[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Target / ARM / ARMFastISel.cpp
blob1fc5ff6921c607205a83d7ed73f5e61e1eb7fbc5
1 //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the ARM-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // ARMGenFastISel.inc, which is #included here.
13 //===----------------------------------------------------------------------===//
15 #include "ARM.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMISelLowering.h"
21 #include "ARMMachineFunctionInfo.h"
22 #include "ARMSubtarget.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "MCTargetDesc/ARMBaseInfo.h"
25 #include "Utils/ARMBaseInfo.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/CodeGen/CallingConvLower.h"
31 #include "llvm/CodeGen/FastISel.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetOpcodes.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/ValueTypes.h"
49 #include "llvm/IR/Argument.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/CallSite.h"
52 #include "llvm/IR/CallingConv.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/GetElementPtrTypeIterator.h"
59 #include "llvm/IR/GlobalValue.h"
60 #include "llvm/IR/GlobalVariable.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/Intrinsics.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/MC/MCInstrDesc.h"
72 #include "llvm/MC/MCRegisterInfo.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/MachineValueType.h"
77 #include "llvm/Support/MathExtras.h"
78 #include "llvm/Target/TargetMachine.h"
79 #include "llvm/Target/TargetOptions.h"
80 #include <cassert>
81 #include <cstdint>
82 #include <utility>
84 using namespace llvm;
86 namespace {
88 // All possible address modes, plus some.
89 struct Address {
90 enum {
91 RegBase,
92 FrameIndexBase
93 } BaseType = RegBase;
95 union {
96 unsigned Reg;
97 int FI;
98 } Base;
100 int Offset = 0;
102 // Innocuous defaults for our address.
103 Address() {
104 Base.Reg = 0;
108 class ARMFastISel final : public FastISel {
109 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
110 /// make the right decision when generating code for different targets.
111 const ARMSubtarget *Subtarget;
112 Module &M;
113 const TargetMachine &TM;
114 const TargetInstrInfo &TII;
115 const TargetLowering &TLI;
116 ARMFunctionInfo *AFI;
118 // Convenience variables to avoid some queries.
119 bool isThumb2;
120 LLVMContext *Context;
122 public:
123 explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
124 const TargetLibraryInfo *libInfo)
125 : FastISel(funcInfo, libInfo),
126 Subtarget(
127 &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())),
128 M(const_cast<Module &>(*funcInfo.Fn->getParent())),
129 TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
130 TLI(*Subtarget->getTargetLowering()) {
131 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
132 isThumb2 = AFI->isThumbFunction();
133 Context = &funcInfo.Fn->getContext();
136 private:
137 // Code from FastISel.cpp.
139 unsigned fastEmitInst_r(unsigned MachineInstOpcode,
140 const TargetRegisterClass *RC,
141 unsigned Op0, bool Op0IsKill);
142 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
143 const TargetRegisterClass *RC,
144 unsigned Op0, bool Op0IsKill,
145 unsigned Op1, bool Op1IsKill);
146 unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
147 const TargetRegisterClass *RC,
148 unsigned Op0, bool Op0IsKill,
149 uint64_t Imm);
150 unsigned fastEmitInst_i(unsigned MachineInstOpcode,
151 const TargetRegisterClass *RC,
152 uint64_t Imm);
154 // Backend specific FastISel code.
156 bool fastSelectInstruction(const Instruction *I) override;
157 unsigned fastMaterializeConstant(const Constant *C) override;
158 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
159 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
160 const LoadInst *LI) override;
161 bool fastLowerArguments() override;
163 #include "ARMGenFastISel.inc"
165 // Instruction selection routines.
167 bool SelectLoad(const Instruction *I);
168 bool SelectStore(const Instruction *I);
169 bool SelectBranch(const Instruction *I);
170 bool SelectIndirectBr(const Instruction *I);
171 bool SelectCmp(const Instruction *I);
172 bool SelectFPExt(const Instruction *I);
173 bool SelectFPTrunc(const Instruction *I);
174 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
175 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
176 bool SelectIToFP(const Instruction *I, bool isSigned);
177 bool SelectFPToI(const Instruction *I, bool isSigned);
178 bool SelectDiv(const Instruction *I, bool isSigned);
179 bool SelectRem(const Instruction *I, bool isSigned);
180 bool SelectCall(const Instruction *I, const char *IntrMemName);
181 bool SelectIntrinsicCall(const IntrinsicInst &I);
182 bool SelectSelect(const Instruction *I);
183 bool SelectRet(const Instruction *I);
184 bool SelectTrunc(const Instruction *I);
185 bool SelectIntExt(const Instruction *I);
186 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
188 // Utility routines.
190 bool isPositionIndependent() const;
191 bool isTypeLegal(Type *Ty, MVT &VT);
192 bool isLoadTypeLegal(Type *Ty, MVT &VT);
193 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
194 bool isZExt);
195 bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
196 unsigned Alignment = 0, bool isZExt = true,
197 bool allocReg = true);
198 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
199 unsigned Alignment = 0);
200 bool ARMComputeAddress(const Value *Obj, Address &Addr);
201 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
202 bool ARMIsMemCpySmall(uint64_t Len);
203 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
204 unsigned Alignment);
205 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
206 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
207 unsigned ARMMaterializeInt(const Constant *C, MVT VT);
208 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
209 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
210 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
211 unsigned ARMSelectCallOp(bool UseReg);
212 unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
214 const TargetLowering *getTargetLowering() { return &TLI; }
216 // Call handling routines.
218 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
219 bool Return,
220 bool isVarArg);
221 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
222 SmallVectorImpl<Register> &ArgRegs,
223 SmallVectorImpl<MVT> &ArgVTs,
224 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
225 SmallVectorImpl<Register> &RegArgs,
226 CallingConv::ID CC,
227 unsigned &NumBytes,
228 bool isVarArg);
229 unsigned getLibcallReg(const Twine &Name);
230 bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
231 const Instruction *I, CallingConv::ID CC,
232 unsigned &NumBytes, bool isVarArg);
233 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
235 // OptionalDef handling routines.
237 bool isARMNEONPred(const MachineInstr *MI);
238 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
239 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
240 void AddLoadStoreOperands(MVT VT, Address &Addr,
241 const MachineInstrBuilder &MIB,
242 MachineMemOperand::Flags Flags, bool useAM3);
245 } // end anonymous namespace
247 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
248 // we don't care about implicit defs here, just places we'll need to add a
249 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
250 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
251 if (!MI->hasOptionalDef())
252 return false;
254 // Look to see if our OptionalDef is defining CPSR or CCR.
255 for (const MachineOperand &MO : MI->operands()) {
256 if (!MO.isReg() || !MO.isDef()) continue;
257 if (MO.getReg() == ARM::CPSR)
258 *CPSR = true;
260 return true;
263 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
264 const MCInstrDesc &MCID = MI->getDesc();
266 // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
267 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
268 AFI->isThumb2Function())
269 return MI->isPredicable();
271 for (const MCOperandInfo &opInfo : MCID.operands())
272 if (opInfo.isPredicate())
273 return true;
275 return false;
278 // If the machine is predicable go ahead and add the predicate operands, if
279 // it needs default CC operands add those.
280 // TODO: If we want to support thumb1 then we'll need to deal with optional
281 // CPSR defs that need to be added before the remaining operands. See s_cc_out
282 // for descriptions why.
283 const MachineInstrBuilder &
284 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
285 MachineInstr *MI = &*MIB;
287 // Do we use a predicate? or...
288 // Are we NEON in ARM mode and have a predicate operand? If so, I know
289 // we're not predicable but add it anyways.
290 if (isARMNEONPred(MI))
291 MIB.add(predOps(ARMCC::AL));
293 // Do we optionally set a predicate? Preds is size > 0 iff the predicate
294 // defines CPSR. All other OptionalDefines in ARM are the CCR register.
295 bool CPSR = false;
296 if (DefinesOptionalPredicate(MI, &CPSR))
297 MIB.add(CPSR ? t1CondCodeOp() : condCodeOp());
298 return MIB;
301 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
302 const TargetRegisterClass *RC,
303 unsigned Op0, bool Op0IsKill) {
304 Register ResultReg = createResultReg(RC);
305 const MCInstrDesc &II = TII.get(MachineInstOpcode);
307 // Make sure the input operand is sufficiently constrained to be legal
308 // for this instruction.
309 Op0 = constrainOperandRegClass(II, Op0, 1);
310 if (II.getNumDefs() >= 1) {
311 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
312 ResultReg).addReg(Op0, Op0IsKill * RegState::Kill));
313 } else {
314 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
315 .addReg(Op0, Op0IsKill * RegState::Kill));
316 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
317 TII.get(TargetOpcode::COPY), ResultReg)
318 .addReg(II.ImplicitDefs[0]));
320 return ResultReg;
323 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
324 const TargetRegisterClass *RC,
325 unsigned Op0, bool Op0IsKill,
326 unsigned Op1, bool Op1IsKill) {
327 unsigned ResultReg = createResultReg(RC);
328 const MCInstrDesc &II = TII.get(MachineInstOpcode);
330 // Make sure the input operands are sufficiently constrained to be legal
331 // for this instruction.
332 Op0 = constrainOperandRegClass(II, Op0, 1);
333 Op1 = constrainOperandRegClass(II, Op1, 2);
335 if (II.getNumDefs() >= 1) {
336 AddOptionalDefs(
337 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
338 .addReg(Op0, Op0IsKill * RegState::Kill)
339 .addReg(Op1, Op1IsKill * RegState::Kill));
340 } else {
341 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
342 .addReg(Op0, Op0IsKill * RegState::Kill)
343 .addReg(Op1, Op1IsKill * RegState::Kill));
344 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
345 TII.get(TargetOpcode::COPY), ResultReg)
346 .addReg(II.ImplicitDefs[0]));
348 return ResultReg;
351 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
352 const TargetRegisterClass *RC,
353 unsigned Op0, bool Op0IsKill,
354 uint64_t Imm) {
355 unsigned ResultReg = createResultReg(RC);
356 const MCInstrDesc &II = TII.get(MachineInstOpcode);
358 // Make sure the input operand is sufficiently constrained to be legal
359 // for this instruction.
360 Op0 = constrainOperandRegClass(II, Op0, 1);
361 if (II.getNumDefs() >= 1) {
362 AddOptionalDefs(
363 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
364 .addReg(Op0, Op0IsKill * RegState::Kill)
365 .addImm(Imm));
366 } else {
367 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
368 .addReg(Op0, Op0IsKill * RegState::Kill)
369 .addImm(Imm));
370 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
371 TII.get(TargetOpcode::COPY), ResultReg)
372 .addReg(II.ImplicitDefs[0]));
374 return ResultReg;
377 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
378 const TargetRegisterClass *RC,
379 uint64_t Imm) {
380 unsigned ResultReg = createResultReg(RC);
381 const MCInstrDesc &II = TII.get(MachineInstOpcode);
383 if (II.getNumDefs() >= 1) {
384 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
385 ResultReg).addImm(Imm));
386 } else {
387 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
388 .addImm(Imm));
389 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
390 TII.get(TargetOpcode::COPY), ResultReg)
391 .addReg(II.ImplicitDefs[0]));
393 return ResultReg;
396 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
397 // checks from the various callers.
398 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
399 if (VT == MVT::f64) return 0;
401 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
402 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
403 TII.get(ARM::VMOVSR), MoveReg)
404 .addReg(SrcReg));
405 return MoveReg;
408 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
409 if (VT == MVT::i64) return 0;
411 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
412 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
413 TII.get(ARM::VMOVRS), MoveReg)
414 .addReg(SrcReg));
415 return MoveReg;
418 // For double width floating point we need to materialize two constants
419 // (the high and the low) into integer registers then use a move to get
420 // the combined constant into an FP reg.
421 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
422 const APFloat Val = CFP->getValueAPF();
423 bool is64bit = VT == MVT::f64;
425 // This checks to see if we can use VFP3 instructions to materialize
426 // a constant, otherwise we have to go through the constant pool.
427 if (TLI.isFPImmLegal(Val, VT)) {
428 int Imm;
429 unsigned Opc;
430 if (is64bit) {
431 Imm = ARM_AM::getFP64Imm(Val);
432 Opc = ARM::FCONSTD;
433 } else {
434 Imm = ARM_AM::getFP32Imm(Val);
435 Opc = ARM::FCONSTS;
437 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
438 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
439 TII.get(Opc), DestReg).addImm(Imm));
440 return DestReg;
443 // Require VFP2 for loading fp constants.
444 if (!Subtarget->hasVFP2Base()) return false;
446 // MachineConstantPool wants an explicit alignment.
447 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
448 if (Align == 0) {
449 // TODO: Figure out if this is correct.
450 Align = DL.getTypeAllocSize(CFP->getType());
452 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
453 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
454 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
456 // The extra reg is for addrmode5.
457 AddOptionalDefs(
458 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
459 .addConstantPoolIndex(Idx)
460 .addReg(0));
461 return DestReg;
464 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
465 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
466 return 0;
468 // If we can do this in a single instruction without a constant pool entry
469 // do so now.
470 const ConstantInt *CI = cast<ConstantInt>(C);
471 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
472 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
473 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
474 &ARM::GPRRegClass;
475 unsigned ImmReg = createResultReg(RC);
476 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
477 TII.get(Opc), ImmReg)
478 .addImm(CI->getZExtValue()));
479 return ImmReg;
482 // Use MVN to emit negative constants.
483 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
484 unsigned Imm = (unsigned)~(CI->getSExtValue());
485 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
486 (ARM_AM::getSOImmVal(Imm) != -1);
487 if (UseImm) {
488 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
489 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
490 &ARM::GPRRegClass;
491 unsigned ImmReg = createResultReg(RC);
492 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
493 TII.get(Opc), ImmReg)
494 .addImm(Imm));
495 return ImmReg;
499 unsigned ResultReg = 0;
500 if (Subtarget->useMovt())
501 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
503 if (ResultReg)
504 return ResultReg;
506 // Load from constant pool. For now 32-bit only.
507 if (VT != MVT::i32)
508 return 0;
510 // MachineConstantPool wants an explicit alignment.
511 unsigned Align = DL.getPrefTypeAlignment(C->getType());
512 if (Align == 0) {
513 // TODO: Figure out if this is correct.
514 Align = DL.getTypeAllocSize(C->getType());
516 unsigned Idx = MCP.getConstantPoolIndex(C, Align);
517 ResultReg = createResultReg(TLI.getRegClassFor(VT));
518 if (isThumb2)
519 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
520 TII.get(ARM::t2LDRpci), ResultReg)
521 .addConstantPoolIndex(Idx));
522 else {
523 // The extra immediate is for addrmode2.
524 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
525 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
526 TII.get(ARM::LDRcp), ResultReg)
527 .addConstantPoolIndex(Idx)
528 .addImm(0));
530 return ResultReg;
533 bool ARMFastISel::isPositionIndependent() const {
534 return TLI.isPositionIndependent();
537 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
538 // For now 32-bit only.
539 if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
541 // ROPI/RWPI not currently supported.
542 if (Subtarget->isROPI() || Subtarget->isRWPI())
543 return 0;
545 bool IsIndirect = Subtarget->isGVIndirectSymbol(GV);
546 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
547 : &ARM::GPRRegClass;
548 unsigned DestReg = createResultReg(RC);
550 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
551 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
552 bool IsThreadLocal = GVar && GVar->isThreadLocal();
553 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
555 bool IsPositionIndependent = isPositionIndependent();
556 // Use movw+movt when possible, it avoids constant pool entries.
557 // Non-darwin targets only support static movt relocations in FastISel.
558 if (Subtarget->useMovt() &&
559 (Subtarget->isTargetMachO() || !IsPositionIndependent)) {
560 unsigned Opc;
561 unsigned char TF = 0;
562 if (Subtarget->isTargetMachO())
563 TF = ARMII::MO_NONLAZY;
565 if (IsPositionIndependent)
566 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
567 else
568 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
569 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
570 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
571 } else {
572 // MachineConstantPool wants an explicit alignment.
573 unsigned Align = DL.getPrefTypeAlignment(GV->getType());
574 if (Align == 0) {
575 // TODO: Figure out if this is correct.
576 Align = DL.getTypeAllocSize(GV->getType());
579 if (Subtarget->isTargetELF() && IsPositionIndependent)
580 return ARMLowerPICELF(GV, Align, VT);
582 // Grab index.
583 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
584 unsigned Id = AFI->createPICLabelUId();
585 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
586 ARMCP::CPValue,
587 PCAdj);
588 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
590 // Load value.
591 MachineInstrBuilder MIB;
592 if (isThumb2) {
593 unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci;
594 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
595 DestReg).addConstantPoolIndex(Idx);
596 if (IsPositionIndependent)
597 MIB.addImm(Id);
598 AddOptionalDefs(MIB);
599 } else {
600 // The extra immediate is for addrmode2.
601 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
602 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
603 TII.get(ARM::LDRcp), DestReg)
604 .addConstantPoolIndex(Idx)
605 .addImm(0);
606 AddOptionalDefs(MIB);
608 if (IsPositionIndependent) {
609 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
610 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
612 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
613 DbgLoc, TII.get(Opc), NewDestReg)
614 .addReg(DestReg)
615 .addImm(Id);
616 AddOptionalDefs(MIB);
617 return NewDestReg;
622 if (IsIndirect) {
623 MachineInstrBuilder MIB;
624 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
625 if (isThumb2)
626 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
627 TII.get(ARM::t2LDRi12), NewDestReg)
628 .addReg(DestReg)
629 .addImm(0);
630 else
631 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
632 TII.get(ARM::LDRi12), NewDestReg)
633 .addReg(DestReg)
634 .addImm(0);
635 DestReg = NewDestReg;
636 AddOptionalDefs(MIB);
639 return DestReg;
642 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
643 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
645 // Only handle simple types.
646 if (!CEVT.isSimple()) return 0;
647 MVT VT = CEVT.getSimpleVT();
649 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
650 return ARMMaterializeFP(CFP, VT);
651 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
652 return ARMMaterializeGV(GV, VT);
653 else if (isa<ConstantInt>(C))
654 return ARMMaterializeInt(C, VT);
656 return 0;
659 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
661 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
662 // Don't handle dynamic allocas.
663 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
665 MVT VT;
666 if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
668 DenseMap<const AllocaInst*, int>::iterator SI =
669 FuncInfo.StaticAllocaMap.find(AI);
671 // This will get lowered later into the correct offsets and registers
672 // via rewriteXFrameIndex.
673 if (SI != FuncInfo.StaticAllocaMap.end()) {
674 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
675 const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
676 unsigned ResultReg = createResultReg(RC);
677 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
679 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
680 TII.get(Opc), ResultReg)
681 .addFrameIndex(SI->second)
682 .addImm(0));
683 return ResultReg;
686 return 0;
689 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
690 EVT evt = TLI.getValueType(DL, Ty, true);
692 // Only handle simple types.
693 if (evt == MVT::Other || !evt.isSimple()) return false;
694 VT = evt.getSimpleVT();
696 // Handle all legal types, i.e. a register that will directly hold this
697 // value.
698 return TLI.isTypeLegal(VT);
701 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
702 if (isTypeLegal(Ty, VT)) return true;
704 // If this is a type than can be sign or zero-extended to a basic operation
705 // go ahead and accept it now.
706 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
707 return true;
709 return false;
712 // Computes the address to get to an object.
713 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
714 // Some boilerplate from the X86 FastISel.
715 const User *U = nullptr;
716 unsigned Opcode = Instruction::UserOp1;
717 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
718 // Don't walk into other basic blocks unless the object is an alloca from
719 // another block, otherwise it may not have a virtual register assigned.
720 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
721 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
722 Opcode = I->getOpcode();
723 U = I;
725 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
726 Opcode = C->getOpcode();
727 U = C;
730 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
731 if (Ty->getAddressSpace() > 255)
732 // Fast instruction selection doesn't support the special
733 // address spaces.
734 return false;
736 switch (Opcode) {
737 default:
738 break;
739 case Instruction::BitCast:
740 // Look through bitcasts.
741 return ARMComputeAddress(U->getOperand(0), Addr);
742 case Instruction::IntToPtr:
743 // Look past no-op inttoptrs.
744 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
745 TLI.getPointerTy(DL))
746 return ARMComputeAddress(U->getOperand(0), Addr);
747 break;
748 case Instruction::PtrToInt:
749 // Look past no-op ptrtoints.
750 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
751 return ARMComputeAddress(U->getOperand(0), Addr);
752 break;
753 case Instruction::GetElementPtr: {
754 Address SavedAddr = Addr;
755 int TmpOffset = Addr.Offset;
757 // Iterate through the GEP folding the constants into offsets where
758 // we can.
759 gep_type_iterator GTI = gep_type_begin(U);
760 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
761 i != e; ++i, ++GTI) {
762 const Value *Op = *i;
763 if (StructType *STy = GTI.getStructTypeOrNull()) {
764 const StructLayout *SL = DL.getStructLayout(STy);
765 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
766 TmpOffset += SL->getElementOffset(Idx);
767 } else {
768 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
769 while (true) {
770 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
771 // Constant-offset addressing.
772 TmpOffset += CI->getSExtValue() * S;
773 break;
775 if (canFoldAddIntoGEP(U, Op)) {
776 // A compatible add with a constant operand. Fold the constant.
777 ConstantInt *CI =
778 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
779 TmpOffset += CI->getSExtValue() * S;
780 // Iterate on the other operand.
781 Op = cast<AddOperator>(Op)->getOperand(0);
782 continue;
784 // Unsupported
785 goto unsupported_gep;
790 // Try to grab the base operand now.
791 Addr.Offset = TmpOffset;
792 if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
794 // We failed, restore everything and try the other options.
795 Addr = SavedAddr;
797 unsupported_gep:
798 break;
800 case Instruction::Alloca: {
801 const AllocaInst *AI = cast<AllocaInst>(Obj);
802 DenseMap<const AllocaInst*, int>::iterator SI =
803 FuncInfo.StaticAllocaMap.find(AI);
804 if (SI != FuncInfo.StaticAllocaMap.end()) {
805 Addr.BaseType = Address::FrameIndexBase;
806 Addr.Base.FI = SI->second;
807 return true;
809 break;
813 // Try to get this in a register if nothing else has worked.
814 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
815 return Addr.Base.Reg != 0;
818 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
819 bool needsLowering = false;
820 switch (VT.SimpleTy) {
821 default: llvm_unreachable("Unhandled load/store type!");
822 case MVT::i1:
823 case MVT::i8:
824 case MVT::i16:
825 case MVT::i32:
826 if (!useAM3) {
827 // Integer loads/stores handle 12-bit offsets.
828 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
829 // Handle negative offsets.
830 if (needsLowering && isThumb2)
831 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
832 Addr.Offset > -256);
833 } else {
834 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
835 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
837 break;
838 case MVT::f32:
839 case MVT::f64:
840 // Floating point operands handle 8-bit offsets.
841 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
842 break;
845 // If this is a stack pointer and the offset needs to be simplified then
846 // put the alloca address into a register, set the base type back to
847 // register and continue. This should almost never happen.
848 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
849 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
850 : &ARM::GPRRegClass;
851 unsigned ResultReg = createResultReg(RC);
852 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
853 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
854 TII.get(Opc), ResultReg)
855 .addFrameIndex(Addr.Base.FI)
856 .addImm(0));
857 Addr.Base.Reg = ResultReg;
858 Addr.BaseType = Address::RegBase;
861 // Since the offset is too large for the load/store instruction
862 // get the reg+offset into a register.
863 if (needsLowering) {
864 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
865 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
866 Addr.Offset = 0;
870 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
871 const MachineInstrBuilder &MIB,
872 MachineMemOperand::Flags Flags,
873 bool useAM3) {
874 // addrmode5 output depends on the selection dag addressing dividing the
875 // offset by 4 that it then later multiplies. Do this here as well.
876 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
877 Addr.Offset /= 4;
879 // Frame base works a bit differently. Handle it separately.
880 if (Addr.BaseType == Address::FrameIndexBase) {
881 int FI = Addr.Base.FI;
882 int Offset = Addr.Offset;
883 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
884 MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
885 MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
886 // Now add the rest of the operands.
887 MIB.addFrameIndex(FI);
889 // ARM halfword load/stores and signed byte loads need an additional
890 // operand.
891 if (useAM3) {
892 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
893 MIB.addReg(0);
894 MIB.addImm(Imm);
895 } else {
896 MIB.addImm(Addr.Offset);
898 MIB.addMemOperand(MMO);
899 } else {
900 // Now add the rest of the operands.
901 MIB.addReg(Addr.Base.Reg);
903 // ARM halfword load/stores and signed byte loads need an additional
904 // operand.
905 if (useAM3) {
906 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
907 MIB.addReg(0);
908 MIB.addImm(Imm);
909 } else {
910 MIB.addImm(Addr.Offset);
913 AddOptionalDefs(MIB);
916 bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
917 unsigned Alignment, bool isZExt, bool allocReg) {
918 unsigned Opc;
919 bool useAM3 = false;
920 bool needVMOV = false;
921 const TargetRegisterClass *RC;
922 switch (VT.SimpleTy) {
923 // This is mostly going to be Neon/vector support.
924 default: return false;
925 case MVT::i1:
926 case MVT::i8:
927 if (isThumb2) {
928 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
929 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
930 else
931 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
932 } else {
933 if (isZExt) {
934 Opc = ARM::LDRBi12;
935 } else {
936 Opc = ARM::LDRSB;
937 useAM3 = true;
940 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
941 break;
942 case MVT::i16:
943 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
944 return false;
946 if (isThumb2) {
947 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
948 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
949 else
950 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
951 } else {
952 Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
953 useAM3 = true;
955 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
956 break;
957 case MVT::i32:
958 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
959 return false;
961 if (isThumb2) {
962 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
963 Opc = ARM::t2LDRi8;
964 else
965 Opc = ARM::t2LDRi12;
966 } else {
967 Opc = ARM::LDRi12;
969 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
970 break;
971 case MVT::f32:
972 if (!Subtarget->hasVFP2Base()) return false;
973 // Unaligned loads need special handling. Floats require word-alignment.
974 if (Alignment && Alignment < 4) {
975 needVMOV = true;
976 VT = MVT::i32;
977 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
978 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
979 } else {
980 Opc = ARM::VLDRS;
981 RC = TLI.getRegClassFor(VT);
983 break;
984 case MVT::f64:
985 // Can load and store double precision even without FeatureFP64
986 if (!Subtarget->hasVFP2Base()) return false;
987 // FIXME: Unaligned loads need special handling. Doublewords require
988 // word-alignment.
989 if (Alignment && Alignment < 4)
990 return false;
992 Opc = ARM::VLDRD;
993 RC = TLI.getRegClassFor(VT);
994 break;
996 // Simplify this down to something we can handle.
997 ARMSimplifyAddress(Addr, VT, useAM3);
999 // Create the base instruction, then add the operands.
1000 if (allocReg)
1001 ResultReg = createResultReg(RC);
1002 assert(ResultReg > 255 && "Expected an allocated virtual register.");
1003 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1004 TII.get(Opc), ResultReg);
1005 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1007 // If we had an unaligned load of a float we've converted it to an regular
1008 // load. Now we must move from the GRP to the FP register.
1009 if (needVMOV) {
1010 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1011 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1012 TII.get(ARM::VMOVSR), MoveReg)
1013 .addReg(ResultReg));
1014 ResultReg = MoveReg;
1016 return true;
1019 bool ARMFastISel::SelectLoad(const Instruction *I) {
1020 // Atomic loads need special handling.
1021 if (cast<LoadInst>(I)->isAtomic())
1022 return false;
1024 const Value *SV = I->getOperand(0);
1025 if (TLI.supportSwiftError()) {
1026 // Swifterror values can come from either a function parameter with
1027 // swifterror attribute or an alloca with swifterror attribute.
1028 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1029 if (Arg->hasSwiftErrorAttr())
1030 return false;
1033 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1034 if (Alloca->isSwiftError())
1035 return false;
1039 // Verify we have a legal type before going any further.
1040 MVT VT;
1041 if (!isLoadTypeLegal(I->getType(), VT))
1042 return false;
1044 // See if we can handle this address.
1045 Address Addr;
1046 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1048 Register ResultReg;
1049 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1050 return false;
1051 updateValueMap(I, ResultReg);
1052 return true;
1055 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1056 unsigned Alignment) {
1057 unsigned StrOpc;
1058 bool useAM3 = false;
1059 switch (VT.SimpleTy) {
1060 // This is mostly going to be Neon/vector support.
1061 default: return false;
1062 case MVT::i1: {
1063 unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
1064 : &ARM::GPRRegClass);
1065 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1066 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1067 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1068 TII.get(Opc), Res)
1069 .addReg(SrcReg).addImm(1));
1070 SrcReg = Res;
1071 LLVM_FALLTHROUGH;
1073 case MVT::i8:
1074 if (isThumb2) {
1075 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1076 StrOpc = ARM::t2STRBi8;
1077 else
1078 StrOpc = ARM::t2STRBi12;
1079 } else {
1080 StrOpc = ARM::STRBi12;
1082 break;
1083 case MVT::i16:
1084 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1085 return false;
1087 if (isThumb2) {
1088 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1089 StrOpc = ARM::t2STRHi8;
1090 else
1091 StrOpc = ARM::t2STRHi12;
1092 } else {
1093 StrOpc = ARM::STRH;
1094 useAM3 = true;
1096 break;
1097 case MVT::i32:
1098 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1099 return false;
1101 if (isThumb2) {
1102 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1103 StrOpc = ARM::t2STRi8;
1104 else
1105 StrOpc = ARM::t2STRi12;
1106 } else {
1107 StrOpc = ARM::STRi12;
1109 break;
1110 case MVT::f32:
1111 if (!Subtarget->hasVFP2Base()) return false;
1112 // Unaligned stores need special handling. Floats require word-alignment.
1113 if (Alignment && Alignment < 4) {
1114 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1115 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1116 TII.get(ARM::VMOVRS), MoveReg)
1117 .addReg(SrcReg));
1118 SrcReg = MoveReg;
1119 VT = MVT::i32;
1120 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1121 } else {
1122 StrOpc = ARM::VSTRS;
1124 break;
1125 case MVT::f64:
1126 // Can load and store double precision even without FeatureFP64
1127 if (!Subtarget->hasVFP2Base()) return false;
1128 // FIXME: Unaligned stores need special handling. Doublewords require
1129 // word-alignment.
1130 if (Alignment && Alignment < 4)
1131 return false;
1133 StrOpc = ARM::VSTRD;
1134 break;
1136 // Simplify this down to something we can handle.
1137 ARMSimplifyAddress(Addr, VT, useAM3);
1139 // Create the base instruction, then add the operands.
1140 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1141 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1142 TII.get(StrOpc))
1143 .addReg(SrcReg);
1144 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1145 return true;
1148 bool ARMFastISel::SelectStore(const Instruction *I) {
1149 Value *Op0 = I->getOperand(0);
1150 unsigned SrcReg = 0;
1152 // Atomic stores need special handling.
1153 if (cast<StoreInst>(I)->isAtomic())
1154 return false;
1156 const Value *PtrV = I->getOperand(1);
1157 if (TLI.supportSwiftError()) {
1158 // Swifterror values can come from either a function parameter with
1159 // swifterror attribute or an alloca with swifterror attribute.
1160 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1161 if (Arg->hasSwiftErrorAttr())
1162 return false;
1165 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1166 if (Alloca->isSwiftError())
1167 return false;
1171 // Verify we have a legal type before going any further.
1172 MVT VT;
1173 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1174 return false;
1176 // Get the value to be stored into a register.
1177 SrcReg = getRegForValue(Op0);
1178 if (SrcReg == 0) return false;
1180 // See if we can handle this address.
1181 Address Addr;
1182 if (!ARMComputeAddress(I->getOperand(1), Addr))
1183 return false;
1185 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1186 return false;
1187 return true;
1190 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1191 switch (Pred) {
1192 // Needs two compares...
1193 case CmpInst::FCMP_ONE:
1194 case CmpInst::FCMP_UEQ:
1195 default:
1196 // AL is our "false" for now. The other two need more compares.
1197 return ARMCC::AL;
1198 case CmpInst::ICMP_EQ:
1199 case CmpInst::FCMP_OEQ:
1200 return ARMCC::EQ;
1201 case CmpInst::ICMP_SGT:
1202 case CmpInst::FCMP_OGT:
1203 return ARMCC::GT;
1204 case CmpInst::ICMP_SGE:
1205 case CmpInst::FCMP_OGE:
1206 return ARMCC::GE;
1207 case CmpInst::ICMP_UGT:
1208 case CmpInst::FCMP_UGT:
1209 return ARMCC::HI;
1210 case CmpInst::FCMP_OLT:
1211 return ARMCC::MI;
1212 case CmpInst::ICMP_ULE:
1213 case CmpInst::FCMP_OLE:
1214 return ARMCC::LS;
1215 case CmpInst::FCMP_ORD:
1216 return ARMCC::VC;
1217 case CmpInst::FCMP_UNO:
1218 return ARMCC::VS;
1219 case CmpInst::FCMP_UGE:
1220 return ARMCC::PL;
1221 case CmpInst::ICMP_SLT:
1222 case CmpInst::FCMP_ULT:
1223 return ARMCC::LT;
1224 case CmpInst::ICMP_SLE:
1225 case CmpInst::FCMP_ULE:
1226 return ARMCC::LE;
1227 case CmpInst::FCMP_UNE:
1228 case CmpInst::ICMP_NE:
1229 return ARMCC::NE;
1230 case CmpInst::ICMP_UGE:
1231 return ARMCC::HS;
1232 case CmpInst::ICMP_ULT:
1233 return ARMCC::LO;
1237 bool ARMFastISel::SelectBranch(const Instruction *I) {
1238 const BranchInst *BI = cast<BranchInst>(I);
1239 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1240 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1242 // Simple branch support.
1244 // If we can, avoid recomputing the compare - redoing it could lead to wonky
1245 // behavior.
1246 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1247 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1248 // Get the compare predicate.
1249 // Try to take advantage of fallthrough opportunities.
1250 CmpInst::Predicate Predicate = CI->getPredicate();
1251 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1252 std::swap(TBB, FBB);
1253 Predicate = CmpInst::getInversePredicate(Predicate);
1256 ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1258 // We may not handle every CC for now.
1259 if (ARMPred == ARMCC::AL) return false;
1261 // Emit the compare.
1262 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1263 return false;
1265 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1266 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1267 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1268 finishCondBranch(BI->getParent(), TBB, FBB);
1269 return true;
1271 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1272 MVT SourceVT;
1273 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1274 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1275 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1276 unsigned OpReg = getRegForValue(TI->getOperand(0));
1277 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1278 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1279 TII.get(TstOpc))
1280 .addReg(OpReg).addImm(1));
1282 unsigned CCMode = ARMCC::NE;
1283 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1284 std::swap(TBB, FBB);
1285 CCMode = ARMCC::EQ;
1288 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1289 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1290 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1292 finishCondBranch(BI->getParent(), TBB, FBB);
1293 return true;
1295 } else if (const ConstantInt *CI =
1296 dyn_cast<ConstantInt>(BI->getCondition())) {
1297 uint64_t Imm = CI->getZExtValue();
1298 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1299 fastEmitBranch(Target, DbgLoc);
1300 return true;
1303 unsigned CmpReg = getRegForValue(BI->getCondition());
1304 if (CmpReg == 0) return false;
1306 // We've been divorced from our compare! Our block was split, and
1307 // now our compare lives in a predecessor block. We musn't
1308 // re-compare here, as the children of the compare aren't guaranteed
1309 // live across the block boundary (we *could* check for this).
1310 // Regardless, the compare has been done in the predecessor block,
1311 // and it left a value for us in a virtual register. Ergo, we test
1312 // the one-bit value left in the virtual register.
1313 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1314 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1315 AddOptionalDefs(
1316 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1317 .addReg(CmpReg)
1318 .addImm(1));
1320 unsigned CCMode = ARMCC::NE;
1321 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1322 std::swap(TBB, FBB);
1323 CCMode = ARMCC::EQ;
1326 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1327 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1328 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1329 finishCondBranch(BI->getParent(), TBB, FBB);
1330 return true;
1333 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1334 unsigned AddrReg = getRegForValue(I->getOperand(0));
1335 if (AddrReg == 0) return false;
1337 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1338 assert(isThumb2 || Subtarget->hasV4TOps());
1340 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1341 TII.get(Opc)).addReg(AddrReg));
1343 const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1344 for (const BasicBlock *SuccBB : IB->successors())
1345 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1347 return true;
1350 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1351 bool isZExt) {
1352 Type *Ty = Src1Value->getType();
1353 EVT SrcEVT = TLI.getValueType(DL, Ty, true);
1354 if (!SrcEVT.isSimple()) return false;
1355 MVT SrcVT = SrcEVT.getSimpleVT();
1357 if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1358 return false;
1360 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1361 return false;
1363 // Check to see if the 2nd operand is a constant that we can encode directly
1364 // in the compare.
1365 int Imm = 0;
1366 bool UseImm = false;
1367 bool isNegativeImm = false;
1368 // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1369 // Thus, Src1Value may be a ConstantInt, but we're missing it.
1370 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1371 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1372 SrcVT == MVT::i1) {
1373 const APInt &CIVal = ConstInt->getValue();
1374 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1375 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1376 // then a cmn, because there is no way to represent 2147483648 as a
1377 // signed 32-bit int.
1378 if (Imm < 0 && Imm != (int)0x80000000) {
1379 isNegativeImm = true;
1380 Imm = -Imm;
1382 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1383 (ARM_AM::getSOImmVal(Imm) != -1);
1385 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1386 if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1387 if (ConstFP->isZero() && !ConstFP->isNegative())
1388 UseImm = true;
1391 unsigned CmpOpc;
1392 bool isICmp = true;
1393 bool needsExt = false;
1394 switch (SrcVT.SimpleTy) {
1395 default: return false;
1396 // TODO: Verify compares.
1397 case MVT::f32:
1398 isICmp = false;
1399 CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS;
1400 break;
1401 case MVT::f64:
1402 isICmp = false;
1403 CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD;
1404 break;
1405 case MVT::i1:
1406 case MVT::i8:
1407 case MVT::i16:
1408 needsExt = true;
1409 LLVM_FALLTHROUGH;
1410 case MVT::i32:
1411 if (isThumb2) {
1412 if (!UseImm)
1413 CmpOpc = ARM::t2CMPrr;
1414 else
1415 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1416 } else {
1417 if (!UseImm)
1418 CmpOpc = ARM::CMPrr;
1419 else
1420 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1422 break;
1425 unsigned SrcReg1 = getRegForValue(Src1Value);
1426 if (SrcReg1 == 0) return false;
1428 unsigned SrcReg2 = 0;
1429 if (!UseImm) {
1430 SrcReg2 = getRegForValue(Src2Value);
1431 if (SrcReg2 == 0) return false;
1434 // We have i1, i8, or i16, we need to either zero extend or sign extend.
1435 if (needsExt) {
1436 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1437 if (SrcReg1 == 0) return false;
1438 if (!UseImm) {
1439 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1440 if (SrcReg2 == 0) return false;
1444 const MCInstrDesc &II = TII.get(CmpOpc);
1445 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1446 if (!UseImm) {
1447 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1448 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1449 .addReg(SrcReg1).addReg(SrcReg2));
1450 } else {
1451 MachineInstrBuilder MIB;
1452 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1453 .addReg(SrcReg1);
1455 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1456 if (isICmp)
1457 MIB.addImm(Imm);
1458 AddOptionalDefs(MIB);
1461 // For floating point we need to move the result to a comparison register
1462 // that we can then use for branches.
1463 if (Ty->isFloatTy() || Ty->isDoubleTy())
1464 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1465 TII.get(ARM::FMSTAT)));
1466 return true;
1469 bool ARMFastISel::SelectCmp(const Instruction *I) {
1470 const CmpInst *CI = cast<CmpInst>(I);
1472 // Get the compare predicate.
1473 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1475 // We may not handle every CC for now.
1476 if (ARMPred == ARMCC::AL) return false;
1478 // Emit the compare.
1479 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1480 return false;
1482 // Now set a register based on the comparison. Explicitly set the predicates
1483 // here.
1484 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1485 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
1486 : &ARM::GPRRegClass;
1487 unsigned DestReg = createResultReg(RC);
1488 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1489 unsigned ZeroReg = fastMaterializeConstant(Zero);
1490 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1491 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
1492 .addReg(ZeroReg).addImm(1)
1493 .addImm(ARMPred).addReg(ARM::CPSR);
1495 updateValueMap(I, DestReg);
1496 return true;
1499 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1500 // Make sure we have VFP and that we're extending float to double.
1501 if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1503 Value *V = I->getOperand(0);
1504 if (!I->getType()->isDoubleTy() ||
1505 !V->getType()->isFloatTy()) return false;
1507 unsigned Op = getRegForValue(V);
1508 if (Op == 0) return false;
1510 unsigned Result = createResultReg(&ARM::DPRRegClass);
1511 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1512 TII.get(ARM::VCVTDS), Result)
1513 .addReg(Op));
1514 updateValueMap(I, Result);
1515 return true;
1518 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1519 // Make sure we have VFP and that we're truncating double to float.
1520 if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1522 Value *V = I->getOperand(0);
1523 if (!(I->getType()->isFloatTy() &&
1524 V->getType()->isDoubleTy())) return false;
1526 unsigned Op = getRegForValue(V);
1527 if (Op == 0) return false;
1529 unsigned Result = createResultReg(&ARM::SPRRegClass);
1530 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1531 TII.get(ARM::VCVTSD), Result)
1532 .addReg(Op));
1533 updateValueMap(I, Result);
1534 return true;
1537 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1538 // Make sure we have VFP.
1539 if (!Subtarget->hasVFP2Base()) return false;
1541 MVT DstVT;
1542 Type *Ty = I->getType();
1543 if (!isTypeLegal(Ty, DstVT))
1544 return false;
1546 Value *Src = I->getOperand(0);
1547 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1548 if (!SrcEVT.isSimple())
1549 return false;
1550 MVT SrcVT = SrcEVT.getSimpleVT();
1551 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1552 return false;
1554 unsigned SrcReg = getRegForValue(Src);
1555 if (SrcReg == 0) return false;
1557 // Handle sign-extension.
1558 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1559 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1560 /*isZExt*/!isSigned);
1561 if (SrcReg == 0) return false;
1564 // The conversion routine works on fp-reg to fp-reg and the operand above
1565 // was an integer, move it to the fp registers if possible.
1566 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1567 if (FP == 0) return false;
1569 unsigned Opc;
1570 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1571 else if (Ty->isDoubleTy() && Subtarget->hasFP64())
1572 Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1573 else return false;
1575 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1576 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1577 TII.get(Opc), ResultReg).addReg(FP));
1578 updateValueMap(I, ResultReg);
1579 return true;
1582 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1583 // Make sure we have VFP.
1584 if (!Subtarget->hasVFP2Base()) return false;
1586 MVT DstVT;
1587 Type *RetTy = I->getType();
1588 if (!isTypeLegal(RetTy, DstVT))
1589 return false;
1591 unsigned Op = getRegForValue(I->getOperand(0));
1592 if (Op == 0) return false;
1594 unsigned Opc;
1595 Type *OpTy = I->getOperand(0)->getType();
1596 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1597 else if (OpTy->isDoubleTy() && Subtarget->hasFP64())
1598 Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1599 else return false;
1601 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1602 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1603 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1604 TII.get(Opc), ResultReg).addReg(Op));
1606 // This result needs to be in an integer register, but the conversion only
1607 // takes place in fp-regs.
1608 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1609 if (IntReg == 0) return false;
1611 updateValueMap(I, IntReg);
1612 return true;
1615 bool ARMFastISel::SelectSelect(const Instruction *I) {
1616 MVT VT;
1617 if (!isTypeLegal(I->getType(), VT))
1618 return false;
1620 // Things need to be register sized for register moves.
1621 if (VT != MVT::i32) return false;
1623 unsigned CondReg = getRegForValue(I->getOperand(0));
1624 if (CondReg == 0) return false;
1625 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1626 if (Op1Reg == 0) return false;
1628 // Check to see if we can use an immediate in the conditional move.
1629 int Imm = 0;
1630 bool UseImm = false;
1631 bool isNegativeImm = false;
1632 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1633 assert(VT == MVT::i32 && "Expecting an i32.");
1634 Imm = (int)ConstInt->getValue().getZExtValue();
1635 if (Imm < 0) {
1636 isNegativeImm = true;
1637 Imm = ~Imm;
1639 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1640 (ARM_AM::getSOImmVal(Imm) != -1);
1643 unsigned Op2Reg = 0;
1644 if (!UseImm) {
1645 Op2Reg = getRegForValue(I->getOperand(2));
1646 if (Op2Reg == 0) return false;
1649 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1650 CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
1651 AddOptionalDefs(
1652 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1653 .addReg(CondReg)
1654 .addImm(1));
1656 unsigned MovCCOpc;
1657 const TargetRegisterClass *RC;
1658 if (!UseImm) {
1659 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1660 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1661 } else {
1662 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1663 if (!isNegativeImm)
1664 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1665 else
1666 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1668 unsigned ResultReg = createResultReg(RC);
1669 if (!UseImm) {
1670 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1671 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1672 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1673 ResultReg)
1674 .addReg(Op2Reg)
1675 .addReg(Op1Reg)
1676 .addImm(ARMCC::NE)
1677 .addReg(ARM::CPSR);
1678 } else {
1679 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1680 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1681 ResultReg)
1682 .addReg(Op1Reg)
1683 .addImm(Imm)
1684 .addImm(ARMCC::EQ)
1685 .addReg(ARM::CPSR);
1687 updateValueMap(I, ResultReg);
1688 return true;
1691 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1692 MVT VT;
1693 Type *Ty = I->getType();
1694 if (!isTypeLegal(Ty, VT))
1695 return false;
1697 // If we have integer div support we should have selected this automagically.
1698 // In case we have a real miss go ahead and return false and we'll pick
1699 // it up later.
1700 if (Subtarget->hasDivideInThumbMode())
1701 return false;
1703 // Otherwise emit a libcall.
1704 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1705 if (VT == MVT::i8)
1706 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1707 else if (VT == MVT::i16)
1708 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1709 else if (VT == MVT::i32)
1710 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1711 else if (VT == MVT::i64)
1712 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1713 else if (VT == MVT::i128)
1714 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1715 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1717 return ARMEmitLibcall(I, LC);
1720 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1721 MVT VT;
1722 Type *Ty = I->getType();
1723 if (!isTypeLegal(Ty, VT))
1724 return false;
1726 // Many ABIs do not provide a libcall for standalone remainder, so we need to
1727 // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double
1728 // multi-reg returns, we'll have to bail out.
1729 if (!TLI.hasStandaloneRem(VT)) {
1730 return false;
1733 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1734 if (VT == MVT::i8)
1735 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1736 else if (VT == MVT::i16)
1737 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1738 else if (VT == MVT::i32)
1739 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1740 else if (VT == MVT::i64)
1741 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1742 else if (VT == MVT::i128)
1743 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1744 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1746 return ARMEmitLibcall(I, LC);
1749 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1750 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1752 // We can get here in the case when we have a binary operation on a non-legal
1753 // type and the target independent selector doesn't know how to handle it.
1754 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1755 return false;
1757 unsigned Opc;
1758 switch (ISDOpcode) {
1759 default: return false;
1760 case ISD::ADD:
1761 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1762 break;
1763 case ISD::OR:
1764 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1765 break;
1766 case ISD::SUB:
1767 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1768 break;
1771 unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1772 if (SrcReg1 == 0) return false;
1774 // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1775 // in the instruction, rather then materializing the value in a register.
1776 unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1777 if (SrcReg2 == 0) return false;
1779 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1780 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1781 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1782 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1783 TII.get(Opc), ResultReg)
1784 .addReg(SrcReg1).addReg(SrcReg2));
1785 updateValueMap(I, ResultReg);
1786 return true;
1789 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1790 EVT FPVT = TLI.getValueType(DL, I->getType(), true);
1791 if (!FPVT.isSimple()) return false;
1792 MVT VT = FPVT.getSimpleVT();
1794 // FIXME: Support vector types where possible.
1795 if (VT.isVector())
1796 return false;
1798 // We can get here in the case when we want to use NEON for our fp
1799 // operations, but can't figure out how to. Just use the vfp instructions
1800 // if we have them.
1801 // FIXME: It'd be nice to use NEON instructions.
1802 Type *Ty = I->getType();
1803 if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1804 return false;
1805 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1806 return false;
1808 unsigned Opc;
1809 bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1810 switch (ISDOpcode) {
1811 default: return false;
1812 case ISD::FADD:
1813 Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1814 break;
1815 case ISD::FSUB:
1816 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1817 break;
1818 case ISD::FMUL:
1819 Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1820 break;
1822 unsigned Op1 = getRegForValue(I->getOperand(0));
1823 if (Op1 == 0) return false;
1825 unsigned Op2 = getRegForValue(I->getOperand(1));
1826 if (Op2 == 0) return false;
1828 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1829 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1830 TII.get(Opc), ResultReg)
1831 .addReg(Op1).addReg(Op2));
1832 updateValueMap(I, ResultReg);
1833 return true;
1836 // Call Handling Code
1838 // This is largely taken directly from CCAssignFnForNode
1839 // TODO: We may not support all of this.
1840 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1841 bool Return,
1842 bool isVarArg) {
1843 switch (CC) {
1844 default:
1845 report_fatal_error("Unsupported calling convention");
1846 case CallingConv::Fast:
1847 if (Subtarget->hasVFP2Base() && !isVarArg) {
1848 if (!Subtarget->isAAPCS_ABI())
1849 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1850 // For AAPCS ABI targets, just use VFP variant of the calling convention.
1851 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1853 LLVM_FALLTHROUGH;
1854 case CallingConv::C:
1855 case CallingConv::CXX_FAST_TLS:
1856 // Use target triple & subtarget features to do actual dispatch.
1857 if (Subtarget->isAAPCS_ABI()) {
1858 if (Subtarget->hasVFP2Base() &&
1859 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1860 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1861 else
1862 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1863 } else {
1864 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1866 case CallingConv::ARM_AAPCS_VFP:
1867 case CallingConv::Swift:
1868 if (!isVarArg)
1869 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1870 // Fall through to soft float variant, variadic functions don't
1871 // use hard floating point ABI.
1872 LLVM_FALLTHROUGH;
1873 case CallingConv::ARM_AAPCS:
1874 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1875 case CallingConv::ARM_APCS:
1876 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1877 case CallingConv::GHC:
1878 if (Return)
1879 report_fatal_error("Can't return in GHC call convention");
1880 else
1881 return CC_ARM_APCS_GHC;
1885 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1886 SmallVectorImpl<Register> &ArgRegs,
1887 SmallVectorImpl<MVT> &ArgVTs,
1888 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1889 SmallVectorImpl<Register> &RegArgs,
1890 CallingConv::ID CC,
1891 unsigned &NumBytes,
1892 bool isVarArg) {
1893 SmallVector<CCValAssign, 16> ArgLocs;
1894 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
1895 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1896 CCAssignFnForCall(CC, false, isVarArg));
1898 // Check that we can handle all of the arguments. If we can't, then bail out
1899 // now before we add code to the MBB.
1900 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1901 CCValAssign &VA = ArgLocs[i];
1902 MVT ArgVT = ArgVTs[VA.getValNo()];
1904 // We don't handle NEON/vector parameters yet.
1905 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1906 return false;
1908 // Now copy/store arg to correct locations.
1909 if (VA.isRegLoc() && !VA.needsCustom()) {
1910 continue;
1911 } else if (VA.needsCustom()) {
1912 // TODO: We need custom lowering for vector (v2f64) args.
1913 if (VA.getLocVT() != MVT::f64 ||
1914 // TODO: Only handle register args for now.
1915 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1916 return false;
1917 } else {
1918 switch (ArgVT.SimpleTy) {
1919 default:
1920 return false;
1921 case MVT::i1:
1922 case MVT::i8:
1923 case MVT::i16:
1924 case MVT::i32:
1925 break;
1926 case MVT::f32:
1927 if (!Subtarget->hasVFP2Base())
1928 return false;
1929 break;
1930 case MVT::f64:
1931 if (!Subtarget->hasVFP2Base())
1932 return false;
1933 break;
1938 // At the point, we are able to handle the call's arguments in fast isel.
1940 // Get a count of how many bytes are to be pushed on the stack.
1941 NumBytes = CCInfo.getNextStackOffset();
1943 // Issue CALLSEQ_START
1944 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1945 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1946 TII.get(AdjStackDown))
1947 .addImm(NumBytes).addImm(0));
1949 // Process the args.
1950 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1951 CCValAssign &VA = ArgLocs[i];
1952 const Value *ArgVal = Args[VA.getValNo()];
1953 Register Arg = ArgRegs[VA.getValNo()];
1954 MVT ArgVT = ArgVTs[VA.getValNo()];
1956 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1957 "We don't handle NEON/vector parameters yet.");
1959 // Handle arg promotion, etc.
1960 switch (VA.getLocInfo()) {
1961 case CCValAssign::Full: break;
1962 case CCValAssign::SExt: {
1963 MVT DestVT = VA.getLocVT();
1964 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1965 assert(Arg != 0 && "Failed to emit a sext");
1966 ArgVT = DestVT;
1967 break;
1969 case CCValAssign::AExt:
1970 // Intentional fall-through. Handle AExt and ZExt.
1971 case CCValAssign::ZExt: {
1972 MVT DestVT = VA.getLocVT();
1973 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1974 assert(Arg != 0 && "Failed to emit a zext");
1975 ArgVT = DestVT;
1976 break;
1978 case CCValAssign::BCvt: {
1979 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1980 /*TODO: Kill=*/false);
1981 assert(BC != 0 && "Failed to emit a bitcast!");
1982 Arg = BC;
1983 ArgVT = VA.getLocVT();
1984 break;
1986 default: llvm_unreachable("Unknown arg promotion!");
1989 // Now copy/store arg to correct locations.
1990 if (VA.isRegLoc() && !VA.needsCustom()) {
1991 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1992 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
1993 RegArgs.push_back(VA.getLocReg());
1994 } else if (VA.needsCustom()) {
1995 // TODO: We need custom lowering for vector (v2f64) args.
1996 assert(VA.getLocVT() == MVT::f64 &&
1997 "Custom lowering for v2f64 args not available");
1999 // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size()
2000 CCValAssign &NextVA = ArgLocs[++i];
2002 assert(VA.isRegLoc() && NextVA.isRegLoc() &&
2003 "We only handle register args!");
2005 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2006 TII.get(ARM::VMOVRRD), VA.getLocReg())
2007 .addReg(NextVA.getLocReg(), RegState::Define)
2008 .addReg(Arg));
2009 RegArgs.push_back(VA.getLocReg());
2010 RegArgs.push_back(NextVA.getLocReg());
2011 } else {
2012 assert(VA.isMemLoc());
2013 // Need to store on the stack.
2015 // Don't emit stores for undef values.
2016 if (isa<UndefValue>(ArgVal))
2017 continue;
2019 Address Addr;
2020 Addr.BaseType = Address::RegBase;
2021 Addr.Base.Reg = ARM::SP;
2022 Addr.Offset = VA.getLocMemOffset();
2024 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2025 assert(EmitRet && "Could not emit a store for argument!");
2029 return true;
2032 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
2033 const Instruction *I, CallingConv::ID CC,
2034 unsigned &NumBytes, bool isVarArg) {
2035 // Issue CALLSEQ_END
2036 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2037 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2038 TII.get(AdjStackUp))
2039 .addImm(NumBytes).addImm(0));
2041 // Now the return value.
2042 if (RetVT != MVT::isVoid) {
2043 SmallVector<CCValAssign, 16> RVLocs;
2044 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2045 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2047 // Copy all of the result registers out of their specified physreg.
2048 if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2049 // For this move we copy into two registers and then move into the
2050 // double fp reg we want.
2051 MVT DestVT = RVLocs[0].getValVT();
2052 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2053 Register ResultReg = createResultReg(DstRC);
2054 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2055 TII.get(ARM::VMOVDRR), ResultReg)
2056 .addReg(RVLocs[0].getLocReg())
2057 .addReg(RVLocs[1].getLocReg()));
2059 UsedRegs.push_back(RVLocs[0].getLocReg());
2060 UsedRegs.push_back(RVLocs[1].getLocReg());
2062 // Finally update the result.
2063 updateValueMap(I, ResultReg);
2064 } else {
2065 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2066 MVT CopyVT = RVLocs[0].getValVT();
2068 // Special handling for extended integers.
2069 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2070 CopyVT = MVT::i32;
2072 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2074 Register ResultReg = createResultReg(DstRC);
2075 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2076 TII.get(TargetOpcode::COPY),
2077 ResultReg).addReg(RVLocs[0].getLocReg());
2078 UsedRegs.push_back(RVLocs[0].getLocReg());
2080 // Finally update the result.
2081 updateValueMap(I, ResultReg);
2085 return true;
2088 bool ARMFastISel::SelectRet(const Instruction *I) {
2089 const ReturnInst *Ret = cast<ReturnInst>(I);
2090 const Function &F = *I->getParent()->getParent();
2092 if (!FuncInfo.CanLowerReturn)
2093 return false;
2095 if (TLI.supportSwiftError() &&
2096 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
2097 return false;
2099 if (TLI.supportSplitCSR(FuncInfo.MF))
2100 return false;
2102 // Build a list of return value registers.
2103 SmallVector<unsigned, 4> RetRegs;
2105 CallingConv::ID CC = F.getCallingConv();
2106 if (Ret->getNumOperands() > 0) {
2107 SmallVector<ISD::OutputArg, 4> Outs;
2108 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
2110 // Analyze operands of the call, assigning locations to each operand.
2111 SmallVector<CCValAssign, 16> ValLocs;
2112 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
2113 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2114 F.isVarArg()));
2116 const Value *RV = Ret->getOperand(0);
2117 unsigned Reg = getRegForValue(RV);
2118 if (Reg == 0)
2119 return false;
2121 // Only handle a single return value for now.
2122 if (ValLocs.size() != 1)
2123 return false;
2125 CCValAssign &VA = ValLocs[0];
2127 // Don't bother handling odd stuff for now.
2128 if (VA.getLocInfo() != CCValAssign::Full)
2129 return false;
2130 // Only handle register returns for now.
2131 if (!VA.isRegLoc())
2132 return false;
2134 unsigned SrcReg = Reg + VA.getValNo();
2135 EVT RVEVT = TLI.getValueType(DL, RV->getType());
2136 if (!RVEVT.isSimple()) return false;
2137 MVT RVVT = RVEVT.getSimpleVT();
2138 MVT DestVT = VA.getValVT();
2139 // Special handling for extended integers.
2140 if (RVVT != DestVT) {
2141 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2142 return false;
2144 assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2146 // Perform extension if flagged as either zext or sext. Otherwise, do
2147 // nothing.
2148 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2149 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2150 if (SrcReg == 0) return false;
2154 // Make the copy.
2155 Register DstReg = VA.getLocReg();
2156 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2157 // Avoid a cross-class copy. This is very unlikely.
2158 if (!SrcRC->contains(DstReg))
2159 return false;
2160 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2161 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
2163 // Add register to return instruction.
2164 RetRegs.push_back(VA.getLocReg());
2167 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2168 TII.get(Subtarget->getReturnOpcode()));
2169 AddOptionalDefs(MIB);
2170 for (unsigned R : RetRegs)
2171 MIB.addReg(R, RegState::Implicit);
2172 return true;
2175 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2176 if (UseReg)
2177 return isThumb2 ? ARM::tBLXr : ARM::BLX;
2178 else
2179 return isThumb2 ? ARM::tBL : ARM::BL;
2182 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2183 // Manually compute the global's type to avoid building it when unnecessary.
2184 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
2185 EVT LCREVT = TLI.getValueType(DL, GVTy);
2186 if (!LCREVT.isSimple()) return 0;
2188 GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2189 GlobalValue::ExternalLinkage, nullptr,
2190 Name);
2191 assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
2192 return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2195 // A quick function that will emit a call for a named libcall in F with the
2196 // vector of passed arguments for the Instruction in I. We can assume that we
2197 // can emit a call for any libcall we can produce. This is an abridged version
2198 // of the full call infrastructure since we won't need to worry about things
2199 // like computed function pointers or strange arguments at call sites.
2200 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2201 // with X86.
2202 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2203 CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2205 // Handle *simple* calls for now.
2206 Type *RetTy = I->getType();
2207 MVT RetVT;
2208 if (RetTy->isVoidTy())
2209 RetVT = MVT::isVoid;
2210 else if (!isTypeLegal(RetTy, RetVT))
2211 return false;
2213 // Can't handle non-double multi-reg retvals.
2214 if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2215 SmallVector<CCValAssign, 16> RVLocs;
2216 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
2217 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2218 if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2219 return false;
2222 // Set up the argument vectors.
2223 SmallVector<Value*, 8> Args;
2224 SmallVector<Register, 8> ArgRegs;
2225 SmallVector<MVT, 8> ArgVTs;
2226 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2227 Args.reserve(I->getNumOperands());
2228 ArgRegs.reserve(I->getNumOperands());
2229 ArgVTs.reserve(I->getNumOperands());
2230 ArgFlags.reserve(I->getNumOperands());
2231 for (Value *Op : I->operands()) {
2232 unsigned Arg = getRegForValue(Op);
2233 if (Arg == 0) return false;
2235 Type *ArgTy = Op->getType();
2236 MVT ArgVT;
2237 if (!isTypeLegal(ArgTy, ArgVT)) return false;
2239 ISD::ArgFlagsTy Flags;
2240 Flags.setOrigAlign(Align(DL.getABITypeAlignment(ArgTy)));
2242 Args.push_back(Op);
2243 ArgRegs.push_back(Arg);
2244 ArgVTs.push_back(ArgVT);
2245 ArgFlags.push_back(Flags);
2248 // Handle the arguments now that we've gotten them.
2249 SmallVector<Register, 4> RegArgs;
2250 unsigned NumBytes;
2251 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2252 RegArgs, CC, NumBytes, false))
2253 return false;
2255 Register CalleeReg;
2256 if (Subtarget->genLongCalls()) {
2257 CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2258 if (CalleeReg == 0) return false;
2261 // Issue the call.
2262 unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
2263 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2264 DbgLoc, TII.get(CallOpc));
2265 // BL / BLX don't take a predicate, but tBL / tBLX do.
2266 if (isThumb2)
2267 MIB.add(predOps(ARMCC::AL));
2268 if (Subtarget->genLongCalls())
2269 MIB.addReg(CalleeReg);
2270 else
2271 MIB.addExternalSymbol(TLI.getLibcallName(Call));
2273 // Add implicit physical register uses to the call.
2274 for (Register R : RegArgs)
2275 MIB.addReg(R, RegState::Implicit);
2277 // Add a register mask with the call-preserved registers.
2278 // Proper defs for return values will be added by setPhysRegsDeadExcept().
2279 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2281 // Finish off the call including any return values.
2282 SmallVector<Register, 4> UsedRegs;
2283 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2285 // Set all unused physreg defs as dead.
2286 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2288 return true;
2291 bool ARMFastISel::SelectCall(const Instruction *I,
2292 const char *IntrMemName = nullptr) {
2293 const CallInst *CI = cast<CallInst>(I);
2294 const Value *Callee = CI->getCalledValue();
2296 // Can't handle inline asm.
2297 if (isa<InlineAsm>(Callee)) return false;
2299 // Allow SelectionDAG isel to handle tail calls.
2300 if (CI->isTailCall()) return false;
2302 // Check the calling convention.
2303 ImmutableCallSite CS(CI);
2304 CallingConv::ID CC = CS.getCallingConv();
2306 // TODO: Avoid some calling conventions?
2308 FunctionType *FTy = CS.getFunctionType();
2309 bool isVarArg = FTy->isVarArg();
2311 // Handle *simple* calls for now.
2312 Type *RetTy = I->getType();
2313 MVT RetVT;
2314 if (RetTy->isVoidTy())
2315 RetVT = MVT::isVoid;
2316 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2317 RetVT != MVT::i8 && RetVT != MVT::i1)
2318 return false;
2320 // Can't handle non-double multi-reg retvals.
2321 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2322 RetVT != MVT::i16 && RetVT != MVT::i32) {
2323 SmallVector<CCValAssign, 16> RVLocs;
2324 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2325 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2326 if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2327 return false;
2330 // Set up the argument vectors.
2331 SmallVector<Value*, 8> Args;
2332 SmallVector<Register, 8> ArgRegs;
2333 SmallVector<MVT, 8> ArgVTs;
2334 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2335 unsigned arg_size = CS.arg_size();
2336 Args.reserve(arg_size);
2337 ArgRegs.reserve(arg_size);
2338 ArgVTs.reserve(arg_size);
2339 ArgFlags.reserve(arg_size);
2340 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2341 i != e; ++i) {
2342 // If we're lowering a memory intrinsic instead of a regular call, skip the
2343 // last argument, which shouldn't be passed to the underlying function.
2344 if (IntrMemName && e - i <= 1)
2345 break;
2347 ISD::ArgFlagsTy Flags;
2348 unsigned ArgIdx = i - CS.arg_begin();
2349 if (CS.paramHasAttr(ArgIdx, Attribute::SExt))
2350 Flags.setSExt();
2351 if (CS.paramHasAttr(ArgIdx, Attribute::ZExt))
2352 Flags.setZExt();
2354 // FIXME: Only handle *easy* calls for now.
2355 if (CS.paramHasAttr(ArgIdx, Attribute::InReg) ||
2356 CS.paramHasAttr(ArgIdx, Attribute::StructRet) ||
2357 CS.paramHasAttr(ArgIdx, Attribute::SwiftSelf) ||
2358 CS.paramHasAttr(ArgIdx, Attribute::SwiftError) ||
2359 CS.paramHasAttr(ArgIdx, Attribute::Nest) ||
2360 CS.paramHasAttr(ArgIdx, Attribute::ByVal))
2361 return false;
2363 Type *ArgTy = (*i)->getType();
2364 MVT ArgVT;
2365 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2366 ArgVT != MVT::i1)
2367 return false;
2369 Register Arg = getRegForValue(*i);
2370 if (!Arg.isValid())
2371 return false;
2373 Flags.setOrigAlign(Align(DL.getABITypeAlignment(ArgTy)));
2375 Args.push_back(*i);
2376 ArgRegs.push_back(Arg);
2377 ArgVTs.push_back(ArgVT);
2378 ArgFlags.push_back(Flags);
2381 // Handle the arguments now that we've gotten them.
2382 SmallVector<Register, 4> RegArgs;
2383 unsigned NumBytes;
2384 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2385 RegArgs, CC, NumBytes, isVarArg))
2386 return false;
2388 bool UseReg = false;
2389 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2390 if (!GV || Subtarget->genLongCalls()) UseReg = true;
2392 Register CalleeReg;
2393 if (UseReg) {
2394 if (IntrMemName)
2395 CalleeReg = getLibcallReg(IntrMemName);
2396 else
2397 CalleeReg = getRegForValue(Callee);
2399 if (CalleeReg == 0) return false;
2402 // Issue the call.
2403 unsigned CallOpc = ARMSelectCallOp(UseReg);
2404 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2405 DbgLoc, TII.get(CallOpc));
2407 // ARM calls don't take a predicate, but tBL / tBLX do.
2408 if(isThumb2)
2409 MIB.add(predOps(ARMCC::AL));
2410 if (UseReg)
2411 MIB.addReg(CalleeReg);
2412 else if (!IntrMemName)
2413 MIB.addGlobalAddress(GV, 0, 0);
2414 else
2415 MIB.addExternalSymbol(IntrMemName, 0);
2417 // Add implicit physical register uses to the call.
2418 for (Register R : RegArgs)
2419 MIB.addReg(R, RegState::Implicit);
2421 // Add a register mask with the call-preserved registers.
2422 // Proper defs for return values will be added by setPhysRegsDeadExcept().
2423 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2425 // Finish off the call including any return values.
2426 SmallVector<Register, 4> UsedRegs;
2427 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2428 return false;
2430 // Set all unused physreg defs as dead.
2431 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2433 return true;
2436 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2437 return Len <= 16;
2440 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2441 uint64_t Len, unsigned Alignment) {
2442 // Make sure we don't bloat code by inlining very large memcpy's.
2443 if (!ARMIsMemCpySmall(Len))
2444 return false;
2446 while (Len) {
2447 MVT VT;
2448 if (!Alignment || Alignment >= 4) {
2449 if (Len >= 4)
2450 VT = MVT::i32;
2451 else if (Len >= 2)
2452 VT = MVT::i16;
2453 else {
2454 assert(Len == 1 && "Expected a length of 1!");
2455 VT = MVT::i8;
2457 } else {
2458 // Bound based on alignment.
2459 if (Len >= 2 && Alignment == 2)
2460 VT = MVT::i16;
2461 else {
2462 VT = MVT::i8;
2466 bool RV;
2467 Register ResultReg;
2468 RV = ARMEmitLoad(VT, ResultReg, Src);
2469 assert(RV && "Should be able to handle this load.");
2470 RV = ARMEmitStore(VT, ResultReg, Dest);
2471 assert(RV && "Should be able to handle this store.");
2472 (void)RV;
2474 unsigned Size = VT.getSizeInBits()/8;
2475 Len -= Size;
2476 Dest.Offset += Size;
2477 Src.Offset += Size;
2480 return true;
2483 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2484 // FIXME: Handle more intrinsics.
2485 switch (I.getIntrinsicID()) {
2486 default: return false;
2487 case Intrinsic::frameaddress: {
2488 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
2489 MFI.setFrameAddressIsTaken(true);
2491 unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
2492 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
2493 : &ARM::GPRRegClass;
2495 const ARMBaseRegisterInfo *RegInfo =
2496 static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
2497 Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2498 unsigned SrcReg = FramePtr;
2500 // Recursively load frame address
2501 // ldr r0 [fp]
2502 // ldr r0 [r0]
2503 // ldr r0 [r0]
2504 // ...
2505 unsigned DestReg;
2506 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2507 while (Depth--) {
2508 DestReg = createResultReg(RC);
2509 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2510 TII.get(LdrOpc), DestReg)
2511 .addReg(SrcReg).addImm(0));
2512 SrcReg = DestReg;
2514 updateValueMap(&I, SrcReg);
2515 return true;
2517 case Intrinsic::memcpy:
2518 case Intrinsic::memmove: {
2519 const MemTransferInst &MTI = cast<MemTransferInst>(I);
2520 // Don't handle volatile.
2521 if (MTI.isVolatile())
2522 return false;
2524 // Disable inlining for memmove before calls to ComputeAddress. Otherwise,
2525 // we would emit dead code because we don't currently handle memmoves.
2526 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2527 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2528 // Small memcpy's are common enough that we want to do them without a call
2529 // if possible.
2530 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2531 if (ARMIsMemCpySmall(Len)) {
2532 Address Dest, Src;
2533 if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2534 !ARMComputeAddress(MTI.getRawSource(), Src))
2535 return false;
2536 unsigned Alignment = MinAlign(MTI.getDestAlignment(),
2537 MTI.getSourceAlignment());
2538 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2539 return true;
2543 if (!MTI.getLength()->getType()->isIntegerTy(32))
2544 return false;
2546 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2547 return false;
2549 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2550 return SelectCall(&I, IntrMemName);
2552 case Intrinsic::memset: {
2553 const MemSetInst &MSI = cast<MemSetInst>(I);
2554 // Don't handle volatile.
2555 if (MSI.isVolatile())
2556 return false;
2558 if (!MSI.getLength()->getType()->isIntegerTy(32))
2559 return false;
2561 if (MSI.getDestAddressSpace() > 255)
2562 return false;
2564 return SelectCall(&I, "memset");
2566 case Intrinsic::trap: {
2567 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(
2568 Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
2569 return true;
2574 bool ARMFastISel::SelectTrunc(const Instruction *I) {
2575 // The high bits for a type smaller than the register size are assumed to be
2576 // undefined.
2577 Value *Op = I->getOperand(0);
2579 EVT SrcVT, DestVT;
2580 SrcVT = TLI.getValueType(DL, Op->getType(), true);
2581 DestVT = TLI.getValueType(DL, I->getType(), true);
2583 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2584 return false;
2585 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2586 return false;
2588 unsigned SrcReg = getRegForValue(Op);
2589 if (!SrcReg) return false;
2591 // Because the high bits are undefined, a truncate doesn't generate
2592 // any code.
2593 updateValueMap(I, SrcReg);
2594 return true;
2597 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2598 bool isZExt) {
2599 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2600 return 0;
2601 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2602 return 0;
2604 // Table of which combinations can be emitted as a single instruction,
2605 // and which will require two.
2606 static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2607 // ARM Thumb
2608 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops
2609 // ext: s z s z s z s z
2610 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2611 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2612 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2615 // Target registers for:
2616 // - For ARM can never be PC.
2617 // - For 16-bit Thumb are restricted to lower 8 registers.
2618 // - For 32-bit Thumb are restricted to non-SP and non-PC.
2619 static const TargetRegisterClass *RCTbl[2][2] = {
2620 // Instructions: Two Single
2621 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2622 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass }
2625 // Table governing the instruction(s) to be emitted.
2626 static const struct InstructionTable {
2627 uint32_t Opc : 16;
2628 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0.
2629 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi.
2630 uint32_t Imm : 8; // All instructions have either a shift or a mask.
2631 } IT[2][2][3][2] = {
2632 { // Two instructions (first is left shift, second is in this table).
2633 { // ARM Opc S Shift Imm
2634 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 },
2635 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } },
2636 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 },
2637 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } },
2638 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 },
2639 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } }
2641 { // Thumb Opc S Shift Imm
2642 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 },
2643 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } },
2644 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 },
2645 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } },
2646 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 },
2647 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } }
2650 { // Single instruction.
2651 { // ARM Opc S Shift Imm
2652 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
2653 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } },
2654 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 },
2655 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } },
2656 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 },
2657 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } }
2659 { // Thumb Opc S Shift Imm
2660 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
2661 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } },
2662 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 },
2663 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2664 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 },
2665 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } }
2670 unsigned SrcBits = SrcVT.getSizeInBits();
2671 unsigned DestBits = DestVT.getSizeInBits();
2672 (void) DestBits;
2673 assert((SrcBits < DestBits) && "can only extend to larger types");
2674 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2675 "other sizes unimplemented");
2676 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2677 "other sizes unimplemented");
2679 bool hasV6Ops = Subtarget->hasV6Ops();
2680 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2}
2681 assert((Bitness < 3) && "sanity-check table bounds");
2683 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2684 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2685 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2686 unsigned Opc = ITP->Opc;
2687 assert(ARM::KILL != Opc && "Invalid table entry");
2688 unsigned hasS = ITP->hasS;
2689 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2690 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2691 "only MOVsi has shift operand addressing mode");
2692 unsigned Imm = ITP->Imm;
2694 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2695 bool setsCPSR = &ARM::tGPRRegClass == RC;
2696 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2697 unsigned ResultReg;
2698 // MOVsi encodes shift and immediate in shift operand addressing mode.
2699 // The following condition has the same value when emitting two
2700 // instruction sequences: both are shifts.
2701 bool ImmIsSO = (Shift != ARM_AM::no_shift);
2703 // Either one or two instructions are emitted.
2704 // They're always of the form:
2705 // dst = in OP imm
2706 // CPSR is set only by 16-bit Thumb instructions.
2707 // Predicate, if any, is AL.
2708 // S bit, if available, is always 0.
2709 // When two are emitted the first's result will feed as the second's input,
2710 // that value is then dead.
2711 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2712 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2713 ResultReg = createResultReg(RC);
2714 bool isLsl = (0 == Instr) && !isSingleInstr;
2715 unsigned Opcode = isLsl ? LSLOpc : Opc;
2716 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2717 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2718 bool isKill = 1 == Instr;
2719 MachineInstrBuilder MIB = BuildMI(
2720 *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
2721 if (setsCPSR)
2722 MIB.addReg(ARM::CPSR, RegState::Define);
2723 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2724 MIB.addReg(SrcReg, isKill * RegState::Kill)
2725 .addImm(ImmEnc)
2726 .add(predOps(ARMCC::AL));
2727 if (hasS)
2728 MIB.add(condCodeOp());
2729 // Second instruction consumes the first's result.
2730 SrcReg = ResultReg;
2733 return ResultReg;
2736 bool ARMFastISel::SelectIntExt(const Instruction *I) {
2737 // On ARM, in general, integer casts don't involve legal types; this code
2738 // handles promotable integers.
2739 Type *DestTy = I->getType();
2740 Value *Src = I->getOperand(0);
2741 Type *SrcTy = Src->getType();
2743 bool isZExt = isa<ZExtInst>(I);
2744 unsigned SrcReg = getRegForValue(Src);
2745 if (!SrcReg) return false;
2747 EVT SrcEVT, DestEVT;
2748 SrcEVT = TLI.getValueType(DL, SrcTy, true);
2749 DestEVT = TLI.getValueType(DL, DestTy, true);
2750 if (!SrcEVT.isSimple()) return false;
2751 if (!DestEVT.isSimple()) return false;
2753 MVT SrcVT = SrcEVT.getSimpleVT();
2754 MVT DestVT = DestEVT.getSimpleVT();
2755 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2756 if (ResultReg == 0) return false;
2757 updateValueMap(I, ResultReg);
2758 return true;
2761 bool ARMFastISel::SelectShift(const Instruction *I,
2762 ARM_AM::ShiftOpc ShiftTy) {
2763 // We handle thumb2 mode by target independent selector
2764 // or SelectionDAG ISel.
2765 if (isThumb2)
2766 return false;
2768 // Only handle i32 now.
2769 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
2770 if (DestVT != MVT::i32)
2771 return false;
2773 unsigned Opc = ARM::MOVsr;
2774 unsigned ShiftImm;
2775 Value *Src2Value = I->getOperand(1);
2776 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2777 ShiftImm = CI->getZExtValue();
2779 // Fall back to selection DAG isel if the shift amount
2780 // is zero or greater than the width of the value type.
2781 if (ShiftImm == 0 || ShiftImm >=32)
2782 return false;
2784 Opc = ARM::MOVsi;
2787 Value *Src1Value = I->getOperand(0);
2788 unsigned Reg1 = getRegForValue(Src1Value);
2789 if (Reg1 == 0) return false;
2791 unsigned Reg2 = 0;
2792 if (Opc == ARM::MOVsr) {
2793 Reg2 = getRegForValue(Src2Value);
2794 if (Reg2 == 0) return false;
2797 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2798 if(ResultReg == 0) return false;
2800 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2801 TII.get(Opc), ResultReg)
2802 .addReg(Reg1);
2804 if (Opc == ARM::MOVsi)
2805 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2806 else if (Opc == ARM::MOVsr) {
2807 MIB.addReg(Reg2);
2808 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2811 AddOptionalDefs(MIB);
2812 updateValueMap(I, ResultReg);
2813 return true;
2816 // TODO: SoftFP support.
2817 bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
2818 switch (I->getOpcode()) {
2819 case Instruction::Load:
2820 return SelectLoad(I);
2821 case Instruction::Store:
2822 return SelectStore(I);
2823 case Instruction::Br:
2824 return SelectBranch(I);
2825 case Instruction::IndirectBr:
2826 return SelectIndirectBr(I);
2827 case Instruction::ICmp:
2828 case Instruction::FCmp:
2829 return SelectCmp(I);
2830 case Instruction::FPExt:
2831 return SelectFPExt(I);
2832 case Instruction::FPTrunc:
2833 return SelectFPTrunc(I);
2834 case Instruction::SIToFP:
2835 return SelectIToFP(I, /*isSigned*/ true);
2836 case Instruction::UIToFP:
2837 return SelectIToFP(I, /*isSigned*/ false);
2838 case Instruction::FPToSI:
2839 return SelectFPToI(I, /*isSigned*/ true);
2840 case Instruction::FPToUI:
2841 return SelectFPToI(I, /*isSigned*/ false);
2842 case Instruction::Add:
2843 return SelectBinaryIntOp(I, ISD::ADD);
2844 case Instruction::Or:
2845 return SelectBinaryIntOp(I, ISD::OR);
2846 case Instruction::Sub:
2847 return SelectBinaryIntOp(I, ISD::SUB);
2848 case Instruction::FAdd:
2849 return SelectBinaryFPOp(I, ISD::FADD);
2850 case Instruction::FSub:
2851 return SelectBinaryFPOp(I, ISD::FSUB);
2852 case Instruction::FMul:
2853 return SelectBinaryFPOp(I, ISD::FMUL);
2854 case Instruction::SDiv:
2855 return SelectDiv(I, /*isSigned*/ true);
2856 case Instruction::UDiv:
2857 return SelectDiv(I, /*isSigned*/ false);
2858 case Instruction::SRem:
2859 return SelectRem(I, /*isSigned*/ true);
2860 case Instruction::URem:
2861 return SelectRem(I, /*isSigned*/ false);
2862 case Instruction::Call:
2863 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2864 return SelectIntrinsicCall(*II);
2865 return SelectCall(I);
2866 case Instruction::Select:
2867 return SelectSelect(I);
2868 case Instruction::Ret:
2869 return SelectRet(I);
2870 case Instruction::Trunc:
2871 return SelectTrunc(I);
2872 case Instruction::ZExt:
2873 case Instruction::SExt:
2874 return SelectIntExt(I);
2875 case Instruction::Shl:
2876 return SelectShift(I, ARM_AM::lsl);
2877 case Instruction::LShr:
2878 return SelectShift(I, ARM_AM::lsr);
2879 case Instruction::AShr:
2880 return SelectShift(I, ARM_AM::asr);
2881 default: break;
2883 return false;
2886 // This table describes sign- and zero-extend instructions which can be
2887 // folded into a preceding load. All of these extends have an immediate
2888 // (sometimes a mask and sometimes a shift) that's applied after
2889 // extension.
2890 static const struct FoldableLoadExtendsStruct {
2891 uint16_t Opc[2]; // ARM, Thumb.
2892 uint8_t ExpectedImm;
2893 uint8_t isZExt : 1;
2894 uint8_t ExpectedVT : 7;
2895 } FoldableLoadExtends[] = {
2896 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 },
2897 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 },
2898 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 },
2899 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 },
2900 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 }
2903 /// The specified machine instr operand is a vreg, and that
2904 /// vreg is being provided by the specified load instruction. If possible,
2905 /// try to fold the load as an operand to the instruction, returning true if
2906 /// successful.
2907 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2908 const LoadInst *LI) {
2909 // Verify we have a legal type before going any further.
2910 MVT VT;
2911 if (!isLoadTypeLegal(LI->getType(), VT))
2912 return false;
2914 // Combine load followed by zero- or sign-extend.
2915 // ldrb r1, [r0] ldrb r1, [r0]
2916 // uxtb r2, r1 =>
2917 // mov r3, r2 mov r3, r1
2918 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2919 return false;
2920 const uint64_t Imm = MI->getOperand(2).getImm();
2922 bool Found = false;
2923 bool isZExt;
2924 for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) {
2925 if (FLE.Opc[isThumb2] == MI->getOpcode() &&
2926 (uint64_t)FLE.ExpectedImm == Imm &&
2927 MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) {
2928 Found = true;
2929 isZExt = FLE.isZExt;
2932 if (!Found) return false;
2934 // See if we can handle this address.
2935 Address Addr;
2936 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2938 Register ResultReg = MI->getOperand(0).getReg();
2939 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2940 return false;
2941 MachineBasicBlock::iterator I(MI);
2942 removeDeadCode(I, std::next(I));
2943 return true;
2946 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
2947 unsigned Align, MVT VT) {
2948 bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
2950 LLVMContext *Context = &MF->getFunction().getContext();
2951 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2952 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2953 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2954 GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2955 UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2956 /*AddCurrentAddress=*/UseGOT_PREL);
2958 unsigned ConstAlign =
2959 MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context));
2960 unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
2961 MachineMemOperand *CPMMO =
2962 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
2963 MachineMemOperand::MOLoad, 4, 4);
2965 Register TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
2966 unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
2967 MachineInstrBuilder MIB =
2968 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg)
2969 .addConstantPoolIndex(Idx)
2970 .addMemOperand(CPMMO);
2971 if (Opc == ARM::LDRcp)
2972 MIB.addImm(0);
2973 MIB.add(predOps(ARMCC::AL));
2975 // Fix the address by adding pc.
2976 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
2977 Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
2978 : ARM::PICADD;
2979 DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
2980 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2981 .addReg(TempReg)
2982 .addImm(ARMPCLabelIndex);
2984 if (!Subtarget->isThumb())
2985 MIB.add(predOps(ARMCC::AL));
2987 if (UseGOT_PREL && Subtarget->isThumb()) {
2988 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
2989 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2990 TII.get(ARM::t2LDRi12), NewDestReg)
2991 .addReg(DestReg)
2992 .addImm(0);
2993 DestReg = NewDestReg;
2994 AddOptionalDefs(MIB);
2996 return DestReg;
2999 bool ARMFastISel::fastLowerArguments() {
3000 if (!FuncInfo.CanLowerReturn)
3001 return false;
3003 const Function *F = FuncInfo.Fn;
3004 if (F->isVarArg())
3005 return false;
3007 CallingConv::ID CC = F->getCallingConv();
3008 switch (CC) {
3009 default:
3010 return false;
3011 case CallingConv::Fast:
3012 case CallingConv::C:
3013 case CallingConv::ARM_AAPCS_VFP:
3014 case CallingConv::ARM_AAPCS:
3015 case CallingConv::ARM_APCS:
3016 case CallingConv::Swift:
3017 break;
3020 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3021 // which are passed in r0 - r3.
3022 for (const Argument &Arg : F->args()) {
3023 if (Arg.getArgNo() >= 4)
3024 return false;
3026 if (Arg.hasAttribute(Attribute::InReg) ||
3027 Arg.hasAttribute(Attribute::StructRet) ||
3028 Arg.hasAttribute(Attribute::SwiftSelf) ||
3029 Arg.hasAttribute(Attribute::SwiftError) ||
3030 Arg.hasAttribute(Attribute::ByVal))
3031 return false;
3033 Type *ArgTy = Arg.getType();
3034 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3035 return false;
3037 EVT ArgVT = TLI.getValueType(DL, ArgTy);
3038 if (!ArgVT.isSimple()) return false;
3039 switch (ArgVT.getSimpleVT().SimpleTy) {
3040 case MVT::i8:
3041 case MVT::i16:
3042 case MVT::i32:
3043 break;
3044 default:
3045 return false;
3049 static const MCPhysReg GPRArgRegs[] = {
3050 ARM::R0, ARM::R1, ARM::R2, ARM::R3
3053 const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3054 for (const Argument &Arg : F->args()) {
3055 unsigned ArgNo = Arg.getArgNo();
3056 unsigned SrcReg = GPRArgRegs[ArgNo];
3057 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3058 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3059 // Without this, EmitLiveInCopies may eliminate the livein if its only
3060 // use is a bitcast (which isn't turned into an instruction).
3061 unsigned ResultReg = createResultReg(RC);
3062 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3063 TII.get(TargetOpcode::COPY),
3064 ResultReg).addReg(DstReg, getKillRegState(true));
3065 updateValueMap(&Arg, ResultReg);
3068 return true;
3071 namespace llvm {
3073 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3074 const TargetLibraryInfo *libInfo) {
3075 if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
3076 return new ARMFastISel(funcInfo, libInfo);
3078 return nullptr;
3081 } // end namespace llvm