MVT::f32)
9708 return SDValue();
9710 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
9711 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
9712 SDValue Op1 = N->getOperand(0);
9713 SDValue Op2 = N->getOperand(1);
9714 SDValue FMA = N->getOperand(2);
9716 if (FMA.getOpcode() != ISD::FMA ||
9717 Op1.getOpcode() != ISD::FP_EXTEND ||
9718 Op2.getOpcode() != ISD::FP_EXTEND)
9719 return SDValue();
9721 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
9722 // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
9723 // is sufficient to allow generaing fdot2.
9724 const TargetOptions &Options = DAG.getTarget().Options;
9725 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
9726 (N->getFlags().hasAllowContract() &&
9727 FMA->getFlags().hasAllowContract())) {
9728 Op1 = Op1.getOperand(0);
9729 Op2 = Op2.getOperand(0);
9730 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9731 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9732 return SDValue();
9734 SDValue Vec1 = Op1.getOperand(0);
9735 SDValue Idx1 = Op1.getOperand(1);
9736 SDValue Vec2 = Op2.getOperand(0);
9738 SDValue FMAOp1 = FMA.getOperand(0);
9739 SDValue FMAOp2 = FMA.getOperand(1);
9740 SDValue FMAAcc = FMA.getOperand(2);
9742 if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
9743 FMAOp2.getOpcode() != ISD::FP_EXTEND)
9744 return SDValue();
9746 FMAOp1 = FMAOp1.getOperand(0);
9747 FMAOp2 = FMAOp2.getOperand(0);
9748 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9749 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9750 return SDValue();
9752 SDValue Vec3 = FMAOp1.getOperand(0);
9753 SDValue Vec4 = FMAOp2.getOperand(0);
9754 SDValue Idx2 = FMAOp1.getOperand(1);
9756 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
9757 // Idx1 and Idx2 cannot be the same.
9758 Idx1 == Idx2)
9759 return SDValue();
9761 if (Vec1 == Vec2 || Vec3 == Vec4)
9762 return SDValue();
9764 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
9765 return SDValue();
9767 if ((Vec1 == Vec3 && Vec2 == Vec4) ||
9768 (Vec1 == Vec4 && Vec2 == Vec3)) {
9769 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
9770 DAG.getTargetConstant(0, SL, MVT::i1));
9773 return SDValue();
9776 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
9777 DAGCombinerInfo &DCI) const {
9778 SelectionDAG &DAG = DCI.DAG;
9779 SDLoc SL(N);
9781 SDValue LHS = N->getOperand(0);
9782 SDValue RHS = N->getOperand(1);
9783 EVT VT = LHS.getValueType();
9784 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
9786 auto CRHS = dyn_cast<ConstantSDNode>(RHS);
9787 if (!CRHS) {
9788 CRHS = dyn_cast<ConstantSDNode>(LHS);
9789 if (CRHS) {
9790 std::swap(LHS, RHS);
9791 CC = getSetCCSwappedOperands(CC);
9795 if (CRHS) {
9796 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
9797 isBoolSGPR(LHS.getOperand(0))) {
9798 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
9799 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
9800 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1
9801 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc
9802 if ((CRHS->isAllOnesValue() &&
9803 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
9804 (CRHS->isNullValue() &&
9805 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
9806 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
9807 DAG.getConstant(-1, SL, MVT::i1));
9808 if ((CRHS->isAllOnesValue() &&
9809 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
9810 (CRHS->isNullValue() &&
9811 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
9812 return LHS.getOperand(0);
9815 uint64_t CRHSVal = CRHS->getZExtValue();
9816 if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
9817 LHS.getOpcode() == ISD::SELECT &&
9818 isa<ConstantSDNode>(LHS.getOperand(1)) &&
9819 isa<ConstantSDNode>(LHS.getOperand(2)) &&
9820 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
9821 isBoolSGPR(LHS.getOperand(0))) {
9822 // Given CT != FT:
9823 // setcc (select cc, CT, CF), CF, eq => xor cc, -1
9824 // setcc (select cc, CT, CF), CF, ne => cc
9825 // setcc (select cc, CT, CF), CT, ne => xor cc, -1
9826 // setcc (select cc, CT, CF), CT, eq => cc
9827 uint64_t CT = LHS.getConstantOperandVal(1);
9828 uint64_t CF = LHS.getConstantOperandVal(2);
9830 if ((CF == CRHSVal && CC == ISD::SETEQ) ||
9831 (CT == CRHSVal && CC == ISD::SETNE))
9832 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
9833 DAG.getConstant(-1, SL, MVT::i1));
9834 if ((CF == CRHSVal && CC == ISD::SETNE) ||
9835 (CT == CRHSVal && CC == ISD::SETEQ))
9836 return LHS.getOperand(0);
9840 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
9841 VT != MVT::f16))
9842 return SDValue();
9844 // Match isinf/isfinite pattern
9845 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
9846 // (fcmp one (fabs x), inf) -> (fp_class x,
9847 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
9848 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
9849 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
9850 if (!CRHS)
9851 return SDValue();
9853 const APFloat &APF = CRHS->getValueAPF();
9854 if (APF.isInfinity() && !APF.isNegative()) {
9855 const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
9856 SIInstrFlags::N_INFINITY;
9857 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
9858 SIInstrFlags::P_ZERO |
9859 SIInstrFlags::N_NORMAL |
9860 SIInstrFlags::P_NORMAL |
9861 SIInstrFlags::N_SUBNORMAL |
9862 SIInstrFlags::P_SUBNORMAL;
9863 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
9864 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
9865 DAG.getConstant(Mask, SL, MVT::i32));
9869 return SDValue();
9872 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
9873 DAGCombinerInfo &DCI) const {
9874 SelectionDAG &DAG = DCI.DAG;
9875 SDLoc SL(N);
9876 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
9878 SDValue Src = N->getOperand(0);
9879 SDValue Srl = N->getOperand(0);
9880 if (Srl.getOpcode() == ISD::ZERO_EXTEND)
9881 Srl = Srl.getOperand(0);
9883 // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
9884 if (Srl.getOpcode() == ISD::SRL) {
9885 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
9886 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
9887 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
9889 if (const ConstantSDNode *C =
9890 dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
9891 Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)),
9892 EVT(MVT::i32));
9894 unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
9895 if (SrcOffset < 32 && SrcOffset % 8 == 0) {
9896 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL,
9897 MVT::f32, Srl);
9902 APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
9904 KnownBits Known;
9905 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
9906 !DCI.isBeforeLegalizeOps());
9907 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9908 if (TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) {
9909 DCI.CommitTargetLoweringOpt(TLO);
9912 return SDValue();
9915 SDValue SITargetLowering::performClampCombine(SDNode *N,
9916 DAGCombinerInfo &DCI) const {
9917 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
9918 if (!CSrc)
9919 return SDValue();
9921 const MachineFunction &MF = DCI.DAG.getMachineFunction();
9922 const APFloat &F = CSrc->getValueAPF();
9923 APFloat Zero = APFloat::getZero(F.getSemantics());
9924 APFloat::cmpResult Cmp0 = F.compare(Zero);
9925 if (Cmp0 == APFloat::cmpLessThan ||
9926 (Cmp0 == APFloat::cmpUnordered &&
9927 MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
9928 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
9931 APFloat One(F.getSemantics(), "1.0");
9932 APFloat::cmpResult Cmp1 = F.compare(One);
9933 if (Cmp1 == APFloat::cmpGreaterThan)
9934 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
9936 return SDValue(CSrc, 0);
9940 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
9941 DAGCombinerInfo &DCI) const {
9942 if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
9943 return SDValue();
9944 switch (N->getOpcode()) {
9945 default:
9946 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
9947 case ISD::ADD:
9948 return performAddCombine(N, DCI);
9949 case ISD::SUB:
9950 return performSubCombine(N, DCI);
9951 case ISD::ADDCARRY:
9952 case ISD::SUBCARRY:
9953 return performAddCarrySubCarryCombine(N, DCI);
9954 case ISD::FADD:
9955 return performFAddCombine(N, DCI);
9956 case ISD::FSUB:
9957 return performFSubCombine(N, DCI);
9958 case ISD::SETCC:
9959 return performSetCCCombine(N, DCI);
9960 case ISD::FMAXNUM:
9961 case ISD::FMINNUM:
9962 case ISD::FMAXNUM_IEEE:
9963 case ISD::FMINNUM_IEEE:
9964 case ISD::SMAX:
9965 case ISD::SMIN:
9966 case ISD::UMAX:
9967 case ISD::UMIN:
9968 case AMDGPUISD::FMIN_LEGACY:
9969 case AMDGPUISD::FMAX_LEGACY:
9970 return performMinMaxCombine(N, DCI);
9971 case ISD::FMA:
9972 return performFMACombine(N, DCI);
9973 case ISD::LOAD: {
9974 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
9975 return Widended;
9976 LLVM_FALLTHROUGH;
9978 case ISD::STORE:
9979 case ISD::ATOMIC_LOAD:
9980 case ISD::ATOMIC_STORE:
9981 case ISD::ATOMIC_CMP_SWAP:
9982 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
9983 case ISD::ATOMIC_SWAP:
9984 case ISD::ATOMIC_LOAD_ADD:
9985 case ISD::ATOMIC_LOAD_SUB:
9986 case ISD::ATOMIC_LOAD_AND:
9987 case ISD::ATOMIC_LOAD_OR:
9988 case ISD::ATOMIC_LOAD_XOR:
9989 case ISD::ATOMIC_LOAD_NAND:
9990 case ISD::ATOMIC_LOAD_MIN:
9991 case ISD::ATOMIC_LOAD_MAX:
9992 case ISD::ATOMIC_LOAD_UMIN:
9993 case ISD::ATOMIC_LOAD_UMAX:
9994 case ISD::ATOMIC_LOAD_FADD:
9995 case AMDGPUISD::ATOMIC_INC:
9996 case AMDGPUISD::ATOMIC_DEC:
9997 case AMDGPUISD::ATOMIC_LOAD_FMIN:
9998 case AMDGPUISD::ATOMIC_LOAD_FMAX: // TODO: Target mem intrinsics.
9999 if (DCI.isBeforeLegalize())
10000 break;
10001 return performMemSDNodeCombine(cast<MemSDNode>(N), DCI);
10002 case ISD::AND:
10003 return performAndCombine(N, DCI);
10004 case ISD::OR:
10005 return performOrCombine(N, DCI);
10006 case ISD::XOR:
10007 return performXorCombine(N, DCI);
10008 case ISD::ZERO_EXTEND:
10009 return performZeroExtendCombine(N, DCI);
10010 case ISD::SIGN_EXTEND_INREG:
10011 return performSignExtendInRegCombine(N , DCI);
10012 case AMDGPUISD::FP_CLASS:
10013 return performClassCombine(N, DCI);
10014 case ISD::FCANONICALIZE:
10015 return performFCanonicalizeCombine(N, DCI);
10016 case AMDGPUISD::RCP:
10017 return performRcpCombine(N, DCI);
10018 case AMDGPUISD::FRACT:
10019 case AMDGPUISD::RSQ:
10020 case AMDGPUISD::RCP_LEGACY:
10021 case AMDGPUISD::RSQ_LEGACY:
10022 case AMDGPUISD::RCP_IFLAG:
10023 case AMDGPUISD::RSQ_CLAMP:
10024 case AMDGPUISD::LDEXP: {
10025 SDValue Src = N->getOperand(0);
10026 if (Src.isUndef())
10027 return Src;
10028 break;
10030 case ISD::SINT_TO_FP:
10031 case ISD::UINT_TO_FP:
10032 return performUCharToFloatCombine(N, DCI);
10033 case AMDGPUISD::CVT_F32_UBYTE0:
10034 case AMDGPUISD::CVT_F32_UBYTE1:
10035 case AMDGPUISD::CVT_F32_UBYTE2:
10036 case AMDGPUISD::CVT_F32_UBYTE3:
10037 return performCvtF32UByteNCombine(N, DCI);
10038 case AMDGPUISD::FMED3:
10039 return performFMed3Combine(N, DCI);
10040 case AMDGPUISD::CVT_PKRTZ_F16_F32:
10041 return performCvtPkRTZCombine(N, DCI);
10042 case AMDGPUISD::CLAMP:
10043 return performClampCombine(N, DCI);
10044 case ISD::SCALAR_TO_VECTOR: {
10045 SelectionDAG &DAG = DCI.DAG;
10046 EVT VT = N->getValueType(0);
10048 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
10049 if (VT == MVT::v2i16 || VT == MVT::v2f16) {
10050 SDLoc SL(N);
10051 SDValue Src = N->getOperand(0);
10052 EVT EltVT = Src.getValueType();
10053 if (EltVT == MVT::f16)
10054 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
10056 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
10057 return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
10060 break;
10062 case ISD::EXTRACT_VECTOR_ELT:
10063 return performExtractVectorEltCombine(N, DCI);
10064 case ISD::INSERT_VECTOR_ELT:
10065 return performInsertVectorEltCombine(N, DCI);
10067 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
10070 /// Helper function for adjustWritemask
10071 static unsigned SubIdx2Lane(unsigned Idx) {
10072 switch (Idx) {
10073 default: return 0;
10074 case AMDGPU::sub0: return 0;
10075 case AMDGPU::sub1: return 1;
10076 case AMDGPU::sub2: return 2;
10077 case AMDGPU::sub3: return 3;
10078 case AMDGPU::sub4: return 4; // Possible with TFE/LWE
10082 /// Adjust the writemask of MIMG instructions
10083 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
10084 SelectionDAG &DAG) const {
10085 unsigned Opcode = Node->getMachineOpcode();
10087 // Subtract 1 because the vdata output is not a MachineSDNode operand.
10088 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
10089 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
10090 return Node; // not implemented for D16
10092 SDNode *Users[5] = { nullptr };
10093 unsigned Lane = 0;
10094 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
10095 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
10096 unsigned NewDmask = 0;
10097 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
10098 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
10099 bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) ||
10100 Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
10101 unsigned TFCLane = 0;
10102 bool HasChain = Node->getNumValues() > 1;
10104 if (OldDmask == 0) {
10105 // These are folded out, but on the chance it happens don't assert.
10106 return Node;
10109 unsigned OldBitsSet = countPopulation(OldDmask);
10110 // Work out which is the TFE/LWE lane if that is enabled.
10111 if (UsesTFC) {
10112 TFCLane = OldBitsSet;
10115 // Try to figure out the used register components
10116 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
10117 I != E; ++I) {
10119 // Don't look at users of the chain.
10120 if (I.getUse().getResNo() != 0)
10121 continue;
10123 // Abort if we can't understand the usage
10124 if (!I->isMachineOpcode() ||
10125 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
10126 return Node;
10128 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
10129 // Note that subregs are packed, i.e. Lane==0 is the first bit set
10130 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
10131 // set, etc.
10132 Lane = SubIdx2Lane(I->getConstantOperandVal(1));
10134 // Check if the use is for the TFE/LWE generated result at VGPRn+1.
10135 if (UsesTFC && Lane == TFCLane) {
10136 Users[Lane] = *I;
10137 } else {
10138 // Set which texture component corresponds to the lane.
10139 unsigned Comp;
10140 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
10141 Comp = countTrailingZeros(Dmask);
10142 Dmask &= ~(1 << Comp);
10145 // Abort if we have more than one user per component.
10146 if (Users[Lane])
10147 return Node;
10149 Users[Lane] = *I;
10150 NewDmask |= 1 << Comp;
10154 // Don't allow 0 dmask, as hardware assumes one channel enabled.
10155 bool NoChannels = !NewDmask;
10156 if (NoChannels) {
10157 if (!UsesTFC) {
10158 // No uses of the result and not using TFC. Then do nothing.
10159 return Node;
10161 // If the original dmask has one channel - then nothing to do
10162 if (OldBitsSet == 1)
10163 return Node;
10164 // Use an arbitrary dmask - required for the instruction to work
10165 NewDmask = 1;
10167 // Abort if there's no change
10168 if (NewDmask == OldDmask)
10169 return Node;
10171 unsigned BitsSet = countPopulation(NewDmask);
10173 // Check for TFE or LWE - increase the number of channels by one to account
10174 // for the extra return value
10175 // This will need adjustment for D16 if this is also included in
10176 // adjustWriteMask (this function) but at present D16 are excluded.
10177 unsigned NewChannels = BitsSet + UsesTFC;
10179 int NewOpcode =
10180 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
10181 assert(NewOpcode != -1 &&
10182 NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
10183 "failed to find equivalent MIMG op");
10185 // Adjust the writemask in the node
10186 SmallVector<SDValue, 12> Ops;
10187 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
10188 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
10189 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
10191 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
10193 MVT ResultVT = NewChannels == 1 ?
10194 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
10195 NewChannels == 5 ? 8 : NewChannels);
10196 SDVTList NewVTList = HasChain ?
10197 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
10200 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
10201 NewVTList, Ops);
10203 if (HasChain) {
10204 // Update chain.
10205 DAG.setNodeMemRefs(NewNode, Node->memoperands());
10206 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
10209 if (NewChannels == 1) {
10210 assert(Node->hasNUsesOfValue(1, 0));
10211 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
10212 SDLoc(Node), Users[Lane]->getValueType(0),
10213 SDValue(NewNode, 0));
10214 DAG.ReplaceAllUsesWith(Users[Lane], Copy);
10215 return nullptr;
10218 // Update the users of the node with the new indices
10219 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
10220 SDNode *User = Users[i];
10221 if (!User) {
10222 // Handle the special case of NoChannels. We set NewDmask to 1 above, but
10223 // Users[0] is still nullptr because channel 0 doesn't really have a use.
10224 if (i || !NoChannels)
10225 continue;
10226 } else {
10227 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
10228 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
10231 switch (Idx) {
10232 default: break;
10233 case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
10234 case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
10235 case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
10236 case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
10240 DAG.RemoveDeadNode(Node);
10241 return nullptr;
10244 static bool isFrameIndexOp(SDValue Op) {
10245 if (Op.getOpcode() == ISD::AssertZext)
10246 Op = Op.getOperand(0);
10248 return isa<FrameIndexSDNode>(Op);
10251 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
10252 /// with frame index operands.
10253 /// LLVM assumes that inputs are to these instructions are registers.
10254 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
10255 SelectionDAG &DAG) const {
10256 if (Node->getOpcode() == ISD::CopyToReg) {
10257 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
10258 SDValue SrcVal = Node->getOperand(2);
10260 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
10261 // to try understanding copies to physical registers.
10262 if (SrcVal.getValueType() == MVT::i1 &&
10263 Register::isPhysicalRegister(DestReg->getReg())) {
10264 SDLoc SL(Node);
10265 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
10266 SDValue VReg = DAG.getRegister(
10267 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
10269 SDNode *Glued = Node->getGluedNode();
10270 SDValue ToVReg
10271 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
10272 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
10273 SDValue ToResultReg
10274 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
10275 VReg, ToVReg.getValue(1));
10276 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
10277 DAG.RemoveDeadNode(Node);
10278 return ToResultReg.getNode();
10282 SmallVector<SDValue, 8> Ops;
10283 for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
10284 if (!isFrameIndexOp(Node->getOperand(i))) {
10285 Ops.push_back(Node->getOperand(i));
10286 continue;
10289 SDLoc DL(Node);
10290 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
10291 Node->getOperand(i).getValueType(),
10292 Node->getOperand(i)), 0));
10295 return DAG.UpdateNodeOperands(Node, Ops);
10298 /// Fold the instructions after selecting them.
10299 /// Returns null if users were already updated.
10300 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
10301 SelectionDAG &DAG) const {
10302 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10303 unsigned Opcode = Node->getMachineOpcode();
10305 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
10306 !TII->isGather4(Opcode)) {
10307 return adjustWritemask(Node, DAG);
10310 if (Opcode == AMDGPU::INSERT_SUBREG ||
10311 Opcode == AMDGPU::REG_SEQUENCE) {
10312 legalizeTargetIndependentNode(Node, DAG);
10313 return Node;
10316 switch (Opcode) {
10317 case AMDGPU::V_DIV_SCALE_F32:
10318 case AMDGPU::V_DIV_SCALE_F64: {
10319 // Satisfy the operand register constraint when one of the inputs is
10320 // undefined. Ordinarily each undef value will have its own implicit_def of
10321 // a vreg, so force these to use a single register.
10322 SDValue Src0 = Node->getOperand(0);
10323 SDValue Src1 = Node->getOperand(1);
10324 SDValue Src2 = Node->getOperand(2);
10326 if ((Src0.isMachineOpcode() &&
10327 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
10328 (Src0 == Src1 || Src0 == Src2))
10329 break;
10331 MVT VT = Src0.getValueType().getSimpleVT();
10332 const TargetRegisterClass *RC =
10333 getRegClassFor(VT, Src0.getNode()->isDivergent());
10335 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
10336 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
10338 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
10339 UndefReg, Src0, SDValue());
10341 // src0 must be the same register as src1 or src2, even if the value is
10342 // undefined, so make sure we don't violate this constraint.
10343 if (Src0.isMachineOpcode() &&
10344 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
10345 if (Src1.isMachineOpcode() &&
10346 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
10347 Src0 = Src1;
10348 else if (Src2.isMachineOpcode() &&
10349 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
10350 Src0 = Src2;
10351 else {
10352 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
10353 Src0 = UndefReg;
10354 Src1 = UndefReg;
10356 } else
10357 break;
10359 SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 };
10360 for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I)
10361 Ops.push_back(Node->getOperand(I));
10363 Ops.push_back(ImpDef.getValue(1));
10364 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
10366 case AMDGPU::V_PERMLANE16_B32:
10367 case AMDGPU::V_PERMLANEX16_B32: {
10368 ConstantSDNode *FI = cast<ConstantSDNode>(Node->getOperand(0));
10369 ConstantSDNode *BC = cast<ConstantSDNode>(Node->getOperand(2));
10370 if (!FI->getZExtValue() && !BC->getZExtValue())
10371 break;
10372 SDValue VDstIn = Node->getOperand(6);
10373 if (VDstIn.isMachineOpcode()
10374 && VDstIn.getMachineOpcode() == AMDGPU::IMPLICIT_DEF)
10375 break;
10376 MachineSDNode *ImpDef = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
10377 SDLoc(Node), MVT::i32);
10378 SmallVector<SDValue, 8> Ops = { SDValue(FI, 0), Node->getOperand(1),
10379 SDValue(BC, 0), Node->getOperand(3),
10380 Node->getOperand(4), Node->getOperand(5),
10381 SDValue(ImpDef, 0), Node->getOperand(7) };
10382 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
10384 default:
10385 break;
10388 return Node;
10391 /// Assign the register class depending on the number of
10392 /// bits set in the writemask
10393 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
10394 SDNode *Node) const {
10395 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10397 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
10399 if (TII->isVOP3(MI.getOpcode())) {
10400 // Make sure constant bus requirements are respected.
10401 TII->legalizeOperandsVOP3(MRI, MI);
10403 // Prefer VGPRs over AGPRs in mAI instructions where possible.
10404 // This saves a chain-copy of registers and better ballance register
10405 // use between vgpr and agpr as agpr tuples tend to be big.
10406 if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) {
10407 unsigned Opc = MI.getOpcode();
10408 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
10409 for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
10410 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
10411 if (I == -1)
10412 break;
10413 MachineOperand &Op = MI.getOperand(I);
10414 if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID &&
10415 OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) ||
10416 !Register::isVirtualRegister(Op.getReg()) ||
10417 !TRI->isAGPR(MRI, Op.getReg()))
10418 continue;
10419 auto *Src = MRI.getUniqueVRegDef(Op.getReg());
10420 if (!Src || !Src->isCopy() ||
10421 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
10422 continue;
10423 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
10424 auto *NewRC = TRI->getEquivalentVGPRClass(RC);
10425 // All uses of agpr64 and agpr32 can also accept vgpr except for
10426 // v_accvgpr_read, but we do not produce agpr reads during selection,
10427 // so no use checks are needed.
10428 MRI.setRegClass(Op.getReg(), NewRC);
10432 return;
10435 // Replace unused atomics with the no return version.
10436 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
10437 if (NoRetAtomicOp != -1) {
10438 if (!Node->hasAnyUseOfValue(0)) {
10439 MI.setDesc(TII->get(NoRetAtomicOp));
10440 MI.RemoveOperand(0);
10441 return;
10444 // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
10445 // instruction, because the return type of these instructions is a vec2 of
10446 // the memory type, so it can be tied to the input operand.
10447 // This means these instructions always have a use, so we need to add a
10448 // special case to check if the atomic has only one extract_subreg use,
10449 // which itself has no uses.
10450 if ((Node->hasNUsesOfValue(1, 0) &&
10451 Node->use_begin()->isMachineOpcode() &&
10452 Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
10453 !Node->use_begin()->hasAnyUseOfValue(0))) {
10454 Register Def = MI.getOperand(0).getReg();
10456 // Change this into a noret atomic.
10457 MI.setDesc(TII->get(NoRetAtomicOp));
10458 MI.RemoveOperand(0);
10460 // If we only remove the def operand from the atomic instruction, the
10461 // extract_subreg will be left with a use of a vreg without a def.
10462 // So we need to insert an implicit_def to avoid machine verifier
10463 // errors.
10464 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
10465 TII->get(AMDGPU::IMPLICIT_DEF), Def);
10467 return;
10471 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
10472 uint64_t Val) {
10473 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
10474 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
10477 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
10478 const SDLoc &DL,
10479 SDValue Ptr) const {
10480 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10482 // Build the half of the subregister with the constants before building the
10483 // full 128-bit register. If we are building multiple resource descriptors,
10484 // this will allow CSEing of the 2-component register.
10485 const SDValue Ops0[] = {
10486 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
10487 buildSMovImm32(DAG, DL, 0),
10488 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
10489 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
10490 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
10493 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
10494 MVT::v2i32, Ops0), 0);
10496 // Combine the constants and the pointer.
10497 const SDValue Ops1[] = {
10498 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
10499 Ptr,
10500 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
10501 SubRegHi,
10502 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
10505 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
10508 /// Return a resource descriptor with the 'Add TID' bit enabled
10509 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
10510 /// of the resource descriptor) to create an offset, which is added to
10511 /// the resource pointer.
10512 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
10513 SDValue Ptr, uint32_t RsrcDword1,
10514 uint64_t RsrcDword2And3) const {
10515 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
10516 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
10517 if (RsrcDword1) {
10518 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
10519 DAG.getConstant(RsrcDword1, DL, MVT::i32)),
10523 SDValue DataLo = buildSMovImm32(DAG, DL,
10524 RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
10525 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
10527 const SDValue Ops[] = {
10528 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
10529 PtrLo,
10530 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
10531 PtrHi,
10532 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
10533 DataLo,
10534 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
10535 DataHi,
10536 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
10539 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
10542 //===----------------------------------------------------------------------===//
10543 // SI Inline Assembly Support
10544 //===----------------------------------------------------------------------===//
10546 std::pair<unsigned, const TargetRegisterClass *>
10547 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10548 StringRef Constraint,
10549 MVT VT) const {
10550 const TargetRegisterClass *RC = nullptr;
10551 if (Constraint.size() == 1) {
10552 switch (Constraint[0]) {
10553 default:
10554 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10555 case 's':
10556 case 'r':
10557 switch (VT.getSizeInBits()) {
10558 default:
10559 return std::make_pair(0U, nullptr);
10560 case 32:
10561 case 16:
10562 RC = &AMDGPU::SReg_32RegClass;
10563 break;
10564 case 64:
10565 RC = &AMDGPU::SGPR_64RegClass;
10566 break;
10567 case 96:
10568 RC = &AMDGPU::SReg_96RegClass;
10569 break;
10570 case 128:
10571 RC = &AMDGPU::SGPR_128RegClass;
10572 break;
10573 case 160:
10574 RC = &AMDGPU::SReg_160RegClass;
10575 break;
10576 case 256:
10577 RC = &AMDGPU::SReg_256RegClass;
10578 break;
10579 case 512:
10580 RC = &AMDGPU::SReg_512RegClass;
10581 break;
10583 break;
10584 case 'v':
10585 switch (VT.getSizeInBits()) {
10586 default:
10587 return std::make_pair(0U, nullptr);
10588 case 32:
10589 case 16:
10590 RC = &AMDGPU::VGPR_32RegClass;
10591 break;
10592 case 64:
10593 RC = &AMDGPU::VReg_64RegClass;
10594 break;
10595 case 96:
10596 RC = &AMDGPU::VReg_96RegClass;
10597 break;
10598 case 128:
10599 RC = &AMDGPU::VReg_128RegClass;
10600 break;
10601 case 160:
10602 RC = &AMDGPU::VReg_160RegClass;
10603 break;
10604 case 256:
10605 RC = &AMDGPU::VReg_256RegClass;
10606 break;
10607 case 512:
10608 RC = &AMDGPU::VReg_512RegClass;
10609 break;
10611 break;
10612 case 'a':
10613 if (!Subtarget->hasMAIInsts())
10614 break;
10615 switch (VT.getSizeInBits()) {
10616 default:
10617 return std::make_pair(0U, nullptr);
10618 case 32:
10619 case 16:
10620 RC = &AMDGPU::AGPR_32RegClass;
10621 break;
10622 case 64:
10623 RC = &AMDGPU::AReg_64RegClass;
10624 break;
10625 case 128:
10626 RC = &AMDGPU::AReg_128RegClass;
10627 break;
10628 case 512:
10629 RC = &AMDGPU::AReg_512RegClass;
10630 break;
10631 case 1024:
10632 RC = &AMDGPU::AReg_1024RegClass;
10633 // v32 types are not legal but we support them here.
10634 return std::make_pair(0U, RC);
10636 break;
10638 // We actually support i128, i16 and f16 as inline parameters
10639 // even if they are not reported as legal
10640 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
10641 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
10642 return std::make_pair(0U, RC);
10645 if (Constraint.size() > 1) {
10646 if (Constraint[1] == 'v') {
10647 RC = &AMDGPU::VGPR_32RegClass;
10648 } else if (Constraint[1] == 's') {
10649 RC = &AMDGPU::SGPR_32RegClass;
10650 } else if (Constraint[1] == 'a') {
10651 RC = &AMDGPU::AGPR_32RegClass;
10654 if (RC) {
10655 uint32_t Idx;
10656 bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
10657 if (!Failed && Idx < RC->getNumRegs())
10658 return std::make_pair(RC->getRegister(Idx), RC);
10661 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10664 SITargetLowering::ConstraintType
10665 SITargetLowering::getConstraintType(StringRef Constraint) const {
10666 if (Constraint.size() == 1) {
10667 switch (Constraint[0]) {
10668 default: break;
10669 case 's':
10670 case 'v':
10671 case 'a':
10672 return C_RegisterClass;
10675 return TargetLowering::getConstraintType(Constraint);
10678 // Figure out which registers should be reserved for stack access. Only after
10679 // the function is legalized do we know all of the non-spill stack objects or if
10680 // calls are present.
10681 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
10682 MachineRegisterInfo &MRI = MF.getRegInfo();
10683 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10684 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
10685 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
10687 if (Info->isEntryFunction()) {
10688 // Callable functions have fixed registers used for stack access.
10689 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
10692 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
10693 Info->getStackPtrOffsetReg()));
10694 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
10695 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
10697 // We need to worry about replacing the default register with itself in case
10698 // of MIR testcases missing the MFI.
10699 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
10700 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
10702 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
10703 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
10705 if (Info->getScratchWaveOffsetReg() != AMDGPU::SCRATCH_WAVE_OFFSET_REG) {
10706 MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG,
10707 Info->getScratchWaveOffsetReg());
10710 Info->limitOccupancy(MF);
10712 if (ST.isWave32() && !MF.empty()) {
10713 // Add VCC_HI def because many instructions marked as imp-use VCC where
10714 // we may only define VCC_LO. If nothing defines VCC_HI we may end up
10715 // having a use of undef.
10717 const SIInstrInfo *TII = ST.getInstrInfo();
10718 DebugLoc DL;
10720 MachineBasicBlock &MBB = MF.front();
10721 MachineBasicBlock::iterator I = MBB.getFirstNonDebugInstr();
10722 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), AMDGPU::VCC_HI);
10724 for (auto &MBB : MF) {
10725 for (auto &MI : MBB) {
10726 TII->fixImplicitOperands(MI);
10731 TargetLoweringBase::finalizeLowering(MF);
10734 void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
10735 KnownBits &Known,
10736 const APInt &DemandedElts,
10737 const SelectionDAG &DAG,
10738 unsigned Depth) const {
10739 TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts,
10740 DAG, Depth);
10742 // Set the high bits to zero based on the maximum allowed scratch size per
10743 // wave. We can't use vaddr in MUBUF instructions if we don't know the address
10744 // calculation won't overflow, so assume the sign bit is never set.
10745 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
10748 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
10749 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
10750 const Align CacheLineAlign = Align(64);
10752 // Pre-GFX10 target did not benefit from loop alignment
10753 if (!ML || DisableLoopAlignment ||
10754 (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
10755 getSubtarget()->hasInstFwdPrefetchBug())
10756 return PrefAlign;
10758 // On GFX10 I$ is 4 x 64 bytes cache lines.
10759 // By default prefetcher keeps one cache line behind and reads two ahead.
10760 // We can modify it with S_INST_PREFETCH for larger loops to have two lines
10761 // behind and one ahead.
10762 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
10763 // If loop fits 64 bytes it always spans no more than two cache lines and
10764 // does not need an alignment.
10765 // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
10766 // Else if loop is less or equal 192 bytes we need two lines behind.
10768 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10769 const MachineBasicBlock *Header = ML->getHeader();
10770 if (Header->getAlignment() != PrefAlign)
10771 return Header->getAlignment(); // Already processed.
10773 unsigned LoopSize = 0;
10774 for (const MachineBasicBlock *MBB : ML->blocks()) {
10775 // If inner loop block is aligned assume in average half of the alignment
10776 // size to be added as nops.
10777 if (MBB != Header)
10778 LoopSize += MBB->getAlignment().value() / 2;
10780 for (const MachineInstr &MI : *MBB) {
10781 LoopSize += TII->getInstSizeInBytes(MI);
10782 if (LoopSize > 192)
10783 return PrefAlign;
10787 if (LoopSize <= 64)
10788 return PrefAlign;
10790 if (LoopSize <= 128)
10791 return CacheLineAlign;
10793 // If any of parent loops is surrounded by prefetch instructions do not
10794 // insert new for inner loop, which would reset parent's settings.
10795 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
10796 if (MachineBasicBlock *Exit = P->getExitBlock()) {
10797 auto I = Exit->getFirstNonDebugInstr();
10798 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
10799 return CacheLineAlign;
10803 MachineBasicBlock *Pre = ML->getLoopPreheader();
10804 MachineBasicBlock *Exit = ML->getExitBlock();
10806 if (Pre && Exit) {
10807 BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
10808 TII->get(AMDGPU::S_INST_PREFETCH))
10809 .addImm(1); // prefetch 2 lines behind PC
10811 BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
10812 TII->get(AMDGPU::S_INST_PREFETCH))
10813 .addImm(2); // prefetch 1 line behind PC
10816 return CacheLineAlign;
10819 LLVM_ATTRIBUTE_UNUSED
10820 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
10821 assert(N->getOpcode() == ISD::CopyFromReg);
10822 do {
10823 // Follow the chain until we find an INLINEASM node.
10824 N = N->getOperand(0).getNode();
10825 if (N->getOpcode() == ISD::INLINEASM ||
10826 N->getOpcode() == ISD::INLINEASM_BR)
10827 return true;
10828 } while (N->getOpcode() == ISD::CopyFromReg);
10829 return false;
10832 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode * N,
10833 FunctionLoweringInfo * FLI, LegacyDivergenceAnalysis * KDA) const
10835 switch (N->getOpcode()) {
10836 case ISD::CopyFromReg:
10838 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
10839 const MachineFunction * MF = FLI->MF;
10840 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
10841 const MachineRegisterInfo &MRI = MF->getRegInfo();
10842 const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo();
10843 unsigned Reg = R->getReg();
10844 if (Register::isPhysicalRegister(Reg))
10845 return !TRI.isSGPRReg(MRI, Reg);
10847 if (MRI.isLiveIn(Reg)) {
10848 // workitem.id.x workitem.id.y workitem.id.z
10849 // Any VGPR formal argument is also considered divergent
10850 if (!TRI.isSGPRReg(MRI, Reg))
10851 return true;
10852 // Formal arguments of non-entry functions
10853 // are conservatively considered divergent
10854 else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv()))
10855 return true;
10856 return false;
10858 const Value *V = FLI->getValueFromVirtualReg(Reg);
10859 if (V)
10860 return KDA->isDivergent(V);
10861 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
10862 return !TRI.isSGPRReg(MRI, Reg);
10864 break;
10865 case ISD::LOAD: {
10866 const LoadSDNode *L = cast<LoadSDNode>(N);
10867 unsigned AS = L->getAddressSpace();
10868 // A flat load may access private memory.
10869 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
10870 } break;
10871 case ISD::CALLSEQ_END:
10872 return true;
10873 break;
10874 case ISD::INTRINSIC_WO_CHAIN:
10878 return AMDGPU::isIntrinsicSourceOfDivergence(
10879 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
10880 case ISD::INTRINSIC_W_CHAIN:
10881 return AMDGPU::isIntrinsicSourceOfDivergence(
10882 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
10884 return false;
10887 bool SITargetLowering::denormalsEnabledForType(EVT VT) const {
10888 switch (VT.getScalarType().getSimpleVT().SimpleTy) {
10889 case MVT::f32:
10890 return Subtarget->hasFP32Denormals();
10891 case MVT::f64:
10892 return Subtarget->hasFP64Denormals();
10893 case MVT::f16:
10894 return Subtarget->hasFP16Denormals();
10895 default:
10896 return false;
10900 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
10901 const SelectionDAG &DAG,
10902 bool SNaN,
10903 unsigned Depth) const {
10904 if (Op.getOpcode() == AMDGPUISD::CLAMP) {
10905 const MachineFunction &MF = DAG.getMachineFunction();
10906 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10908 if (Info->getMode().DX10Clamp)
10909 return true; // Clamped to 0.
10910 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
10913 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
10914 SNaN, Depth);
10917 TargetLowering::AtomicExpansionKind
10918 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
10919 switch (RMW->getOperation()) {
10920 case AtomicRMWInst::FAdd: {
10921 Type *Ty = RMW->getType();
10923 // We don't have a way to support 16-bit atomics now, so just leave them
10924 // as-is.
10925 if (Ty->isHalfTy())
10926 return AtomicExpansionKind::None;
10928 if (!Ty->isFloatTy())
10929 return AtomicExpansionKind::CmpXChg;
10931 // TODO: Do have these for flat. Older targets also had them for buffers.
10932 unsigned AS = RMW->getPointerAddressSpace();
10933 return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ?
10934 AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg;
10936 default:
10937 break;
10940 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
10943 const TargetRegisterClass *
10944 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
10945 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
10946 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
10947 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
10948 return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
10949 : &AMDGPU::SReg_32RegClass;
10950 if (!TRI->isSGPRClass(RC) && !isDivergent)
10951 return TRI->getEquivalentSGPRClass(RC);
10952 else if (TRI->isSGPRClass(RC) && isDivergent)
10953 return TRI->getEquivalentVGPRClass(RC);
10955 return RC;
10958 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited) {
10959 if (!Visited.insert(V).second)
10960 return false;
10961 bool Result = false;
10962 for (auto U : V->users()) {
10963 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
10964 if (V == U->getOperand(1)) {
10965 switch (Intrinsic->getIntrinsicID()) {
10966 default:
10967 Result = false;
10968 break;
10969 case Intrinsic::amdgcn_if_break:
10970 case Intrinsic::amdgcn_if:
10971 case Intrinsic::amdgcn_else:
10972 Result = true;
10973 break;
10976 if (V == U->getOperand(0)) {
10977 switch (Intrinsic->getIntrinsicID()) {
10978 default:
10979 Result = false;
10980 break;
10981 case Intrinsic::amdgcn_end_cf:
10982 case Intrinsic::amdgcn_loop:
10983 Result = true;
10984 break;
10987 } else {
10988 Result = hasCFUser(U, Visited);
10990 if (Result)
10991 break;
10993 return Result;
10996 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
10997 const Value *V) const {
10998 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
10999 switch (Intrinsic->getIntrinsicID()) {
11000 default:
11001 return false;
11002 case Intrinsic::amdgcn_if_break:
11003 return true;
11006 if (const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V)) {
11007 if (const IntrinsicInst *Intrinsic =
11008 dyn_cast<IntrinsicInst>(ExtValue->getOperand(0))) {
11009 switch (Intrinsic->getIntrinsicID()) {
11010 default:
11011 return false;
11012 case Intrinsic::amdgcn_if:
11013 case Intrinsic::amdgcn_else: {
11014 ArrayRef<unsigned> Indices = ExtValue->getIndices();
11015 if (Indices.size() == 1 && Indices[0] == 1) {
11016 return true;
11022 if (const CallInst *CI = dyn_cast<CallInst>(V)) {
11023 if (isa<InlineAsm>(CI->getCalledValue())) {
11024 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
11025 ImmutableCallSite CS(CI);
11026 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
11027 MF.getDataLayout(), Subtarget->getRegisterInfo(), CS);
11028 for (auto &TC : TargetConstraints) {
11029 if (TC.Type == InlineAsm::isOutput) {
11030 ComputeConstraintToUse(TC, SDValue());
11031 unsigned AssignedReg;
11032 const TargetRegisterClass *RC;
11033 std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint(
11034 SIRI, TC.ConstraintCode, TC.ConstraintVT);
11035 if (RC) {
11036 MachineRegisterInfo &MRI = MF.getRegInfo();
11037 if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg))
11038 return true;
11039 else if (SIRI->isSGPRClass(RC))
11040 return true;
11046 SmallPtrSet<const Value *, 16> Visited;
11047 return hasCFUser(V, Visited);