1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
115 using namespace llvm
;
116 using namespace llvm::PatternMatch
;
118 #define DEBUG_TYPE "arm-isel"
120 STATISTIC(NumTailCalls
, "Number of tail calls");
121 STATISTIC(NumMovwMovt
, "Number of GAs materialized with movw + movt");
122 STATISTIC(NumLoopByVals
, "Number of loops generated for byval arguments");
123 STATISTIC(NumConstpoolPromoted
,
124 "Number of constants with their storage promoted into constant pools");
127 ARMInterworking("arm-interworking", cl::Hidden
,
128 cl::desc("Enable / disable ARM interworking (for debugging only)"),
131 static cl::opt
<bool> EnableConstpoolPromotion(
132 "arm-promote-constant", cl::Hidden
,
133 cl::desc("Enable / disable promotion of unnamed_addr constants into "
135 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
136 static cl::opt
<unsigned> ConstpoolPromotionMaxSize(
137 "arm-promote-constant-max-size", cl::Hidden
,
138 cl::desc("Maximum size of constant to promote into a constant pool"),
140 static cl::opt
<unsigned> ConstpoolPromotionMaxTotal(
141 "arm-promote-constant-max-total", cl::Hidden
,
142 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
145 // The APCS parameter registers.
146 static const MCPhysReg GPRArgRegs
[] = {
147 ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
150 void ARMTargetLowering::addTypeForNEON(MVT VT
, MVT PromotedLdStVT
,
151 MVT PromotedBitwiseVT
) {
152 if (VT
!= PromotedLdStVT
) {
153 setOperationAction(ISD::LOAD
, VT
, Promote
);
154 AddPromotedToType (ISD::LOAD
, VT
, PromotedLdStVT
);
156 setOperationAction(ISD::STORE
, VT
, Promote
);
157 AddPromotedToType (ISD::STORE
, VT
, PromotedLdStVT
);
160 MVT ElemTy
= VT
.getVectorElementType();
161 if (ElemTy
!= MVT::f64
)
162 setOperationAction(ISD::SETCC
, VT
, Custom
);
163 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
164 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
165 if (ElemTy
== MVT::i32
) {
166 setOperationAction(ISD::SINT_TO_FP
, VT
, Custom
);
167 setOperationAction(ISD::UINT_TO_FP
, VT
, Custom
);
168 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
169 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
171 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
172 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
173 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
174 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
176 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
177 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
178 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Legal
);
179 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Legal
);
180 setOperationAction(ISD::SELECT
, VT
, Expand
);
181 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
182 setOperationAction(ISD::VSELECT
, VT
, Expand
);
183 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
184 if (VT
.isInteger()) {
185 setOperationAction(ISD::SHL
, VT
, Custom
);
186 setOperationAction(ISD::SRA
, VT
, Custom
);
187 setOperationAction(ISD::SRL
, VT
, Custom
);
190 // Promote all bit-wise operations.
191 if (VT
.isInteger() && VT
!= PromotedBitwiseVT
) {
192 setOperationAction(ISD::AND
, VT
, Promote
);
193 AddPromotedToType (ISD::AND
, VT
, PromotedBitwiseVT
);
194 setOperationAction(ISD::OR
, VT
, Promote
);
195 AddPromotedToType (ISD::OR
, VT
, PromotedBitwiseVT
);
196 setOperationAction(ISD::XOR
, VT
, Promote
);
197 AddPromotedToType (ISD::XOR
, VT
, PromotedBitwiseVT
);
200 // Neon does not support vector divide/remainder operations.
201 setOperationAction(ISD::SDIV
, VT
, Expand
);
202 setOperationAction(ISD::UDIV
, VT
, Expand
);
203 setOperationAction(ISD::FDIV
, VT
, Expand
);
204 setOperationAction(ISD::SREM
, VT
, Expand
);
205 setOperationAction(ISD::UREM
, VT
, Expand
);
206 setOperationAction(ISD::FREM
, VT
, Expand
);
208 if (!VT
.isFloatingPoint() &&
209 VT
!= MVT::v2i64
&& VT
!= MVT::v1i64
)
210 for (auto Opcode
: {ISD::ABS
, ISD::SMIN
, ISD::SMAX
, ISD::UMIN
, ISD::UMAX
})
211 setOperationAction(Opcode
, VT
, Legal
);
214 void ARMTargetLowering::addDRTypeForNEON(MVT VT
) {
215 addRegisterClass(VT
, &ARM::DPRRegClass
);
216 addTypeForNEON(VT
, MVT::f64
, MVT::v2i32
);
219 void ARMTargetLowering::addQRTypeForNEON(MVT VT
) {
220 addRegisterClass(VT
, &ARM::DPairRegClass
);
221 addTypeForNEON(VT
, MVT::v2f64
, MVT::v4i32
);
224 void ARMTargetLowering::setAllExpand(MVT VT
) {
225 for (unsigned Opc
= 0; Opc
< ISD::BUILTIN_OP_END
; ++Opc
)
226 setOperationAction(Opc
, VT
, Expand
);
228 // We support these really simple operations even on types where all
229 // the actual arithmetic has to be broken down into simpler
230 // operations or turned into library calls.
231 setOperationAction(ISD::BITCAST
, VT
, Legal
);
232 setOperationAction(ISD::LOAD
, VT
, Legal
);
233 setOperationAction(ISD::STORE
, VT
, Legal
);
234 setOperationAction(ISD::UNDEF
, VT
, Legal
);
237 void ARMTargetLowering::addAllExtLoads(const MVT From
, const MVT To
,
238 LegalizeAction Action
) {
239 setLoadExtAction(ISD::EXTLOAD
, From
, To
, Action
);
240 setLoadExtAction(ISD::ZEXTLOAD
, From
, To
, Action
);
241 setLoadExtAction(ISD::SEXTLOAD
, From
, To
, Action
);
244 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP
) {
245 const MVT IntTypes
[] = { MVT::v16i8
, MVT::v8i16
, MVT::v4i32
};
247 for (auto VT
: IntTypes
) {
248 addRegisterClass(VT
, &ARM::MQPRRegClass
);
249 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
250 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
251 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
252 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
253 setOperationAction(ISD::SHL
, VT
, Custom
);
254 setOperationAction(ISD::SRA
, VT
, Custom
);
255 setOperationAction(ISD::SRL
, VT
, Custom
);
256 setOperationAction(ISD::SMIN
, VT
, Legal
);
257 setOperationAction(ISD::SMAX
, VT
, Legal
);
258 setOperationAction(ISD::UMIN
, VT
, Legal
);
259 setOperationAction(ISD::UMAX
, VT
, Legal
);
260 setOperationAction(ISD::ABS
, VT
, Legal
);
261 setOperationAction(ISD::SETCC
, VT
, Custom
);
262 setOperationAction(ISD::MLOAD
, VT
, Custom
);
263 setOperationAction(ISD::MSTORE
, VT
, Legal
);
264 setOperationAction(ISD::CTLZ
, VT
, Legal
);
265 setOperationAction(ISD::CTTZ
, VT
, Custom
);
266 setOperationAction(ISD::BITREVERSE
, VT
, Legal
);
267 setOperationAction(ISD::BSWAP
, VT
, Legal
);
268 setOperationAction(ISD::SADDSAT
, VT
, Legal
);
269 setOperationAction(ISD::UADDSAT
, VT
, Legal
);
270 setOperationAction(ISD::SSUBSAT
, VT
, Legal
);
271 setOperationAction(ISD::USUBSAT
, VT
, Legal
);
273 // No native support for these.
274 setOperationAction(ISD::UDIV
, VT
, Expand
);
275 setOperationAction(ISD::SDIV
, VT
, Expand
);
276 setOperationAction(ISD::UREM
, VT
, Expand
);
277 setOperationAction(ISD::SREM
, VT
, Expand
);
278 setOperationAction(ISD::CTPOP
, VT
, Expand
);
281 setOperationAction(ISD::VECREDUCE_ADD
, VT
, Legal
);
282 setOperationAction(ISD::VECREDUCE_SMAX
, VT
, Legal
);
283 setOperationAction(ISD::VECREDUCE_UMAX
, VT
, Legal
);
284 setOperationAction(ISD::VECREDUCE_SMIN
, VT
, Legal
);
285 setOperationAction(ISD::VECREDUCE_UMIN
, VT
, Legal
);
288 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
289 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
290 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
291 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
294 // Pre and Post inc are supported on loads and stores
295 for (unsigned im
= (unsigned)ISD::PRE_INC
;
296 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
297 setIndexedLoadAction(im
, VT
, Legal
);
298 setIndexedStoreAction(im
, VT
, Legal
);
302 const MVT FloatTypes
[] = { MVT::v8f16
, MVT::v4f32
};
303 for (auto VT
: FloatTypes
) {
304 addRegisterClass(VT
, &ARM::MQPRRegClass
);
308 // These are legal or custom whether we have MVE.fp or not
309 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
310 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
311 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
.getVectorElementType(), Custom
);
312 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
313 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
314 setOperationAction(ISD::BUILD_VECTOR
, VT
.getVectorElementType(), Custom
);
315 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Legal
);
316 setOperationAction(ISD::SETCC
, VT
, Custom
);
317 setOperationAction(ISD::MLOAD
, VT
, Custom
);
318 setOperationAction(ISD::MSTORE
, VT
, Legal
);
320 // Pre and Post inc are supported on loads and stores
321 for (unsigned im
= (unsigned)ISD::PRE_INC
;
322 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
323 setIndexedLoadAction(im
, VT
, Legal
);
324 setIndexedStoreAction(im
, VT
, Legal
);
328 setOperationAction(ISD::FMINNUM
, VT
, Legal
);
329 setOperationAction(ISD::FMAXNUM
, VT
, Legal
);
330 setOperationAction(ISD::FROUND
, VT
, Legal
);
332 // No native support for these.
333 setOperationAction(ISD::FDIV
, VT
, Expand
);
334 setOperationAction(ISD::FREM
, VT
, Expand
);
335 setOperationAction(ISD::FSQRT
, VT
, Expand
);
336 setOperationAction(ISD::FSIN
, VT
, Expand
);
337 setOperationAction(ISD::FCOS
, VT
, Expand
);
338 setOperationAction(ISD::FPOW
, VT
, Expand
);
339 setOperationAction(ISD::FLOG
, VT
, Expand
);
340 setOperationAction(ISD::FLOG2
, VT
, Expand
);
341 setOperationAction(ISD::FLOG10
, VT
, Expand
);
342 setOperationAction(ISD::FEXP
, VT
, Expand
);
343 setOperationAction(ISD::FEXP2
, VT
, Expand
);
344 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
348 // We 'support' these types up to bitcast/load/store level, regardless of
349 // MVE integer-only / float support. Only doing FP data processing on the FP
350 // vector types is inhibited at integer-only level.
351 const MVT LongTypes
[] = { MVT::v2i64
, MVT::v2f64
};
352 for (auto VT
: LongTypes
) {
353 addRegisterClass(VT
, &ARM::MQPRRegClass
);
355 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
356 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
357 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
359 // We can do bitwise operations on v2i64 vectors
360 setOperationAction(ISD::AND
, MVT::v2i64
, Legal
);
361 setOperationAction(ISD::OR
, MVT::v2i64
, Legal
);
362 setOperationAction(ISD::XOR
, MVT::v2i64
, Legal
);
364 // It is legal to extload from v4i8 to v4i16 or v4i32.
365 addAllExtLoads(MVT::v8i16
, MVT::v8i8
, Legal
);
366 addAllExtLoads(MVT::v4i32
, MVT::v4i16
, Legal
);
367 addAllExtLoads(MVT::v4i32
, MVT::v4i8
, Legal
);
369 // Some truncating stores are legal too.
370 setTruncStoreAction(MVT::v4i32
, MVT::v4i16
, Legal
);
371 setTruncStoreAction(MVT::v4i32
, MVT::v4i8
, Legal
);
372 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Legal
);
374 // Pre and Post inc on these are legal, given the correct extends
375 for (unsigned im
= (unsigned)ISD::PRE_INC
;
376 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
377 setIndexedLoadAction(im
, MVT::v8i8
, Legal
);
378 setIndexedStoreAction(im
, MVT::v8i8
, Legal
);
379 setIndexedLoadAction(im
, MVT::v4i8
, Legal
);
380 setIndexedStoreAction(im
, MVT::v4i8
, Legal
);
381 setIndexedLoadAction(im
, MVT::v4i16
, Legal
);
382 setIndexedStoreAction(im
, MVT::v4i16
, Legal
);
386 const MVT pTypes
[] = {MVT::v16i1
, MVT::v8i1
, MVT::v4i1
};
387 for (auto VT
: pTypes
) {
388 addRegisterClass(VT
, &ARM::VCCRRegClass
);
389 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
390 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
391 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
392 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Custom
);
393 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
394 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
395 setOperationAction(ISD::SETCC
, VT
, Custom
);
396 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Expand
);
397 setOperationAction(ISD::LOAD
, VT
, Custom
);
398 setOperationAction(ISD::STORE
, VT
, Custom
);
402 ARMTargetLowering::ARMTargetLowering(const TargetMachine
&TM
,
403 const ARMSubtarget
&STI
)
404 : TargetLowering(TM
), Subtarget(&STI
) {
405 RegInfo
= Subtarget
->getRegisterInfo();
406 Itins
= Subtarget
->getInstrItineraryData();
408 setBooleanContents(ZeroOrOneBooleanContent
);
409 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
411 if (!Subtarget
->isTargetDarwin() && !Subtarget
->isTargetIOS() &&
412 !Subtarget
->isTargetWatchOS()) {
413 bool IsHFTarget
= TM
.Options
.FloatABIType
== FloatABI::Hard
;
414 for (int LCID
= 0; LCID
< RTLIB::UNKNOWN_LIBCALL
; ++LCID
)
415 setLibcallCallingConv(static_cast<RTLIB::Libcall
>(LCID
),
416 IsHFTarget
? CallingConv::ARM_AAPCS_VFP
417 : CallingConv::ARM_AAPCS
);
420 if (Subtarget
->isTargetMachO()) {
421 // Uses VFP for Thumb libfuncs if available.
422 if (Subtarget
->isThumb() && Subtarget
->hasVFP2Base() &&
423 Subtarget
->hasARMOps() && !Subtarget
->useSoftFloat()) {
424 static const struct {
425 const RTLIB::Libcall Op
;
426 const char * const Name
;
427 const ISD::CondCode Cond
;
429 // Single-precision floating-point arithmetic.
430 { RTLIB::ADD_F32
, "__addsf3vfp", ISD::SETCC_INVALID
},
431 { RTLIB::SUB_F32
, "__subsf3vfp", ISD::SETCC_INVALID
},
432 { RTLIB::MUL_F32
, "__mulsf3vfp", ISD::SETCC_INVALID
},
433 { RTLIB::DIV_F32
, "__divsf3vfp", ISD::SETCC_INVALID
},
435 // Double-precision floating-point arithmetic.
436 { RTLIB::ADD_F64
, "__adddf3vfp", ISD::SETCC_INVALID
},
437 { RTLIB::SUB_F64
, "__subdf3vfp", ISD::SETCC_INVALID
},
438 { RTLIB::MUL_F64
, "__muldf3vfp", ISD::SETCC_INVALID
},
439 { RTLIB::DIV_F64
, "__divdf3vfp", ISD::SETCC_INVALID
},
441 // Single-precision comparisons.
442 { RTLIB::OEQ_F32
, "__eqsf2vfp", ISD::SETNE
},
443 { RTLIB::UNE_F32
, "__nesf2vfp", ISD::SETNE
},
444 { RTLIB::OLT_F32
, "__ltsf2vfp", ISD::SETNE
},
445 { RTLIB::OLE_F32
, "__lesf2vfp", ISD::SETNE
},
446 { RTLIB::OGE_F32
, "__gesf2vfp", ISD::SETNE
},
447 { RTLIB::OGT_F32
, "__gtsf2vfp", ISD::SETNE
},
448 { RTLIB::UO_F32
, "__unordsf2vfp", ISD::SETNE
},
449 { RTLIB::O_F32
, "__unordsf2vfp", ISD::SETEQ
},
451 // Double-precision comparisons.
452 { RTLIB::OEQ_F64
, "__eqdf2vfp", ISD::SETNE
},
453 { RTLIB::UNE_F64
, "__nedf2vfp", ISD::SETNE
},
454 { RTLIB::OLT_F64
, "__ltdf2vfp", ISD::SETNE
},
455 { RTLIB::OLE_F64
, "__ledf2vfp", ISD::SETNE
},
456 { RTLIB::OGE_F64
, "__gedf2vfp", ISD::SETNE
},
457 { RTLIB::OGT_F64
, "__gtdf2vfp", ISD::SETNE
},
458 { RTLIB::UO_F64
, "__unorddf2vfp", ISD::SETNE
},
459 { RTLIB::O_F64
, "__unorddf2vfp", ISD::SETEQ
},
461 // Floating-point to integer conversions.
462 // i64 conversions are done via library routines even when generating VFP
463 // instructions, so use the same ones.
464 { RTLIB::FPTOSINT_F64_I32
, "__fixdfsivfp", ISD::SETCC_INVALID
},
465 { RTLIB::FPTOUINT_F64_I32
, "__fixunsdfsivfp", ISD::SETCC_INVALID
},
466 { RTLIB::FPTOSINT_F32_I32
, "__fixsfsivfp", ISD::SETCC_INVALID
},
467 { RTLIB::FPTOUINT_F32_I32
, "__fixunssfsivfp", ISD::SETCC_INVALID
},
469 // Conversions between floating types.
470 { RTLIB::FPROUND_F64_F32
, "__truncdfsf2vfp", ISD::SETCC_INVALID
},
471 { RTLIB::FPEXT_F32_F64
, "__extendsfdf2vfp", ISD::SETCC_INVALID
},
473 // Integer to floating-point conversions.
474 // i64 conversions are done via library routines even when generating VFP
475 // instructions, so use the same ones.
476 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
477 // e.g., __floatunsidf vs. __floatunssidfvfp.
478 { RTLIB::SINTTOFP_I32_F64
, "__floatsidfvfp", ISD::SETCC_INVALID
},
479 { RTLIB::UINTTOFP_I32_F64
, "__floatunssidfvfp", ISD::SETCC_INVALID
},
480 { RTLIB::SINTTOFP_I32_F32
, "__floatsisfvfp", ISD::SETCC_INVALID
},
481 { RTLIB::UINTTOFP_I32_F32
, "__floatunssisfvfp", ISD::SETCC_INVALID
},
484 for (const auto &LC
: LibraryCalls
) {
485 setLibcallName(LC
.Op
, LC
.Name
);
486 if (LC
.Cond
!= ISD::SETCC_INVALID
)
487 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
492 // These libcalls are not available in 32-bit.
493 setLibcallName(RTLIB::SHL_I128
, nullptr);
494 setLibcallName(RTLIB::SRL_I128
, nullptr);
495 setLibcallName(RTLIB::SRA_I128
, nullptr);
498 if (Subtarget
->isAAPCS_ABI() &&
499 (Subtarget
->isTargetAEABI() || Subtarget
->isTargetGNUAEABI() ||
500 Subtarget
->isTargetMuslAEABI() || Subtarget
->isTargetAndroid())) {
501 static const struct {
502 const RTLIB::Libcall Op
;
503 const char * const Name
;
504 const CallingConv::ID CC
;
505 const ISD::CondCode Cond
;
507 // Double-precision floating-point arithmetic helper functions
508 // RTABI chapter 4.1.2, Table 2
509 { RTLIB::ADD_F64
, "__aeabi_dadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
510 { RTLIB::DIV_F64
, "__aeabi_ddiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
511 { RTLIB::MUL_F64
, "__aeabi_dmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
512 { RTLIB::SUB_F64
, "__aeabi_dsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
514 // Double-precision floating-point comparison helper functions
515 // RTABI chapter 4.1.2, Table 3
516 { RTLIB::OEQ_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
517 { RTLIB::UNE_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
518 { RTLIB::OLT_F64
, "__aeabi_dcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
519 { RTLIB::OLE_F64
, "__aeabi_dcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
520 { RTLIB::OGE_F64
, "__aeabi_dcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
521 { RTLIB::OGT_F64
, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
522 { RTLIB::UO_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
523 { RTLIB::O_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
525 // Single-precision floating-point arithmetic helper functions
526 // RTABI chapter 4.1.2, Table 4
527 { RTLIB::ADD_F32
, "__aeabi_fadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
528 { RTLIB::DIV_F32
, "__aeabi_fdiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
529 { RTLIB::MUL_F32
, "__aeabi_fmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
530 { RTLIB::SUB_F32
, "__aeabi_fsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
532 // Single-precision floating-point comparison helper functions
533 // RTABI chapter 4.1.2, Table 5
534 { RTLIB::OEQ_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
535 { RTLIB::UNE_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
536 { RTLIB::OLT_F32
, "__aeabi_fcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
537 { RTLIB::OLE_F32
, "__aeabi_fcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
538 { RTLIB::OGE_F32
, "__aeabi_fcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
539 { RTLIB::OGT_F32
, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
540 { RTLIB::UO_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
541 { RTLIB::O_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
543 // Floating-point to integer conversions.
544 // RTABI chapter 4.1.2, Table 6
545 { RTLIB::FPTOSINT_F64_I32
, "__aeabi_d2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
546 { RTLIB::FPTOUINT_F64_I32
, "__aeabi_d2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
547 { RTLIB::FPTOSINT_F64_I64
, "__aeabi_d2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
548 { RTLIB::FPTOUINT_F64_I64
, "__aeabi_d2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
549 { RTLIB::FPTOSINT_F32_I32
, "__aeabi_f2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
550 { RTLIB::FPTOUINT_F32_I32
, "__aeabi_f2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
551 { RTLIB::FPTOSINT_F32_I64
, "__aeabi_f2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
552 { RTLIB::FPTOUINT_F32_I64
, "__aeabi_f2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
554 // Conversions between floating types.
555 // RTABI chapter 4.1.2, Table 7
556 { RTLIB::FPROUND_F64_F32
, "__aeabi_d2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
557 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
558 { RTLIB::FPEXT_F32_F64
, "__aeabi_f2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
560 // Integer to floating-point conversions.
561 // RTABI chapter 4.1.2, Table 8
562 { RTLIB::SINTTOFP_I32_F64
, "__aeabi_i2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
563 { RTLIB::UINTTOFP_I32_F64
, "__aeabi_ui2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
564 { RTLIB::SINTTOFP_I64_F64
, "__aeabi_l2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
565 { RTLIB::UINTTOFP_I64_F64
, "__aeabi_ul2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
566 { RTLIB::SINTTOFP_I32_F32
, "__aeabi_i2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
567 { RTLIB::UINTTOFP_I32_F32
, "__aeabi_ui2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
568 { RTLIB::SINTTOFP_I64_F32
, "__aeabi_l2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
569 { RTLIB::UINTTOFP_I64_F32
, "__aeabi_ul2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
571 // Long long helper functions
572 // RTABI chapter 4.2, Table 9
573 { RTLIB::MUL_I64
, "__aeabi_lmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
574 { RTLIB::SHL_I64
, "__aeabi_llsl", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
575 { RTLIB::SRL_I64
, "__aeabi_llsr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
576 { RTLIB::SRA_I64
, "__aeabi_lasr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
578 // Integer division functions
579 // RTABI chapter 4.3.1
580 { RTLIB::SDIV_I8
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
581 { RTLIB::SDIV_I16
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
582 { RTLIB::SDIV_I32
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
583 { RTLIB::SDIV_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
584 { RTLIB::UDIV_I8
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
585 { RTLIB::UDIV_I16
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
586 { RTLIB::UDIV_I32
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
587 { RTLIB::UDIV_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
590 for (const auto &LC
: LibraryCalls
) {
591 setLibcallName(LC
.Op
, LC
.Name
);
592 setLibcallCallingConv(LC
.Op
, LC
.CC
);
593 if (LC
.Cond
!= ISD::SETCC_INVALID
)
594 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
597 // EABI dependent RTLIB
598 if (TM
.Options
.EABIVersion
== EABI::EABI4
||
599 TM
.Options
.EABIVersion
== EABI::EABI5
) {
600 static const struct {
601 const RTLIB::Libcall Op
;
602 const char *const Name
;
603 const CallingConv::ID CC
;
604 const ISD::CondCode Cond
;
605 } MemOpsLibraryCalls
[] = {
607 // RTABI chapter 4.3.4
608 { RTLIB::MEMCPY
, "__aeabi_memcpy", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
609 { RTLIB::MEMMOVE
, "__aeabi_memmove", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
610 { RTLIB::MEMSET
, "__aeabi_memset", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
613 for (const auto &LC
: MemOpsLibraryCalls
) {
614 setLibcallName(LC
.Op
, LC
.Name
);
615 setLibcallCallingConv(LC
.Op
, LC
.CC
);
616 if (LC
.Cond
!= ISD::SETCC_INVALID
)
617 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
622 if (Subtarget
->isTargetWindows()) {
623 static const struct {
624 const RTLIB::Libcall Op
;
625 const char * const Name
;
626 const CallingConv::ID CC
;
628 { RTLIB::FPTOSINT_F32_I64
, "__stoi64", CallingConv::ARM_AAPCS_VFP
},
629 { RTLIB::FPTOSINT_F64_I64
, "__dtoi64", CallingConv::ARM_AAPCS_VFP
},
630 { RTLIB::FPTOUINT_F32_I64
, "__stou64", CallingConv::ARM_AAPCS_VFP
},
631 { RTLIB::FPTOUINT_F64_I64
, "__dtou64", CallingConv::ARM_AAPCS_VFP
},
632 { RTLIB::SINTTOFP_I64_F32
, "__i64tos", CallingConv::ARM_AAPCS_VFP
},
633 { RTLIB::SINTTOFP_I64_F64
, "__i64tod", CallingConv::ARM_AAPCS_VFP
},
634 { RTLIB::UINTTOFP_I64_F32
, "__u64tos", CallingConv::ARM_AAPCS_VFP
},
635 { RTLIB::UINTTOFP_I64_F64
, "__u64tod", CallingConv::ARM_AAPCS_VFP
},
638 for (const auto &LC
: LibraryCalls
) {
639 setLibcallName(LC
.Op
, LC
.Name
);
640 setLibcallCallingConv(LC
.Op
, LC
.CC
);
644 // Use divmod compiler-rt calls for iOS 5.0 and later.
645 if (Subtarget
->isTargetMachO() &&
646 !(Subtarget
->isTargetIOS() &&
647 Subtarget
->getTargetTriple().isOSVersionLT(5, 0))) {
648 setLibcallName(RTLIB::SDIVREM_I32
, "__divmodsi4");
649 setLibcallName(RTLIB::UDIVREM_I32
, "__udivmodsi4");
652 // The half <-> float conversion functions are always soft-float on
653 // non-watchos platforms, but are needed for some targets which use a
654 // hard-float calling convention by default.
655 if (!Subtarget
->isTargetWatchABI()) {
656 if (Subtarget
->isAAPCS_ABI()) {
657 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_AAPCS
);
658 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_AAPCS
);
659 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_AAPCS
);
661 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_APCS
);
662 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_APCS
);
663 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_APCS
);
667 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
668 // a __gnu_ prefix (which is the default).
669 if (Subtarget
->isTargetAEABI()) {
670 static const struct {
671 const RTLIB::Libcall Op
;
672 const char * const Name
;
673 const CallingConv::ID CC
;
675 { RTLIB::FPROUND_F32_F16
, "__aeabi_f2h", CallingConv::ARM_AAPCS
},
676 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
},
677 { RTLIB::FPEXT_F16_F32
, "__aeabi_h2f", CallingConv::ARM_AAPCS
},
680 for (const auto &LC
: LibraryCalls
) {
681 setLibcallName(LC
.Op
, LC
.Name
);
682 setLibcallCallingConv(LC
.Op
, LC
.CC
);
686 if (Subtarget
->isThumb1Only())
687 addRegisterClass(MVT::i32
, &ARM::tGPRRegClass
);
689 addRegisterClass(MVT::i32
, &ARM::GPRRegClass
);
691 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only() &&
692 Subtarget
->hasFPRegs()) {
693 addRegisterClass(MVT::f32
, &ARM::SPRRegClass
);
694 addRegisterClass(MVT::f64
, &ARM::DPRRegClass
);
695 if (!Subtarget
->hasVFP2Base())
696 setAllExpand(MVT::f32
);
697 if (!Subtarget
->hasFP64())
698 setAllExpand(MVT::f64
);
701 if (Subtarget
->hasFullFP16()) {
702 addRegisterClass(MVT::f16
, &ARM::HPRRegClass
);
703 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
704 setOperationAction(ISD::BITCAST
, MVT::i32
, Custom
);
705 setOperationAction(ISD::BITCAST
, MVT::f16
, Custom
);
707 setOperationAction(ISD::FMINNUM
, MVT::f16
, Legal
);
708 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Legal
);
711 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
712 for (MVT InnerVT
: MVT::fixedlen_vector_valuetypes()) {
713 setTruncStoreAction(VT
, InnerVT
, Expand
);
714 addAllExtLoads(VT
, InnerVT
, Expand
);
717 setOperationAction(ISD::MULHS
, VT
, Expand
);
718 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
719 setOperationAction(ISD::MULHU
, VT
, Expand
);
720 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
722 setOperationAction(ISD::BSWAP
, VT
, Expand
);
725 setOperationAction(ISD::ConstantFP
, MVT::f32
, Custom
);
726 setOperationAction(ISD::ConstantFP
, MVT::f64
, Custom
);
728 setOperationAction(ISD::READ_REGISTER
, MVT::i64
, Custom
);
729 setOperationAction(ISD::WRITE_REGISTER
, MVT::i64
, Custom
);
731 if (Subtarget
->hasMVEIntegerOps())
732 addMVEVectorTypes(Subtarget
->hasMVEFloatOps());
734 // Combine low-overhead loop intrinsics so that we can lower i1 types.
735 if (Subtarget
->hasLOB()) {
736 setTargetDAGCombine(ISD::BRCOND
);
737 setTargetDAGCombine(ISD::BR_CC
);
740 if (Subtarget
->hasNEON()) {
741 addDRTypeForNEON(MVT::v2f32
);
742 addDRTypeForNEON(MVT::v8i8
);
743 addDRTypeForNEON(MVT::v4i16
);
744 addDRTypeForNEON(MVT::v2i32
);
745 addDRTypeForNEON(MVT::v1i64
);
747 addQRTypeForNEON(MVT::v4f32
);
748 addQRTypeForNEON(MVT::v2f64
);
749 addQRTypeForNEON(MVT::v16i8
);
750 addQRTypeForNEON(MVT::v8i16
);
751 addQRTypeForNEON(MVT::v4i32
);
752 addQRTypeForNEON(MVT::v2i64
);
754 if (Subtarget
->hasFullFP16()) {
755 addQRTypeForNEON(MVT::v8f16
);
756 addDRTypeForNEON(MVT::v4f16
);
760 if (Subtarget
->hasMVEIntegerOps() || Subtarget
->hasNEON()) {
761 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
762 // none of Neon, MVE or VFP supports any arithmetic operations on it.
763 setOperationAction(ISD::FADD
, MVT::v2f64
, Expand
);
764 setOperationAction(ISD::FSUB
, MVT::v2f64
, Expand
);
765 setOperationAction(ISD::FMUL
, MVT::v2f64
, Expand
);
766 // FIXME: Code duplication: FDIV and FREM are expanded always, see
767 // ARMTargetLowering::addTypeForNEON method for details.
768 setOperationAction(ISD::FDIV
, MVT::v2f64
, Expand
);
769 setOperationAction(ISD::FREM
, MVT::v2f64
, Expand
);
770 // FIXME: Create unittest.
771 // In another words, find a way when "copysign" appears in DAG with vector
773 setOperationAction(ISD::FCOPYSIGN
, MVT::v2f64
, Expand
);
774 // FIXME: Code duplication: SETCC has custom operation action, see
775 // ARMTargetLowering::addTypeForNEON method for details.
776 setOperationAction(ISD::SETCC
, MVT::v2f64
, Expand
);
777 // FIXME: Create unittest for FNEG and for FABS.
778 setOperationAction(ISD::FNEG
, MVT::v2f64
, Expand
);
779 setOperationAction(ISD::FABS
, MVT::v2f64
, Expand
);
780 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Expand
);
781 setOperationAction(ISD::FSIN
, MVT::v2f64
, Expand
);
782 setOperationAction(ISD::FCOS
, MVT::v2f64
, Expand
);
783 setOperationAction(ISD::FPOW
, MVT::v2f64
, Expand
);
784 setOperationAction(ISD::FLOG
, MVT::v2f64
, Expand
);
785 setOperationAction(ISD::FLOG2
, MVT::v2f64
, Expand
);
786 setOperationAction(ISD::FLOG10
, MVT::v2f64
, Expand
);
787 setOperationAction(ISD::FEXP
, MVT::v2f64
, Expand
);
788 setOperationAction(ISD::FEXP2
, MVT::v2f64
, Expand
);
789 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
790 setOperationAction(ISD::FCEIL
, MVT::v2f64
, Expand
);
791 setOperationAction(ISD::FTRUNC
, MVT::v2f64
, Expand
);
792 setOperationAction(ISD::FRINT
, MVT::v2f64
, Expand
);
793 setOperationAction(ISD::FNEARBYINT
, MVT::v2f64
, Expand
);
794 setOperationAction(ISD::FFLOOR
, MVT::v2f64
, Expand
);
795 setOperationAction(ISD::FMA
, MVT::v2f64
, Expand
);
798 if (Subtarget
->hasNEON()) {
799 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
800 // supported for v4f32.
801 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Expand
);
802 setOperationAction(ISD::FSIN
, MVT::v4f32
, Expand
);
803 setOperationAction(ISD::FCOS
, MVT::v4f32
, Expand
);
804 setOperationAction(ISD::FPOW
, MVT::v4f32
, Expand
);
805 setOperationAction(ISD::FLOG
, MVT::v4f32
, Expand
);
806 setOperationAction(ISD::FLOG2
, MVT::v4f32
, Expand
);
807 setOperationAction(ISD::FLOG10
, MVT::v4f32
, Expand
);
808 setOperationAction(ISD::FEXP
, MVT::v4f32
, Expand
);
809 setOperationAction(ISD::FEXP2
, MVT::v4f32
, Expand
);
810 setOperationAction(ISD::FCEIL
, MVT::v4f32
, Expand
);
811 setOperationAction(ISD::FTRUNC
, MVT::v4f32
, Expand
);
812 setOperationAction(ISD::FRINT
, MVT::v4f32
, Expand
);
813 setOperationAction(ISD::FNEARBYINT
, MVT::v4f32
, Expand
);
814 setOperationAction(ISD::FFLOOR
, MVT::v4f32
, Expand
);
816 // Mark v2f32 intrinsics.
817 setOperationAction(ISD::FSQRT
, MVT::v2f32
, Expand
);
818 setOperationAction(ISD::FSIN
, MVT::v2f32
, Expand
);
819 setOperationAction(ISD::FCOS
, MVT::v2f32
, Expand
);
820 setOperationAction(ISD::FPOW
, MVT::v2f32
, Expand
);
821 setOperationAction(ISD::FLOG
, MVT::v2f32
, Expand
);
822 setOperationAction(ISD::FLOG2
, MVT::v2f32
, Expand
);
823 setOperationAction(ISD::FLOG10
, MVT::v2f32
, Expand
);
824 setOperationAction(ISD::FEXP
, MVT::v2f32
, Expand
);
825 setOperationAction(ISD::FEXP2
, MVT::v2f32
, Expand
);
826 setOperationAction(ISD::FCEIL
, MVT::v2f32
, Expand
);
827 setOperationAction(ISD::FTRUNC
, MVT::v2f32
, Expand
);
828 setOperationAction(ISD::FRINT
, MVT::v2f32
, Expand
);
829 setOperationAction(ISD::FNEARBYINT
, MVT::v2f32
, Expand
);
830 setOperationAction(ISD::FFLOOR
, MVT::v2f32
, Expand
);
832 // Neon does not support some operations on v1i64 and v2i64 types.
833 setOperationAction(ISD::MUL
, MVT::v1i64
, Expand
);
834 // Custom handling for some quad-vector types to detect VMULL.
835 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
836 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
837 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
838 // Custom handling for some vector types to avoid expensive expansions
839 setOperationAction(ISD::SDIV
, MVT::v4i16
, Custom
);
840 setOperationAction(ISD::SDIV
, MVT::v8i8
, Custom
);
841 setOperationAction(ISD::UDIV
, MVT::v4i16
, Custom
);
842 setOperationAction(ISD::UDIV
, MVT::v8i8
, Custom
);
843 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
844 // a destination type that is wider than the source, and nor does
845 // it have a FP_TO_[SU]INT instruction with a narrower destination than
847 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
848 setOperationAction(ISD::SINT_TO_FP
, MVT::v8i16
, Custom
);
849 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
850 setOperationAction(ISD::UINT_TO_FP
, MVT::v8i16
, Custom
);
851 setOperationAction(ISD::FP_TO_UINT
, MVT::v4i16
, Custom
);
852 setOperationAction(ISD::FP_TO_UINT
, MVT::v8i16
, Custom
);
853 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i16
, Custom
);
854 setOperationAction(ISD::FP_TO_SINT
, MVT::v8i16
, Custom
);
856 setOperationAction(ISD::FP_ROUND
, MVT::v2f32
, Expand
);
857 setOperationAction(ISD::FP_EXTEND
, MVT::v2f64
, Expand
);
859 // NEON does not have single instruction CTPOP for vectors with element
860 // types wider than 8-bits. However, custom lowering can leverage the
861 // v8i8/v16i8 vcnt instruction.
862 setOperationAction(ISD::CTPOP
, MVT::v2i32
, Custom
);
863 setOperationAction(ISD::CTPOP
, MVT::v4i32
, Custom
);
864 setOperationAction(ISD::CTPOP
, MVT::v4i16
, Custom
);
865 setOperationAction(ISD::CTPOP
, MVT::v8i16
, Custom
);
866 setOperationAction(ISD::CTPOP
, MVT::v1i64
, Custom
);
867 setOperationAction(ISD::CTPOP
, MVT::v2i64
, Custom
);
869 setOperationAction(ISD::CTLZ
, MVT::v1i64
, Expand
);
870 setOperationAction(ISD::CTLZ
, MVT::v2i64
, Expand
);
872 // NEON does not have single instruction CTTZ for vectors.
873 setOperationAction(ISD::CTTZ
, MVT::v8i8
, Custom
);
874 setOperationAction(ISD::CTTZ
, MVT::v4i16
, Custom
);
875 setOperationAction(ISD::CTTZ
, MVT::v2i32
, Custom
);
876 setOperationAction(ISD::CTTZ
, MVT::v1i64
, Custom
);
878 setOperationAction(ISD::CTTZ
, MVT::v16i8
, Custom
);
879 setOperationAction(ISD::CTTZ
, MVT::v8i16
, Custom
);
880 setOperationAction(ISD::CTTZ
, MVT::v4i32
, Custom
);
881 setOperationAction(ISD::CTTZ
, MVT::v2i64
, Custom
);
883 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i8
, Custom
);
884 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i16
, Custom
);
885 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i32
, Custom
);
886 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v1i64
, Custom
);
888 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v16i8
, Custom
);
889 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i16
, Custom
);
890 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i32
, Custom
);
891 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i64
, Custom
);
893 // NEON only has FMA instructions as of VFP4.
894 if (!Subtarget
->hasVFP4Base()) {
895 setOperationAction(ISD::FMA
, MVT::v2f32
, Expand
);
896 setOperationAction(ISD::FMA
, MVT::v4f32
, Expand
);
899 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
900 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
901 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
902 setTargetDAGCombine(ISD::SHL
);
903 setTargetDAGCombine(ISD::SRL
);
904 setTargetDAGCombine(ISD::SRA
);
905 setTargetDAGCombine(ISD::FP_TO_SINT
);
906 setTargetDAGCombine(ISD::FP_TO_UINT
);
907 setTargetDAGCombine(ISD::FDIV
);
908 setTargetDAGCombine(ISD::LOAD
);
910 // It is legal to extload from v4i8 to v4i16 or v4i32.
911 for (MVT Ty
: {MVT::v8i8
, MVT::v4i8
, MVT::v2i8
, MVT::v4i16
, MVT::v2i16
,
913 for (MVT VT
: MVT::integer_fixedlen_vector_valuetypes()) {
914 setLoadExtAction(ISD::EXTLOAD
, VT
, Ty
, Legal
);
915 setLoadExtAction(ISD::ZEXTLOAD
, VT
, Ty
, Legal
);
916 setLoadExtAction(ISD::SEXTLOAD
, VT
, Ty
, Legal
);
921 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
922 setTargetDAGCombine(ISD::BUILD_VECTOR
);
923 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
924 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT
);
925 setTargetDAGCombine(ISD::STORE
);
926 setTargetDAGCombine(ISD::SIGN_EXTEND
);
927 setTargetDAGCombine(ISD::ZERO_EXTEND
);
928 setTargetDAGCombine(ISD::ANY_EXTEND
);
931 if (!Subtarget
->hasFP64()) {
932 // When targeting a floating-point unit with only single-precision
933 // operations, f64 is legal for the few double-precision instructions which
934 // are present However, no double-precision operations other than moves,
935 // loads and stores are provided by the hardware.
936 setOperationAction(ISD::FADD
, MVT::f64
, Expand
);
937 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
938 setOperationAction(ISD::FMUL
, MVT::f64
, Expand
);
939 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
940 setOperationAction(ISD::FDIV
, MVT::f64
, Expand
);
941 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
942 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
943 setOperationAction(ISD::FGETSIGN
, MVT::f64
, Expand
);
944 setOperationAction(ISD::FNEG
, MVT::f64
, Expand
);
945 setOperationAction(ISD::FABS
, MVT::f64
, Expand
);
946 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
947 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
948 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
949 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
950 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
951 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
952 setOperationAction(ISD::FLOG10
, MVT::f64
, Expand
);
953 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
954 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
955 setOperationAction(ISD::FCEIL
, MVT::f64
, Expand
);
956 setOperationAction(ISD::FTRUNC
, MVT::f64
, Expand
);
957 setOperationAction(ISD::FRINT
, MVT::f64
, Expand
);
958 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Expand
);
959 setOperationAction(ISD::FFLOOR
, MVT::f64
, Expand
);
960 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
961 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
962 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
963 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
964 setOperationAction(ISD::FP_TO_SINT
, MVT::f64
, Custom
);
965 setOperationAction(ISD::FP_TO_UINT
, MVT::f64
, Custom
);
966 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
969 if (!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) {
970 setOperationAction(ISD::FP_EXTEND
, MVT::f64
, Custom
);
971 if (Subtarget
->hasFullFP16())
972 setOperationAction(ISD::FP_ROUND
, MVT::f16
, Custom
);
975 if (!Subtarget
->hasFP16())
976 setOperationAction(ISD::FP_EXTEND
, MVT::f32
, Custom
);
978 if (!Subtarget
->hasFP64())
979 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
981 computeRegisterProperties(Subtarget
->getRegisterInfo());
983 // ARM does not have floating-point extending loads.
984 for (MVT VT
: MVT::fp_valuetypes()) {
985 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
986 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
989 // ... or truncating stores
990 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
991 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
992 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
994 // ARM does not have i1 sign extending load.
995 for (MVT VT
: MVT::integer_valuetypes())
996 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
998 // ARM supports all 4 flavors of integer indexed load / store.
999 if (!Subtarget
->isThumb1Only()) {
1000 for (unsigned im
= (unsigned)ISD::PRE_INC
;
1001 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
1002 setIndexedLoadAction(im
, MVT::i1
, Legal
);
1003 setIndexedLoadAction(im
, MVT::i8
, Legal
);
1004 setIndexedLoadAction(im
, MVT::i16
, Legal
);
1005 setIndexedLoadAction(im
, MVT::i32
, Legal
);
1006 setIndexedStoreAction(im
, MVT::i1
, Legal
);
1007 setIndexedStoreAction(im
, MVT::i8
, Legal
);
1008 setIndexedStoreAction(im
, MVT::i16
, Legal
);
1009 setIndexedStoreAction(im
, MVT::i32
, Legal
);
1012 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
1013 setIndexedLoadAction(ISD::POST_INC
, MVT::i32
, Legal
);
1014 setIndexedStoreAction(ISD::POST_INC
, MVT::i32
, Legal
);
1017 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
1018 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
1019 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
1020 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
1022 setOperationAction(ISD::ADDCARRY
, MVT::i32
, Custom
);
1023 setOperationAction(ISD::SUBCARRY
, MVT::i32
, Custom
);
1024 if (Subtarget
->hasDSP()) {
1025 setOperationAction(ISD::SADDSAT
, MVT::i8
, Custom
);
1026 setOperationAction(ISD::SSUBSAT
, MVT::i8
, Custom
);
1027 setOperationAction(ISD::SADDSAT
, MVT::i16
, Custom
);
1028 setOperationAction(ISD::SSUBSAT
, MVT::i16
, Custom
);
1030 if (Subtarget
->hasBaseDSP()) {
1031 setOperationAction(ISD::SADDSAT
, MVT::i32
, Legal
);
1032 setOperationAction(ISD::SSUBSAT
, MVT::i32
, Legal
);
1035 // i64 operation support.
1036 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
1037 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
1038 if (Subtarget
->isThumb1Only()) {
1039 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
1040 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
1042 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6Ops()
1043 || (Subtarget
->isThumb2() && !Subtarget
->hasDSP()))
1044 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
1046 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
1047 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
1048 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
1049 setOperationAction(ISD::SRL
, MVT::i64
, Custom
);
1050 setOperationAction(ISD::SRA
, MVT::i64
, Custom
);
1051 setOperationAction(ISD::INTRINSIC_VOID
, MVT::Other
, Custom
);
1052 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i64
, Custom
);
1054 // MVE lowers 64 bit shifts to lsll and lsrl
1055 // assuming that ISD::SRL and SRA of i64 are already marked custom
1056 if (Subtarget
->hasMVEIntegerOps())
1057 setOperationAction(ISD::SHL
, MVT::i64
, Custom
);
1059 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1060 if (Subtarget
->isThumb1Only()) {
1061 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Expand
);
1062 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Expand
);
1063 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Expand
);
1066 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops())
1067 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
1069 // ARM does not have ROTL.
1070 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
1071 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
1072 setOperationAction(ISD::ROTL
, VT
, Expand
);
1073 setOperationAction(ISD::ROTR
, VT
, Expand
);
1075 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
1076 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
1077 if (!Subtarget
->hasV5TOps() || Subtarget
->isThumb1Only()) {
1078 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
1079 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i32
, LibCall
);
1082 // @llvm.readcyclecounter requires the Performance Monitors extension.
1083 // Default to the 0 expansion on unsupported platforms.
1084 // FIXME: Technically there are older ARM CPUs that have
1085 // implementation-specific ways of obtaining this information.
1086 if (Subtarget
->hasPerfMon())
1087 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
1089 // Only ARMv6 has BSWAP.
1090 if (!Subtarget
->hasV6Ops())
1091 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
1093 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
1094 : Subtarget
->hasDivideInARMMode();
1096 // These are expanded into libcalls if the cpu doesn't have HW divider.
1097 setOperationAction(ISD::SDIV
, MVT::i32
, LibCall
);
1098 setOperationAction(ISD::UDIV
, MVT::i32
, LibCall
);
1101 if (Subtarget
->isTargetWindows() && !Subtarget
->hasDivideInThumbMode()) {
1102 setOperationAction(ISD::SDIV
, MVT::i32
, Custom
);
1103 setOperationAction(ISD::UDIV
, MVT::i32
, Custom
);
1105 setOperationAction(ISD::SDIV
, MVT::i64
, Custom
);
1106 setOperationAction(ISD::UDIV
, MVT::i64
, Custom
);
1109 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
1110 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
1112 // Register based DivRem for AEABI (RTABI 4.2)
1113 if (Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
1114 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
1115 Subtarget
->isTargetWindows()) {
1116 setOperationAction(ISD::SREM
, MVT::i64
, Custom
);
1117 setOperationAction(ISD::UREM
, MVT::i64
, Custom
);
1118 HasStandaloneRem
= false;
1120 if (Subtarget
->isTargetWindows()) {
1122 const RTLIB::Libcall Op
;
1123 const char * const Name
;
1124 const CallingConv::ID CC
;
1125 } LibraryCalls
[] = {
1126 { RTLIB::SDIVREM_I8
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1127 { RTLIB::SDIVREM_I16
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1128 { RTLIB::SDIVREM_I32
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1129 { RTLIB::SDIVREM_I64
, "__rt_sdiv64", CallingConv::ARM_AAPCS
},
1131 { RTLIB::UDIVREM_I8
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1132 { RTLIB::UDIVREM_I16
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1133 { RTLIB::UDIVREM_I32
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1134 { RTLIB::UDIVREM_I64
, "__rt_udiv64", CallingConv::ARM_AAPCS
},
1137 for (const auto &LC
: LibraryCalls
) {
1138 setLibcallName(LC
.Op
, LC
.Name
);
1139 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1143 const RTLIB::Libcall Op
;
1144 const char * const Name
;
1145 const CallingConv::ID CC
;
1146 } LibraryCalls
[] = {
1147 { RTLIB::SDIVREM_I8
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1148 { RTLIB::SDIVREM_I16
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1149 { RTLIB::SDIVREM_I32
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1150 { RTLIB::SDIVREM_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
},
1152 { RTLIB::UDIVREM_I8
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1153 { RTLIB::UDIVREM_I16
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1154 { RTLIB::UDIVREM_I32
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1155 { RTLIB::UDIVREM_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
},
1158 for (const auto &LC
: LibraryCalls
) {
1159 setLibcallName(LC
.Op
, LC
.Name
);
1160 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1164 setOperationAction(ISD::SDIVREM
, MVT::i32
, Custom
);
1165 setOperationAction(ISD::UDIVREM
, MVT::i32
, Custom
);
1166 setOperationAction(ISD::SDIVREM
, MVT::i64
, Custom
);
1167 setOperationAction(ISD::UDIVREM
, MVT::i64
, Custom
);
1169 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
1170 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
1173 if (Subtarget
->isTargetWindows() && Subtarget
->getTargetTriple().isOSMSVCRT())
1174 for (auto &VT
: {MVT::f32
, MVT::f64
})
1175 setOperationAction(ISD::FPOWI
, VT
, Custom
);
1177 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
1178 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
1179 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
1180 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
1182 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
1183 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Legal
);
1185 // Use the default implementation.
1186 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
1187 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
1188 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
1189 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
1190 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
1191 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
1193 if (Subtarget
->isTargetWindows())
1194 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
1196 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
1198 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1199 // the default expansion.
1200 InsertFencesForAtomic
= false;
1201 if (Subtarget
->hasAnyDataBarrier() &&
1202 (!Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps())) {
1203 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1204 // to ldrex/strex loops already.
1205 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
, Custom
);
1206 if (!Subtarget
->isThumb() || !Subtarget
->isMClass())
1207 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
1209 // On v8, we have particularly efficient implementations of atomic fences
1210 // if they can be combined with nearby atomic loads and stores.
1211 if (!Subtarget
->hasAcquireRelease() ||
1212 getTargetMachine().getOptLevel() == 0) {
1213 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1214 InsertFencesForAtomic
= true;
1217 // If there's anything we can use as a barrier, go through custom lowering
1218 // for ATOMIC_FENCE.
1219 // If target has DMB in thumb, Fences can be inserted.
1220 if (Subtarget
->hasDataBarrier())
1221 InsertFencesForAtomic
= true;
1223 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
,
1224 Subtarget
->hasAnyDataBarrier() ? Custom
: Expand
);
1226 // Set them all for expansion, which will force libcalls.
1227 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Expand
);
1228 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i32
, Expand
);
1229 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i32
, Expand
);
1230 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Expand
);
1231 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i32
, Expand
);
1232 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i32
, Expand
);
1233 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i32
, Expand
);
1234 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i32
, Expand
);
1235 setOperationAction(ISD::ATOMIC_LOAD_MIN
, MVT::i32
, Expand
);
1236 setOperationAction(ISD::ATOMIC_LOAD_MAX
, MVT::i32
, Expand
);
1237 setOperationAction(ISD::ATOMIC_LOAD_UMIN
, MVT::i32
, Expand
);
1238 setOperationAction(ISD::ATOMIC_LOAD_UMAX
, MVT::i32
, Expand
);
1239 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1240 // Unordered/Monotonic case.
1241 if (!InsertFencesForAtomic
) {
1242 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i32
, Custom
);
1243 setOperationAction(ISD::ATOMIC_STORE
, MVT::i32
, Custom
);
1247 setOperationAction(ISD::PREFETCH
, MVT::Other
, Custom
);
1249 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1250 if (!Subtarget
->hasV6Ops()) {
1251 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
1252 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
1254 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
1256 if (!Subtarget
->useSoftFloat() && Subtarget
->hasFPRegs() &&
1257 !Subtarget
->isThumb1Only()) {
1258 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1259 // iff target supports vfp2.
1260 setOperationAction(ISD::BITCAST
, MVT::i64
, Custom
);
1261 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
1264 // We want to custom lower some of our intrinsics.
1265 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
1266 setOperationAction(ISD::EH_SJLJ_SETJMP
, MVT::i32
, Custom
);
1267 setOperationAction(ISD::EH_SJLJ_LONGJMP
, MVT::Other
, Custom
);
1268 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH
, MVT::Other
, Custom
);
1269 if (Subtarget
->useSjLjEH())
1270 setLibcallName(RTLIB::UNWIND_RESUME
, "_Unwind_SjLj_Resume");
1272 setOperationAction(ISD::SETCC
, MVT::i32
, Expand
);
1273 setOperationAction(ISD::SETCC
, MVT::f32
, Expand
);
1274 setOperationAction(ISD::SETCC
, MVT::f64
, Expand
);
1275 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
1276 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
1277 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
1278 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
1279 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
1280 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
1281 if (Subtarget
->hasFullFP16()) {
1282 setOperationAction(ISD::SETCC
, MVT::f16
, Expand
);
1283 setOperationAction(ISD::SELECT
, MVT::f16
, Custom
);
1284 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Custom
);
1287 setOperationAction(ISD::SETCCCARRY
, MVT::i32
, Custom
);
1289 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
1290 setOperationAction(ISD::BR_CC
, MVT::i32
, Custom
);
1291 if (Subtarget
->hasFullFP16())
1292 setOperationAction(ISD::BR_CC
, MVT::f16
, Custom
);
1293 setOperationAction(ISD::BR_CC
, MVT::f32
, Custom
);
1294 setOperationAction(ISD::BR_CC
, MVT::f64
, Custom
);
1295 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
1297 // We don't support sin/cos/fmod/copysign/pow
1298 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
1299 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
1300 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
1301 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
1302 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
1303 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
1304 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
1305 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
1306 if (!Subtarget
->useSoftFloat() && Subtarget
->hasVFP2Base() &&
1307 !Subtarget
->isThumb1Only()) {
1308 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
1309 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
1311 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
1312 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
1314 if (!Subtarget
->hasVFP4Base()) {
1315 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
1316 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
1319 // Various VFP goodness
1320 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only()) {
1321 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1322 if (!Subtarget
->hasFPARMv8Base() || !Subtarget
->hasFP64()) {
1323 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
1324 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
1327 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1328 if (!Subtarget
->hasFP16()) {
1329 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
1330 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
1334 // Use __sincos_stret if available.
1335 if (getLibcallName(RTLIB::SINCOS_STRET_F32
) != nullptr &&
1336 getLibcallName(RTLIB::SINCOS_STRET_F64
) != nullptr) {
1337 setOperationAction(ISD::FSINCOS
, MVT::f64
, Custom
);
1338 setOperationAction(ISD::FSINCOS
, MVT::f32
, Custom
);
1341 // FP-ARMv8 implements a lot of rounding-like FP operations.
1342 if (Subtarget
->hasFPARMv8Base()) {
1343 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
1344 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
1345 setOperationAction(ISD::FROUND
, MVT::f32
, Legal
);
1346 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
1347 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Legal
);
1348 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
1349 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
1350 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
1351 if (Subtarget
->hasNEON()) {
1352 setOperationAction(ISD::FMINNUM
, MVT::v2f32
, Legal
);
1353 setOperationAction(ISD::FMAXNUM
, MVT::v2f32
, Legal
);
1354 setOperationAction(ISD::FMINNUM
, MVT::v4f32
, Legal
);
1355 setOperationAction(ISD::FMAXNUM
, MVT::v4f32
, Legal
);
1358 if (Subtarget
->hasFP64()) {
1359 setOperationAction(ISD::FFLOOR
, MVT::f64
, Legal
);
1360 setOperationAction(ISD::FCEIL
, MVT::f64
, Legal
);
1361 setOperationAction(ISD::FROUND
, MVT::f64
, Legal
);
1362 setOperationAction(ISD::FTRUNC
, MVT::f64
, Legal
);
1363 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Legal
);
1364 setOperationAction(ISD::FRINT
, MVT::f64
, Legal
);
1365 setOperationAction(ISD::FMINNUM
, MVT::f64
, Legal
);
1366 setOperationAction(ISD::FMAXNUM
, MVT::f64
, Legal
);
1370 // FP16 often need to be promoted to call lib functions
1371 if (Subtarget
->hasFullFP16()) {
1372 setOperationAction(ISD::FREM
, MVT::f16
, Promote
);
1373 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Expand
);
1374 setOperationAction(ISD::FSIN
, MVT::f16
, Promote
);
1375 setOperationAction(ISD::FCOS
, MVT::f16
, Promote
);
1376 setOperationAction(ISD::FSINCOS
, MVT::f16
, Promote
);
1377 setOperationAction(ISD::FPOWI
, MVT::f16
, Promote
);
1378 setOperationAction(ISD::FPOW
, MVT::f16
, Promote
);
1379 setOperationAction(ISD::FEXP
, MVT::f16
, Promote
);
1380 setOperationAction(ISD::FEXP2
, MVT::f16
, Promote
);
1381 setOperationAction(ISD::FLOG
, MVT::f16
, Promote
);
1382 setOperationAction(ISD::FLOG10
, MVT::f16
, Promote
);
1383 setOperationAction(ISD::FLOG2
, MVT::f16
, Promote
);
1385 setOperationAction(ISD::FROUND
, MVT::f16
, Legal
);
1388 if (Subtarget
->hasNEON()) {
1389 // vmin and vmax aren't available in a scalar form, so we use
1390 // a NEON instruction with an undef lane instead.
1391 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Legal
);
1392 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Legal
);
1393 setOperationAction(ISD::FMINIMUM
, MVT::f32
, Legal
);
1394 setOperationAction(ISD::FMAXIMUM
, MVT::f32
, Legal
);
1395 setOperationAction(ISD::FMINIMUM
, MVT::v2f32
, Legal
);
1396 setOperationAction(ISD::FMAXIMUM
, MVT::v2f32
, Legal
);
1397 setOperationAction(ISD::FMINIMUM
, MVT::v4f32
, Legal
);
1398 setOperationAction(ISD::FMAXIMUM
, MVT::v4f32
, Legal
);
1400 if (Subtarget
->hasFullFP16()) {
1401 setOperationAction(ISD::FMINNUM
, MVT::v4f16
, Legal
);
1402 setOperationAction(ISD::FMAXNUM
, MVT::v4f16
, Legal
);
1403 setOperationAction(ISD::FMINNUM
, MVT::v8f16
, Legal
);
1404 setOperationAction(ISD::FMAXNUM
, MVT::v8f16
, Legal
);
1406 setOperationAction(ISD::FMINIMUM
, MVT::v4f16
, Legal
);
1407 setOperationAction(ISD::FMAXIMUM
, MVT::v4f16
, Legal
);
1408 setOperationAction(ISD::FMINIMUM
, MVT::v8f16
, Legal
);
1409 setOperationAction(ISD::FMAXIMUM
, MVT::v8f16
, Legal
);
1413 // We have target-specific dag combine patterns for the following nodes:
1414 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1415 setTargetDAGCombine(ISD::ADD
);
1416 setTargetDAGCombine(ISD::SUB
);
1417 setTargetDAGCombine(ISD::MUL
);
1418 setTargetDAGCombine(ISD::AND
);
1419 setTargetDAGCombine(ISD::OR
);
1420 setTargetDAGCombine(ISD::XOR
);
1422 if (Subtarget
->hasV6Ops())
1423 setTargetDAGCombine(ISD::SRL
);
1424 if (Subtarget
->isThumb1Only())
1425 setTargetDAGCombine(ISD::SHL
);
1427 setStackPointerRegisterToSaveRestore(ARM::SP
);
1429 if (Subtarget
->useSoftFloat() || Subtarget
->isThumb1Only() ||
1430 !Subtarget
->hasVFP2Base() || Subtarget
->hasMinSize())
1431 setSchedulingPreference(Sched::RegPressure
);
1433 setSchedulingPreference(Sched::Hybrid
);
1435 //// temporary - rewrite interface to use type
1436 MaxStoresPerMemset
= 8;
1437 MaxStoresPerMemsetOptSize
= 4;
1438 MaxStoresPerMemcpy
= 4; // For @llvm.memcpy -> sequence of stores
1439 MaxStoresPerMemcpyOptSize
= 2;
1440 MaxStoresPerMemmove
= 4; // For @llvm.memmove -> sequence of stores
1441 MaxStoresPerMemmoveOptSize
= 2;
1443 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1444 // are at least 4 bytes aligned.
1445 setMinStackArgumentAlignment(Align(4));
1447 // Prefer likely predicted branches to selects on out-of-order cores.
1448 PredictableSelectIsExpensive
= Subtarget
->getSchedModel().isOutOfOrder();
1450 setPrefLoopAlignment(Align(1ULL << Subtarget
->getPrefLoopLogAlignment()));
1452 setMinFunctionAlignment(Subtarget
->isThumb() ? Align(2) : Align(4));
1454 if (Subtarget
->isThumb() || Subtarget
->isThumb2())
1455 setTargetDAGCombine(ISD::ABS
);
1458 bool ARMTargetLowering::useSoftFloat() const {
1459 return Subtarget
->useSoftFloat();
1462 // FIXME: It might make sense to define the representative register class as the
1463 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1464 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1465 // SPR's representative would be DPR_VFP2. This should work well if register
1466 // pressure tracking were modified such that a register use would increment the
1467 // pressure of the register class's representative and all of it's super
1468 // classes' representatives transitively. We have not implemented this because
1469 // of the difficulty prior to coalescing of modeling operand register classes
1470 // due to the common occurrence of cross class copies and subregister insertions
1472 std::pair
<const TargetRegisterClass
*, uint8_t>
1473 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1475 const TargetRegisterClass
*RRC
= nullptr;
1477 switch (VT
.SimpleTy
) {
1479 return TargetLowering::findRepresentativeClass(TRI
, VT
);
1480 // Use DPR as representative register class for all floating point
1481 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1482 // the cost is 1 for both f32 and f64.
1483 case MVT::f32
: case MVT::f64
: case MVT::v8i8
: case MVT::v4i16
:
1484 case MVT::v2i32
: case MVT::v1i64
: case MVT::v2f32
:
1485 RRC
= &ARM::DPRRegClass
;
1486 // When NEON is used for SP, only half of the register file is available
1487 // because operations that define both SP and DP results will be constrained
1488 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1489 // coalescing by double-counting the SP regs. See the FIXME above.
1490 if (Subtarget
->useNEONForSinglePrecisionFP())
1493 case MVT::v16i8
: case MVT::v8i16
: case MVT::v4i32
: case MVT::v2i64
:
1494 case MVT::v4f32
: case MVT::v2f64
:
1495 RRC
= &ARM::DPRRegClass
;
1499 RRC
= &ARM::DPRRegClass
;
1503 RRC
= &ARM::DPRRegClass
;
1507 return std::make_pair(RRC
, Cost
);
1510 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode
) const {
1511 switch ((ARMISD::NodeType
)Opcode
) {
1512 case ARMISD::FIRST_NUMBER
: break;
1513 case ARMISD::Wrapper
: return "ARMISD::Wrapper";
1514 case ARMISD::WrapperPIC
: return "ARMISD::WrapperPIC";
1515 case ARMISD::WrapperJT
: return "ARMISD::WrapperJT";
1516 case ARMISD::COPY_STRUCT_BYVAL
: return "ARMISD::COPY_STRUCT_BYVAL";
1517 case ARMISD::CALL
: return "ARMISD::CALL";
1518 case ARMISD::CALL_PRED
: return "ARMISD::CALL_PRED";
1519 case ARMISD::CALL_NOLINK
: return "ARMISD::CALL_NOLINK";
1520 case ARMISD::BRCOND
: return "ARMISD::BRCOND";
1521 case ARMISD::BR_JT
: return "ARMISD::BR_JT";
1522 case ARMISD::BR2_JT
: return "ARMISD::BR2_JT";
1523 case ARMISD::RET_FLAG
: return "ARMISD::RET_FLAG";
1524 case ARMISD::INTRET_FLAG
: return "ARMISD::INTRET_FLAG";
1525 case ARMISD::PIC_ADD
: return "ARMISD::PIC_ADD";
1526 case ARMISD::CMP
: return "ARMISD::CMP";
1527 case ARMISD::CMN
: return "ARMISD::CMN";
1528 case ARMISD::CMPZ
: return "ARMISD::CMPZ";
1529 case ARMISD::CMPFP
: return "ARMISD::CMPFP";
1530 case ARMISD::CMPFPw0
: return "ARMISD::CMPFPw0";
1531 case ARMISD::BCC_i64
: return "ARMISD::BCC_i64";
1532 case ARMISD::FMSTAT
: return "ARMISD::FMSTAT";
1534 case ARMISD::CMOV
: return "ARMISD::CMOV";
1535 case ARMISD::SUBS
: return "ARMISD::SUBS";
1537 case ARMISD::SSAT
: return "ARMISD::SSAT";
1538 case ARMISD::USAT
: return "ARMISD::USAT";
1540 case ARMISD::ASRL
: return "ARMISD::ASRL";
1541 case ARMISD::LSRL
: return "ARMISD::LSRL";
1542 case ARMISD::LSLL
: return "ARMISD::LSLL";
1544 case ARMISD::SRL_FLAG
: return "ARMISD::SRL_FLAG";
1545 case ARMISD::SRA_FLAG
: return "ARMISD::SRA_FLAG";
1546 case ARMISD::RRX
: return "ARMISD::RRX";
1548 case ARMISD::ADDC
: return "ARMISD::ADDC";
1549 case ARMISD::ADDE
: return "ARMISD::ADDE";
1550 case ARMISD::SUBC
: return "ARMISD::SUBC";
1551 case ARMISD::SUBE
: return "ARMISD::SUBE";
1552 case ARMISD::LSLS
: return "ARMISD::LSLS";
1554 case ARMISD::VMOVRRD
: return "ARMISD::VMOVRRD";
1555 case ARMISD::VMOVDRR
: return "ARMISD::VMOVDRR";
1556 case ARMISD::VMOVhr
: return "ARMISD::VMOVhr";
1557 case ARMISD::VMOVrh
: return "ARMISD::VMOVrh";
1558 case ARMISD::VMOVSR
: return "ARMISD::VMOVSR";
1560 case ARMISD::EH_SJLJ_SETJMP
: return "ARMISD::EH_SJLJ_SETJMP";
1561 case ARMISD::EH_SJLJ_LONGJMP
: return "ARMISD::EH_SJLJ_LONGJMP";
1562 case ARMISD::EH_SJLJ_SETUP_DISPATCH
: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1564 case ARMISD::TC_RETURN
: return "ARMISD::TC_RETURN";
1566 case ARMISD::THREAD_POINTER
:return "ARMISD::THREAD_POINTER";
1568 case ARMISD::DYN_ALLOC
: return "ARMISD::DYN_ALLOC";
1570 case ARMISD::MEMBARRIER_MCR
: return "ARMISD::MEMBARRIER_MCR";
1572 case ARMISD::PRELOAD
: return "ARMISD::PRELOAD";
1574 case ARMISD::WIN__CHKSTK
: return "ARMISD::WIN__CHKSTK";
1575 case ARMISD::WIN__DBZCHK
: return "ARMISD::WIN__DBZCHK";
1577 case ARMISD::PREDICATE_CAST
: return "ARMISD::PREDICATE_CAST";
1578 case ARMISD::VCMP
: return "ARMISD::VCMP";
1579 case ARMISD::VCMPZ
: return "ARMISD::VCMPZ";
1580 case ARMISD::VTST
: return "ARMISD::VTST";
1582 case ARMISD::VSHLs
: return "ARMISD::VSHLs";
1583 case ARMISD::VSHLu
: return "ARMISD::VSHLu";
1584 case ARMISD::VSHLIMM
: return "ARMISD::VSHLIMM";
1585 case ARMISD::VSHRsIMM
: return "ARMISD::VSHRsIMM";
1586 case ARMISD::VSHRuIMM
: return "ARMISD::VSHRuIMM";
1587 case ARMISD::VRSHRsIMM
: return "ARMISD::VRSHRsIMM";
1588 case ARMISD::VRSHRuIMM
: return "ARMISD::VRSHRuIMM";
1589 case ARMISD::VRSHRNIMM
: return "ARMISD::VRSHRNIMM";
1590 case ARMISD::VQSHLsIMM
: return "ARMISD::VQSHLsIMM";
1591 case ARMISD::VQSHLuIMM
: return "ARMISD::VQSHLuIMM";
1592 case ARMISD::VQSHLsuIMM
: return "ARMISD::VQSHLsuIMM";
1593 case ARMISD::VQSHRNsIMM
: return "ARMISD::VQSHRNsIMM";
1594 case ARMISD::VQSHRNuIMM
: return "ARMISD::VQSHRNuIMM";
1595 case ARMISD::VQSHRNsuIMM
: return "ARMISD::VQSHRNsuIMM";
1596 case ARMISD::VQRSHRNsIMM
: return "ARMISD::VQRSHRNsIMM";
1597 case ARMISD::VQRSHRNuIMM
: return "ARMISD::VQRSHRNuIMM";
1598 case ARMISD::VQRSHRNsuIMM
: return "ARMISD::VQRSHRNsuIMM";
1599 case ARMISD::VSLIIMM
: return "ARMISD::VSLIIMM";
1600 case ARMISD::VSRIIMM
: return "ARMISD::VSRIIMM";
1601 case ARMISD::VGETLANEu
: return "ARMISD::VGETLANEu";
1602 case ARMISD::VGETLANEs
: return "ARMISD::VGETLANEs";
1603 case ARMISD::VMOVIMM
: return "ARMISD::VMOVIMM";
1604 case ARMISD::VMVNIMM
: return "ARMISD::VMVNIMM";
1605 case ARMISD::VMOVFPIMM
: return "ARMISD::VMOVFPIMM";
1606 case ARMISD::VDUP
: return "ARMISD::VDUP";
1607 case ARMISD::VDUPLANE
: return "ARMISD::VDUPLANE";
1608 case ARMISD::VEXT
: return "ARMISD::VEXT";
1609 case ARMISD::VREV64
: return "ARMISD::VREV64";
1610 case ARMISD::VREV32
: return "ARMISD::VREV32";
1611 case ARMISD::VREV16
: return "ARMISD::VREV16";
1612 case ARMISD::VZIP
: return "ARMISD::VZIP";
1613 case ARMISD::VUZP
: return "ARMISD::VUZP";
1614 case ARMISD::VTRN
: return "ARMISD::VTRN";
1615 case ARMISD::VTBL1
: return "ARMISD::VTBL1";
1616 case ARMISD::VTBL2
: return "ARMISD::VTBL2";
1617 case ARMISD::VMOVN
: return "ARMISD::VMOVN";
1618 case ARMISD::VMULLs
: return "ARMISD::VMULLs";
1619 case ARMISD::VMULLu
: return "ARMISD::VMULLu";
1620 case ARMISD::UMAAL
: return "ARMISD::UMAAL";
1621 case ARMISD::UMLAL
: return "ARMISD::UMLAL";
1622 case ARMISD::SMLAL
: return "ARMISD::SMLAL";
1623 case ARMISD::SMLALBB
: return "ARMISD::SMLALBB";
1624 case ARMISD::SMLALBT
: return "ARMISD::SMLALBT";
1625 case ARMISD::SMLALTB
: return "ARMISD::SMLALTB";
1626 case ARMISD::SMLALTT
: return "ARMISD::SMLALTT";
1627 case ARMISD::SMULWB
: return "ARMISD::SMULWB";
1628 case ARMISD::SMULWT
: return "ARMISD::SMULWT";
1629 case ARMISD::SMLALD
: return "ARMISD::SMLALD";
1630 case ARMISD::SMLALDX
: return "ARMISD::SMLALDX";
1631 case ARMISD::SMLSLD
: return "ARMISD::SMLSLD";
1632 case ARMISD::SMLSLDX
: return "ARMISD::SMLSLDX";
1633 case ARMISD::SMMLAR
: return "ARMISD::SMMLAR";
1634 case ARMISD::SMMLSR
: return "ARMISD::SMMLSR";
1635 case ARMISD::QADD16b
: return "ARMISD::QADD16b";
1636 case ARMISD::QSUB16b
: return "ARMISD::QSUB16b";
1637 case ARMISD::QADD8b
: return "ARMISD::QADD8b";
1638 case ARMISD::QSUB8b
: return "ARMISD::QSUB8b";
1639 case ARMISD::BUILD_VECTOR
: return "ARMISD::BUILD_VECTOR";
1640 case ARMISD::BFI
: return "ARMISD::BFI";
1641 case ARMISD::VORRIMM
: return "ARMISD::VORRIMM";
1642 case ARMISD::VBICIMM
: return "ARMISD::VBICIMM";
1643 case ARMISD::VBSL
: return "ARMISD::VBSL";
1644 case ARMISD::MEMCPY
: return "ARMISD::MEMCPY";
1645 case ARMISD::VLD1DUP
: return "ARMISD::VLD1DUP";
1646 case ARMISD::VLD2DUP
: return "ARMISD::VLD2DUP";
1647 case ARMISD::VLD3DUP
: return "ARMISD::VLD3DUP";
1648 case ARMISD::VLD4DUP
: return "ARMISD::VLD4DUP";
1649 case ARMISD::VLD1_UPD
: return "ARMISD::VLD1_UPD";
1650 case ARMISD::VLD2_UPD
: return "ARMISD::VLD2_UPD";
1651 case ARMISD::VLD3_UPD
: return "ARMISD::VLD3_UPD";
1652 case ARMISD::VLD4_UPD
: return "ARMISD::VLD4_UPD";
1653 case ARMISD::VLD2LN_UPD
: return "ARMISD::VLD2LN_UPD";
1654 case ARMISD::VLD3LN_UPD
: return "ARMISD::VLD3LN_UPD";
1655 case ARMISD::VLD4LN_UPD
: return "ARMISD::VLD4LN_UPD";
1656 case ARMISD::VLD1DUP_UPD
: return "ARMISD::VLD1DUP_UPD";
1657 case ARMISD::VLD2DUP_UPD
: return "ARMISD::VLD2DUP_UPD";
1658 case ARMISD::VLD3DUP_UPD
: return "ARMISD::VLD3DUP_UPD";
1659 case ARMISD::VLD4DUP_UPD
: return "ARMISD::VLD4DUP_UPD";
1660 case ARMISD::VST1_UPD
: return "ARMISD::VST1_UPD";
1661 case ARMISD::VST2_UPD
: return "ARMISD::VST2_UPD";
1662 case ARMISD::VST3_UPD
: return "ARMISD::VST3_UPD";
1663 case ARMISD::VST4_UPD
: return "ARMISD::VST4_UPD";
1664 case ARMISD::VST2LN_UPD
: return "ARMISD::VST2LN_UPD";
1665 case ARMISD::VST3LN_UPD
: return "ARMISD::VST3LN_UPD";
1666 case ARMISD::VST4LN_UPD
: return "ARMISD::VST4LN_UPD";
1667 case ARMISD::WLS
: return "ARMISD::WLS";
1668 case ARMISD::LE
: return "ARMISD::LE";
1669 case ARMISD::LOOP_DEC
: return "ARMISD::LOOP_DEC";
1670 case ARMISD::CSINV
: return "ARMISD::CSINV";
1671 case ARMISD::CSNEG
: return "ARMISD::CSNEG";
1672 case ARMISD::CSINC
: return "ARMISD::CSINC";
1677 EVT
ARMTargetLowering::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
1680 return getPointerTy(DL
);
1682 // MVE has a predicate register.
1683 if (Subtarget
->hasMVEIntegerOps() &&
1684 (VT
== MVT::v4i32
|| VT
== MVT::v8i16
|| VT
== MVT::v16i8
))
1685 return MVT::getVectorVT(MVT::i1
, VT
.getVectorElementCount());
1686 return VT
.changeVectorElementTypeToInteger();
1689 /// getRegClassFor - Return the register class that should be used for the
1690 /// specified value type.
1691 const TargetRegisterClass
*
1692 ARMTargetLowering::getRegClassFor(MVT VT
, bool isDivergent
) const {
1694 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1695 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1696 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1698 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
1699 if (VT
== MVT::v4i64
)
1700 return &ARM::QQPRRegClass
;
1701 if (VT
== MVT::v8i64
)
1702 return &ARM::QQQQPRRegClass
;
1704 return TargetLowering::getRegClassFor(VT
);
1707 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1708 // source/dest is aligned and the copy size is large enough. We therefore want
1709 // to align such objects passed to memory intrinsics.
1710 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst
*CI
, unsigned &MinSize
,
1711 unsigned &PrefAlign
) const {
1712 if (!isa
<MemIntrinsic
>(CI
))
1715 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1716 // cycle faster than 4-byte aligned LDM.
1717 PrefAlign
= (Subtarget
->hasV6Ops() && !Subtarget
->isMClass() ? 8 : 4);
1721 // Create a fast isel object.
1723 ARMTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
1724 const TargetLibraryInfo
*libInfo
) const {
1725 return ARM::createFastISel(funcInfo
, libInfo
);
1728 Sched::Preference
ARMTargetLowering::getSchedulingPreference(SDNode
*N
) const {
1729 unsigned NumVals
= N
->getNumValues();
1731 return Sched::RegPressure
;
1733 for (unsigned i
= 0; i
!= NumVals
; ++i
) {
1734 EVT VT
= N
->getValueType(i
);
1735 if (VT
== MVT::Glue
|| VT
== MVT::Other
)
1737 if (VT
.isFloatingPoint() || VT
.isVector())
1741 if (!N
->isMachineOpcode())
1742 return Sched::RegPressure
;
1744 // Load are scheduled for latency even if there instruction itinerary
1745 // is not available.
1746 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
1747 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
1749 if (MCID
.getNumDefs() == 0)
1750 return Sched::RegPressure
;
1751 if (!Itins
->isEmpty() &&
1752 Itins
->getOperandCycle(MCID
.getSchedClass(), 0) > 2)
1755 return Sched::RegPressure
;
1758 //===----------------------------------------------------------------------===//
1760 //===----------------------------------------------------------------------===//
1762 static bool isSRL16(const SDValue
&Op
) {
1763 if (Op
.getOpcode() != ISD::SRL
)
1765 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1766 return Const
->getZExtValue() == 16;
1770 static bool isSRA16(const SDValue
&Op
) {
1771 if (Op
.getOpcode() != ISD::SRA
)
1773 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1774 return Const
->getZExtValue() == 16;
1778 static bool isSHL16(const SDValue
&Op
) {
1779 if (Op
.getOpcode() != ISD::SHL
)
1781 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1782 return Const
->getZExtValue() == 16;
1786 // Check for a signed 16-bit value. We special case SRA because it makes it
1787 // more simple when also looking for SRAs that aren't sign extending a
1788 // smaller value. Without the check, we'd need to take extra care with
1789 // checking order for some operations.
1790 static bool isS16(const SDValue
&Op
, SelectionDAG
&DAG
) {
1792 return isSHL16(Op
.getOperand(0));
1793 return DAG
.ComputeNumSignBits(Op
) == 17;
1796 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1797 static ARMCC::CondCodes
IntCCToARMCC(ISD::CondCode CC
) {
1799 default: llvm_unreachable("Unknown condition code!");
1800 case ISD::SETNE
: return ARMCC::NE
;
1801 case ISD::SETEQ
: return ARMCC::EQ
;
1802 case ISD::SETGT
: return ARMCC::GT
;
1803 case ISD::SETGE
: return ARMCC::GE
;
1804 case ISD::SETLT
: return ARMCC::LT
;
1805 case ISD::SETLE
: return ARMCC::LE
;
1806 case ISD::SETUGT
: return ARMCC::HI
;
1807 case ISD::SETUGE
: return ARMCC::HS
;
1808 case ISD::SETULT
: return ARMCC::LO
;
1809 case ISD::SETULE
: return ARMCC::LS
;
1813 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1814 static void FPCCToARMCC(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
1815 ARMCC::CondCodes
&CondCode2
) {
1816 CondCode2
= ARMCC::AL
;
1818 default: llvm_unreachable("Unknown FP condition!");
1820 case ISD::SETOEQ
: CondCode
= ARMCC::EQ
; break;
1822 case ISD::SETOGT
: CondCode
= ARMCC::GT
; break;
1824 case ISD::SETOGE
: CondCode
= ARMCC::GE
; break;
1825 case ISD::SETOLT
: CondCode
= ARMCC::MI
; break;
1826 case ISD::SETOLE
: CondCode
= ARMCC::LS
; break;
1827 case ISD::SETONE
: CondCode
= ARMCC::MI
; CondCode2
= ARMCC::GT
; break;
1828 case ISD::SETO
: CondCode
= ARMCC::VC
; break;
1829 case ISD::SETUO
: CondCode
= ARMCC::VS
; break;
1830 case ISD::SETUEQ
: CondCode
= ARMCC::EQ
; CondCode2
= ARMCC::VS
; break;
1831 case ISD::SETUGT
: CondCode
= ARMCC::HI
; break;
1832 case ISD::SETUGE
: CondCode
= ARMCC::PL
; break;
1834 case ISD::SETULT
: CondCode
= ARMCC::LT
; break;
1836 case ISD::SETULE
: CondCode
= ARMCC::LE
; break;
1838 case ISD::SETUNE
: CondCode
= ARMCC::NE
; break;
1842 //===----------------------------------------------------------------------===//
1843 // Calling Convention Implementation
1844 //===----------------------------------------------------------------------===//
1846 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1847 /// account presence of floating point hardware and calling convention
1848 /// limitations, such as support for variadic functions.
1850 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC
,
1851 bool isVarArg
) const {
1854 report_fatal_error("Unsupported calling convention");
1855 case CallingConv::ARM_AAPCS
:
1856 case CallingConv::ARM_APCS
:
1857 case CallingConv::GHC
:
1859 case CallingConv::PreserveMost
:
1860 return CallingConv::PreserveMost
;
1861 case CallingConv::ARM_AAPCS_VFP
:
1862 case CallingConv::Swift
:
1863 return isVarArg
? CallingConv::ARM_AAPCS
: CallingConv::ARM_AAPCS_VFP
;
1864 case CallingConv::C
:
1865 if (!Subtarget
->isAAPCS_ABI())
1866 return CallingConv::ARM_APCS
;
1867 else if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() &&
1868 getTargetMachine().Options
.FloatABIType
== FloatABI::Hard
&&
1870 return CallingConv::ARM_AAPCS_VFP
;
1872 return CallingConv::ARM_AAPCS
;
1873 case CallingConv::Fast
:
1874 case CallingConv::CXX_FAST_TLS
:
1875 if (!Subtarget
->isAAPCS_ABI()) {
1876 if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() && !isVarArg
)
1877 return CallingConv::Fast
;
1878 return CallingConv::ARM_APCS
;
1879 } else if (Subtarget
->hasVFP2Base() &&
1880 !Subtarget
->isThumb1Only() && !isVarArg
)
1881 return CallingConv::ARM_AAPCS_VFP
;
1883 return CallingConv::ARM_AAPCS
;
1887 CCAssignFn
*ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1888 bool isVarArg
) const {
1889 return CCAssignFnForNode(CC
, false, isVarArg
);
1892 CCAssignFn
*ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1893 bool isVarArg
) const {
1894 return CCAssignFnForNode(CC
, true, isVarArg
);
1897 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1898 /// CallingConvention.
1899 CCAssignFn
*ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC
,
1901 bool isVarArg
) const {
1902 switch (getEffectiveCallingConv(CC
, isVarArg
)) {
1904 report_fatal_error("Unsupported calling convention");
1905 case CallingConv::ARM_APCS
:
1906 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS
);
1907 case CallingConv::ARM_AAPCS
:
1908 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1909 case CallingConv::ARM_AAPCS_VFP
:
1910 return (Return
? RetCC_ARM_AAPCS_VFP
: CC_ARM_AAPCS_VFP
);
1911 case CallingConv::Fast
:
1912 return (Return
? RetFastCC_ARM_APCS
: FastCC_ARM_APCS
);
1913 case CallingConv::GHC
:
1914 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS_GHC
);
1915 case CallingConv::PreserveMost
:
1916 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1920 /// LowerCallResult - Lower the result values of a call into the
1921 /// appropriate copies out of appropriate physical registers.
1922 SDValue
ARMTargetLowering::LowerCallResult(
1923 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
1924 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1925 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
, bool isThisReturn
,
1926 SDValue ThisVal
) const {
1927 // Assign locations to each value returned by this call.
1928 SmallVector
<CCValAssign
, 16> RVLocs
;
1929 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
1931 CCInfo
.AnalyzeCallResult(Ins
, CCAssignFnForReturn(CallConv
, isVarArg
));
1933 // Copy all of the result registers out of their specified physreg.
1934 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1935 CCValAssign VA
= RVLocs
[i
];
1937 // Pass 'this' value directly from the argument to return value, to avoid
1938 // reg unit interference
1939 if (i
== 0 && isThisReturn
) {
1940 assert(!VA
.needsCustom() && VA
.getLocVT() == MVT::i32
&&
1941 "unexpected return calling convention register assignment");
1942 InVals
.push_back(ThisVal
);
1947 if (VA
.needsCustom()) {
1948 // Handle f64 or half of a v2f64.
1949 SDValue Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1951 Chain
= Lo
.getValue(1);
1952 InFlag
= Lo
.getValue(2);
1953 VA
= RVLocs
[++i
]; // skip ahead to next loc
1954 SDValue Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1956 Chain
= Hi
.getValue(1);
1957 InFlag
= Hi
.getValue(2);
1958 if (!Subtarget
->isLittle())
1960 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1962 if (VA
.getLocVT() == MVT::v2f64
) {
1963 SDValue Vec
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
1964 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1965 DAG
.getConstant(0, dl
, MVT::i32
));
1967 VA
= RVLocs
[++i
]; // skip ahead to next loc
1968 Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1969 Chain
= Lo
.getValue(1);
1970 InFlag
= Lo
.getValue(2);
1971 VA
= RVLocs
[++i
]; // skip ahead to next loc
1972 Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1973 Chain
= Hi
.getValue(1);
1974 InFlag
= Hi
.getValue(2);
1975 if (!Subtarget
->isLittle())
1977 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1978 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1979 DAG
.getConstant(1, dl
, MVT::i32
));
1982 Val
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), VA
.getLocVT(),
1984 Chain
= Val
.getValue(1);
1985 InFlag
= Val
.getValue(2);
1988 switch (VA
.getLocInfo()) {
1989 default: llvm_unreachable("Unknown loc info!");
1990 case CCValAssign::Full
: break;
1991 case CCValAssign::BCvt
:
1992 Val
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), Val
);
1996 InVals
.push_back(Val
);
2002 /// LowerMemOpCallTo - Store the argument to the stack.
2003 SDValue
ARMTargetLowering::LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
,
2004 SDValue Arg
, const SDLoc
&dl
,
2006 const CCValAssign
&VA
,
2007 ISD::ArgFlagsTy Flags
) const {
2008 unsigned LocMemOffset
= VA
.getLocMemOffset();
2009 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
2010 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(DAG
.getDataLayout()),
2012 return DAG
.getStore(
2013 Chain
, dl
, Arg
, PtrOff
,
2014 MachinePointerInfo::getStack(DAG
.getMachineFunction(), LocMemOffset
));
2017 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc
&dl
, SelectionDAG
&DAG
,
2018 SDValue Chain
, SDValue
&Arg
,
2019 RegsToPassVector
&RegsToPass
,
2020 CCValAssign
&VA
, CCValAssign
&NextVA
,
2022 SmallVectorImpl
<SDValue
> &MemOpChains
,
2023 ISD::ArgFlagsTy Flags
) const {
2024 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2025 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2026 unsigned id
= Subtarget
->isLittle() ? 0 : 1;
2027 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), fmrrd
.getValue(id
)));
2029 if (NextVA
.isRegLoc())
2030 RegsToPass
.push_back(std::make_pair(NextVA
.getLocReg(), fmrrd
.getValue(1-id
)));
2032 assert(NextVA
.isMemLoc());
2033 if (!StackPtr
.getNode())
2034 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
,
2035 getPointerTy(DAG
.getDataLayout()));
2037 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, fmrrd
.getValue(1-id
),
2043 /// LowerCall - Lowering a call into a callseq_start <-
2044 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2047 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
2048 SmallVectorImpl
<SDValue
> &InVals
) const {
2049 SelectionDAG
&DAG
= CLI
.DAG
;
2051 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
2052 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
2053 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
2054 SDValue Chain
= CLI
.Chain
;
2055 SDValue Callee
= CLI
.Callee
;
2056 bool &isTailCall
= CLI
.IsTailCall
;
2057 CallingConv::ID CallConv
= CLI
.CallConv
;
2058 bool doesNotRet
= CLI
.DoesNotReturn
;
2059 bool isVarArg
= CLI
.IsVarArg
;
2061 MachineFunction
&MF
= DAG
.getMachineFunction();
2062 MachineFunction::CallSiteInfo CSInfo
;
2063 bool isStructRet
= (Outs
.empty()) ? false : Outs
[0].Flags
.isSRet();
2064 bool isThisReturn
= false;
2065 auto Attr
= MF
.getFunction().getFnAttribute("disable-tail-calls");
2066 bool PreferIndirect
= false;
2068 // Disable tail calls if they're not supported.
2069 if (!Subtarget
->supportsTailCall() || Attr
.getValueAsString() == "true")
2072 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2073 // If we're optimizing for minimum size and the function is called three or
2074 // more times in this block, we can improve codesize by calling indirectly
2075 // as BLXr has a 16-bit encoding.
2076 auto *GV
= cast
<GlobalAddressSDNode
>(Callee
)->getGlobal();
2078 auto *BB
= CLI
.CS
.getParent();
2079 PreferIndirect
= Subtarget
->isThumb() && Subtarget
->hasMinSize() &&
2080 count_if(GV
->users(), [&BB
](const User
*U
) {
2081 return isa
<Instruction
>(U
) &&
2082 cast
<Instruction
>(U
)->getParent() == BB
;
2087 // Check if it's really possible to do a tail call.
2088 isTailCall
= IsEligibleForTailCallOptimization(
2089 Callee
, CallConv
, isVarArg
, isStructRet
,
2090 MF
.getFunction().hasStructRetAttr(), Outs
, OutVals
, Ins
, DAG
,
2092 if (!isTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
2093 report_fatal_error("failed to perform tail call elimination on a call "
2094 "site marked musttail");
2095 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2096 // detected sibcalls.
2101 // Analyze operands of the call, assigning locations to each operand.
2102 SmallVector
<CCValAssign
, 16> ArgLocs
;
2103 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
2105 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CallConv
, isVarArg
));
2107 // Get a count of how many bytes are to be pushed on the stack.
2108 unsigned NumBytes
= CCInfo
.getNextStackOffset();
2111 // For tail calls, memory operands are available in our caller's stack.
2114 // Adjust the stack pointer for the new arguments...
2115 // These operations are automatically eliminated by the prolog/epilog pass
2116 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
2120 DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
, getPointerTy(DAG
.getDataLayout()));
2122 RegsToPassVector RegsToPass
;
2123 SmallVector
<SDValue
, 8> MemOpChains
;
2125 // Walk the register/memloc assignments, inserting copies/loads. In the case
2126 // of tail call optimization, arguments are handled later.
2127 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2129 ++i
, ++realArgIdx
) {
2130 CCValAssign
&VA
= ArgLocs
[i
];
2131 SDValue Arg
= OutVals
[realArgIdx
];
2132 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2133 bool isByVal
= Flags
.isByVal();
2135 // Promote the value if needed.
2136 switch (VA
.getLocInfo()) {
2137 default: llvm_unreachable("Unknown loc info!");
2138 case CCValAssign::Full
: break;
2139 case CCValAssign::SExt
:
2140 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2142 case CCValAssign::ZExt
:
2143 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2145 case CCValAssign::AExt
:
2146 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2148 case CCValAssign::BCvt
:
2149 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2153 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2154 if (VA
.needsCustom()) {
2155 if (VA
.getLocVT() == MVT::v2f64
) {
2156 SDValue Op0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2157 DAG
.getConstant(0, dl
, MVT::i32
));
2158 SDValue Op1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2159 DAG
.getConstant(1, dl
, MVT::i32
));
2161 PassF64ArgInRegs(dl
, DAG
, Chain
, Op0
, RegsToPass
,
2162 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2164 VA
= ArgLocs
[++i
]; // skip ahead to next loc
2165 if (VA
.isRegLoc()) {
2166 PassF64ArgInRegs(dl
, DAG
, Chain
, Op1
, RegsToPass
,
2167 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2169 assert(VA
.isMemLoc());
2171 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Op1
,
2172 dl
, DAG
, VA
, Flags
));
2175 PassF64ArgInRegs(dl
, DAG
, Chain
, Arg
, RegsToPass
, VA
, ArgLocs
[++i
],
2176 StackPtr
, MemOpChains
, Flags
);
2178 } else if (VA
.isRegLoc()) {
2179 if (realArgIdx
== 0 && Flags
.isReturned() && !Flags
.isSwiftSelf() &&
2180 Outs
[0].VT
== MVT::i32
) {
2181 assert(VA
.getLocVT() == MVT::i32
&&
2182 "unexpected calling convention register assignment");
2183 assert(!Ins
.empty() && Ins
[0].VT
== MVT::i32
&&
2184 "unexpected use of 'returned'");
2185 isThisReturn
= true;
2187 const TargetOptions
&Options
= DAG
.getTarget().Options
;
2188 if (Options
.EnableDebugEntryValues
)
2189 CSInfo
.emplace_back(VA
.getLocReg(), i
);
2190 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
2191 } else if (isByVal
) {
2192 assert(VA
.isMemLoc());
2193 unsigned offset
= 0;
2195 // True if this byval aggregate will be split between registers
2197 unsigned ByValArgsCount
= CCInfo
.getInRegsParamsCount();
2198 unsigned CurByValIdx
= CCInfo
.getInRegsParamsProcessed();
2200 if (CurByValIdx
< ByValArgsCount
) {
2202 unsigned RegBegin
, RegEnd
;
2203 CCInfo
.getInRegsParamInfo(CurByValIdx
, RegBegin
, RegEnd
);
2206 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2208 for (i
= 0, j
= RegBegin
; j
< RegEnd
; i
++, j
++) {
2209 SDValue Const
= DAG
.getConstant(4*i
, dl
, MVT::i32
);
2210 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
2211 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
,
2212 MachinePointerInfo(),
2213 DAG
.InferPtrAlignment(AddArg
));
2214 MemOpChains
.push_back(Load
.getValue(1));
2215 RegsToPass
.push_back(std::make_pair(j
, Load
));
2218 // If parameter size outsides register area, "offset" value
2219 // helps us to calculate stack slot for remained part properly.
2220 offset
= RegEnd
- RegBegin
;
2222 CCInfo
.nextInRegsParam();
2225 if (Flags
.getByValSize() > 4*offset
) {
2226 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2227 unsigned LocMemOffset
= VA
.getLocMemOffset();
2228 SDValue StkPtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
2229 SDValue Dst
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, StkPtrOff
);
2230 SDValue SrcOffset
= DAG
.getIntPtrConstant(4*offset
, dl
);
2231 SDValue Src
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, SrcOffset
);
2232 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize() - 4*offset
, dl
,
2234 SDValue AlignNode
= DAG
.getConstant(Flags
.getByValAlign(), dl
,
2237 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2238 SDValue Ops
[] = { Chain
, Dst
, Src
, SizeNode
, AlignNode
};
2239 MemOpChains
.push_back(DAG
.getNode(ARMISD::COPY_STRUCT_BYVAL
, dl
, VTs
,
2242 } else if (!isTailCall
) {
2243 assert(VA
.isMemLoc());
2245 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Arg
,
2246 dl
, DAG
, VA
, Flags
));
2250 if (!MemOpChains
.empty())
2251 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
2253 // Build a sequence of copy-to-reg nodes chained together with token chain
2254 // and flag operands which copy the outgoing args into the appropriate regs.
2256 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2257 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
2258 RegsToPass
[i
].second
, InFlag
);
2259 InFlag
= Chain
.getValue(1);
2262 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2263 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2264 // node so that legalize doesn't hack it.
2265 bool isDirect
= false;
2267 const TargetMachine
&TM
= getTargetMachine();
2268 const Module
*Mod
= MF
.getFunction().getParent();
2269 const GlobalValue
*GV
= nullptr;
2270 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
2271 GV
= G
->getGlobal();
2273 !TM
.shouldAssumeDSOLocal(*Mod
, GV
) && Subtarget
->isTargetMachO();
2275 bool isARMFunc
= !Subtarget
->isThumb() || (isStub
&& !Subtarget
->isMClass());
2276 bool isLocalARMFunc
= false;
2277 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2278 auto PtrVt
= getPointerTy(DAG
.getDataLayout());
2280 if (Subtarget
->genLongCalls()) {
2281 assert((!isPositionIndependent() || Subtarget
->isTargetWindows()) &&
2282 "long-calls codegen is not position independent!");
2283 // Handle a global address or an external symbol. If it's not one of
2284 // those, the target's already in a register, so we don't need to do
2286 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2287 // Create a constant pool entry for the callee address
2288 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2289 ARMConstantPoolValue
*CPV
=
2290 ARMConstantPoolConstant::Create(GV
, ARMPCLabelIndex
, ARMCP::CPValue
, 0);
2292 // Get the address of the callee into a register
2293 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2294 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2295 Callee
= DAG
.getLoad(
2296 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2297 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2298 } else if (ExternalSymbolSDNode
*S
=dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2299 const char *Sym
= S
->getSymbol();
2301 // Create a constant pool entry for the callee address
2302 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2303 ARMConstantPoolValue
*CPV
=
2304 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2305 ARMPCLabelIndex
, 0);
2306 // Get the address of the callee into a register
2307 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2308 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2309 Callee
= DAG
.getLoad(
2310 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2311 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2313 } else if (isa
<GlobalAddressSDNode
>(Callee
)) {
2314 if (!PreferIndirect
) {
2316 bool isDef
= GV
->isStrongDefinitionForLinker();
2318 // ARM call to a local ARM function is predicable.
2319 isLocalARMFunc
= !Subtarget
->isThumb() && (isDef
|| !ARMInterworking
);
2320 // tBX takes a register source operand.
2321 if (isStub
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2322 assert(Subtarget
->isTargetMachO() && "WrapperPIC use on non-MachO?");
2323 Callee
= DAG
.getNode(
2324 ARMISD::WrapperPIC
, dl
, PtrVt
,
2325 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, ARMII::MO_NONLAZY
));
2326 Callee
= DAG
.getLoad(
2327 PtrVt
, dl
, DAG
.getEntryNode(), Callee
,
2328 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
2329 /* Alignment = */ 0, MachineMemOperand::MODereferenceable
|
2330 MachineMemOperand::MOInvariant
);
2331 } else if (Subtarget
->isTargetCOFF()) {
2332 assert(Subtarget
->isTargetWindows() &&
2333 "Windows is the only supported COFF target");
2334 unsigned TargetFlags
= GV
->hasDLLImportStorageClass()
2335 ? ARMII::MO_DLLIMPORT
2336 : ARMII::MO_NO_FLAG
;
2337 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, /*offset=*/0,
2339 if (GV
->hasDLLImportStorageClass())
2341 DAG
.getLoad(PtrVt
, dl
, DAG
.getEntryNode(),
2342 DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVt
, Callee
),
2343 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2345 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, 0);
2348 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2350 // tBX takes a register source operand.
2351 const char *Sym
= S
->getSymbol();
2352 if (isARMFunc
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2353 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2354 ARMConstantPoolValue
*CPV
=
2355 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2356 ARMPCLabelIndex
, 4);
2357 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2358 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2359 Callee
= DAG
.getLoad(
2360 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2361 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2362 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
2363 Callee
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVt
, Callee
, PICLabel
);
2365 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVt
, 0);
2369 // FIXME: handle tail calls differently.
2371 if (Subtarget
->isThumb()) {
2372 if ((!isDirect
|| isARMFunc
) && !Subtarget
->hasV5TOps())
2373 CallOpc
= ARMISD::CALL_NOLINK
;
2375 CallOpc
= ARMISD::CALL
;
2377 if (!isDirect
&& !Subtarget
->hasV5TOps())
2378 CallOpc
= ARMISD::CALL_NOLINK
;
2379 else if (doesNotRet
&& isDirect
&& Subtarget
->hasRetAddrStack() &&
2380 // Emit regular call when code size is the priority
2381 !Subtarget
->hasMinSize())
2382 // "mov lr, pc; b _foo" to avoid confusing the RSP
2383 CallOpc
= ARMISD::CALL_NOLINK
;
2385 CallOpc
= isLocalARMFunc
? ARMISD::CALL_PRED
: ARMISD::CALL
;
2388 std::vector
<SDValue
> Ops
;
2389 Ops
.push_back(Chain
);
2390 Ops
.push_back(Callee
);
2392 // Add argument registers to the end of the list so that they are known live
2394 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2395 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
2396 RegsToPass
[i
].second
.getValueType()));
2398 // Add a register mask operand representing the call-preserved registers.
2400 const uint32_t *Mask
;
2401 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
2403 // For 'this' returns, use the R0-preserving mask if applicable
2404 Mask
= ARI
->getThisReturnPreservedMask(MF
, CallConv
);
2406 // Set isThisReturn to false if the calling convention is not one that
2407 // allows 'returned' to be modeled in this way, so LowerCallResult does
2408 // not try to pass 'this' straight through
2409 isThisReturn
= false;
2410 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2413 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2415 assert(Mask
&& "Missing call preserved mask for calling convention");
2416 Ops
.push_back(DAG
.getRegisterMask(Mask
));
2419 if (InFlag
.getNode())
2420 Ops
.push_back(InFlag
);
2422 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2424 MF
.getFrameInfo().setHasTailCall();
2425 SDValue Ret
= DAG
.getNode(ARMISD::TC_RETURN
, dl
, NodeTys
, Ops
);
2426 DAG
.addCallSiteInfo(Ret
.getNode(), std::move(CSInfo
));
2430 // Returns a chain and a flag for retval copy to use.
2431 Chain
= DAG
.getNode(CallOpc
, dl
, NodeTys
, Ops
);
2432 InFlag
= Chain
.getValue(1);
2433 DAG
.addCallSiteInfo(Chain
.getNode(), std::move(CSInfo
));
2435 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, dl
, true),
2436 DAG
.getIntPtrConstant(0, dl
, true), InFlag
, dl
);
2438 InFlag
= Chain
.getValue(1);
2440 // Handle result values, copying them out of physregs into vregs that we
2442 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
, Ins
, dl
, DAG
,
2443 InVals
, isThisReturn
,
2444 isThisReturn
? OutVals
[0] : SDValue());
2447 /// HandleByVal - Every parameter *after* a byval parameter is passed
2448 /// on the stack. Remember the next parameter register to allocate,
2449 /// and then confiscate the rest of the parameter registers to insure
2451 void ARMTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
2452 unsigned Align
) const {
2453 // Byval (as with any stack) slots are always at least 4 byte aligned.
2454 Align
= std::max(Align
, 4U);
2456 unsigned Reg
= State
->AllocateReg(GPRArgRegs
);
2460 unsigned AlignInRegs
= Align
/ 4;
2461 unsigned Waste
= (ARM::R4
- Reg
) % AlignInRegs
;
2462 for (unsigned i
= 0; i
< Waste
; ++i
)
2463 Reg
= State
->AllocateReg(GPRArgRegs
);
2468 unsigned Excess
= 4 * (ARM::R4
- Reg
);
2470 // Special case when NSAA != SP and parameter size greater than size of
2471 // all remained GPR regs. In that case we can't split parameter, we must
2472 // send it to stack. We also must set NCRN to R4, so waste all
2473 // remained registers.
2474 const unsigned NSAAOffset
= State
->getNextStackOffset();
2475 if (NSAAOffset
!= 0 && Size
> Excess
) {
2476 while (State
->AllocateReg(GPRArgRegs
))
2481 // First register for byval parameter is the first register that wasn't
2482 // allocated before this method call, so it would be "reg".
2483 // If parameter is small enough to be saved in range [reg, r4), then
2484 // the end (first after last) register would be reg + param-size-in-regs,
2485 // else parameter would be splitted between registers and stack,
2486 // end register would be r4 in this case.
2487 unsigned ByValRegBegin
= Reg
;
2488 unsigned ByValRegEnd
= std::min
<unsigned>(Reg
+ Size
/ 4, ARM::R4
);
2489 State
->addInRegsParamInfo(ByValRegBegin
, ByValRegEnd
);
2490 // Note, first register is allocated in the beginning of function already,
2491 // allocate remained amount of registers we need.
2492 for (unsigned i
= Reg
+ 1; i
!= ByValRegEnd
; ++i
)
2493 State
->AllocateReg(GPRArgRegs
);
2494 // A byval parameter that is split between registers and memory needs its
2495 // size truncated here.
2496 // In the case where the entire structure fits in registers, we set the
2497 // size in memory to zero.
2498 Size
= std::max
<int>(Size
- Excess
, 0);
2501 /// MatchingStackOffset - Return true if the given stack call argument is
2502 /// already available in the same position (relatively) of the caller's
2503 /// incoming argument stack.
2505 bool MatchingStackOffset(SDValue Arg
, unsigned Offset
, ISD::ArgFlagsTy Flags
,
2506 MachineFrameInfo
&MFI
, const MachineRegisterInfo
*MRI
,
2507 const TargetInstrInfo
*TII
) {
2508 unsigned Bytes
= Arg
.getValueSizeInBits() / 8;
2509 int FI
= std::numeric_limits
<int>::max();
2510 if (Arg
.getOpcode() == ISD::CopyFromReg
) {
2511 unsigned VR
= cast
<RegisterSDNode
>(Arg
.getOperand(1))->getReg();
2512 if (!Register::isVirtualRegister(VR
))
2514 MachineInstr
*Def
= MRI
->getVRegDef(VR
);
2517 if (!Flags
.isByVal()) {
2518 if (!TII
->isLoadFromStackSlot(*Def
, FI
))
2523 } else if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Arg
)) {
2524 if (Flags
.isByVal())
2525 // ByVal argument is passed in as a pointer but it's now being
2526 // dereferenced. e.g.
2527 // define @foo(%struct.X* %A) {
2528 // tail call @bar(%struct.X* byval %A)
2531 SDValue Ptr
= Ld
->getBasePtr();
2532 FrameIndexSDNode
*FINode
= dyn_cast
<FrameIndexSDNode
>(Ptr
);
2535 FI
= FINode
->getIndex();
2539 assert(FI
!= std::numeric_limits
<int>::max());
2540 if (!MFI
.isFixedObjectIndex(FI
))
2542 return Offset
== MFI
.getObjectOffset(FI
) && Bytes
== MFI
.getObjectSize(FI
);
2545 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2546 /// for tail call optimization. Targets which want to do tail call
2547 /// optimization should implement this function.
2548 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2549 SDValue Callee
, CallingConv::ID CalleeCC
, bool isVarArg
,
2550 bool isCalleeStructRet
, bool isCallerStructRet
,
2551 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2552 const SmallVectorImpl
<SDValue
> &OutVals
,
2553 const SmallVectorImpl
<ISD::InputArg
> &Ins
, SelectionDAG
&DAG
,
2554 const bool isIndirect
) const {
2555 MachineFunction
&MF
= DAG
.getMachineFunction();
2556 const Function
&CallerF
= MF
.getFunction();
2557 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
2559 assert(Subtarget
->supportsTailCall());
2561 // Indirect tail calls cannot be optimized for Thumb1 if the args
2562 // to the call take up r0-r3. The reason is that there are no legal registers
2563 // left to hold the pointer to the function to be called.
2564 if (Subtarget
->isThumb1Only() && Outs
.size() >= 4 &&
2565 (!isa
<GlobalAddressSDNode
>(Callee
.getNode()) || isIndirect
))
2568 // Look for obvious safe cases to perform tail call optimization that do not
2569 // require ABI changes. This is what gcc calls sibcall.
2571 // Exception-handling functions need a special set of instructions to indicate
2572 // a return to the hardware. Tail-calling another function would probably
2574 if (CallerF
.hasFnAttribute("interrupt"))
2577 // Also avoid sibcall optimization if either caller or callee uses struct
2578 // return semantics.
2579 if (isCalleeStructRet
|| isCallerStructRet
)
2582 // Externally-defined functions with weak linkage should not be
2583 // tail-called on ARM when the OS does not support dynamic
2584 // pre-emption of symbols, as the AAELF spec requires normal calls
2585 // to undefined weak functions to be replaced with a NOP or jump to the
2586 // next instruction. The behaviour of branch instructions in this
2587 // situation (as used for tail calls) is implementation-defined, so we
2588 // cannot rely on the linker replacing the tail call with a return.
2589 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
2590 const GlobalValue
*GV
= G
->getGlobal();
2591 const Triple
&TT
= getTargetMachine().getTargetTriple();
2592 if (GV
->hasExternalWeakLinkage() &&
2593 (!TT
.isOSWindows() || TT
.isOSBinFormatELF() || TT
.isOSBinFormatMachO()))
2597 // Check that the call results are passed in the same way.
2598 LLVMContext
&C
= *DAG
.getContext();
2599 if (!CCState::resultsCompatible(CalleeCC
, CallerCC
, MF
, C
, Ins
,
2600 CCAssignFnForReturn(CalleeCC
, isVarArg
),
2601 CCAssignFnForReturn(CallerCC
, isVarArg
)))
2603 // The callee has to preserve all registers the caller needs to preserve.
2604 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2605 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
2606 if (CalleeCC
!= CallerCC
) {
2607 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
2608 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
))
2612 // If Caller's vararg or byval argument has been split between registers and
2613 // stack, do not perform tail call, since part of the argument is in caller's
2615 const ARMFunctionInfo
*AFI_Caller
= MF
.getInfo
<ARMFunctionInfo
>();
2616 if (AFI_Caller
->getArgRegsSaveSize())
2619 // If the callee takes no arguments then go on to check the results of the
2621 if (!Outs
.empty()) {
2622 // Check if stack adjustment is needed. For now, do not do this if any
2623 // argument is passed on the stack.
2624 SmallVector
<CCValAssign
, 16> ArgLocs
;
2625 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
2626 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, isVarArg
));
2627 if (CCInfo
.getNextStackOffset()) {
2628 // Check if the arguments are already laid out in the right way as
2629 // the caller's fixed stack objects.
2630 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2631 const MachineRegisterInfo
*MRI
= &MF
.getRegInfo();
2632 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
2633 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2635 ++i
, ++realArgIdx
) {
2636 CCValAssign
&VA
= ArgLocs
[i
];
2637 EVT RegVT
= VA
.getLocVT();
2638 SDValue Arg
= OutVals
[realArgIdx
];
2639 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2640 if (VA
.getLocInfo() == CCValAssign::Indirect
)
2642 if (VA
.needsCustom()) {
2643 // f64 and vector types are split into multiple registers or
2644 // register/stack-slot combinations. The types will not match
2645 // the registers; give up on memory f64 refs until we figure
2646 // out what to do about this.
2649 if (!ArgLocs
[++i
].isRegLoc())
2651 if (RegVT
== MVT::v2f64
) {
2652 if (!ArgLocs
[++i
].isRegLoc())
2654 if (!ArgLocs
[++i
].isRegLoc())
2657 } else if (!VA
.isRegLoc()) {
2658 if (!MatchingStackOffset(Arg
, VA
.getLocMemOffset(), Flags
,
2665 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2666 if (!parametersInCSRMatch(MRI
, CallerPreserved
, ArgLocs
, OutVals
))
2674 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
2675 MachineFunction
&MF
, bool isVarArg
,
2676 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2677 LLVMContext
&Context
) const {
2678 SmallVector
<CCValAssign
, 16> RVLocs
;
2679 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
2680 return CCInfo
.CheckReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2683 static SDValue
LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
2684 const SDLoc
&DL
, SelectionDAG
&DAG
) {
2685 const MachineFunction
&MF
= DAG
.getMachineFunction();
2686 const Function
&F
= MF
.getFunction();
2688 StringRef IntKind
= F
.getFnAttribute("interrupt").getValueAsString();
2690 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2691 // version of the "preferred return address". These offsets affect the return
2692 // instruction if this is a return from PL1 without hypervisor extensions.
2693 // IRQ/FIQ: +4 "subs pc, lr, #4"
2694 // SWI: 0 "subs pc, lr, #0"
2695 // ABORT: +4 "subs pc, lr, #4"
2696 // UNDEF: +4/+2 "subs pc, lr, #0"
2697 // UNDEF varies depending on where the exception came from ARM or Thumb
2698 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2701 if (IntKind
== "" || IntKind
== "IRQ" || IntKind
== "FIQ" ||
2704 else if (IntKind
== "SWI" || IntKind
== "UNDEF")
2707 report_fatal_error("Unsupported interrupt attribute. If present, value "
2708 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2710 RetOps
.insert(RetOps
.begin() + 1,
2711 DAG
.getConstant(LROffset
, DL
, MVT::i32
, false));
2713 return DAG
.getNode(ARMISD::INTRET_FLAG
, DL
, MVT::Other
, RetOps
);
2717 ARMTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
2719 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2720 const SmallVectorImpl
<SDValue
> &OutVals
,
2721 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
2722 // CCValAssign - represent the assignment of the return value to a location.
2723 SmallVector
<CCValAssign
, 16> RVLocs
;
2725 // CCState - Info about the registers and stack slots.
2726 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
2729 // Analyze outgoing return values.
2730 CCInfo
.AnalyzeReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2733 SmallVector
<SDValue
, 4> RetOps
;
2734 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
2735 bool isLittleEndian
= Subtarget
->isLittle();
2737 MachineFunction
&MF
= DAG
.getMachineFunction();
2738 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2739 AFI
->setReturnRegsCount(RVLocs
.size());
2741 // Copy the result values into the output registers.
2742 for (unsigned i
= 0, realRVLocIdx
= 0;
2744 ++i
, ++realRVLocIdx
) {
2745 CCValAssign
&VA
= RVLocs
[i
];
2746 assert(VA
.isRegLoc() && "Can only return in registers!");
2748 SDValue Arg
= OutVals
[realRVLocIdx
];
2749 bool ReturnF16
= false;
2751 if (Subtarget
->hasFullFP16() && Subtarget
->isTargetHardFloat()) {
2752 // Half-precision return values can be returned like this:
2754 // t11 f16 = fadd ...
2755 // t12: i16 = bitcast t11
2756 // t13: i32 = zero_extend t12
2757 // t14: f32 = bitcast t13 <~~~~~~~ Arg
2759 // to avoid code generation for bitcasts, we simply set Arg to the node
2760 // that produces the f16 value, t11 in this case.
2762 if (Arg
.getValueType() == MVT::f32
&& Arg
.getOpcode() == ISD::BITCAST
) {
2763 SDValue ZE
= Arg
.getOperand(0);
2764 if (ZE
.getOpcode() == ISD::ZERO_EXTEND
&& ZE
.getValueType() == MVT::i32
) {
2765 SDValue BC
= ZE
.getOperand(0);
2766 if (BC
.getOpcode() == ISD::BITCAST
&& BC
.getValueType() == MVT::i16
) {
2767 Arg
= BC
.getOperand(0);
2774 switch (VA
.getLocInfo()) {
2775 default: llvm_unreachable("Unknown loc info!");
2776 case CCValAssign::Full
: break;
2777 case CCValAssign::BCvt
:
2779 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2783 if (VA
.needsCustom()) {
2784 if (VA
.getLocVT() == MVT::v2f64
) {
2785 // Extract the first half and return it in two registers.
2786 SDValue Half
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2787 DAG
.getConstant(0, dl
, MVT::i32
));
2788 SDValue HalfGPRs
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2789 DAG
.getVTList(MVT::i32
, MVT::i32
), Half
);
2791 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2792 HalfGPRs
.getValue(isLittleEndian
? 0 : 1),
2794 Flag
= Chain
.getValue(1);
2795 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2796 VA
= RVLocs
[++i
]; // skip ahead to next loc
2797 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2798 HalfGPRs
.getValue(isLittleEndian
? 1 : 0),
2800 Flag
= Chain
.getValue(1);
2801 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2802 VA
= RVLocs
[++i
]; // skip ahead to next loc
2804 // Extract the 2nd half and fall through to handle it as an f64 value.
2805 Arg
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2806 DAG
.getConstant(1, dl
, MVT::i32
));
2808 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2810 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2811 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2812 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2813 fmrrd
.getValue(isLittleEndian
? 0 : 1),
2815 Flag
= Chain
.getValue(1);
2816 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2817 VA
= RVLocs
[++i
]; // skip ahead to next loc
2818 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2819 fmrrd
.getValue(isLittleEndian
? 1 : 0),
2822 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), Arg
, Flag
);
2824 // Guarantee that all emitted copies are
2825 // stuck together, avoiding something bad.
2826 Flag
= Chain
.getValue(1);
2827 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(),
2828 ReturnF16
? MVT::f16
: VA
.getLocVT()));
2830 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2831 const MCPhysReg
*I
=
2832 TRI
->getCalleeSavedRegsViaCopy(&DAG
.getMachineFunction());
2835 if (ARM::GPRRegClass
.contains(*I
))
2836 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i32
));
2837 else if (ARM::DPRRegClass
.contains(*I
))
2838 RetOps
.push_back(DAG
.getRegister(*I
, MVT::getFloatingPointVT(64)));
2840 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2844 // Update chain and glue.
2847 RetOps
.push_back(Flag
);
2849 // CPUs which aren't M-class use a special sequence to return from
2850 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2851 // though we use "subs pc, lr, #N").
2853 // M-class CPUs actually use a normal return sequence with a special
2854 // (hardware-provided) value in LR, so the normal code path works.
2855 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2856 !Subtarget
->isMClass()) {
2857 if (Subtarget
->isThumb1Only())
2858 report_fatal_error("interrupt attribute is not supported in Thumb1");
2859 return LowerInterruptReturn(RetOps
, dl
, DAG
);
2862 return DAG
.getNode(ARMISD::RET_FLAG
, dl
, MVT::Other
, RetOps
);
2865 bool ARMTargetLowering::isUsedByReturnOnly(SDNode
*N
, SDValue
&Chain
) const {
2866 if (N
->getNumValues() != 1)
2868 if (!N
->hasNUsesOfValue(1, 0))
2871 SDValue TCChain
= Chain
;
2872 SDNode
*Copy
= *N
->use_begin();
2873 if (Copy
->getOpcode() == ISD::CopyToReg
) {
2874 // If the copy has a glue operand, we conservatively assume it isn't safe to
2875 // perform a tail call.
2876 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2878 TCChain
= Copy
->getOperand(0);
2879 } else if (Copy
->getOpcode() == ARMISD::VMOVRRD
) {
2880 SDNode
*VMov
= Copy
;
2881 // f64 returned in a pair of GPRs.
2882 SmallPtrSet
<SDNode
*, 2> Copies
;
2883 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2885 if (UI
->getOpcode() != ISD::CopyToReg
)
2889 if (Copies
.size() > 2)
2892 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2894 SDValue UseChain
= UI
->getOperand(0);
2895 if (Copies
.count(UseChain
.getNode()))
2899 // We are at the top of this chain.
2900 // If the copy has a glue operand, we conservatively assume it
2901 // isn't safe to perform a tail call.
2902 if (UI
->getOperand(UI
->getNumOperands()-1).getValueType() == MVT::Glue
)
2908 } else if (Copy
->getOpcode() == ISD::BITCAST
) {
2909 // f32 returned in a single GPR.
2910 if (!Copy
->hasOneUse())
2912 Copy
= *Copy
->use_begin();
2913 if (Copy
->getOpcode() != ISD::CopyToReg
|| !Copy
->hasNUsesOfValue(1, 0))
2915 // If the copy has a glue operand, we conservatively assume it isn't safe to
2916 // perform a tail call.
2917 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2919 TCChain
= Copy
->getOperand(0);
2924 bool HasRet
= false;
2925 for (SDNode::use_iterator UI
= Copy
->use_begin(), UE
= Copy
->use_end();
2927 if (UI
->getOpcode() != ARMISD::RET_FLAG
&&
2928 UI
->getOpcode() != ARMISD::INTRET_FLAG
)
2940 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
2941 if (!Subtarget
->supportsTailCall())
2945 CI
->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2946 if (!CI
->isTailCall() || Attr
.getValueAsString() == "true")
2952 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2953 // and pass the lower and high parts through.
2954 static SDValue
LowerWRITE_REGISTER(SDValue Op
, SelectionDAG
&DAG
) {
2956 SDValue WriteValue
= Op
->getOperand(2);
2958 // This function is only supposed to be called for i64 type argument.
2959 assert(WriteValue
.getValueType() == MVT::i64
2960 && "LowerWRITE_REGISTER called for non-i64 type argument.");
2962 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2963 DAG
.getConstant(0, DL
, MVT::i32
));
2964 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2965 DAG
.getConstant(1, DL
, MVT::i32
));
2966 SDValue Ops
[] = { Op
->getOperand(0), Op
->getOperand(1), Lo
, Hi
};
2967 return DAG
.getNode(ISD::WRITE_REGISTER
, DL
, MVT::Other
, Ops
);
2970 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2971 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2972 // one of the above mentioned nodes. It has to be wrapped because otherwise
2973 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2974 // be used to form addressing mode. These wrapped nodes will be selected
2976 SDValue
ARMTargetLowering::LowerConstantPool(SDValue Op
,
2977 SelectionDAG
&DAG
) const {
2978 EVT PtrVT
= Op
.getValueType();
2979 // FIXME there is no actual debug info here
2981 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
2984 // When generating execute-only code Constant Pools must be promoted to the
2985 // global data section. It's a bit ugly that we can't share them across basic
2986 // blocks, but this way we guarantee that execute-only behaves correct with
2987 // position-independent addressing modes.
2988 if (Subtarget
->genExecuteOnly()) {
2989 auto AFI
= DAG
.getMachineFunction().getInfo
<ARMFunctionInfo
>();
2990 auto T
= const_cast<Type
*>(CP
->getType());
2991 auto C
= const_cast<Constant
*>(CP
->getConstVal());
2992 auto M
= const_cast<Module
*>(DAG
.getMachineFunction().
2993 getFunction().getParent());
2994 auto GV
= new GlobalVariable(
2995 *M
, T
, /*isConstant=*/true, GlobalVariable::InternalLinkage
, C
,
2996 Twine(DAG
.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2997 Twine(DAG
.getMachineFunction().getFunctionNumber()) + "_" +
2998 Twine(AFI
->createPICLabelUId())
3000 SDValue GA
= DAG
.getTargetGlobalAddress(dyn_cast
<GlobalValue
>(GV
),
3002 return LowerGlobalAddress(GA
, DAG
);
3005 if (CP
->isMachineConstantPoolEntry())
3006 Res
= DAG
.getTargetConstantPool(CP
->getMachineCPVal(), PtrVT
,
3007 CP
->getAlignment());
3009 Res
= DAG
.getTargetConstantPool(CP
->getConstVal(), PtrVT
,
3010 CP
->getAlignment());
3011 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Res
);
3014 unsigned ARMTargetLowering::getJumpTableEncoding() const {
3015 return MachineJumpTableInfo::EK_Inline
;
3018 SDValue
ARMTargetLowering::LowerBlockAddress(SDValue Op
,
3019 SelectionDAG
&DAG
) const {
3020 MachineFunction
&MF
= DAG
.getMachineFunction();
3021 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3022 unsigned ARMPCLabelIndex
= 0;
3024 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3025 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
3027 bool IsPositionIndependent
= isPositionIndependent() || Subtarget
->isROPI();
3028 if (!IsPositionIndependent
) {
3029 CPAddr
= DAG
.getTargetConstantPool(BA
, PtrVT
, 4);
3031 unsigned PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3032 ARMPCLabelIndex
= AFI
->createPICLabelUId();
3033 ARMConstantPoolValue
*CPV
=
3034 ARMConstantPoolConstant::Create(BA
, ARMPCLabelIndex
,
3035 ARMCP::CPBlockAddress
, PCAdj
);
3036 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3038 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, CPAddr
);
3039 SDValue Result
= DAG
.getLoad(
3040 PtrVT
, DL
, DAG
.getEntryNode(), CPAddr
,
3041 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3042 if (!IsPositionIndependent
)
3044 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, DL
, MVT::i32
);
3045 return DAG
.getNode(ARMISD::PIC_ADD
, DL
, PtrVT
, Result
, PICLabel
);
3048 /// Convert a TLS address reference into the correct sequence of loads
3049 /// and calls to compute the variable's address for Darwin, and return an
3050 /// SDValue containing the final node.
3052 /// Darwin only has one TLS scheme which must be capable of dealing with the
3053 /// fully general situation, in the worst case. This means:
3054 /// + "extern __thread" declaration.
3055 /// + Defined in a possibly unknown dynamic library.
3057 /// The general system is that each __thread variable has a [3 x i32] descriptor
3058 /// which contains information used by the runtime to calculate the address. The
3059 /// only part of this the compiler needs to know about is the first word, which
3060 /// contains a function pointer that must be called with the address of the
3061 /// entire descriptor in "r0".
3063 /// Since this descriptor may be in a different unit, in general access must
3064 /// proceed along the usual ARM rules. A common sequence to produce is:
3066 /// movw rT1, :lower16:_var$non_lazy_ptr
3067 /// movt rT1, :upper16:_var$non_lazy_ptr
3071 /// [...address now in r0...]
3073 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op
,
3074 SelectionDAG
&DAG
) const {
3075 assert(Subtarget
->isTargetDarwin() &&
3076 "This function expects a Darwin target");
3079 // First step is to get the address of the actua global symbol. This is where
3080 // the TLS descriptor lives.
3081 SDValue DescAddr
= LowerGlobalAddressDarwin(Op
, DAG
);
3083 // The first entry in the descriptor is a function pointer that we must call
3084 // to obtain the address of the variable.
3085 SDValue Chain
= DAG
.getEntryNode();
3086 SDValue FuncTLVGet
= DAG
.getLoad(
3087 MVT::i32
, DL
, Chain
, DescAddr
,
3088 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
3089 /* Alignment = */ 4,
3090 MachineMemOperand::MONonTemporal
| MachineMemOperand::MODereferenceable
|
3091 MachineMemOperand::MOInvariant
);
3092 Chain
= FuncTLVGet
.getValue(1);
3094 MachineFunction
&F
= DAG
.getMachineFunction();
3095 MachineFrameInfo
&MFI
= F
.getFrameInfo();
3096 MFI
.setAdjustsStack(true);
3098 // TLS calls preserve all registers except those that absolutely must be
3099 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3102 getTargetMachine().getSubtargetImpl(F
.getFunction())->getRegisterInfo();
3103 auto ARI
= static_cast<const ARMRegisterInfo
*>(TRI
);
3104 const uint32_t *Mask
= ARI
->getTLSCallPreservedMask(DAG
.getMachineFunction());
3106 // Finally, we can make the call. This is just a degenerate version of a
3107 // normal AArch64 call node: r0 takes the address of the descriptor, and
3108 // returns the address of the variable in this thread.
3109 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R0
, DescAddr
, SDValue());
3111 DAG
.getNode(ARMISD::CALL
, DL
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
3112 Chain
, FuncTLVGet
, DAG
.getRegister(ARM::R0
, MVT::i32
),
3113 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
3114 return DAG
.getCopyFromReg(Chain
, DL
, ARM::R0
, MVT::i32
, Chain
.getValue(1));
3118 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op
,
3119 SelectionDAG
&DAG
) const {
3120 assert(Subtarget
->isTargetWindows() && "Windows specific TLS lowering");
3122 SDValue Chain
= DAG
.getEntryNode();
3123 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3126 // Load the current TEB (thread environment block)
3127 SDValue Ops
[] = {Chain
,
3128 DAG
.getTargetConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
3129 DAG
.getTargetConstant(15, DL
, MVT::i32
),
3130 DAG
.getTargetConstant(0, DL
, MVT::i32
),
3131 DAG
.getTargetConstant(13, DL
, MVT::i32
),
3132 DAG
.getTargetConstant(0, DL
, MVT::i32
),
3133 DAG
.getTargetConstant(2, DL
, MVT::i32
)};
3134 SDValue CurrentTEB
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
3135 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
3137 SDValue TEB
= CurrentTEB
.getValue(0);
3138 Chain
= CurrentTEB
.getValue(1);
3140 // Load the ThreadLocalStoragePointer from the TEB
3141 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3143 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TEB
, DAG
.getIntPtrConstant(0x2c, DL
));
3144 TLSArray
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSArray
, MachinePointerInfo());
3146 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3147 // offset into the TLSArray.
3149 // Load the TLS index from the C runtime
3151 DAG
.getTargetExternalSymbol("_tls_index", PtrVT
, ARMII::MO_NO_FLAG
);
3152 TLSIndex
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, TLSIndex
);
3153 TLSIndex
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSIndex
, MachinePointerInfo());
3155 SDValue Slot
= DAG
.getNode(ISD::SHL
, DL
, PtrVT
, TLSIndex
,
3156 DAG
.getConstant(2, DL
, MVT::i32
));
3157 SDValue TLS
= DAG
.getLoad(PtrVT
, DL
, Chain
,
3158 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLSArray
, Slot
),
3159 MachinePointerInfo());
3161 // Get the offset of the start of the .tls section (section base)
3162 const auto *GA
= cast
<GlobalAddressSDNode
>(Op
);
3163 auto *CPV
= ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMCP::SECREL
);
3164 SDValue Offset
= DAG
.getLoad(
3165 PtrVT
, DL
, Chain
, DAG
.getNode(ARMISD::Wrapper
, DL
, MVT::i32
,
3166 DAG
.getTargetConstantPool(CPV
, PtrVT
, 4)),
3167 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3169 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLS
, Offset
);
3172 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3174 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode
*GA
,
3175 SelectionDAG
&DAG
) const {
3177 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3178 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3179 MachineFunction
&MF
= DAG
.getMachineFunction();
3180 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3181 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3182 ARMConstantPoolValue
*CPV
=
3183 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3184 ARMCP::CPValue
, PCAdj
, ARMCP::TLSGD
, true);
3185 SDValue Argument
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3186 Argument
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Argument
);
3187 Argument
= DAG
.getLoad(
3188 PtrVT
, dl
, DAG
.getEntryNode(), Argument
,
3189 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3190 SDValue Chain
= Argument
.getValue(1);
3192 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3193 Argument
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Argument
, PICLabel
);
3195 // call __tls_get_addr.
3198 Entry
.Node
= Argument
;
3199 Entry
.Ty
= (Type
*) Type::getInt32Ty(*DAG
.getContext());
3200 Args
.push_back(Entry
);
3202 // FIXME: is there useful debug info available here?
3203 TargetLowering::CallLoweringInfo
CLI(DAG
);
3204 CLI
.setDebugLoc(dl
).setChain(Chain
).setLibCallee(
3205 CallingConv::C
, Type::getInt32Ty(*DAG
.getContext()),
3206 DAG
.getExternalSymbol("__tls_get_addr", PtrVT
), std::move(Args
));
3208 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
3209 return CallResult
.first
;
3212 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3213 // "local exec" model.
3215 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode
*GA
,
3217 TLSModel::Model model
) const {
3218 const GlobalValue
*GV
= GA
->getGlobal();
3221 SDValue Chain
= DAG
.getEntryNode();
3222 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3223 // Get the Thread Pointer
3224 SDValue ThreadPointer
= DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3226 if (model
== TLSModel::InitialExec
) {
3227 MachineFunction
&MF
= DAG
.getMachineFunction();
3228 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3229 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3230 // Initial exec model.
3231 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3232 ARMConstantPoolValue
*CPV
=
3233 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3234 ARMCP::CPValue
, PCAdj
, ARMCP::GOTTPOFF
,
3236 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3237 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3238 Offset
= DAG
.getLoad(
3239 PtrVT
, dl
, Chain
, Offset
,
3240 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3241 Chain
= Offset
.getValue(1);
3243 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3244 Offset
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Offset
, PICLabel
);
3246 Offset
= DAG
.getLoad(
3247 PtrVT
, dl
, Chain
, Offset
,
3248 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3251 assert(model
== TLSModel::LocalExec
);
3252 ARMConstantPoolValue
*CPV
=
3253 ARMConstantPoolConstant::Create(GV
, ARMCP::TPOFF
);
3254 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3255 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3256 Offset
= DAG
.getLoad(
3257 PtrVT
, dl
, Chain
, Offset
,
3258 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3261 // The address of the thread local variable is the add of the thread
3262 // pointer with the offset of the variable.
3263 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
3267 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const {
3268 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
3269 if (DAG
.getTarget().useEmulatedTLS())
3270 return LowerToTLSEmulatedModel(GA
, DAG
);
3272 if (Subtarget
->isTargetDarwin())
3273 return LowerGlobalTLSAddressDarwin(Op
, DAG
);
3275 if (Subtarget
->isTargetWindows())
3276 return LowerGlobalTLSAddressWindows(Op
, DAG
);
3278 // TODO: implement the "local dynamic" model
3279 assert(Subtarget
->isTargetELF() && "Only ELF implemented here");
3280 TLSModel::Model model
= getTargetMachine().getTLSModel(GA
->getGlobal());
3283 case TLSModel::GeneralDynamic
:
3284 case TLSModel::LocalDynamic
:
3285 return LowerToTLSGeneralDynamicModel(GA
, DAG
);
3286 case TLSModel::InitialExec
:
3287 case TLSModel::LocalExec
:
3288 return LowerToTLSExecModels(GA
, DAG
, model
);
3290 llvm_unreachable("bogus TLS model");
3293 /// Return true if all users of V are within function F, looking through
3295 static bool allUsersAreInFunction(const Value
*V
, const Function
*F
) {
3296 SmallVector
<const User
*,4> Worklist
;
3297 for (auto *U
: V
->users())
3298 Worklist
.push_back(U
);
3299 while (!Worklist
.empty()) {
3300 auto *U
= Worklist
.pop_back_val();
3301 if (isa
<ConstantExpr
>(U
)) {
3302 for (auto *UU
: U
->users())
3303 Worklist
.push_back(UU
);
3307 auto *I
= dyn_cast
<Instruction
>(U
);
3308 if (!I
|| I
->getParent()->getParent() != F
)
3314 static SDValue
promoteToConstantPool(const ARMTargetLowering
*TLI
,
3315 const GlobalValue
*GV
, SelectionDAG
&DAG
,
3316 EVT PtrVT
, const SDLoc
&dl
) {
3317 // If we're creating a pool entry for a constant global with unnamed address,
3318 // and the global is small enough, we can emit it inline into the constant pool
3319 // to save ourselves an indirection.
3321 // This is a win if the constant is only used in one function (so it doesn't
3322 // need to be duplicated) or duplicating the constant wouldn't increase code
3323 // size (implying the constant is no larger than 4 bytes).
3324 const Function
&F
= DAG
.getMachineFunction().getFunction();
3326 // We rely on this decision to inline being idemopotent and unrelated to the
3327 // use-site. We know that if we inline a variable at one use site, we'll
3328 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3329 // doesn't know about this optimization, so bail out if it's enabled else
3330 // we could decide to inline here (and thus never emit the GV) but require
3331 // the GV from fast-isel generated code.
3332 if (!EnableConstpoolPromotion
||
3333 DAG
.getMachineFunction().getTarget().Options
.EnableFastISel
)
3336 auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
3337 if (!GVar
|| !GVar
->hasInitializer() ||
3338 !GVar
->isConstant() || !GVar
->hasGlobalUnnamedAddr() ||
3339 !GVar
->hasLocalLinkage())
3342 // If we inline a value that contains relocations, we move the relocations
3343 // from .data to .text. This is not allowed in position-independent code.
3344 auto *Init
= GVar
->getInitializer();
3345 if ((TLI
->isPositionIndependent() || TLI
->getSubtarget()->isROPI()) &&
3346 Init
->needsRelocation())
3349 // The constant islands pass can only really deal with alignment requests
3350 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3351 // any type wanting greater alignment requirements than 4 bytes. We also
3352 // can only promote constants that are multiples of 4 bytes in size or
3353 // are paddable to a multiple of 4. Currently we only try and pad constants
3354 // that are strings for simplicity.
3355 auto *CDAInit
= dyn_cast
<ConstantDataArray
>(Init
);
3356 unsigned Size
= DAG
.getDataLayout().getTypeAllocSize(Init
->getType());
3357 unsigned Align
= DAG
.getDataLayout().getPreferredAlignment(GVar
);
3358 unsigned RequiredPadding
= 4 - (Size
% 4);
3359 bool PaddingPossible
=
3360 RequiredPadding
== 4 || (CDAInit
&& CDAInit
->isString());
3361 if (!PaddingPossible
|| Align
> 4 || Size
> ConstpoolPromotionMaxSize
||
3365 unsigned PaddedSize
= Size
+ ((RequiredPadding
== 4) ? 0 : RequiredPadding
);
3366 MachineFunction
&MF
= DAG
.getMachineFunction();
3367 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3369 // We can't bloat the constant pool too much, else the ConstantIslands pass
3370 // may fail to converge. If we haven't promoted this global yet (it may have
3371 // multiple uses), and promoting it would increase the constant pool size (Sz
3372 // > 4), ensure we have space to do so up to MaxTotal.
3373 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
) && Size
> 4)
3374 if (AFI
->getPromotedConstpoolIncrease() + PaddedSize
- 4 >=
3375 ConstpoolPromotionMaxTotal
)
3378 // This is only valid if all users are in a single function; we can't clone
3379 // the constant in general. The LLVM IR unnamed_addr allows merging
3380 // constants, but not cloning them.
3382 // We could potentially allow cloning if we could prove all uses of the
3383 // constant in the current function don't care about the address, like
3384 // printf format strings. But that isn't implemented for now.
3385 if (!allUsersAreInFunction(GVar
, &F
))
3388 // We're going to inline this global. Pad it out if needed.
3389 if (RequiredPadding
!= 4) {
3390 StringRef S
= CDAInit
->getAsString();
3392 SmallVector
<uint8_t,16> V(S
.size());
3393 std::copy(S
.bytes_begin(), S
.bytes_end(), V
.begin());
3394 while (RequiredPadding
--)
3396 Init
= ConstantDataArray::get(*DAG
.getContext(), V
);
3399 auto CPVal
= ARMConstantPoolConstant::Create(GVar
, Init
);
3401 DAG
.getTargetConstantPool(CPVal
, PtrVT
, /*Align=*/4);
3402 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
)) {
3403 AFI
->markGlobalAsPromotedToConstantPool(GVar
);
3404 AFI
->setPromotedConstpoolIncrease(AFI
->getPromotedConstpoolIncrease() +
3407 ++NumConstpoolPromoted
;
3408 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3411 bool ARMTargetLowering::isReadOnly(const GlobalValue
*GV
) const {
3412 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
3413 if (!(GV
= GA
->getBaseObject()))
3415 if (const auto *V
= dyn_cast
<GlobalVariable
>(GV
))
3416 return V
->isConstant();
3417 return isa
<Function
>(GV
);
3420 SDValue
ARMTargetLowering::LowerGlobalAddress(SDValue Op
,
3421 SelectionDAG
&DAG
) const {
3422 switch (Subtarget
->getTargetTriple().getObjectFormat()) {
3423 default: llvm_unreachable("unknown object format");
3425 return LowerGlobalAddressWindows(Op
, DAG
);
3427 return LowerGlobalAddressELF(Op
, DAG
);
3429 return LowerGlobalAddressDarwin(Op
, DAG
);
3433 SDValue
ARMTargetLowering::LowerGlobalAddressELF(SDValue Op
,
3434 SelectionDAG
&DAG
) const {
3435 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3437 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3438 const TargetMachine
&TM
= getTargetMachine();
3439 bool IsRO
= isReadOnly(GV
);
3441 // promoteToConstantPool only if not generating XO text section
3442 if (TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
) && !Subtarget
->genExecuteOnly())
3443 if (SDValue V
= promoteToConstantPool(this, GV
, DAG
, PtrVT
, dl
))
3446 if (isPositionIndependent()) {
3447 bool UseGOT_PREL
= !TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
);
3448 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
3449 UseGOT_PREL
? ARMII::MO_GOT
: 0);
3450 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3453 DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3454 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3456 } else if (Subtarget
->isROPI() && IsRO
) {
3458 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
);
3459 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3461 } else if (Subtarget
->isRWPI() && !IsRO
) {
3464 if (Subtarget
->useMovt()) {
3466 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_SBREL
);
3467 RelAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
, G
);
3468 } else { // use literal pool for address constant
3469 ARMConstantPoolValue
*CPV
=
3470 ARMConstantPoolConstant::Create(GV
, ARMCP::SBREL
);
3471 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3472 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3473 RelAddr
= DAG
.getLoad(
3474 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3475 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3477 SDValue SB
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, ARM::R9
, PtrVT
);
3478 SDValue Result
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SB
, RelAddr
);
3482 // If we have T2 ops, we can materialize the address directly via movt/movw
3483 // pair. This is always cheaper.
3484 if (Subtarget
->useMovt()) {
3486 // FIXME: Once remat is capable of dealing with instructions with register
3487 // operands, expand this into two nodes.
3488 return DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
,
3489 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
));
3491 SDValue CPAddr
= DAG
.getTargetConstantPool(GV
, PtrVT
, 4);
3492 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3494 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3495 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3499 SDValue
ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op
,
3500 SelectionDAG
&DAG
) const {
3501 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3502 "ROPI/RWPI not currently supported for Darwin");
3503 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3505 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3507 if (Subtarget
->useMovt())
3510 // FIXME: Once remat is capable of dealing with instructions with register
3511 // operands, expand this into multiple nodes
3513 isPositionIndependent() ? ARMISD::WrapperPIC
: ARMISD::Wrapper
;
3515 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_NONLAZY
);
3516 SDValue Result
= DAG
.getNode(Wrapper
, dl
, PtrVT
, G
);
3518 if (Subtarget
->isGVIndirectSymbol(GV
))
3519 Result
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3520 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3524 SDValue
ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op
,
3525 SelectionDAG
&DAG
) const {
3526 assert(Subtarget
->isTargetWindows() && "non-Windows COFF is not supported");
3527 assert(Subtarget
->useMovt() &&
3528 "Windows on ARM expects to use movw/movt");
3529 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3530 "ROPI/RWPI not currently supported for Windows");
3532 const TargetMachine
&TM
= getTargetMachine();
3533 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3534 ARMII::TOF TargetFlags
= ARMII::MO_NO_FLAG
;
3535 if (GV
->hasDLLImportStorageClass())
3536 TargetFlags
= ARMII::MO_DLLIMPORT
;
3537 else if (!TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
))
3538 TargetFlags
= ARMII::MO_COFFSTUB
;
3539 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3545 // FIXME: Once remat is capable of dealing with instructions with register
3546 // operands, expand this into two nodes.
3547 Result
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
,
3548 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, /*offset=*/0,
3550 if (TargetFlags
& (ARMII::MO_DLLIMPORT
| ARMII::MO_COFFSTUB
))
3551 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
3552 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3557 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3559 SDValue Val
= DAG
.getConstant(0, dl
, MVT::i32
);
3560 return DAG
.getNode(ARMISD::EH_SJLJ_SETJMP
, dl
,
3561 DAG
.getVTList(MVT::i32
, MVT::Other
), Op
.getOperand(0),
3562 Op
.getOperand(1), Val
);
3566 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3568 return DAG
.getNode(ARMISD::EH_SJLJ_LONGJMP
, dl
, MVT::Other
, Op
.getOperand(0),
3569 Op
.getOperand(1), DAG
.getConstant(0, dl
, MVT::i32
));
3572 SDValue
ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op
,
3573 SelectionDAG
&DAG
) const {
3575 return DAG
.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH
, dl
, MVT::Other
,
3579 SDValue
ARMTargetLowering::LowerINTRINSIC_VOID(
3580 SDValue Op
, SelectionDAG
&DAG
, const ARMSubtarget
*Subtarget
) const {
3582 cast
<ConstantSDNode
>(
3583 Op
.getOperand(Op
.getOperand(0).getValueType() == MVT::Other
))
3587 return SDValue(); // Don't custom lower most intrinsics.
3588 case Intrinsic::arm_gnu_eabi_mcount
: {
3589 MachineFunction
&MF
= DAG
.getMachineFunction();
3590 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3592 SDValue Chain
= Op
.getOperand(0);
3593 // call "\01__gnu_mcount_nc"
3594 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
3595 const uint32_t *Mask
=
3596 ARI
->getCallPreservedMask(DAG
.getMachineFunction(), CallingConv::C
);
3597 assert(Mask
&& "Missing call preserved mask for calling convention");
3598 // Mark LR an implicit live-in.
3599 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
3600 SDValue ReturnAddress
=
3601 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, PtrVT
);
3602 std::vector
<EVT
> ResultTys
= {MVT::Other
, MVT::Glue
};
3604 DAG
.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT
, 0);
3605 SDValue RegisterMask
= DAG
.getRegisterMask(Mask
);
3606 if (Subtarget
->isThumb())
3609 ARM::tBL_PUSHLR
, dl
, ResultTys
,
3610 {ReturnAddress
, DAG
.getTargetConstant(ARMCC::AL
, dl
, PtrVT
),
3611 DAG
.getRegister(0, PtrVT
), Callee
, RegisterMask
, Chain
}),
3614 DAG
.getMachineNode(ARM::BL_PUSHLR
, dl
, ResultTys
,
3615 {ReturnAddress
, Callee
, RegisterMask
, Chain
}),
3622 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
,
3623 const ARMSubtarget
*Subtarget
) const {
3624 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
3627 default: return SDValue(); // Don't custom lower most intrinsics.
3628 case Intrinsic::thread_pointer
: {
3629 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3630 return DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3632 case Intrinsic::eh_sjlj_lsda
: {
3633 MachineFunction
&MF
= DAG
.getMachineFunction();
3634 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3635 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3636 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3638 bool IsPositionIndependent
= isPositionIndependent();
3639 unsigned PCAdj
= IsPositionIndependent
? (Subtarget
->isThumb() ? 4 : 8) : 0;
3640 ARMConstantPoolValue
*CPV
=
3641 ARMConstantPoolConstant::Create(&MF
.getFunction(), ARMPCLabelIndex
,
3642 ARMCP::CPLSDA
, PCAdj
);
3643 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3644 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3645 SDValue Result
= DAG
.getLoad(
3646 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3647 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3649 if (IsPositionIndependent
) {
3650 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3651 Result
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Result
, PICLabel
);
3655 case Intrinsic::arm_neon_vabs
:
3656 return DAG
.getNode(ISD::ABS
, SDLoc(Op
), Op
.getValueType(),
3658 case Intrinsic::arm_neon_vmulls
:
3659 case Intrinsic::arm_neon_vmullu
: {
3660 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmulls
)
3661 ? ARMISD::VMULLs
: ARMISD::VMULLu
;
3662 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3663 Op
.getOperand(1), Op
.getOperand(2));
3665 case Intrinsic::arm_neon_vminnm
:
3666 case Intrinsic::arm_neon_vmaxnm
: {
3667 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminnm
)
3668 ? ISD::FMINNUM
: ISD::FMAXNUM
;
3669 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3670 Op
.getOperand(1), Op
.getOperand(2));
3672 case Intrinsic::arm_neon_vminu
:
3673 case Intrinsic::arm_neon_vmaxu
: {
3674 if (Op
.getValueType().isFloatingPoint())
3676 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminu
)
3677 ? ISD::UMIN
: ISD::UMAX
;
3678 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3679 Op
.getOperand(1), Op
.getOperand(2));
3681 case Intrinsic::arm_neon_vmins
:
3682 case Intrinsic::arm_neon_vmaxs
: {
3683 // v{min,max}s is overloaded between signed integers and floats.
3684 if (!Op
.getValueType().isFloatingPoint()) {
3685 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3686 ? ISD::SMIN
: ISD::SMAX
;
3687 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3688 Op
.getOperand(1), Op
.getOperand(2));
3690 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3691 ? ISD::FMINIMUM
: ISD::FMAXIMUM
;
3692 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3693 Op
.getOperand(1), Op
.getOperand(2));
3695 case Intrinsic::arm_neon_vtbl1
:
3696 return DAG
.getNode(ARMISD::VTBL1
, SDLoc(Op
), Op
.getValueType(),
3697 Op
.getOperand(1), Op
.getOperand(2));
3698 case Intrinsic::arm_neon_vtbl2
:
3699 return DAG
.getNode(ARMISD::VTBL2
, SDLoc(Op
), Op
.getValueType(),
3700 Op
.getOperand(1), Op
.getOperand(2), Op
.getOperand(3));
3704 static SDValue
LowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
,
3705 const ARMSubtarget
*Subtarget
) {
3707 ConstantSDNode
*SSIDNode
= cast
<ConstantSDNode
>(Op
.getOperand(2));
3708 auto SSID
= static_cast<SyncScope::ID
>(SSIDNode
->getZExtValue());
3709 if (SSID
== SyncScope::SingleThread
)
3712 if (!Subtarget
->hasDataBarrier()) {
3713 // Some ARMv6 cpus can support data barriers with an mcr instruction.
3714 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3716 assert(Subtarget
->hasV6Ops() && !Subtarget
->isThumb() &&
3717 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3718 return DAG
.getNode(ARMISD::MEMBARRIER_MCR
, dl
, MVT::Other
, Op
.getOperand(0),
3719 DAG
.getConstant(0, dl
, MVT::i32
));
3722 ConstantSDNode
*OrdN
= cast
<ConstantSDNode
>(Op
.getOperand(1));
3723 AtomicOrdering Ord
= static_cast<AtomicOrdering
>(OrdN
->getZExtValue());
3724 ARM_MB::MemBOpt Domain
= ARM_MB::ISH
;
3725 if (Subtarget
->isMClass()) {
3726 // Only a full system barrier exists in the M-class architectures.
3727 Domain
= ARM_MB::SY
;
3728 } else if (Subtarget
->preferISHSTBarriers() &&
3729 Ord
== AtomicOrdering::Release
) {
3730 // Swift happens to implement ISHST barriers in a way that's compatible with
3731 // Release semantics but weaker than ISH so we'd be fools not to use
3732 // it. Beware: other processors probably don't!
3733 Domain
= ARM_MB::ISHST
;
3736 return DAG
.getNode(ISD::INTRINSIC_VOID
, dl
, MVT::Other
, Op
.getOperand(0),
3737 DAG
.getConstant(Intrinsic::arm_dmb
, dl
, MVT::i32
),
3738 DAG
.getConstant(Domain
, dl
, MVT::i32
));
3741 static SDValue
LowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
,
3742 const ARMSubtarget
*Subtarget
) {
3743 // ARM pre v5TE and Thumb1 does not have preload instructions.
3744 if (!(Subtarget
->isThumb2() ||
3745 (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TEOps())))
3746 // Just preserve the chain.
3747 return Op
.getOperand(0);
3750 unsigned isRead
= ~cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() & 1;
3752 (!Subtarget
->hasV7Ops() || !Subtarget
->hasMPExtension()))
3753 // ARMv7 with MP extension has PLDW.
3754 return Op
.getOperand(0);
3756 unsigned isData
= cast
<ConstantSDNode
>(Op
.getOperand(4))->getZExtValue();
3757 if (Subtarget
->isThumb()) {
3759 isRead
= ~isRead
& 1;
3760 isData
= ~isData
& 1;
3763 return DAG
.getNode(ARMISD::PRELOAD
, dl
, MVT::Other
, Op
.getOperand(0),
3764 Op
.getOperand(1), DAG
.getConstant(isRead
, dl
, MVT::i32
),
3765 DAG
.getConstant(isData
, dl
, MVT::i32
));
3768 static SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
3769 MachineFunction
&MF
= DAG
.getMachineFunction();
3770 ARMFunctionInfo
*FuncInfo
= MF
.getInfo
<ARMFunctionInfo
>();
3772 // vastart just stores the address of the VarArgsFrameIndex slot into the
3773 // memory location argument.
3775 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
3776 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
3777 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3778 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1),
3779 MachinePointerInfo(SV
));
3782 SDValue
ARMTargetLowering::GetF64FormalArgument(CCValAssign
&VA
,
3783 CCValAssign
&NextVA
,
3786 const SDLoc
&dl
) const {
3787 MachineFunction
&MF
= DAG
.getMachineFunction();
3788 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3790 const TargetRegisterClass
*RC
;
3791 if (AFI
->isThumb1OnlyFunction())
3792 RC
= &ARM::tGPRRegClass
;
3794 RC
= &ARM::GPRRegClass
;
3796 // Transform the arguments stored in physical registers into virtual ones.
3797 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3798 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3801 if (NextVA
.isMemLoc()) {
3802 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3803 int FI
= MFI
.CreateFixedObject(4, NextVA
.getLocMemOffset(), true);
3805 // Create load node to retrieve arguments from the stack.
3806 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3807 ArgValue2
= DAG
.getLoad(
3808 MVT::i32
, dl
, Root
, FIN
,
3809 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3811 Reg
= MF
.addLiveIn(NextVA
.getLocReg(), RC
);
3812 ArgValue2
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3814 if (!Subtarget
->isLittle())
3815 std::swap (ArgValue
, ArgValue2
);
3816 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, ArgValue
, ArgValue2
);
3819 // The remaining GPRs hold either the beginning of variable-argument
3820 // data, or the beginning of an aggregate passed by value (usually
3821 // byval). Either way, we allocate stack slots adjacent to the data
3822 // provided by our caller, and store the unallocated registers there.
3823 // If this is a variadic function, the va_list pointer will begin with
3824 // these values; otherwise, this reassembles a (byval) structure that
3825 // was split between registers and memory.
3826 // Return: The frame index registers were stored into.
3827 int ARMTargetLowering::StoreByValRegs(CCState
&CCInfo
, SelectionDAG
&DAG
,
3828 const SDLoc
&dl
, SDValue
&Chain
,
3829 const Value
*OrigArg
,
3830 unsigned InRegsParamRecordIdx
,
3831 int ArgOffset
, unsigned ArgSize
) const {
3832 // Currently, two use-cases possible:
3833 // Case #1. Non-var-args function, and we meet first byval parameter.
3834 // Setup first unallocated register as first byval register;
3835 // eat all remained registers
3836 // (these two actions are performed by HandleByVal method).
3837 // Then, here, we initialize stack frame with
3838 // "store-reg" instructions.
3839 // Case #2. Var-args function, that doesn't contain byval parameters.
3840 // The same: eat all remained unallocated registers,
3841 // initialize stack frame.
3843 MachineFunction
&MF
= DAG
.getMachineFunction();
3844 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3845 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3846 unsigned RBegin
, REnd
;
3847 if (InRegsParamRecordIdx
< CCInfo
.getInRegsParamsCount()) {
3848 CCInfo
.getInRegsParamInfo(InRegsParamRecordIdx
, RBegin
, REnd
);
3850 unsigned RBeginIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3851 RBegin
= RBeginIdx
== 4 ? (unsigned)ARM::R4
: GPRArgRegs
[RBeginIdx
];
3856 ArgOffset
= -4 * (ARM::R4
- RBegin
);
3858 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3859 int FrameIndex
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
, false);
3860 SDValue FIN
= DAG
.getFrameIndex(FrameIndex
, PtrVT
);
3862 SmallVector
<SDValue
, 4> MemOps
;
3863 const TargetRegisterClass
*RC
=
3864 AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
3866 for (unsigned Reg
= RBegin
, i
= 0; Reg
< REnd
; ++Reg
, ++i
) {
3867 unsigned VReg
= MF
.addLiveIn(Reg
, RC
);
3868 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
3869 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
3870 MachinePointerInfo(OrigArg
, 4 * i
));
3871 MemOps
.push_back(Store
);
3872 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, FIN
, DAG
.getConstant(4, dl
, PtrVT
));
3875 if (!MemOps
.empty())
3876 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
3880 // Setup stack frame, the va_list pointer will start from.
3881 void ARMTargetLowering::VarArgStyleRegisters(CCState
&CCInfo
, SelectionDAG
&DAG
,
3882 const SDLoc
&dl
, SDValue
&Chain
,
3884 unsigned TotalArgRegsSaveSize
,
3885 bool ForceMutable
) const {
3886 MachineFunction
&MF
= DAG
.getMachineFunction();
3887 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3889 // Try to store any remaining integer argument regs
3890 // to their spots on the stack so that they may be loaded by dereferencing
3891 // the result of va_next.
3892 // If there is no regs to be stored, just point address after last
3893 // argument passed via stack.
3894 int FrameIndex
= StoreByValRegs(CCInfo
, DAG
, dl
, Chain
, nullptr,
3895 CCInfo
.getInRegsParamsCount(),
3896 CCInfo
.getNextStackOffset(),
3897 std::max(4U, TotalArgRegsSaveSize
));
3898 AFI
->setVarArgsFrameIndex(FrameIndex
);
3901 SDValue
ARMTargetLowering::LowerFormalArguments(
3902 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3903 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
3904 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3905 MachineFunction
&MF
= DAG
.getMachineFunction();
3906 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3908 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3910 // Assign locations to all of the incoming arguments.
3911 SmallVector
<CCValAssign
, 16> ArgLocs
;
3912 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3914 CCInfo
.AnalyzeFormalArguments(Ins
, CCAssignFnForCall(CallConv
, isVarArg
));
3916 SmallVector
<SDValue
, 16> ArgValues
;
3918 Function::const_arg_iterator CurOrigArg
= MF
.getFunction().arg_begin();
3919 unsigned CurArgIdx
= 0;
3921 // Initially ArgRegsSaveSize is zero.
3922 // Then we increase this value each time we meet byval parameter.
3923 // We also increase this value in case of varargs function.
3924 AFI
->setArgRegsSaveSize(0);
3926 // Calculate the amount of stack space that we need to allocate to store
3927 // byval and variadic arguments that are passed in registers.
3928 // We need to know this before we allocate the first byval or variadic
3929 // argument, as they will be allocated a stack slot below the CFA (Canonical
3930 // Frame Address, the stack pointer at entry to the function).
3931 unsigned ArgRegBegin
= ARM::R4
;
3932 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3933 if (CCInfo
.getInRegsParamsProcessed() >= CCInfo
.getInRegsParamsCount())
3936 CCValAssign
&VA
= ArgLocs
[i
];
3937 unsigned Index
= VA
.getValNo();
3938 ISD::ArgFlagsTy Flags
= Ins
[Index
].Flags
;
3939 if (!Flags
.isByVal())
3942 assert(VA
.isMemLoc() && "unexpected byval pointer in reg");
3943 unsigned RBegin
, REnd
;
3944 CCInfo
.getInRegsParamInfo(CCInfo
.getInRegsParamsProcessed(), RBegin
, REnd
);
3945 ArgRegBegin
= std::min(ArgRegBegin
, RBegin
);
3947 CCInfo
.nextInRegsParam();
3949 CCInfo
.rewindByValRegsInfo();
3951 int lastInsIndex
= -1;
3952 if (isVarArg
&& MFI
.hasVAStart()) {
3953 unsigned RegIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3954 if (RegIdx
!= array_lengthof(GPRArgRegs
))
3955 ArgRegBegin
= std::min(ArgRegBegin
, (unsigned)GPRArgRegs
[RegIdx
]);
3958 unsigned TotalArgRegsSaveSize
= 4 * (ARM::R4
- ArgRegBegin
);
3959 AFI
->setArgRegsSaveSize(TotalArgRegsSaveSize
);
3960 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3962 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3963 CCValAssign
&VA
= ArgLocs
[i
];
3964 if (Ins
[VA
.getValNo()].isOrigArg()) {
3965 std::advance(CurOrigArg
,
3966 Ins
[VA
.getValNo()].getOrigArgIndex() - CurArgIdx
);
3967 CurArgIdx
= Ins
[VA
.getValNo()].getOrigArgIndex();
3969 // Arguments stored in registers.
3970 if (VA
.isRegLoc()) {
3971 EVT RegVT
= VA
.getLocVT();
3973 if (VA
.needsCustom()) {
3974 // f64 and vector types are split up into multiple registers or
3975 // combinations of registers and stack slots.
3976 if (VA
.getLocVT() == MVT::v2f64
) {
3977 SDValue ArgValue1
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3979 VA
= ArgLocs
[++i
]; // skip ahead to next loc
3981 if (VA
.isMemLoc()) {
3982 int FI
= MFI
.CreateFixedObject(8, VA
.getLocMemOffset(), true);
3983 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3984 ArgValue2
= DAG
.getLoad(MVT::f64
, dl
, Chain
, FIN
,
3985 MachinePointerInfo::getFixedStack(
3986 DAG
.getMachineFunction(), FI
));
3988 ArgValue2
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3991 ArgValue
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
3992 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3993 ArgValue
, ArgValue1
,
3994 DAG
.getIntPtrConstant(0, dl
));
3995 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3996 ArgValue
, ArgValue2
,
3997 DAG
.getIntPtrConstant(1, dl
));
3999 ArgValue
= GetF64FormalArgument(VA
, ArgLocs
[++i
], Chain
, DAG
, dl
);
4001 const TargetRegisterClass
*RC
;
4004 if (RegVT
== MVT::f16
)
4005 RC
= &ARM::HPRRegClass
;
4006 else if (RegVT
== MVT::f32
)
4007 RC
= &ARM::SPRRegClass
;
4008 else if (RegVT
== MVT::f64
|| RegVT
== MVT::v4f16
)
4009 RC
= &ARM::DPRRegClass
;
4010 else if (RegVT
== MVT::v2f64
|| RegVT
== MVT::v8f16
)
4011 RC
= &ARM::QPRRegClass
;
4012 else if (RegVT
== MVT::i32
)
4013 RC
= AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
4014 : &ARM::GPRRegClass
;
4016 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
4018 // Transform the arguments in physical registers into virtual ones.
4019 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
4020 ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, RegVT
);
4022 // If this value is passed in r0 and has the returned attribute (e.g.
4023 // C++ 'structors), record this fact for later use.
4024 if (VA
.getLocReg() == ARM::R0
&& Ins
[VA
.getValNo()].Flags
.isReturned()) {
4025 AFI
->setPreservesR0();
4029 // If this is an 8 or 16-bit value, it is really passed promoted
4030 // to 32 bits. Insert an assert[sz]ext to capture this, then
4031 // truncate to the right size.
4032 switch (VA
.getLocInfo()) {
4033 default: llvm_unreachable("Unknown loc info!");
4034 case CCValAssign::Full
: break;
4035 case CCValAssign::BCvt
:
4036 ArgValue
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), ArgValue
);
4038 case CCValAssign::SExt
:
4039 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
4040 DAG
.getValueType(VA
.getValVT()));
4041 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
4043 case CCValAssign::ZExt
:
4044 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
4045 DAG
.getValueType(VA
.getValVT()));
4046 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
4050 InVals
.push_back(ArgValue
);
4051 } else { // VA.isRegLoc()
4053 assert(VA
.isMemLoc());
4054 assert(VA
.getValVT() != MVT::i64
&& "i64 should already be lowered");
4056 int index
= VA
.getValNo();
4058 // Some Ins[] entries become multiple ArgLoc[] entries.
4059 // Process them only once.
4060 if (index
!= lastInsIndex
)
4062 ISD::ArgFlagsTy Flags
= Ins
[index
].Flags
;
4063 // FIXME: For now, all byval parameter objects are marked mutable.
4064 // This can be changed with more analysis.
4065 // In case of tail call optimization mark all arguments mutable.
4066 // Since they could be overwritten by lowering of arguments in case of
4068 if (Flags
.isByVal()) {
4069 assert(Ins
[index
].isOrigArg() &&
4070 "Byval arguments cannot be implicit");
4071 unsigned CurByValIndex
= CCInfo
.getInRegsParamsProcessed();
4073 int FrameIndex
= StoreByValRegs(
4074 CCInfo
, DAG
, dl
, Chain
, &*CurOrigArg
, CurByValIndex
,
4075 VA
.getLocMemOffset(), Flags
.getByValSize());
4076 InVals
.push_back(DAG
.getFrameIndex(FrameIndex
, PtrVT
));
4077 CCInfo
.nextInRegsParam();
4079 unsigned FIOffset
= VA
.getLocMemOffset();
4080 int FI
= MFI
.CreateFixedObject(VA
.getLocVT().getSizeInBits()/8,
4083 // Create load nodes to retrieve arguments from the stack.
4084 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4085 InVals
.push_back(DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
,
4086 MachinePointerInfo::getFixedStack(
4087 DAG
.getMachineFunction(), FI
)));
4089 lastInsIndex
= index
;
4095 if (isVarArg
&& MFI
.hasVAStart())
4096 VarArgStyleRegisters(CCInfo
, DAG
, dl
, Chain
,
4097 CCInfo
.getNextStackOffset(),
4098 TotalArgRegsSaveSize
);
4100 AFI
->setArgumentStackSize(CCInfo
.getNextStackOffset());
4105 /// isFloatingPointZero - Return true if this is +0.0.
4106 static bool isFloatingPointZero(SDValue Op
) {
4107 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
4108 return CFP
->getValueAPF().isPosZero();
4109 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
4110 // Maybe this has already been legalized into the constant pool?
4111 if (Op
.getOperand(1).getOpcode() == ARMISD::Wrapper
) {
4112 SDValue WrapperOp
= Op
.getOperand(1).getOperand(0);
4113 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(WrapperOp
))
4114 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
4115 return CFP
->getValueAPF().isPosZero();
4117 } else if (Op
->getOpcode() == ISD::BITCAST
&&
4118 Op
->getValueType(0) == MVT::f64
) {
4119 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4120 // created by LowerConstantFP().
4121 SDValue BitcastOp
= Op
->getOperand(0);
4122 if (BitcastOp
->getOpcode() == ARMISD::VMOVIMM
&&
4123 isNullConstant(BitcastOp
->getOperand(0)))
4129 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4130 /// the given operands.
4131 SDValue
ARMTargetLowering::getARMCmp(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
4132 SDValue
&ARMcc
, SelectionDAG
&DAG
,
4133 const SDLoc
&dl
) const {
4134 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
.getNode())) {
4135 unsigned C
= RHSC
->getZExtValue();
4136 if (!isLegalICmpImmediate((int32_t)C
)) {
4137 // Constant does not fit, try adjusting it by one.
4142 if (C
!= 0x80000000 && isLegalICmpImmediate(C
-1)) {
4143 CC
= (CC
== ISD::SETLT
) ? ISD::SETLE
: ISD::SETGT
;
4144 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4149 if (C
!= 0 && isLegalICmpImmediate(C
-1)) {
4150 CC
= (CC
== ISD::SETULT
) ? ISD::SETULE
: ISD::SETUGT
;
4151 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4156 if (C
!= 0x7fffffff && isLegalICmpImmediate(C
+1)) {
4157 CC
= (CC
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETGE
;
4158 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4163 if (C
!= 0xffffffff && isLegalICmpImmediate(C
+1)) {
4164 CC
= (CC
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
4165 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4170 } else if ((ARM_AM::getShiftOpcForNode(LHS
.getOpcode()) != ARM_AM::no_shift
) &&
4171 (ARM_AM::getShiftOpcForNode(RHS
.getOpcode()) == ARM_AM::no_shift
)) {
4172 // In ARM and Thumb-2, the compare instructions can shift their second
4174 CC
= ISD::getSetCCSwappedOperands(CC
);
4175 std::swap(LHS
, RHS
);
4178 // Thumb1 has very limited immediate modes, so turning an "and" into a
4179 // shift can save multiple instructions.
4181 // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4182 // into "((x << n) >> n)". But that isn't necessarily profitable on its
4183 // own. If it's the operand to an unsigned comparison with an immediate,
4184 // we can eliminate one of the shifts: we transform
4185 // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4187 // We avoid transforming cases which aren't profitable due to encoding
4190 // 1. C2 fits into the immediate field of a cmp, and the transformed version
4191 // would not; in that case, we're essentially trading one immediate load for
4193 // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4194 // 3. C2 is zero; we have other code for this special case.
4196 // FIXME: Figure out profitability for Thumb2; we usually can't save an
4197 // instruction, since the AND is always one instruction anyway, but we could
4198 // use narrow instructions in some cases.
4199 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::AND
&&
4200 LHS
->hasOneUse() && isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4201 LHS
.getValueType() == MVT::i32
&& isa
<ConstantSDNode
>(RHS
) &&
4202 !isSignedIntSetCC(CC
)) {
4203 unsigned Mask
= cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue();
4204 auto *RHSC
= cast
<ConstantSDNode
>(RHS
.getNode());
4205 uint64_t RHSV
= RHSC
->getZExtValue();
4206 if (isMask_32(Mask
) && (RHSV
& ~Mask
) == 0 && Mask
!= 255 && Mask
!= 65535) {
4207 unsigned ShiftBits
= countLeadingZeros(Mask
);
4208 if (RHSV
&& (RHSV
> 255 || (RHSV
<< ShiftBits
) <= 255)) {
4209 SDValue ShiftAmt
= DAG
.getConstant(ShiftBits
, dl
, MVT::i32
);
4210 LHS
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, LHS
.getOperand(0), ShiftAmt
);
4211 RHS
= DAG
.getConstant(RHSV
<< ShiftBits
, dl
, MVT::i32
);
4216 // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4217 // single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
4219 // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4220 // some tweaks to the heuristics for the previous and->shift transform.
4221 // FIXME: Optimize cases where the LHS isn't a shift.
4222 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::SHL
&&
4223 isa
<ConstantSDNode
>(RHS
) &&
4224 cast
<ConstantSDNode
>(RHS
)->getZExtValue() == 0x80000000U
&&
4225 CC
== ISD::SETUGT
&& isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4226 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() < 31) {
4228 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() + 1;
4229 SDValue Shift
= DAG
.getNode(ARMISD::LSLS
, dl
,
4230 DAG
.getVTList(MVT::i32
, MVT::i32
),
4232 DAG
.getConstant(ShiftAmt
, dl
, MVT::i32
));
4233 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
4234 Shift
.getValue(1), SDValue());
4235 ARMcc
= DAG
.getConstant(ARMCC::HI
, dl
, MVT::i32
);
4236 return Chain
.getValue(1);
4239 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4241 // If the RHS is a constant zero then the V (overflow) flag will never be
4242 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4243 // simpler for other passes (like the peephole optimiser) to deal with.
4244 if (isNullConstant(RHS
)) {
4248 CondCode
= ARMCC::PL
;
4251 CondCode
= ARMCC::MI
;
4256 ARMISD::NodeType CompareType
;
4259 CompareType
= ARMISD::CMP
;
4264 CompareType
= ARMISD::CMPZ
;
4267 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4268 return DAG
.getNode(CompareType
, dl
, MVT::Glue
, LHS
, RHS
);
4271 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4272 SDValue
ARMTargetLowering::getVFPCmp(SDValue LHS
, SDValue RHS
,
4273 SelectionDAG
&DAG
, const SDLoc
&dl
) const {
4274 assert(Subtarget
->hasFP64() || RHS
.getValueType() != MVT::f64
);
4276 if (!isFloatingPointZero(RHS
))
4277 Cmp
= DAG
.getNode(ARMISD::CMPFP
, dl
, MVT::Glue
, LHS
, RHS
);
4279 Cmp
= DAG
.getNode(ARMISD::CMPFPw0
, dl
, MVT::Glue
, LHS
);
4280 return DAG
.getNode(ARMISD::FMSTAT
, dl
, MVT::Glue
, Cmp
);
4283 /// duplicateCmp - Glue values can have only one use, so this function
4284 /// duplicates a comparison node.
4286 ARMTargetLowering::duplicateCmp(SDValue Cmp
, SelectionDAG
&DAG
) const {
4287 unsigned Opc
= Cmp
.getOpcode();
4289 if (Opc
== ARMISD::CMP
|| Opc
== ARMISD::CMPZ
)
4290 return DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),Cmp
.getOperand(1));
4292 assert(Opc
== ARMISD::FMSTAT
&& "unexpected comparison operation");
4293 Cmp
= Cmp
.getOperand(0);
4294 Opc
= Cmp
.getOpcode();
4295 if (Opc
== ARMISD::CMPFP
)
4296 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),Cmp
.getOperand(1));
4298 assert(Opc
== ARMISD::CMPFPw0
&& "unexpected operand of FMSTAT");
4299 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0));
4301 return DAG
.getNode(ARMISD::FMSTAT
, DL
, MVT::Glue
, Cmp
);
4304 // This function returns three things: the arithmetic computation itself
4305 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4306 // comparison and the condition code define the case in which the arithmetic
4307 // computation *does not* overflow.
4308 std::pair
<SDValue
, SDValue
>
4309 ARMTargetLowering::getARMXALUOOp(SDValue Op
, SelectionDAG
&DAG
,
4310 SDValue
&ARMcc
) const {
4311 assert(Op
.getValueType() == MVT::i32
&& "Unsupported value type");
4313 SDValue Value
, OverflowCmp
;
4314 SDValue LHS
= Op
.getOperand(0);
4315 SDValue RHS
= Op
.getOperand(1);
4318 // FIXME: We are currently always generating CMPs because we don't support
4319 // generating CMN through the backend. This is not as good as the natural
4320 // CMP case because it causes a register dependency and cannot be folded
4323 switch (Op
.getOpcode()) {
4325 llvm_unreachable("Unknown overflow instruction!");
4327 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4328 Value
= DAG
.getNode(ISD::ADD
, dl
, Op
.getValueType(), LHS
, RHS
);
4329 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4332 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4333 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4334 // We do not use it in the USUBO case as Value may not be used.
4335 Value
= DAG
.getNode(ARMISD::ADDC
, dl
,
4336 DAG
.getVTList(Op
.getValueType(), MVT::i32
), LHS
, RHS
)
4338 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4341 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4342 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4343 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4346 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4347 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4348 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4351 // We generate a UMUL_LOHI and then check if the high word is 0.
4352 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4353 Value
= DAG
.getNode(ISD::UMUL_LOHI
, dl
,
4354 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4356 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4357 DAG
.getConstant(0, dl
, MVT::i32
));
4358 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4361 // We generate a SMUL_LOHI and then check if all the bits of the high word
4362 // are the same as the sign bit of the low word.
4363 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4364 Value
= DAG
.getNode(ISD::SMUL_LOHI
, dl
,
4365 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4367 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4368 DAG
.getNode(ISD::SRA
, dl
, Op
.getValueType(),
4370 DAG
.getConstant(31, dl
, MVT::i32
)));
4371 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4375 return std::make_pair(Value
, OverflowCmp
);
4379 ARMTargetLowering::LowerSignedALUO(SDValue Op
, SelectionDAG
&DAG
) const {
4380 // Let legalize expand this if it isn't a legal type yet.
4381 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4384 SDValue Value
, OverflowCmp
;
4386 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Op
, DAG
, ARMcc
);
4387 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4389 // We use 0 and 1 as false and true values.
4390 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
4391 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
4392 EVT VT
= Op
.getValueType();
4394 SDValue Overflow
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, TVal
, FVal
,
4395 ARMcc
, CCR
, OverflowCmp
);
4397 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
4398 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4401 static SDValue
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry
,
4402 SelectionDAG
&DAG
) {
4403 SDLoc
DL(BoolCarry
);
4404 EVT CarryVT
= BoolCarry
.getValueType();
4406 // This converts the boolean value carry into the carry flag by doing
4407 // ARMISD::SUBC Carry, 1
4408 SDValue Carry
= DAG
.getNode(ARMISD::SUBC
, DL
,
4409 DAG
.getVTList(CarryVT
, MVT::i32
),
4410 BoolCarry
, DAG
.getConstant(1, DL
, CarryVT
));
4411 return Carry
.getValue(1);
4414 static SDValue
ConvertCarryFlagToBooleanCarry(SDValue Flags
, EVT VT
,
4415 SelectionDAG
&DAG
) {
4418 // Now convert the carry flag into a boolean carry. We do this
4419 // using ARMISD:ADDE 0, 0, Carry
4420 return DAG
.getNode(ARMISD::ADDE
, DL
, DAG
.getVTList(VT
, MVT::i32
),
4421 DAG
.getConstant(0, DL
, MVT::i32
),
4422 DAG
.getConstant(0, DL
, MVT::i32
), Flags
);
4425 SDValue
ARMTargetLowering::LowerUnsignedALUO(SDValue Op
,
4426 SelectionDAG
&DAG
) const {
4427 // Let legalize expand this if it isn't a legal type yet.
4428 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4431 SDValue LHS
= Op
.getOperand(0);
4432 SDValue RHS
= Op
.getOperand(1);
4435 EVT VT
= Op
.getValueType();
4436 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
4439 switch (Op
.getOpcode()) {
4441 llvm_unreachable("Unknown overflow instruction!");
4443 Value
= DAG
.getNode(ARMISD::ADDC
, dl
, VTs
, LHS
, RHS
);
4444 // Convert the carry flag into a boolean value.
4445 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4448 Value
= DAG
.getNode(ARMISD::SUBC
, dl
, VTs
, LHS
, RHS
);
4449 // Convert the carry flag into a boolean value.
4450 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4451 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4452 // value. So compute 1 - C.
4453 Overflow
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
4454 DAG
.getConstant(1, dl
, MVT::i32
), Overflow
);
4459 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4462 static SDValue
LowerSADDSUBSAT(SDValue Op
, SelectionDAG
&DAG
,
4463 const ARMSubtarget
*Subtarget
) {
4464 EVT VT
= Op
.getValueType();
4465 if (!Subtarget
->hasDSP())
4471 bool IsAdd
= Op
->getOpcode() == ISD::SADDSAT
;
4472 switch (VT
.getSimpleVT().SimpleTy
) {
4476 NewOpcode
= IsAdd
? ARMISD::QADD8b
: ARMISD::QSUB8b
;
4479 NewOpcode
= IsAdd
? ARMISD::QADD16b
: ARMISD::QSUB16b
;
4485 DAG
.getNode(NewOpcode
, dl
, MVT::i32
,
4486 DAG
.getSExtOrTrunc(Op
->getOperand(0), dl
, MVT::i32
),
4487 DAG
.getSExtOrTrunc(Op
->getOperand(1), dl
, MVT::i32
));
4488 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Add
);
4491 SDValue
ARMTargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const {
4492 SDValue Cond
= Op
.getOperand(0);
4493 SDValue SelectTrue
= Op
.getOperand(1);
4494 SDValue SelectFalse
= Op
.getOperand(2);
4496 unsigned Opc
= Cond
.getOpcode();
4498 if (Cond
.getResNo() == 1 &&
4499 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4500 Opc
== ISD::USUBO
)) {
4501 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
4504 SDValue Value
, OverflowCmp
;
4506 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
4507 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4508 EVT VT
= Op
.getValueType();
4510 return getCMOV(dl
, VT
, SelectTrue
, SelectFalse
, ARMcc
, CCR
,
4516 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4517 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4519 if (Cond
.getOpcode() == ARMISD::CMOV
&& Cond
.hasOneUse()) {
4520 const ConstantSDNode
*CMOVTrue
=
4521 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(0));
4522 const ConstantSDNode
*CMOVFalse
=
4523 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
4525 if (CMOVTrue
&& CMOVFalse
) {
4526 unsigned CMOVTrueVal
= CMOVTrue
->getZExtValue();
4527 unsigned CMOVFalseVal
= CMOVFalse
->getZExtValue();
4531 if (CMOVTrueVal
== 1 && CMOVFalseVal
== 0) {
4533 False
= SelectFalse
;
4534 } else if (CMOVTrueVal
== 0 && CMOVFalseVal
== 1) {
4539 if (True
.getNode() && False
.getNode()) {
4540 EVT VT
= Op
.getValueType();
4541 SDValue ARMcc
= Cond
.getOperand(2);
4542 SDValue CCR
= Cond
.getOperand(3);
4543 SDValue Cmp
= duplicateCmp(Cond
.getOperand(4), DAG
);
4544 assert(True
.getValueType() == VT
);
4545 return getCMOV(dl
, VT
, True
, False
, ARMcc
, CCR
, Cmp
, DAG
);
4550 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4551 // undefined bits before doing a full-word comparison with zero.
4552 Cond
= DAG
.getNode(ISD::AND
, dl
, Cond
.getValueType(), Cond
,
4553 DAG
.getConstant(1, dl
, Cond
.getValueType()));
4555 return DAG
.getSelectCC(dl
, Cond
,
4556 DAG
.getConstant(0, dl
, Cond
.getValueType()),
4557 SelectTrue
, SelectFalse
, ISD::SETNE
);
4560 static void checkVSELConstraints(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
4561 bool &swpCmpOps
, bool &swpVselOps
) {
4562 // Start by selecting the GE condition code for opcodes that return true for
4564 if (CC
== ISD::SETUGE
|| CC
== ISD::SETOGE
|| CC
== ISD::SETOLE
||
4565 CC
== ISD::SETULE
|| CC
== ISD::SETGE
|| CC
== ISD::SETLE
)
4566 CondCode
= ARMCC::GE
;
4568 // and GT for opcodes that return false for 'equality'.
4569 else if (CC
== ISD::SETUGT
|| CC
== ISD::SETOGT
|| CC
== ISD::SETOLT
||
4570 CC
== ISD::SETULT
|| CC
== ISD::SETGT
|| CC
== ISD::SETLT
)
4571 CondCode
= ARMCC::GT
;
4573 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4574 // to swap the compare operands.
4575 if (CC
== ISD::SETOLE
|| CC
== ISD::SETULE
|| CC
== ISD::SETOLT
||
4576 CC
== ISD::SETULT
|| CC
== ISD::SETLE
|| CC
== ISD::SETLT
)
4579 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4580 // If we have an unordered opcode, we need to swap the operands to the VSEL
4581 // instruction (effectively negating the condition).
4583 // This also has the effect of swapping which one of 'less' or 'greater'
4584 // returns true, so we also swap the compare operands. It also switches
4585 // whether we return true for 'equality', so we compensate by picking the
4586 // opposite condition code to our original choice.
4587 if (CC
== ISD::SETULE
|| CC
== ISD::SETULT
|| CC
== ISD::SETUGE
||
4588 CC
== ISD::SETUGT
) {
4589 swpCmpOps
= !swpCmpOps
;
4590 swpVselOps
= !swpVselOps
;
4591 CondCode
= CondCode
== ARMCC::GT
? ARMCC::GE
: ARMCC::GT
;
4594 // 'ordered' is 'anything but unordered', so use the VS condition code and
4595 // swap the VSEL operands.
4596 if (CC
== ISD::SETO
) {
4597 CondCode
= ARMCC::VS
;
4601 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4602 // code and swap the VSEL operands. Also do this if we don't care about the
4604 if (CC
== ISD::SETUNE
|| CC
== ISD::SETNE
) {
4605 CondCode
= ARMCC::EQ
;
4610 SDValue
ARMTargetLowering::getCMOV(const SDLoc
&dl
, EVT VT
, SDValue FalseVal
,
4611 SDValue TrueVal
, SDValue ARMcc
, SDValue CCR
,
4612 SDValue Cmp
, SelectionDAG
&DAG
) const {
4613 if (!Subtarget
->hasFP64() && VT
== MVT::f64
) {
4614 FalseVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4615 DAG
.getVTList(MVT::i32
, MVT::i32
), FalseVal
);
4616 TrueVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4617 DAG
.getVTList(MVT::i32
, MVT::i32
), TrueVal
);
4619 SDValue TrueLow
= TrueVal
.getValue(0);
4620 SDValue TrueHigh
= TrueVal
.getValue(1);
4621 SDValue FalseLow
= FalseVal
.getValue(0);
4622 SDValue FalseHigh
= FalseVal
.getValue(1);
4624 SDValue Low
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseLow
, TrueLow
,
4626 SDValue High
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseHigh
, TrueHigh
,
4627 ARMcc
, CCR
, duplicateCmp(Cmp
, DAG
));
4629 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Low
, High
);
4631 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
,
4636 static bool isGTorGE(ISD::CondCode CC
) {
4637 return CC
== ISD::SETGT
|| CC
== ISD::SETGE
;
4640 static bool isLTorLE(ISD::CondCode CC
) {
4641 return CC
== ISD::SETLT
|| CC
== ISD::SETLE
;
4644 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4645 // All of these conditions (and their <= and >= counterparts) will do:
4650 static bool isLowerSaturate(const SDValue LHS
, const SDValue RHS
,
4651 const SDValue TrueVal
, const SDValue FalseVal
,
4652 const ISD::CondCode CC
, const SDValue K
) {
4653 return (isGTorGE(CC
) &&
4654 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
))) ||
4656 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
)));
4659 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4660 static bool isUpperSaturate(const SDValue LHS
, const SDValue RHS
,
4661 const SDValue TrueVal
, const SDValue FalseVal
,
4662 const ISD::CondCode CC
, const SDValue K
) {
4663 return (isGTorGE(CC
) &&
4664 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
))) ||
4666 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
)));
4669 // Check if two chained conditionals could be converted into SSAT or USAT.
4671 // SSAT can replace a set of two conditional selectors that bound a number to an
4672 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4674 // x < -k ? -k : (x > k ? k : x)
4675 // x < -k ? -k : (x < k ? x : k)
4676 // x > -k ? (x > k ? k : x) : -k
4677 // x < k ? (x < -k ? -k : x) : k
4680 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4683 // It returns true if the conversion can be done, false otherwise.
4684 // Additionally, the variable is returned in parameter V, the constant in K and
4685 // usat is set to true if the conditional represents an unsigned saturation
4686 static bool isSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4687 uint64_t &K
, bool &usat
) {
4688 SDValue LHS1
= Op
.getOperand(0);
4689 SDValue RHS1
= Op
.getOperand(1);
4690 SDValue TrueVal1
= Op
.getOperand(2);
4691 SDValue FalseVal1
= Op
.getOperand(3);
4692 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4694 const SDValue Op2
= isa
<ConstantSDNode
>(TrueVal1
) ? FalseVal1
: TrueVal1
;
4695 if (Op2
.getOpcode() != ISD::SELECT_CC
)
4698 SDValue LHS2
= Op2
.getOperand(0);
4699 SDValue RHS2
= Op2
.getOperand(1);
4700 SDValue TrueVal2
= Op2
.getOperand(2);
4701 SDValue FalseVal2
= Op2
.getOperand(3);
4702 ISD::CondCode CC2
= cast
<CondCodeSDNode
>(Op2
.getOperand(4))->get();
4704 // Find out which are the constants and which are the variables
4705 // in each conditional
4706 SDValue
*K1
= isa
<ConstantSDNode
>(LHS1
) ? &LHS1
: isa
<ConstantSDNode
>(RHS1
)
4709 SDValue
*K2
= isa
<ConstantSDNode
>(LHS2
) ? &LHS2
: isa
<ConstantSDNode
>(RHS2
)
4712 SDValue K2Tmp
= isa
<ConstantSDNode
>(TrueVal2
) ? TrueVal2
: FalseVal2
;
4713 SDValue V1Tmp
= (K1
&& *K1
== LHS1
) ? RHS1
: LHS1
;
4714 SDValue V2Tmp
= (K2
&& *K2
== LHS2
) ? RHS2
: LHS2
;
4715 SDValue V2
= (K2Tmp
== TrueVal2
) ? FalseVal2
: TrueVal2
;
4717 // We must detect cases where the original operations worked with 16- or
4718 // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4719 // must work with sign-extended values but the select operations return
4720 // the original non-extended value.
4721 SDValue V2TmpReg
= V2Tmp
;
4722 if (V2Tmp
->getOpcode() == ISD::SIGN_EXTEND_INREG
)
4723 V2TmpReg
= V2Tmp
->getOperand(0);
4725 // Check that the registers and the constants have the correct values
4726 // in both conditionals
4727 if (!K1
|| !K2
|| *K1
== Op2
|| *K2
!= K2Tmp
|| V1Tmp
!= V2Tmp
||
4731 // Figure out which conditional is saturating the lower/upper bound.
4732 const SDValue
*LowerCheckOp
=
4733 isLowerSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4735 : isLowerSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4738 const SDValue
*UpperCheckOp
=
4739 isUpperSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4741 : isUpperSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4745 if (!UpperCheckOp
|| !LowerCheckOp
|| LowerCheckOp
== UpperCheckOp
)
4748 // Check that the constant in the lower-bound check is
4749 // the opposite of the constant in the upper-bound check
4750 // in 1's complement.
4751 int64_t Val1
= cast
<ConstantSDNode
>(*K1
)->getSExtValue();
4752 int64_t Val2
= cast
<ConstantSDNode
>(*K2
)->getSExtValue();
4753 int64_t PosVal
= std::max(Val1
, Val2
);
4754 int64_t NegVal
= std::min(Val1
, Val2
);
4756 if (((Val1
> Val2
&& UpperCheckOp
== &Op
) ||
4757 (Val1
< Val2
&& UpperCheckOp
== &Op2
)) &&
4758 isPowerOf2_64(PosVal
+ 1)) {
4760 // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4763 else if (NegVal
== 0)
4769 K
= (uint64_t)PosVal
; // At this point, PosVal is guaranteed to be positive
4777 // Check if a condition of the type x < k ? k : x can be converted into a
4778 // bit operation instead of conditional moves.
4779 // Currently this is allowed given:
4780 // - The conditions and values match up
4781 // - k is 0 or -1 (all ones)
4782 // This function will not check the last condition, thats up to the caller
4783 // It returns true if the transformation can be made, and in such case
4784 // returns x in V, and k in SatK.
4785 static bool isLowerSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4788 SDValue LHS
= Op
.getOperand(0);
4789 SDValue RHS
= Op
.getOperand(1);
4790 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4791 SDValue TrueVal
= Op
.getOperand(2);
4792 SDValue FalseVal
= Op
.getOperand(3);
4794 SDValue
*K
= isa
<ConstantSDNode
>(LHS
) ? &LHS
: isa
<ConstantSDNode
>(RHS
)
4798 // No constant operation in comparison, early out
4802 SDValue KTmp
= isa
<ConstantSDNode
>(TrueVal
) ? TrueVal
: FalseVal
;
4803 V
= (KTmp
== TrueVal
) ? FalseVal
: TrueVal
;
4804 SDValue VTmp
= (K
&& *K
== LHS
) ? RHS
: LHS
;
4806 // If the constant on left and right side, or variable on left and right,
4807 // does not match, early out
4808 if (*K
!= KTmp
|| V
!= VTmp
)
4811 if (isLowerSaturate(LHS
, RHS
, TrueVal
, FalseVal
, CC
, *K
)) {
4819 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT
) const {
4821 return !Subtarget
->hasVFP2Base();
4823 return !Subtarget
->hasFP64();
4825 return !Subtarget
->hasFullFP16();
4829 SDValue
ARMTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4830 EVT VT
= Op
.getValueType();
4833 // Try to convert two saturating conditional selects into a single SSAT
4835 uint64_t SatConstant
;
4837 if (((!Subtarget
->isThumb() && Subtarget
->hasV6Ops()) || Subtarget
->isThumb2()) &&
4838 isSaturatingConditional(Op
, SatValue
, SatConstant
, SatUSat
)) {
4840 return DAG
.getNode(ARMISD::USAT
, dl
, VT
, SatValue
,
4841 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4843 return DAG
.getNode(ARMISD::SSAT
, dl
, VT
, SatValue
,
4844 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4847 // Try to convert expressions of the form x < k ? k : x (and similar forms)
4848 // into more efficient bit operations, which is possible when k is 0 or -1
4849 // On ARM and Thumb-2 which have flexible operand 2 this will result in
4850 // single instructions. On Thumb the shift and the bit operation will be two
4852 // Only allow this transformation on full-width (32-bit) operations
4853 SDValue LowerSatConstant
;
4854 if (VT
== MVT::i32
&&
4855 isLowerSaturatingConditional(Op
, SatValue
, LowerSatConstant
)) {
4856 SDValue ShiftV
= DAG
.getNode(ISD::SRA
, dl
, VT
, SatValue
,
4857 DAG
.getConstant(31, dl
, VT
));
4858 if (isNullConstant(LowerSatConstant
)) {
4859 SDValue NotShiftV
= DAG
.getNode(ISD::XOR
, dl
, VT
, ShiftV
,
4860 DAG
.getAllOnesConstant(dl
, VT
));
4861 return DAG
.getNode(ISD::AND
, dl
, VT
, SatValue
, NotShiftV
);
4862 } else if (isAllOnesConstant(LowerSatConstant
))
4863 return DAG
.getNode(ISD::OR
, dl
, VT
, SatValue
, ShiftV
);
4866 SDValue LHS
= Op
.getOperand(0);
4867 SDValue RHS
= Op
.getOperand(1);
4868 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4869 SDValue TrueVal
= Op
.getOperand(2);
4870 SDValue FalseVal
= Op
.getOperand(3);
4871 ConstantSDNode
*CFVal
= dyn_cast
<ConstantSDNode
>(FalseVal
);
4872 ConstantSDNode
*CTVal
= dyn_cast
<ConstantSDNode
>(TrueVal
);
4874 if (Subtarget
->hasV8_1MMainlineOps() && CFVal
&& CTVal
&&
4875 LHS
.getValueType() == MVT::i32
&& RHS
.getValueType() == MVT::i32
) {
4876 unsigned TVal
= CTVal
->getZExtValue();
4877 unsigned FVal
= CFVal
->getZExtValue();
4878 unsigned Opcode
= 0;
4880 if (TVal
== ~FVal
) {
4881 Opcode
= ARMISD::CSINV
;
4882 } else if (TVal
== ~FVal
+ 1) {
4883 Opcode
= ARMISD::CSNEG
;
4884 } else if (TVal
+ 1 == FVal
) {
4885 Opcode
= ARMISD::CSINC
;
4886 } else if (TVal
== FVal
+ 1) {
4887 Opcode
= ARMISD::CSINC
;
4888 std::swap(TrueVal
, FalseVal
);
4889 std::swap(TVal
, FVal
);
4890 CC
= ISD::getSetCCInverse(CC
, true);
4894 // If one of the constants is cheaper than another, materialise the
4895 // cheaper one and let the csel generate the other.
4896 if (Opcode
!= ARMISD::CSINC
&&
4897 HasLowerConstantMaterializationCost(FVal
, TVal
, Subtarget
)) {
4898 std::swap(TrueVal
, FalseVal
);
4899 std::swap(TVal
, FVal
);
4900 CC
= ISD::getSetCCInverse(CC
, true);
4903 // Attempt to use ZR checking TVal is 0, possibly inverting the condition
4904 // to get there. CSINC not is invertable like the other two (~(~a) == a,
4905 // -(-a) == a, but (a+1)+1 != a).
4906 if (FVal
== 0 && Opcode
!= ARMISD::CSINC
) {
4907 std::swap(TrueVal
, FalseVal
);
4908 std::swap(TVal
, FVal
);
4909 CC
= ISD::getSetCCInverse(CC
, true);
4912 TrueVal
= DAG
.getRegister(ARM::ZR
, MVT::i32
);
4914 // Drops F's value because we can get it by inverting/negating TVal.
4918 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4919 EVT VT
= TrueVal
.getValueType();
4920 return DAG
.getNode(Opcode
, dl
, VT
, TrueVal
, FalseVal
, ARMcc
, Cmp
);
4924 if (isUnsupportedFloatingType(LHS
.getValueType())) {
4925 DAG
.getTargetLoweringInfo().softenSetCCOperands(
4926 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
, LHS
, RHS
);
4928 // If softenSetCCOperands only returned one value, we should compare it to
4930 if (!RHS
.getNode()) {
4931 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4936 if (LHS
.getValueType() == MVT::i32
) {
4937 // Try to generate VSEL on ARMv8.
4938 // The VSEL instruction can't use all the usual ARM condition
4939 // codes: it only has two bits to select the condition code, so it's
4940 // constrained to use only GE, GT, VS and EQ.
4942 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4943 // swap the operands of the previous compare instruction (effectively
4944 // inverting the compare condition, swapping 'less' and 'greater') and
4945 // sometimes need to swap the operands to the VSEL (which inverts the
4946 // condition in the sense of firing whenever the previous condition didn't)
4947 if (Subtarget
->hasFPARMv8Base() && (TrueVal
.getValueType() == MVT::f16
||
4948 TrueVal
.getValueType() == MVT::f32
||
4949 TrueVal
.getValueType() == MVT::f64
)) {
4950 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4951 if (CondCode
== ARMCC::LT
|| CondCode
== ARMCC::LE
||
4952 CondCode
== ARMCC::VC
|| CondCode
== ARMCC::NE
) {
4953 CC
= ISD::getSetCCInverse(CC
, true);
4954 std::swap(TrueVal
, FalseVal
);
4959 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4960 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4961 // Choose GE over PL, which vsel does now support
4962 if (cast
<ConstantSDNode
>(ARMcc
)->getZExtValue() == ARMCC::PL
)
4963 ARMcc
= DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
);
4964 return getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4967 ARMCC::CondCodes CondCode
, CondCode2
;
4968 FPCCToARMCC(CC
, CondCode
, CondCode2
);
4970 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
4971 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
4972 // must use VSEL (limited condition codes), due to not having conditional f16
4974 if (Subtarget
->hasFPARMv8Base() &&
4975 !(isFloatingPointZero(RHS
) && TrueVal
.getValueType() != MVT::f16
) &&
4976 (TrueVal
.getValueType() == MVT::f16
||
4977 TrueVal
.getValueType() == MVT::f32
||
4978 TrueVal
.getValueType() == MVT::f64
)) {
4979 bool swpCmpOps
= false;
4980 bool swpVselOps
= false;
4981 checkVSELConstraints(CC
, CondCode
, swpCmpOps
, swpVselOps
);
4983 if (CondCode
== ARMCC::GT
|| CondCode
== ARMCC::GE
||
4984 CondCode
== ARMCC::VS
|| CondCode
== ARMCC::EQ
) {
4986 std::swap(LHS
, RHS
);
4988 std::swap(TrueVal
, FalseVal
);
4992 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4993 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
);
4994 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4995 SDValue Result
= getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4996 if (CondCode2
!= ARMCC::AL
) {
4997 SDValue ARMcc2
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
4998 // FIXME: Needs another CMP because flag can have but one use.
4999 SDValue Cmp2
= getVFPCmp(LHS
, RHS
, DAG
, dl
);
5000 Result
= getCMOV(dl
, VT
, Result
, TrueVal
, ARMcc2
, CCR
, Cmp2
, DAG
);
5005 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
5006 /// to morph to an integer compare sequence.
5007 static bool canChangeToInt(SDValue Op
, bool &SeenZero
,
5008 const ARMSubtarget
*Subtarget
) {
5009 SDNode
*N
= Op
.getNode();
5010 if (!N
->hasOneUse())
5011 // Otherwise it requires moving the value from fp to integer registers.
5013 if (!N
->getNumValues())
5015 EVT VT
= Op
.getValueType();
5016 if (VT
!= MVT::f32
&& !Subtarget
->isFPBrccSlow())
5017 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
5018 // vmrs are very slow, e.g. cortex-a8.
5021 if (isFloatingPointZero(Op
)) {
5025 return ISD::isNormalLoad(N
);
5028 static SDValue
bitcastf32Toi32(SDValue Op
, SelectionDAG
&DAG
) {
5029 if (isFloatingPointZero(Op
))
5030 return DAG
.getConstant(0, SDLoc(Op
), MVT::i32
);
5032 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
))
5033 return DAG
.getLoad(MVT::i32
, SDLoc(Op
), Ld
->getChain(), Ld
->getBasePtr(),
5034 Ld
->getPointerInfo(), Ld
->getAlignment(),
5035 Ld
->getMemOperand()->getFlags());
5037 llvm_unreachable("Unknown VFP cmp argument!");
5040 static void expandf64Toi32(SDValue Op
, SelectionDAG
&DAG
,
5041 SDValue
&RetVal1
, SDValue
&RetVal2
) {
5044 if (isFloatingPointZero(Op
)) {
5045 RetVal1
= DAG
.getConstant(0, dl
, MVT::i32
);
5046 RetVal2
= DAG
.getConstant(0, dl
, MVT::i32
);
5050 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
)) {
5051 SDValue Ptr
= Ld
->getBasePtr();
5053 DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), Ptr
, Ld
->getPointerInfo(),
5054 Ld
->getAlignment(), Ld
->getMemOperand()->getFlags());
5056 EVT PtrType
= Ptr
.getValueType();
5057 unsigned NewAlign
= MinAlign(Ld
->getAlignment(), 4);
5058 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, dl
,
5059 PtrType
, Ptr
, DAG
.getConstant(4, dl
, PtrType
));
5060 RetVal2
= DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), NewPtr
,
5061 Ld
->getPointerInfo().getWithOffset(4), NewAlign
,
5062 Ld
->getMemOperand()->getFlags());
5066 llvm_unreachable("Unknown VFP cmp argument!");
5069 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5070 /// f32 and even f64 comparisons to integer ones.
5072 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op
, SelectionDAG
&DAG
) const {
5073 SDValue Chain
= Op
.getOperand(0);
5074 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
5075 SDValue LHS
= Op
.getOperand(2);
5076 SDValue RHS
= Op
.getOperand(3);
5077 SDValue Dest
= Op
.getOperand(4);
5080 bool LHSSeenZero
= false;
5081 bool LHSOk
= canChangeToInt(LHS
, LHSSeenZero
, Subtarget
);
5082 bool RHSSeenZero
= false;
5083 bool RHSOk
= canChangeToInt(RHS
, RHSSeenZero
, Subtarget
);
5084 if (LHSOk
&& RHSOk
&& (LHSSeenZero
|| RHSSeenZero
)) {
5085 // If unsafe fp math optimization is enabled and there are no other uses of
5086 // the CMP operands, and the condition code is EQ or NE, we can optimize it
5087 // to an integer comparison.
5088 if (CC
== ISD::SETOEQ
)
5090 else if (CC
== ISD::SETUNE
)
5093 SDValue Mask
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5095 if (LHS
.getValueType() == MVT::f32
) {
5096 LHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5097 bitcastf32Toi32(LHS
, DAG
), Mask
);
5098 RHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5099 bitcastf32Toi32(RHS
, DAG
), Mask
);
5100 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5101 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5102 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
5103 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
5108 expandf64Toi32(LHS
, DAG
, LHS1
, LHS2
);
5109 expandf64Toi32(RHS
, DAG
, RHS1
, RHS2
);
5110 LHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, LHS2
, Mask
);
5111 RHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RHS2
, Mask
);
5112 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
5113 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5114 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5115 SDValue Ops
[] = { Chain
, ARMcc
, LHS1
, LHS2
, RHS1
, RHS2
, Dest
};
5116 return DAG
.getNode(ARMISD::BCC_i64
, dl
, VTList
, Ops
);
5122 SDValue
ARMTargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
5123 SDValue Chain
= Op
.getOperand(0);
5124 SDValue Cond
= Op
.getOperand(1);
5125 SDValue Dest
= Op
.getOperand(2);
5128 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5130 unsigned Opc
= Cond
.getOpcode();
5131 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5132 !Subtarget
->isThumb1Only();
5133 if (Cond
.getResNo() == 1 &&
5134 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5135 Opc
== ISD::USUBO
|| OptimizeMul
)) {
5136 // Only lower legal XALUO ops.
5137 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
5140 // The actual operation with overflow check.
5141 SDValue Value
, OverflowCmp
;
5143 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
5145 // Reverse the condition code.
5146 ARMCC::CondCodes CondCode
=
5147 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5148 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5149 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5150 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5152 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5159 SDValue
ARMTargetLowering::LowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const {
5160 SDValue Chain
= Op
.getOperand(0);
5161 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
5162 SDValue LHS
= Op
.getOperand(2);
5163 SDValue RHS
= Op
.getOperand(3);
5164 SDValue Dest
= Op
.getOperand(4);
5167 if (isUnsupportedFloatingType(LHS
.getValueType())) {
5168 DAG
.getTargetLoweringInfo().softenSetCCOperands(
5169 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
, LHS
, RHS
);
5171 // If softenSetCCOperands only returned one value, we should compare it to
5173 if (!RHS
.getNode()) {
5174 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
5179 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5181 unsigned Opc
= LHS
.getOpcode();
5182 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5183 !Subtarget
->isThumb1Only();
5184 if (LHS
.getResNo() == 1 && (isOneConstant(RHS
) || isNullConstant(RHS
)) &&
5185 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5186 Opc
== ISD::USUBO
|| OptimizeMul
) &&
5187 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
5188 // Only lower legal XALUO ops.
5189 if (!DAG
.getTargetLoweringInfo().isTypeLegal(LHS
->getValueType(0)))
5192 // The actual operation with overflow check.
5193 SDValue Value
, OverflowCmp
;
5195 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(LHS
.getValue(0), DAG
, ARMcc
);
5197 if ((CC
== ISD::SETNE
) != isOneConstant(RHS
)) {
5198 // Reverse the condition code.
5199 ARMCC::CondCodes CondCode
=
5200 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5201 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5202 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5204 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5206 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5210 if (LHS
.getValueType() == MVT::i32
) {
5212 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5213 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5214 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
5215 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
5218 if (getTargetMachine().Options
.UnsafeFPMath
&&
5219 (CC
== ISD::SETEQ
|| CC
== ISD::SETOEQ
||
5220 CC
== ISD::SETNE
|| CC
== ISD::SETUNE
)) {
5221 if (SDValue Result
= OptimizeVFPBrcond(Op
, DAG
))
5225 ARMCC::CondCodes CondCode
, CondCode2
;
5226 FPCCToARMCC(CC
, CondCode
, CondCode2
);
5228 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5229 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
);
5230 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5231 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5232 SDValue Ops
[] = { Chain
, Dest
, ARMcc
, CCR
, Cmp
};
5233 SDValue Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5234 if (CondCode2
!= ARMCC::AL
) {
5235 ARMcc
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
5236 SDValue Ops
[] = { Res
, Dest
, ARMcc
, CCR
, Res
.getValue(1) };
5237 Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5242 SDValue
ARMTargetLowering::LowerBR_JT(SDValue Op
, SelectionDAG
&DAG
) const {
5243 SDValue Chain
= Op
.getOperand(0);
5244 SDValue Table
= Op
.getOperand(1);
5245 SDValue Index
= Op
.getOperand(2);
5248 EVT PTy
= getPointerTy(DAG
.getDataLayout());
5249 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Table
);
5250 SDValue JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PTy
);
5251 Table
= DAG
.getNode(ARMISD::WrapperJT
, dl
, MVT::i32
, JTI
);
5252 Index
= DAG
.getNode(ISD::MUL
, dl
, PTy
, Index
, DAG
.getConstant(4, dl
, PTy
));
5253 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Index
);
5254 if (Subtarget
->isThumb2() || (Subtarget
->hasV8MBaselineOps() && Subtarget
->isThumb())) {
5255 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5256 // which does another jump to the destination. This also makes it easier
5257 // to translate it to TBB / TBH later (Thumb2 only).
5258 // FIXME: This might not work if the function is extremely large.
5259 return DAG
.getNode(ARMISD::BR2_JT
, dl
, MVT::Other
, Chain
,
5260 Addr
, Op
.getOperand(2), JTI
);
5262 if (isPositionIndependent() || Subtarget
->isROPI()) {
5264 DAG
.getLoad((EVT
)MVT::i32
, dl
, Chain
, Addr
,
5265 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5266 Chain
= Addr
.getValue(1);
5267 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Addr
);
5268 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5271 DAG
.getLoad(PTy
, dl
, Chain
, Addr
,
5272 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5273 Chain
= Addr
.getValue(1);
5274 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5278 static SDValue
LowerVectorFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) {
5279 EVT VT
= Op
.getValueType();
5282 if (Op
.getValueType().getVectorElementType() == MVT::i32
) {
5283 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::f32
)
5285 return DAG
.UnrollVectorOp(Op
.getNode());
5288 const bool HasFullFP16
=
5289 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5292 const EVT OpTy
= Op
.getOperand(0).getValueType();
5293 if (OpTy
== MVT::v4f32
)
5295 else if (OpTy
== MVT::v4f16
&& HasFullFP16
)
5297 else if (OpTy
== MVT::v8f16
&& HasFullFP16
)
5300 llvm_unreachable("Invalid type for custom lowering!");
5302 if (VT
!= MVT::v4i16
&& VT
!= MVT::v8i16
)
5303 return DAG
.UnrollVectorOp(Op
.getNode());
5305 Op
= DAG
.getNode(Op
.getOpcode(), dl
, NewTy
, Op
.getOperand(0));
5306 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op
);
5309 SDValue
ARMTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) const {
5310 EVT VT
= Op
.getValueType();
5312 return LowerVectorFP_TO_INT(Op
, DAG
);
5313 if (isUnsupportedFloatingType(Op
.getOperand(0).getValueType())) {
5315 if (Op
.getOpcode() == ISD::FP_TO_SINT
)
5316 LC
= RTLIB::getFPTOSINT(Op
.getOperand(0).getValueType(),
5319 LC
= RTLIB::getFPTOUINT(Op
.getOperand(0).getValueType(),
5321 MakeLibCallOptions CallOptions
;
5322 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5323 CallOptions
, SDLoc(Op
)).first
;
5329 static SDValue
LowerVectorINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
5330 EVT VT
= Op
.getValueType();
5333 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::i32
) {
5334 if (VT
.getVectorElementType() == MVT::f32
)
5336 return DAG
.UnrollVectorOp(Op
.getNode());
5339 assert((Op
.getOperand(0).getValueType() == MVT::v4i16
||
5340 Op
.getOperand(0).getValueType() == MVT::v8i16
) &&
5341 "Invalid type for custom lowering!");
5343 const bool HasFullFP16
=
5344 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5347 if (VT
== MVT::v4f32
)
5348 DestVecType
= MVT::v4i32
;
5349 else if (VT
== MVT::v4f16
&& HasFullFP16
)
5350 DestVecType
= MVT::v4i16
;
5351 else if (VT
== MVT::v8f16
&& HasFullFP16
)
5352 DestVecType
= MVT::v8i16
;
5354 return DAG
.UnrollVectorOp(Op
.getNode());
5358 switch (Op
.getOpcode()) {
5359 default: llvm_unreachable("Invalid opcode!");
5360 case ISD::SINT_TO_FP
:
5361 CastOpc
= ISD::SIGN_EXTEND
;
5362 Opc
= ISD::SINT_TO_FP
;
5364 case ISD::UINT_TO_FP
:
5365 CastOpc
= ISD::ZERO_EXTEND
;
5366 Opc
= ISD::UINT_TO_FP
;
5370 Op
= DAG
.getNode(CastOpc
, dl
, DestVecType
, Op
.getOperand(0));
5371 return DAG
.getNode(Opc
, dl
, VT
, Op
);
5374 SDValue
ARMTargetLowering::LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const {
5375 EVT VT
= Op
.getValueType();
5377 return LowerVectorINT_TO_FP(Op
, DAG
);
5378 if (isUnsupportedFloatingType(VT
)) {
5380 if (Op
.getOpcode() == ISD::SINT_TO_FP
)
5381 LC
= RTLIB::getSINTTOFP(Op
.getOperand(0).getValueType(),
5384 LC
= RTLIB::getUINTTOFP(Op
.getOperand(0).getValueType(),
5386 MakeLibCallOptions CallOptions
;
5387 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5388 CallOptions
, SDLoc(Op
)).first
;
5394 SDValue
ARMTargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
5395 // Implement fcopysign with a fabs and a conditional fneg.
5396 SDValue Tmp0
= Op
.getOperand(0);
5397 SDValue Tmp1
= Op
.getOperand(1);
5399 EVT VT
= Op
.getValueType();
5400 EVT SrcVT
= Tmp1
.getValueType();
5401 bool InGPR
= Tmp0
.getOpcode() == ISD::BITCAST
||
5402 Tmp0
.getOpcode() == ARMISD::VMOVDRR
;
5403 bool UseNEON
= !InGPR
&& Subtarget
->hasNEON();
5406 // Use VBSL to copy the sign bit.
5407 unsigned EncodedVal
= ARM_AM::createVMOVModImm(0x6, 0x80);
5408 SDValue Mask
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v2i32
,
5409 DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
));
5410 EVT OpVT
= (VT
== MVT::f32
) ? MVT::v2i32
: MVT::v1i64
;
5412 Mask
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5413 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Mask
),
5414 DAG
.getConstant(32, dl
, MVT::i32
));
5415 else /*if (VT == MVT::f32)*/
5416 Tmp0
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp0
);
5417 if (SrcVT
== MVT::f32
) {
5418 Tmp1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp1
);
5420 Tmp1
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5421 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
),
5422 DAG
.getConstant(32, dl
, MVT::i32
));
5423 } else if (VT
== MVT::f32
)
5424 Tmp1
= DAG
.getNode(ARMISD::VSHRuIMM
, dl
, MVT::v1i64
,
5425 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i64
, Tmp1
),
5426 DAG
.getConstant(32, dl
, MVT::i32
));
5427 Tmp0
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp0
);
5428 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
);
5430 SDValue AllOnes
= DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5432 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v8i8
, AllOnes
);
5433 SDValue MaskNot
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Mask
,
5434 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, AllOnes
));
5436 SDValue Res
= DAG
.getNode(ISD::OR
, dl
, OpVT
,
5437 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp1
, Mask
),
5438 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp0
, MaskNot
));
5439 if (VT
== MVT::f32
) {
5440 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2f32
, Res
);
5441 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, Res
,
5442 DAG
.getConstant(0, dl
, MVT::i32
));
5444 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Res
);
5450 // Bitcast operand 1 to i32.
5451 if (SrcVT
== MVT::f64
)
5452 Tmp1
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5454 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp1
);
5456 // Or in the signbit with integer operations.
5457 SDValue Mask1
= DAG
.getConstant(0x80000000, dl
, MVT::i32
);
5458 SDValue Mask2
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5459 Tmp1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp1
, Mask1
);
5460 if (VT
== MVT::f32
) {
5461 Tmp0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5462 DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp0
), Mask2
);
5463 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
5464 DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Tmp0
, Tmp1
));
5467 // f64: Or the high part with signbit and then combine two parts.
5468 Tmp0
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5470 SDValue Lo
= Tmp0
.getValue(0);
5471 SDValue Hi
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp0
.getValue(1), Mask2
);
5472 Hi
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Hi
, Tmp1
);
5473 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
5476 SDValue
ARMTargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const{
5477 MachineFunction
&MF
= DAG
.getMachineFunction();
5478 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5479 MFI
.setReturnAddressIsTaken(true);
5481 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
5484 EVT VT
= Op
.getValueType();
5486 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5488 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
5489 SDValue Offset
= DAG
.getConstant(4, dl
, MVT::i32
);
5490 return DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(),
5491 DAG
.getNode(ISD::ADD
, dl
, VT
, FrameAddr
, Offset
),
5492 MachinePointerInfo());
5495 // Return LR, which contains the return address. Mark it an implicit live-in.
5496 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
5497 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, VT
);
5500 SDValue
ARMTargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
5501 const ARMBaseRegisterInfo
&ARI
=
5502 *static_cast<const ARMBaseRegisterInfo
*>(RegInfo
);
5503 MachineFunction
&MF
= DAG
.getMachineFunction();
5504 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5505 MFI
.setFrameAddressIsTaken(true);
5507 EVT VT
= Op
.getValueType();
5508 SDLoc
dl(Op
); // FIXME probably not meaningful
5509 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5510 Register FrameReg
= ARI
.getFrameRegister(MF
);
5511 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
5513 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
,
5514 MachinePointerInfo());
5518 // FIXME? Maybe this could be a TableGen attribute on some registers and
5519 // this table could be generated automatically from RegInfo.
5520 Register
ARMTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
5521 const MachineFunction
&MF
) const {
5522 Register Reg
= StringSwitch
<unsigned>(RegName
)
5523 .Case("sp", ARM::SP
)
5527 report_fatal_error(Twine("Invalid register name \""
5528 + StringRef(RegName
) + "\"."));
5531 // Result is 64 bit value so split into two 32 bit values and return as a
5533 static void ExpandREAD_REGISTER(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
5534 SelectionDAG
&DAG
) {
5537 // This function is only supposed to be called for i64 type destination.
5538 assert(N
->getValueType(0) == MVT::i64
5539 && "ExpandREAD_REGISTER called for non-i64 type result.");
5541 SDValue Read
= DAG
.getNode(ISD::READ_REGISTER
, DL
,
5542 DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
),
5546 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Read
.getValue(0),
5548 Results
.push_back(Read
.getOperand(0));
5551 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5552 /// When \p DstVT, the destination type of \p BC, is on the vector
5553 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5554 /// it might be possible to combine them, such that everything stays on the
5555 /// vector register bank.
5556 /// \p return The node that would replace \p BT, if the combine
5558 static SDValue
CombineVMOVDRRCandidateWithVecOp(const SDNode
*BC
,
5559 SelectionDAG
&DAG
) {
5560 SDValue Op
= BC
->getOperand(0);
5561 EVT DstVT
= BC
->getValueType(0);
5563 // The only vector instruction that can produce a scalar (remember,
5564 // since the bitcast was about to be turned into VMOVDRR, the source
5565 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5566 // Moreover, we can do this combine only if there is one use.
5567 // Finally, if the destination type is not a vector, there is not
5568 // much point on forcing everything on the vector bank.
5569 if (!DstVT
.isVector() || Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
5573 // If the index is not constant, we will introduce an additional
5574 // multiply that will stick.
5575 // Give up in that case.
5576 ConstantSDNode
*Index
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5579 unsigned DstNumElt
= DstVT
.getVectorNumElements();
5581 // Compute the new index.
5582 const APInt
&APIntIndex
= Index
->getAPIntValue();
5583 APInt
NewIndex(APIntIndex
.getBitWidth(), DstNumElt
);
5584 NewIndex
*= APIntIndex
;
5585 // Check if the new constant index fits into i32.
5586 if (NewIndex
.getBitWidth() > 32)
5589 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5590 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5592 SDValue ExtractSrc
= Op
.getOperand(0);
5593 EVT VecVT
= EVT::getVectorVT(
5594 *DAG
.getContext(), DstVT
.getScalarType(),
5595 ExtractSrc
.getValueType().getVectorNumElements() * DstNumElt
);
5596 SDValue BitCast
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, ExtractSrc
);
5597 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DstVT
, BitCast
,
5598 DAG
.getConstant(NewIndex
.getZExtValue(), dl
, MVT::i32
));
5601 /// ExpandBITCAST - If the target supports VFP, this function is called to
5602 /// expand a bit convert where either the source or destination type is i64 to
5603 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
5604 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5605 /// vectors), since the legalizer won't know what to do with that.
5606 static SDValue
ExpandBITCAST(SDNode
*N
, SelectionDAG
&DAG
,
5607 const ARMSubtarget
*Subtarget
) {
5608 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5610 SDValue Op
= N
->getOperand(0);
5612 // This function is only supposed to be called for i64 types, either as the
5613 // source or destination of the bit convert.
5614 EVT SrcVT
= Op
.getValueType();
5615 EVT DstVT
= N
->getValueType(0);
5616 const bool HasFullFP16
= Subtarget
->hasFullFP16();
5618 if (SrcVT
== MVT::f32
&& DstVT
== MVT::i32
) {
5619 // FullFP16: half values are passed in S-registers, and we don't
5620 // need any of the bitcast and moves:
5622 // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5623 // t5: i32 = bitcast t2
5624 // t18: f16 = ARMISD::VMOVhr t5
5625 if (Op
.getOpcode() != ISD::CopyFromReg
||
5626 Op
.getValueType() != MVT::f32
)
5629 auto Move
= N
->use_begin();
5630 if (Move
->getOpcode() != ARMISD::VMOVhr
)
5633 SDValue Ops
[] = { Op
.getOperand(0), Op
.getOperand(1) };
5634 SDValue Copy
= DAG
.getNode(ISD::CopyFromReg
, SDLoc(Op
), MVT::f16
, Ops
);
5635 DAG
.ReplaceAllUsesWith(*Move
, &Copy
);
5639 if (SrcVT
== MVT::i16
&& DstVT
== MVT::f16
) {
5642 // SoftFP: read half-precision arguments:
5645 // t7: i16 = truncate t2 <~~~~ Op
5646 // t8: f16 = bitcast t7 <~~~~ N
5648 if (Op
.getOperand(0).getValueType() == MVT::i32
)
5649 return DAG
.getNode(ARMISD::VMOVhr
, SDLoc(Op
),
5650 MVT::f16
, Op
.getOperand(0));
5655 // Half-precision return values
5656 if (SrcVT
== MVT::f16
&& DstVT
== MVT::i16
) {
5660 // t11: f16 = fadd t8, t10
5661 // t12: i16 = bitcast t11 <~~~ SDNode N
5662 // t13: i32 = zero_extend t12
5663 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5664 // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5666 // transform this into:
5668 // t20: i32 = ARMISD::VMOVrh t11
5669 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5671 auto ZeroExtend
= N
->use_begin();
5672 if (N
->use_size() != 1 || ZeroExtend
->getOpcode() != ISD::ZERO_EXTEND
||
5673 ZeroExtend
->getValueType(0) != MVT::i32
)
5676 auto Copy
= ZeroExtend
->use_begin();
5677 if (Copy
->getOpcode() == ISD::CopyToReg
&&
5678 Copy
->use_begin()->getOpcode() == ARMISD::RET_FLAG
) {
5679 SDValue Cvt
= DAG
.getNode(ARMISD::VMOVrh
, SDLoc(Op
), MVT::i32
, Op
);
5680 DAG
.ReplaceAllUsesWith(*ZeroExtend
, &Cvt
);
5686 if (!(SrcVT
== MVT::i64
|| DstVT
== MVT::i64
))
5689 // Turn i64->f64 into VMOVDRR.
5690 if (SrcVT
== MVT::i64
&& TLI
.isTypeLegal(DstVT
)) {
5691 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5692 // if we can combine the bitcast with its source.
5693 if (SDValue Val
= CombineVMOVDRRCandidateWithVecOp(N
, DAG
))
5696 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5697 DAG
.getConstant(0, dl
, MVT::i32
));
5698 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5699 DAG
.getConstant(1, dl
, MVT::i32
));
5700 return DAG
.getNode(ISD::BITCAST
, dl
, DstVT
,
5701 DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
));
5704 // Turn f64->i64 into VMOVRRD.
5705 if (DstVT
== MVT::i64
&& TLI
.isTypeLegal(SrcVT
)) {
5707 if (DAG
.getDataLayout().isBigEndian() && SrcVT
.isVector() &&
5708 SrcVT
.getVectorNumElements() > 1)
5709 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5710 DAG
.getVTList(MVT::i32
, MVT::i32
),
5711 DAG
.getNode(ARMISD::VREV64
, dl
, SrcVT
, Op
));
5713 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5714 DAG
.getVTList(MVT::i32
, MVT::i32
), Op
);
5715 // Merge the pieces into a single i64 value.
5716 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Cvt
, Cvt
.getValue(1));
5722 /// getZeroVector - Returns a vector of specified type with all zero elements.
5723 /// Zero vectors are used to represent vector negation and in those cases
5724 /// will be implemented with the NEON VNEG instruction. However, VNEG does
5725 /// not support i64 elements, so sometimes the zero vectors will need to be
5726 /// explicitly constructed. Regardless, use a canonical VMOV to create the
5728 static SDValue
getZeroVector(EVT VT
, SelectionDAG
&DAG
, const SDLoc
&dl
) {
5729 assert(VT
.isVector() && "Expected a vector type");
5730 // The canonical modified immediate encoding of a zero vector is....0!
5731 SDValue EncodedVal
= DAG
.getTargetConstant(0, dl
, MVT::i32
);
5732 EVT VmovVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
5733 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, EncodedVal
);
5734 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
5737 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5738 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5739 SDValue
ARMTargetLowering::LowerShiftRightParts(SDValue Op
,
5740 SelectionDAG
&DAG
) const {
5741 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5742 EVT VT
= Op
.getValueType();
5743 unsigned VTBits
= VT
.getSizeInBits();
5745 SDValue ShOpLo
= Op
.getOperand(0);
5746 SDValue ShOpHi
= Op
.getOperand(1);
5747 SDValue ShAmt
= Op
.getOperand(2);
5749 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5750 unsigned Opc
= (Op
.getOpcode() == ISD::SRA_PARTS
) ? ISD::SRA
: ISD::SRL
;
5752 assert(Op
.getOpcode() == ISD::SRA_PARTS
|| Op
.getOpcode() == ISD::SRL_PARTS
);
5754 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5755 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5756 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, ShAmt
);
5757 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5758 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5759 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, RevShAmt
);
5760 SDValue LoSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5761 SDValue LoBigShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ExtraShAmt
);
5762 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5763 ISD::SETGE
, ARMcc
, DAG
, dl
);
5764 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
, LoBigShift
,
5767 SDValue HiSmallShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ShAmt
);
5768 SDValue HiBigShift
= Opc
== ISD::SRA
5769 ? DAG
.getNode(Opc
, dl
, VT
, ShOpHi
,
5770 DAG
.getConstant(VTBits
- 1, dl
, VT
))
5771 : DAG
.getConstant(0, dl
, VT
);
5772 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5773 ISD::SETGE
, ARMcc
, DAG
, dl
);
5774 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5777 SDValue Ops
[2] = { Lo
, Hi
};
5778 return DAG
.getMergeValues(Ops
, dl
);
5781 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5782 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5783 SDValue
ARMTargetLowering::LowerShiftLeftParts(SDValue Op
,
5784 SelectionDAG
&DAG
) const {
5785 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5786 EVT VT
= Op
.getValueType();
5787 unsigned VTBits
= VT
.getSizeInBits();
5789 SDValue ShOpLo
= Op
.getOperand(0);
5790 SDValue ShOpHi
= Op
.getOperand(1);
5791 SDValue ShAmt
= Op
.getOperand(2);
5793 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5795 assert(Op
.getOpcode() == ISD::SHL_PARTS
);
5796 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5797 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5798 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, RevShAmt
);
5799 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, ShAmt
);
5800 SDValue HiSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5802 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5803 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5804 SDValue HiBigShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ExtraShAmt
);
5805 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5806 ISD::SETGE
, ARMcc
, DAG
, dl
);
5807 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5810 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5811 ISD::SETGE
, ARMcc
, DAG
, dl
);
5812 SDValue LoSmallShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
5813 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
,
5814 DAG
.getConstant(0, dl
, VT
), ARMcc
, CCR
, CmpLo
);
5816 SDValue Ops
[2] = { Lo
, Hi
};
5817 return DAG
.getMergeValues(Ops
, dl
);
5820 SDValue
ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
5821 SelectionDAG
&DAG
) const {
5822 // The rounding mode is in bits 23:22 of the FPSCR.
5823 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5824 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5825 // so that the shift + and get folded into a bitfield extract.
5827 SDValue Ops
[] = { DAG
.getEntryNode(),
5828 DAG
.getConstant(Intrinsic::arm_get_fpscr
, dl
, MVT::i32
) };
5830 SDValue FPSCR
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, dl
, MVT::i32
, Ops
);
5831 SDValue FltRounds
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, FPSCR
,
5832 DAG
.getConstant(1U << 22, dl
, MVT::i32
));
5833 SDValue RMODE
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, FltRounds
,
5834 DAG
.getConstant(22, dl
, MVT::i32
));
5835 return DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RMODE
,
5836 DAG
.getConstant(3, dl
, MVT::i32
));
5839 static SDValue
LowerCTTZ(SDNode
*N
, SelectionDAG
&DAG
,
5840 const ARMSubtarget
*ST
) {
5842 EVT VT
= N
->getValueType(0);
5843 if (VT
.isVector() && ST
->hasNEON()) {
5845 // Compute the least significant set bit: LSB = X & -X
5846 SDValue X
= N
->getOperand(0);
5847 SDValue NX
= DAG
.getNode(ISD::SUB
, dl
, VT
, getZeroVector(VT
, DAG
, dl
), X
);
5848 SDValue LSB
= DAG
.getNode(ISD::AND
, dl
, VT
, X
, NX
);
5850 EVT ElemTy
= VT
.getVectorElementType();
5852 if (ElemTy
== MVT::i8
) {
5853 // Compute with: cttz(x) = ctpop(lsb - 1)
5854 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5855 DAG
.getTargetConstant(1, dl
, ElemTy
));
5856 SDValue Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5857 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5860 if ((ElemTy
== MVT::i16
|| ElemTy
== MVT::i32
) &&
5861 (N
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
)) {
5862 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5863 unsigned NumBits
= ElemTy
.getSizeInBits();
5864 SDValue WidthMinus1
=
5865 DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5866 DAG
.getTargetConstant(NumBits
- 1, dl
, ElemTy
));
5867 SDValue CTLZ
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, LSB
);
5868 return DAG
.getNode(ISD::SUB
, dl
, VT
, WidthMinus1
, CTLZ
);
5871 // Compute with: cttz(x) = ctpop(lsb - 1)
5875 if (ElemTy
== MVT::i64
) {
5876 // Load constant 0xffff'ffff'ffff'ffff to register.
5877 SDValue FF
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5878 DAG
.getTargetConstant(0x1eff, dl
, MVT::i32
));
5879 Bits
= DAG
.getNode(ISD::ADD
, dl
, VT
, LSB
, FF
);
5881 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5882 DAG
.getTargetConstant(1, dl
, ElemTy
));
5883 Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5885 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5888 if (!ST
->hasV6T2Ops())
5891 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, VT
, N
->getOperand(0));
5892 return DAG
.getNode(ISD::CTLZ
, dl
, VT
, rbit
);
5895 static SDValue
LowerCTPOP(SDNode
*N
, SelectionDAG
&DAG
,
5896 const ARMSubtarget
*ST
) {
5897 EVT VT
= N
->getValueType(0);
5900 assert(ST
->hasNEON() && "Custom ctpop lowering requires NEON.");
5901 assert((VT
== MVT::v1i64
|| VT
== MVT::v2i64
|| VT
== MVT::v2i32
||
5902 VT
== MVT::v4i32
|| VT
== MVT::v4i16
|| VT
== MVT::v8i16
) &&
5903 "Unexpected type for custom ctpop lowering");
5905 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5906 EVT VT8Bit
= VT
.is64BitVector() ? MVT::v8i8
: MVT::v16i8
;
5907 SDValue Res
= DAG
.getBitcast(VT8Bit
, N
->getOperand(0));
5908 Res
= DAG
.getNode(ISD::CTPOP
, DL
, VT8Bit
, Res
);
5910 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5911 unsigned EltSize
= 8;
5912 unsigned NumElts
= VT
.is64BitVector() ? 8 : 16;
5913 while (EltSize
!= VT
.getScalarSizeInBits()) {
5914 SmallVector
<SDValue
, 8> Ops
;
5915 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddlu
, DL
,
5916 TLI
.getPointerTy(DAG
.getDataLayout())));
5921 MVT WidenVT
= MVT::getVectorVT(MVT::getIntegerVT(EltSize
), NumElts
);
5922 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, WidenVT
, Ops
);
5928 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
5929 /// operand of a vector shift operation, where all the elements of the
5930 /// build_vector must have the same constant integer value.
5931 static bool getVShiftImm(SDValue Op
, unsigned ElementBits
, int64_t &Cnt
) {
5932 // Ignore bit_converts.
5933 while (Op
.getOpcode() == ISD::BITCAST
)
5934 Op
= Op
.getOperand(0);
5935 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
5936 APInt SplatBits
, SplatUndef
;
5937 unsigned SplatBitSize
;
5940 !BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
,
5942 SplatBitSize
> ElementBits
)
5944 Cnt
= SplatBits
.getSExtValue();
5948 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
5949 /// operand of a vector shift left operation. That value must be in the range:
5950 /// 0 <= Value < ElementBits for a left shift; or
5951 /// 0 <= Value <= ElementBits for a long left shift.
5952 static bool isVShiftLImm(SDValue Op
, EVT VT
, bool isLong
, int64_t &Cnt
) {
5953 assert(VT
.isVector() && "vector shift count is not a vector type");
5954 int64_t ElementBits
= VT
.getScalarSizeInBits();
5955 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5957 return (Cnt
>= 0 && (isLong
? Cnt
- 1 : Cnt
) < ElementBits
);
5960 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
5961 /// operand of a vector shift right operation. For a shift opcode, the value
5962 /// is positive, but for an intrinsic the value count must be negative. The
5963 /// absolute value must be in the range:
5964 /// 1 <= |Value| <= ElementBits for a right shift; or
5965 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
5966 static bool isVShiftRImm(SDValue Op
, EVT VT
, bool isNarrow
, bool isIntrinsic
,
5968 assert(VT
.isVector() && "vector shift count is not a vector type");
5969 int64_t ElementBits
= VT
.getScalarSizeInBits();
5970 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5973 return (Cnt
>= 1 && Cnt
<= (isNarrow
? ElementBits
/ 2 : ElementBits
));
5974 if (Cnt
>= -(isNarrow
? ElementBits
/ 2 : ElementBits
) && Cnt
<= -1) {
5981 static SDValue
LowerShift(SDNode
*N
, SelectionDAG
&DAG
,
5982 const ARMSubtarget
*ST
) {
5983 EVT VT
= N
->getValueType(0);
5990 // We essentially have two forms here. Shift by an immediate and shift by a
5991 // vector register (there are also shift by a gpr, but that is just handled
5992 // with a tablegen pattern). We cannot easily match shift by an immediate in
5993 // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
5994 // For shifting by a vector, we don't have VSHR, only VSHL (which can be
5995 // signed or unsigned, and a negative shift indicates a shift right).
5996 if (N
->getOpcode() == ISD::SHL
) {
5997 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
))
5998 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
5999 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
6000 return DAG
.getNode(ARMISD::VSHLu
, dl
, VT
, N
->getOperand(0),
6004 assert((N
->getOpcode() == ISD::SRA
|| N
->getOpcode() == ISD::SRL
) &&
6005 "unexpected vector shift opcode");
6007 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
6008 unsigned VShiftOpc
=
6009 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
6010 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
6011 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
6014 // Other right shifts we don't have operations for (we use a shift left by a
6015 // negative number).
6016 EVT ShiftVT
= N
->getOperand(1).getValueType();
6017 SDValue NegatedCount
= DAG
.getNode(
6018 ISD::SUB
, dl
, ShiftVT
, getZeroVector(ShiftVT
, DAG
, dl
), N
->getOperand(1));
6019 unsigned VShiftOpc
=
6020 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHLs
: ARMISD::VSHLu
);
6021 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0), NegatedCount
);
6024 static SDValue
Expand64BitShift(SDNode
*N
, SelectionDAG
&DAG
,
6025 const ARMSubtarget
*ST
) {
6026 EVT VT
= N
->getValueType(0);
6029 // We can get here for a node like i32 = ISD::SHL i32, i64
6033 assert((N
->getOpcode() == ISD::SRL
|| N
->getOpcode() == ISD::SRA
||
6034 N
->getOpcode() == ISD::SHL
) &&
6035 "Unknown shift to lower!");
6037 unsigned ShOpc
= N
->getOpcode();
6038 if (ST
->hasMVEIntegerOps()) {
6039 SDValue ShAmt
= N
->getOperand(1);
6040 unsigned ShPartsOpc
= ARMISD::LSLL
;
6041 ConstantSDNode
*Con
= dyn_cast
<ConstantSDNode
>(ShAmt
);
6043 // If the shift amount is greater than 32 or has a greater bitwidth than 64
6044 // then do the default optimisation
6045 if (ShAmt
->getValueType(0).getSizeInBits() > 64 ||
6046 (Con
&& (Con
->getZExtValue() == 0 || Con
->getZExtValue() >= 32)))
6049 // Extract the lower 32 bits of the shift amount if it's not an i32
6050 if (ShAmt
->getValueType(0) != MVT::i32
)
6051 ShAmt
= DAG
.getZExtOrTrunc(ShAmt
, dl
, MVT::i32
);
6053 if (ShOpc
== ISD::SRL
) {
6055 // There is no t2LSRLr instruction so negate and perform an lsll if the
6056 // shift amount is in a register, emulating a right shift.
6057 ShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
6058 DAG
.getConstant(0, dl
, MVT::i32
), ShAmt
);
6060 // Else generate an lsrl on the immediate shift amount
6061 ShPartsOpc
= ARMISD::LSRL
;
6062 } else if (ShOpc
== ISD::SRA
)
6063 ShPartsOpc
= ARMISD::ASRL
;
6065 // Lower 32 bits of the destination/source
6066 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6067 DAG
.getConstant(0, dl
, MVT::i32
));
6068 // Upper 32 bits of the destination/source
6069 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6070 DAG
.getConstant(1, dl
, MVT::i32
));
6072 // Generate the shift operation as computed above
6073 Lo
= DAG
.getNode(ShPartsOpc
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
), Lo
, Hi
,
6075 // The upper 32 bits come from the second return value of lsll
6076 Hi
= SDValue(Lo
.getNode(), 1);
6077 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6080 // We only lower SRA, SRL of 1 here, all others use generic lowering.
6081 if (!isOneConstant(N
->getOperand(1)) || N
->getOpcode() == ISD::SHL
)
6084 // If we are in thumb mode, we don't have RRX.
6085 if (ST
->isThumb1Only())
6088 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
6089 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6090 DAG
.getConstant(0, dl
, MVT::i32
));
6091 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6092 DAG
.getConstant(1, dl
, MVT::i32
));
6094 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
6095 // captures the result into a carry flag.
6096 unsigned Opc
= N
->getOpcode() == ISD::SRL
? ARMISD::SRL_FLAG
:ARMISD::SRA_FLAG
;
6097 Hi
= DAG
.getNode(Opc
, dl
, DAG
.getVTList(MVT::i32
, MVT::Glue
), Hi
);
6099 // The low part is an ARMISD::RRX operand, which shifts the carry in.
6100 Lo
= DAG
.getNode(ARMISD::RRX
, dl
, MVT::i32
, Lo
, Hi
.getValue(1));
6102 // Merge the pieces into a single i64 value.
6103 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6106 static SDValue
LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
,
6107 const ARMSubtarget
*ST
) {
6108 bool Invert
= false;
6110 unsigned Opc
= ARMCC::AL
;
6112 SDValue Op0
= Op
.getOperand(0);
6113 SDValue Op1
= Op
.getOperand(1);
6114 SDValue CC
= Op
.getOperand(2);
6115 EVT VT
= Op
.getValueType();
6116 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
6121 CmpVT
= Op0
.getValueType().changeVectorElementTypeToInteger();
6123 assert(ST
->hasMVEIntegerOps() &&
6124 "No hardware support for integer vector comparison!");
6126 if (Op
.getValueType().getVectorElementType() != MVT::i1
)
6129 // Make sure we expand floating point setcc to scalar if we do not have
6130 // mve.fp, so that we can handle them from there.
6131 if (Op0
.getValueType().isFloatingPoint() && !ST
->hasMVEFloatOps())
6137 if (Op0
.getValueType().getVectorElementType() == MVT::i64
&&
6138 (SetCCOpcode
== ISD::SETEQ
|| SetCCOpcode
== ISD::SETNE
)) {
6139 // Special-case integer 64-bit equality comparisons. They aren't legal,
6140 // but they can be lowered with a few vector instructions.
6141 unsigned CmpElements
= CmpVT
.getVectorNumElements() * 2;
6142 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, CmpElements
);
6143 SDValue CastOp0
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op0
);
6144 SDValue CastOp1
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op1
);
6145 SDValue Cmp
= DAG
.getNode(ISD::SETCC
, dl
, SplitVT
, CastOp0
, CastOp1
,
6146 DAG
.getCondCode(ISD::SETEQ
));
6147 SDValue Reversed
= DAG
.getNode(ARMISD::VREV64
, dl
, SplitVT
, Cmp
);
6148 SDValue Merged
= DAG
.getNode(ISD::AND
, dl
, SplitVT
, Cmp
, Reversed
);
6149 Merged
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, Merged
);
6150 if (SetCCOpcode
== ISD::SETNE
)
6151 Merged
= DAG
.getNOT(dl
, Merged
, CmpVT
);
6152 Merged
= DAG
.getSExtOrTrunc(Merged
, dl
, VT
);
6156 if (CmpVT
.getVectorElementType() == MVT::i64
)
6157 // 64-bit comparisons are not legal in general.
6160 if (Op1
.getValueType().isFloatingPoint()) {
6161 switch (SetCCOpcode
) {
6162 default: llvm_unreachable("Illegal FP comparison");
6165 if (ST
->hasMVEFloatOps()) {
6166 Opc
= ARMCC::NE
; break;
6168 Invert
= true; LLVM_FALLTHROUGH
;
6171 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6173 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6175 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6177 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6179 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6180 case ISD::SETUGE
: Swap
= true; LLVM_FALLTHROUGH
;
6181 case ISD::SETULE
: Invert
= true; Opc
= ARMCC::GT
; break;
6182 case ISD::SETUGT
: Swap
= true; LLVM_FALLTHROUGH
;
6183 case ISD::SETULT
: Invert
= true; Opc
= ARMCC::GE
; break;
6184 case ISD::SETUEQ
: Invert
= true; LLVM_FALLTHROUGH
;
6186 // Expand this to (OLT | OGT).
6187 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6188 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6189 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6190 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6191 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6193 Result
= DAG
.getNOT(dl
, Result
, VT
);
6196 case ISD::SETUO
: Invert
= true; LLVM_FALLTHROUGH
;
6198 // Expand this to (OLT | OGE).
6199 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6200 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6201 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6202 DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
));
6203 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6205 Result
= DAG
.getNOT(dl
, Result
, VT
);
6210 // Integer comparisons.
6211 switch (SetCCOpcode
) {
6212 default: llvm_unreachable("Illegal integer comparison");
6214 if (ST
->hasMVEIntegerOps()) {
6215 Opc
= ARMCC::NE
; break;
6217 Invert
= true; LLVM_FALLTHROUGH
;
6219 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6220 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6221 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6222 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6223 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6224 case ISD::SETULT
: Swap
= true; LLVM_FALLTHROUGH
;
6225 case ISD::SETUGT
: Opc
= ARMCC::HI
; break;
6226 case ISD::SETULE
: Swap
= true; LLVM_FALLTHROUGH
;
6227 case ISD::SETUGE
: Opc
= ARMCC::HS
; break;
6230 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6231 if (ST
->hasNEON() && Opc
== ARMCC::EQ
) {
6233 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6235 else if (ISD::isBuildVectorAllZeros(Op0
.getNode()))
6238 // Ignore bitconvert.
6239 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::BITCAST
)
6240 AndOp
= AndOp
.getOperand(0);
6242 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::AND
) {
6243 Op0
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(0));
6244 Op1
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(1));
6245 SDValue Result
= DAG
.getNode(ARMISD::VTST
, dl
, CmpVT
, Op0
, Op1
);
6247 Result
= DAG
.getNOT(dl
, Result
, VT
);
6254 std::swap(Op0
, Op1
);
6256 // If one of the operands is a constant vector zero, attempt to fold the
6257 // comparison to a specialized compare-against-zero form.
6259 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6261 else if (ISD::isBuildVectorAllZeros(Op0
.getNode())) {
6262 if (Opc
== ARMCC::GE
)
6264 else if (Opc
== ARMCC::GT
)
6270 if (SingleOp
.getNode()) {
6271 Result
= DAG
.getNode(ARMISD::VCMPZ
, dl
, CmpVT
, SingleOp
,
6272 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6274 Result
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6275 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6278 Result
= DAG
.getSExtOrTrunc(Result
, dl
, VT
);
6281 Result
= DAG
.getNOT(dl
, Result
, VT
);
6286 static SDValue
LowerSETCCCARRY(SDValue Op
, SelectionDAG
&DAG
) {
6287 SDValue LHS
= Op
.getOperand(0);
6288 SDValue RHS
= Op
.getOperand(1);
6289 SDValue Carry
= Op
.getOperand(2);
6290 SDValue Cond
= Op
.getOperand(3);
6293 assert(LHS
.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6295 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6296 // have to invert the carry first.
6297 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
6298 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
6299 // This converts the boolean value carry into the carry flag.
6300 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
6302 SDVTList VTs
= DAG
.getVTList(LHS
.getValueType(), MVT::i32
);
6303 SDValue Cmp
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, LHS
, RHS
, Carry
);
6305 SDValue FVal
= DAG
.getConstant(0, DL
, MVT::i32
);
6306 SDValue TVal
= DAG
.getConstant(1, DL
, MVT::i32
);
6307 SDValue ARMcc
= DAG
.getConstant(
6308 IntCCToARMCC(cast
<CondCodeSDNode
>(Cond
)->get()), DL
, MVT::i32
);
6309 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
6310 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, ARM::CPSR
,
6311 Cmp
.getValue(1), SDValue());
6312 return DAG
.getNode(ARMISD::CMOV
, DL
, Op
.getValueType(), FVal
, TVal
, ARMcc
,
6313 CCR
, Chain
.getValue(1));
6316 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6317 /// valid vector constant for a NEON or MVE instruction with a "modified
6318 /// immediate" operand (e.g., VMOV). If so, return the encoded value.
6319 static SDValue
isVMOVModifiedImm(uint64_t SplatBits
, uint64_t SplatUndef
,
6320 unsigned SplatBitSize
, SelectionDAG
&DAG
,
6321 const SDLoc
&dl
, EVT
&VT
, bool is128Bits
,
6322 VMOVModImmType type
) {
6323 unsigned OpCmode
, Imm
;
6325 // SplatBitSize is set to the smallest size that splats the vector, so a
6326 // zero vector will always have SplatBitSize == 8. However, NEON modified
6327 // immediate instructions others than VMOV do not support the 8-bit encoding
6328 // of a zero vector, and the default encoding of zero is supposed to be the
6333 switch (SplatBitSize
) {
6335 if (type
!= VMOVModImm
)
6337 // Any 1-byte value is OK. Op=0, Cmode=1110.
6338 assert((SplatBits
& ~0xff) == 0 && "one byte splat value is too big");
6341 VT
= is128Bits
? MVT::v16i8
: MVT::v8i8
;
6345 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6346 VT
= is128Bits
? MVT::v8i16
: MVT::v4i16
;
6347 if ((SplatBits
& ~0xff) == 0) {
6348 // Value = 0x00nn: Op=x, Cmode=100x.
6353 if ((SplatBits
& ~0xff00) == 0) {
6354 // Value = 0xnn00: Op=x, Cmode=101x.
6356 Imm
= SplatBits
>> 8;
6362 // NEON's 32-bit VMOV supports splat values where:
6363 // * only one byte is nonzero, or
6364 // * the least significant byte is 0xff and the second byte is nonzero, or
6365 // * the least significant 2 bytes are 0xff and the third is nonzero.
6366 VT
= is128Bits
? MVT::v4i32
: MVT::v2i32
;
6367 if ((SplatBits
& ~0xff) == 0) {
6368 // Value = 0x000000nn: Op=x, Cmode=000x.
6373 if ((SplatBits
& ~0xff00) == 0) {
6374 // Value = 0x0000nn00: Op=x, Cmode=001x.
6376 Imm
= SplatBits
>> 8;
6379 if ((SplatBits
& ~0xff0000) == 0) {
6380 // Value = 0x00nn0000: Op=x, Cmode=010x.
6382 Imm
= SplatBits
>> 16;
6385 if ((SplatBits
& ~0xff000000) == 0) {
6386 // Value = 0xnn000000: Op=x, Cmode=011x.
6388 Imm
= SplatBits
>> 24;
6392 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6393 if (type
== OtherModImm
) return SDValue();
6395 if ((SplatBits
& ~0xffff) == 0 &&
6396 ((SplatBits
| SplatUndef
) & 0xff) == 0xff) {
6397 // Value = 0x0000nnff: Op=x, Cmode=1100.
6399 Imm
= SplatBits
>> 8;
6403 // cmode == 0b1101 is not supported for MVE VMVN
6404 if (type
== MVEVMVNModImm
)
6407 if ((SplatBits
& ~0xffffff) == 0 &&
6408 ((SplatBits
| SplatUndef
) & 0xffff) == 0xffff) {
6409 // Value = 0x00nnffff: Op=x, Cmode=1101.
6411 Imm
= SplatBits
>> 16;
6415 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6416 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6417 // VMOV.I32. A (very) minor optimization would be to replicate the value
6418 // and fall through here to test for a valid 64-bit splat. But, then the
6419 // caller would also need to check and handle the change in size.
6423 if (type
!= VMOVModImm
)
6425 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6426 uint64_t BitMask
= 0xff;
6428 unsigned ImmMask
= 1;
6430 for (int ByteNum
= 0; ByteNum
< 8; ++ByteNum
) {
6431 if (((SplatBits
| SplatUndef
) & BitMask
) == BitMask
) {
6434 } else if ((SplatBits
& BitMask
) != 0) {
6441 if (DAG
.getDataLayout().isBigEndian())
6442 // swap higher and lower 32 bit word
6443 Imm
= ((Imm
& 0xf) << 4) | ((Imm
& 0xf0) >> 4);
6445 // Op=1, Cmode=1110.
6447 VT
= is128Bits
? MVT::v2i64
: MVT::v1i64
;
6452 llvm_unreachable("unexpected size for isVMOVModifiedImm");
6455 unsigned EncodedVal
= ARM_AM::createVMOVModImm(OpCmode
, Imm
);
6456 return DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
);
6459 SDValue
ARMTargetLowering::LowerConstantFP(SDValue Op
, SelectionDAG
&DAG
,
6460 const ARMSubtarget
*ST
) const {
6461 EVT VT
= Op
.getValueType();
6462 bool IsDouble
= (VT
== MVT::f64
);
6463 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Op
);
6464 const APFloat
&FPVal
= CFP
->getValueAPF();
6466 // Prevent floating-point constants from using literal loads
6467 // when execute-only is enabled.
6468 if (ST
->genExecuteOnly()) {
6469 // If we can represent the constant as an immediate, don't lower it
6470 if (isFPImmLegal(FPVal
, VT
))
6472 // Otherwise, construct as integer, and move to float register
6473 APInt INTVal
= FPVal
.bitcastToAPInt();
6475 switch (VT
.getSimpleVT().SimpleTy
) {
6477 llvm_unreachable("Unknown floating point type!");
6480 SDValue Lo
= DAG
.getConstant(INTVal
.trunc(32), DL
, MVT::i32
);
6481 SDValue Hi
= DAG
.getConstant(INTVal
.lshr(32).trunc(32), DL
, MVT::i32
);
6482 if (!ST
->isLittle())
6484 return DAG
.getNode(ARMISD::VMOVDRR
, DL
, MVT::f64
, Lo
, Hi
);
6487 return DAG
.getNode(ARMISD::VMOVSR
, DL
, VT
,
6488 DAG
.getConstant(INTVal
, DL
, MVT::i32
));
6492 if (!ST
->hasVFP3Base())
6495 // Use the default (constant pool) lowering for double constants when we have
6497 if (IsDouble
&& !Subtarget
->hasFP64())
6500 // Try splatting with a VMOV.f32...
6501 int ImmVal
= IsDouble
? ARM_AM::getFP64Imm(FPVal
) : ARM_AM::getFP32Imm(FPVal
);
6504 if (IsDouble
|| !ST
->useNEONForSinglePrecisionFP()) {
6505 // We have code in place to select a valid ConstantFP already, no need to
6510 // It's a float and we are trying to use NEON operations where
6511 // possible. Lower it to a splat followed by an extract.
6513 SDValue NewVal
= DAG
.getTargetConstant(ImmVal
, DL
, MVT::i32
);
6514 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVFPIMM
, DL
, MVT::v2f32
,
6516 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecConstant
,
6517 DAG
.getConstant(0, DL
, MVT::i32
));
6520 // The rest of our options are NEON only, make sure that's allowed before
6522 if (!ST
->hasNEON() || (!IsDouble
&& !ST
->useNEONForSinglePrecisionFP()))
6526 uint64_t iVal
= FPVal
.bitcastToAPInt().getZExtValue();
6528 // It wouldn't really be worth bothering for doubles except for one very
6529 // important value, which does happen to match: 0.0. So make sure we don't do
6531 if (IsDouble
&& (iVal
& 0xffffffff) != (iVal
>> 32))
6534 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6535 SDValue NewVal
= isVMOVModifiedImm(iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
),
6536 VMovVT
, false, VMOVModImm
);
6537 if (NewVal
!= SDValue()) {
6539 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVIMM
, DL
, VMovVT
,
6542 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6544 // It's a float: cast and extract a vector element.
6545 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6547 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6548 DAG
.getConstant(0, DL
, MVT::i32
));
6551 // Finally, try a VMVN.i32
6552 NewVal
= isVMOVModifiedImm(~iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
), VMovVT
,
6554 if (NewVal
!= SDValue()) {
6556 SDValue VecConstant
= DAG
.getNode(ARMISD::VMVNIMM
, DL
, VMovVT
, NewVal
);
6559 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6561 // It's a float: cast and extract a vector element.
6562 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6564 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6565 DAG
.getConstant(0, DL
, MVT::i32
));
6571 // check if an VEXT instruction can handle the shuffle mask when the
6572 // vector sources of the shuffle are the same.
6573 static bool isSingletonVEXTMask(ArrayRef
<int> M
, EVT VT
, unsigned &Imm
) {
6574 unsigned NumElts
= VT
.getVectorNumElements();
6576 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6582 // If this is a VEXT shuffle, the immediate value is the index of the first
6583 // element. The other shuffle indices must be the successive elements after
6585 unsigned ExpectedElt
= Imm
;
6586 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6587 // Increment the expected index. If it wraps around, just follow it
6588 // back to index zero and keep going.
6590 if (ExpectedElt
== NumElts
)
6593 if (M
[i
] < 0) continue; // ignore UNDEF indices
6594 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6601 static bool isVEXTMask(ArrayRef
<int> M
, EVT VT
,
6602 bool &ReverseVEXT
, unsigned &Imm
) {
6603 unsigned NumElts
= VT
.getVectorNumElements();
6604 ReverseVEXT
= false;
6606 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6612 // If this is a VEXT shuffle, the immediate value is the index of the first
6613 // element. The other shuffle indices must be the successive elements after
6615 unsigned ExpectedElt
= Imm
;
6616 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6617 // Increment the expected index. If it wraps around, it may still be
6618 // a VEXT but the source vectors must be swapped.
6620 if (ExpectedElt
== NumElts
* 2) {
6625 if (M
[i
] < 0) continue; // ignore UNDEF indices
6626 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6630 // Adjust the index value if the source operands will be swapped.
6637 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6638 /// instruction with the specified blocksize. (The order of the elements
6639 /// within each block of the vector is reversed.)
6640 static bool isVREVMask(ArrayRef
<int> M
, EVT VT
, unsigned BlockSize
) {
6641 assert((BlockSize
==16 || BlockSize
==32 || BlockSize
==64) &&
6642 "Only possible block sizes for VREV are: 16, 32, 64");
6644 unsigned EltSz
= VT
.getScalarSizeInBits();
6648 unsigned NumElts
= VT
.getVectorNumElements();
6649 unsigned BlockElts
= M
[0] + 1;
6650 // If the first shuffle index is UNDEF, be optimistic.
6652 BlockElts
= BlockSize
/ EltSz
;
6654 if (BlockSize
<= EltSz
|| BlockSize
!= BlockElts
* EltSz
)
6657 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6658 if (M
[i
] < 0) continue; // ignore UNDEF indices
6659 if ((unsigned) M
[i
] != (i
- i
%BlockElts
) + (BlockElts
- 1 - i
%BlockElts
))
6666 static bool isVTBLMask(ArrayRef
<int> M
, EVT VT
) {
6667 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6668 // range, then 0 is placed into the resulting vector. So pretty much any mask
6669 // of 8 elements can work here.
6670 return VT
== MVT::v8i8
&& M
.size() == 8;
6673 static unsigned SelectPairHalf(unsigned Elements
, ArrayRef
<int> Mask
,
6675 if (Mask
.size() == Elements
* 2)
6676 return Index
/ Elements
;
6677 return Mask
[Index
] == 0 ? 0 : 1;
6680 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6681 // checking that pairs of elements in the shuffle mask represent the same index
6682 // in each vector, incrementing the expected index by 2 at each step.
6683 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6684 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6686 // WhichResult gives the offset for each element in the mask based on which
6687 // of the two results it belongs to.
6689 // The transpose can be represented either as:
6690 // result1 = shufflevector v1, v2, result1_shuffle_mask
6691 // result2 = shufflevector v1, v2, result2_shuffle_mask
6692 // where v1/v2 and the shuffle masks have the same number of elements
6693 // (here WhichResult (see below) indicates which result is being checked)
6696 // results = shufflevector v1, v2, shuffle_mask
6697 // where both results are returned in one vector and the shuffle mask has twice
6698 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6699 // want to check the low half and high half of the shuffle mask as if it were
6701 static bool isVTRNMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6702 unsigned EltSz
= VT
.getScalarSizeInBits();
6706 unsigned NumElts
= VT
.getVectorNumElements();
6707 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6710 // If the mask is twice as long as the input vector then we need to check the
6711 // upper and lower parts of the mask with a matching value for WhichResult
6712 // FIXME: A mask with only even values will be rejected in case the first
6713 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6714 // M[0] is used to determine WhichResult
6715 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6716 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6717 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6718 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6719 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ NumElts
+ WhichResult
))
6724 if (M
.size() == NumElts
*2)
6730 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6731 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6732 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6733 static bool isVTRN_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6734 unsigned EltSz
= VT
.getScalarSizeInBits();
6738 unsigned NumElts
= VT
.getVectorNumElements();
6739 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6742 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6743 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6744 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6745 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6746 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ WhichResult
))
6751 if (M
.size() == NumElts
*2)
6757 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6758 // that the mask elements are either all even and in steps of size 2 or all odd
6759 // and in steps of size 2.
6760 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6761 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6763 // Requires similar checks to that of isVTRNMask with
6764 // respect the how results are returned.
6765 static bool isVUZPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6766 unsigned EltSz
= VT
.getScalarSizeInBits();
6770 unsigned NumElts
= VT
.getVectorNumElements();
6771 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6774 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6775 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6776 for (unsigned j
= 0; j
< NumElts
; ++j
) {
6777 if (M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != 2 * j
+ WhichResult
)
6782 if (M
.size() == NumElts
*2)
6785 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6786 if (VT
.is64BitVector() && EltSz
== 32)
6792 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6793 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6794 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6795 static bool isVUZP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6796 unsigned EltSz
= VT
.getScalarSizeInBits();
6800 unsigned NumElts
= VT
.getVectorNumElements();
6801 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6804 unsigned Half
= NumElts
/ 2;
6805 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6806 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6807 for (unsigned j
= 0; j
< NumElts
; j
+= Half
) {
6808 unsigned Idx
= WhichResult
;
6809 for (unsigned k
= 0; k
< Half
; ++k
) {
6810 int MIdx
= M
[i
+ j
+ k
];
6811 if (MIdx
>= 0 && (unsigned) MIdx
!= Idx
)
6818 if (M
.size() == NumElts
*2)
6821 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6822 if (VT
.is64BitVector() && EltSz
== 32)
6828 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6829 // that pairs of elements of the shufflemask represent the same index in each
6830 // vector incrementing sequentially through the vectors.
6831 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6832 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6834 // Requires similar checks to that of isVTRNMask with respect the how results
6836 static bool isVZIPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6837 unsigned EltSz
= VT
.getScalarSizeInBits();
6841 unsigned NumElts
= VT
.getVectorNumElements();
6842 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6845 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6846 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6847 unsigned Idx
= WhichResult
* NumElts
/ 2;
6848 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6849 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6850 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
+ NumElts
))
6856 if (M
.size() == NumElts
*2)
6859 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6860 if (VT
.is64BitVector() && EltSz
== 32)
6866 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6867 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6868 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6869 static bool isVZIP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6870 unsigned EltSz
= VT
.getScalarSizeInBits();
6874 unsigned NumElts
= VT
.getVectorNumElements();
6875 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6878 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6879 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6880 unsigned Idx
= WhichResult
* NumElts
/ 2;
6881 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6882 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6883 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
))
6889 if (M
.size() == NumElts
*2)
6892 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6893 if (VT
.is64BitVector() && EltSz
== 32)
6899 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6900 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6901 static unsigned isNEONTwoResultShuffleMask(ArrayRef
<int> ShuffleMask
, EVT VT
,
6902 unsigned &WhichResult
,
6905 if (isVTRNMask(ShuffleMask
, VT
, WhichResult
))
6906 return ARMISD::VTRN
;
6907 if (isVUZPMask(ShuffleMask
, VT
, WhichResult
))
6908 return ARMISD::VUZP
;
6909 if (isVZIPMask(ShuffleMask
, VT
, WhichResult
))
6910 return ARMISD::VZIP
;
6913 if (isVTRN_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6914 return ARMISD::VTRN
;
6915 if (isVUZP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6916 return ARMISD::VUZP
;
6917 if (isVZIP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6918 return ARMISD::VZIP
;
6923 /// \return true if this is a reverse operation on an vector.
6924 static bool isReverseMask(ArrayRef
<int> M
, EVT VT
) {
6925 unsigned NumElts
= VT
.getVectorNumElements();
6926 // Make sure the mask has the right size.
6927 if (NumElts
!= M
.size())
6930 // Look for <15, ..., 3, -1, 1, 0>.
6931 for (unsigned i
= 0; i
!= NumElts
; ++i
)
6932 if (M
[i
] >= 0 && M
[i
] != (int) (NumElts
- 1 - i
))
6938 static bool isVMOVNMask(ArrayRef
<int> M
, EVT VT
, bool Top
) {
6939 unsigned NumElts
= VT
.getVectorNumElements();
6940 // Make sure the mask has the right size.
6941 if (NumElts
!= M
.size() || (VT
!= MVT::v8i16
&& VT
!= MVT::v16i8
))
6945 // Look for <0, N, 2, N+2, 4, N+4, ..>.
6946 // This inserts Input2 into Input1
6948 // Look for <0, N+1, 2, N+3, 4, N+5, ..>
6949 // This inserts Input1 into Input2
6950 unsigned Offset
= Top
? 0 : 1;
6951 for (unsigned i
= 0; i
< NumElts
; i
+=2) {
6952 if (M
[i
] >= 0 && M
[i
] != (int)i
)
6954 if (M
[i
+1] >= 0 && M
[i
+1] != (int)(NumElts
+ i
+ Offset
))
6961 // If N is an integer constant that can be moved into a register in one
6962 // instruction, return an SDValue of such a constant (will become a MOV
6963 // instruction). Otherwise return null.
6964 static SDValue
IsSingleInstrConstant(SDValue N
, SelectionDAG
&DAG
,
6965 const ARMSubtarget
*ST
, const SDLoc
&dl
) {
6967 if (!isa
<ConstantSDNode
>(N
))
6969 Val
= cast
<ConstantSDNode
>(N
)->getZExtValue();
6971 if (ST
->isThumb1Only()) {
6972 if (Val
<= 255 || ~Val
<= 255)
6973 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6975 if (ARM_AM::getSOImmVal(Val
) != -1 || ARM_AM::getSOImmVal(~Val
) != -1)
6976 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6981 static SDValue
LowerBUILD_VECTOR_i1(SDValue Op
, SelectionDAG
&DAG
,
6982 const ARMSubtarget
*ST
) {
6984 EVT VT
= Op
.getValueType();
6986 assert(ST
->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
6988 unsigned NumElts
= VT
.getVectorNumElements();
6990 unsigned BitsPerBool
;
6994 } else if (NumElts
== 8) {
6997 } else if (NumElts
== 16) {
7003 // If this is a single value copied into all lanes (a splat), we can just sign
7004 // extend that single value
7005 SDValue FirstOp
= Op
.getOperand(0);
7006 if (!isa
<ConstantSDNode
>(FirstOp
) &&
7007 std::all_of(std::next(Op
->op_begin()), Op
->op_end(),
7008 [&FirstOp
](SDUse
&U
) {
7009 return U
.get().isUndef() || U
.get() == FirstOp
;
7011 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i32
, FirstOp
,
7012 DAG
.getValueType(MVT::i1
));
7013 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, Op
.getValueType(), Ext
);
7016 // First create base with bits set where known
7017 unsigned Bits32
= 0;
7018 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7019 SDValue V
= Op
.getOperand(i
);
7020 if (!isa
<ConstantSDNode
>(V
) && !V
.isUndef())
7022 bool BitSet
= V
.isUndef() ? false : cast
<ConstantSDNode
>(V
)->getZExtValue();
7024 Bits32
|= BoolMask
<< (i
* BitsPerBool
);
7027 // Add in unknown nodes
7028 SDValue Base
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
,
7029 DAG
.getConstant(Bits32
, dl
, MVT::i32
));
7030 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7031 SDValue V
= Op
.getOperand(i
);
7032 if (isa
<ConstantSDNode
>(V
) || V
.isUndef())
7034 Base
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Base
, V
,
7035 DAG
.getConstant(i
, dl
, MVT::i32
));
7041 // If this is a case we can't handle, return null and let the default
7042 // expansion code take care of it.
7043 SDValue
ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
,
7044 const ARMSubtarget
*ST
) const {
7045 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
7047 EVT VT
= Op
.getValueType();
7049 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
7050 return LowerBUILD_VECTOR_i1(Op
, DAG
, ST
);
7052 APInt SplatBits
, SplatUndef
;
7053 unsigned SplatBitSize
;
7055 if (BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
7056 if (SplatUndef
.isAllOnesValue())
7057 return DAG
.getUNDEF(VT
);
7059 if ((ST
->hasNEON() && SplatBitSize
<= 64) ||
7060 (ST
->hasMVEIntegerOps() && SplatBitSize
<= 32)) {
7061 // Check if an immediate VMOV works.
7063 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
7064 SplatUndef
.getZExtValue(), SplatBitSize
,
7065 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
7068 if (Val
.getNode()) {
7069 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, Val
);
7070 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
7073 // Try an immediate VMVN.
7074 uint64_t NegatedImm
= (~SplatBits
).getZExtValue();
7075 Val
= isVMOVModifiedImm(
7076 NegatedImm
, SplatUndef
.getZExtValue(), SplatBitSize
,
7077 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
7078 ST
->hasMVEIntegerOps() ? MVEVMVNModImm
: VMVNModImm
);
7079 if (Val
.getNode()) {
7080 SDValue Vmov
= DAG
.getNode(ARMISD::VMVNIMM
, dl
, VmovVT
, Val
);
7081 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
7084 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
7085 if ((VT
== MVT::v2f32
|| VT
== MVT::v4f32
) && SplatBitSize
== 32) {
7086 int ImmVal
= ARM_AM::getFP32Imm(SplatBits
);
7088 SDValue Val
= DAG
.getTargetConstant(ImmVal
, dl
, MVT::i32
);
7089 return DAG
.getNode(ARMISD::VMOVFPIMM
, dl
, VT
, Val
);
7095 // Scan through the operands to see if only one value is used.
7097 // As an optimisation, even if more than one value is used it may be more
7098 // profitable to splat with one value then change some lanes.
7100 // Heuristically we decide to do this if the vector has a "dominant" value,
7101 // defined as splatted to more than half of the lanes.
7102 unsigned NumElts
= VT
.getVectorNumElements();
7103 bool isOnlyLowElement
= true;
7104 bool usesOnlyOneValue
= true;
7105 bool hasDominantValue
= false;
7106 bool isConstant
= true;
7108 // Map of the number of times a particular SDValue appears in the
7110 DenseMap
<SDValue
, unsigned> ValueCounts
;
7112 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7113 SDValue V
= Op
.getOperand(i
);
7117 isOnlyLowElement
= false;
7118 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
7121 ValueCounts
.insert(std::make_pair(V
, 0));
7122 unsigned &Count
= ValueCounts
[V
];
7124 // Is this value dominant? (takes up more than half of the lanes)
7125 if (++Count
> (NumElts
/ 2)) {
7126 hasDominantValue
= true;
7130 if (ValueCounts
.size() != 1)
7131 usesOnlyOneValue
= false;
7132 if (!Value
.getNode() && !ValueCounts
.empty())
7133 Value
= ValueCounts
.begin()->first
;
7135 if (ValueCounts
.empty())
7136 return DAG
.getUNDEF(VT
);
7138 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
7139 // Keep going if we are hitting this case.
7140 if (isOnlyLowElement
&& !ISD::isNormalLoad(Value
.getNode()))
7141 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value
);
7143 unsigned EltSize
= VT
.getScalarSizeInBits();
7145 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
7146 // i32 and try again.
7147 if (hasDominantValue
&& EltSize
<= 32) {
7151 // If we are VDUPing a value that comes directly from a vector, that will
7152 // cause an unnecessary move to and from a GPR, where instead we could
7153 // just use VDUPLANE. We can only do this if the lane being extracted
7154 // is at a constant index, as the VDUP from lane instructions only have
7155 // constant-index forms.
7156 ConstantSDNode
*constIndex
;
7157 if (Value
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
7158 (constIndex
= dyn_cast
<ConstantSDNode
>(Value
->getOperand(1)))) {
7159 // We need to create a new undef vector to use for the VDUPLANE if the
7160 // size of the vector from which we get the value is different than the
7161 // size of the vector that we need to create. We will insert the element
7162 // such that the register coalescer will remove unnecessary copies.
7163 if (VT
!= Value
->getOperand(0).getValueType()) {
7164 unsigned index
= constIndex
->getAPIntValue().getLimitedValue() %
7165 VT
.getVectorNumElements();
7166 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7167 DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, DAG
.getUNDEF(VT
),
7168 Value
, DAG
.getConstant(index
, dl
, MVT::i32
)),
7169 DAG
.getConstant(index
, dl
, MVT::i32
));
7171 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7172 Value
->getOperand(0), Value
->getOperand(1));
7174 N
= DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Value
);
7176 if (!usesOnlyOneValue
) {
7177 // The dominant value was splatted as 'N', but we now have to insert
7178 // all differing elements.
7179 for (unsigned I
= 0; I
< NumElts
; ++I
) {
7180 if (Op
.getOperand(I
) == Value
)
7182 SmallVector
<SDValue
, 3> Ops
;
7184 Ops
.push_back(Op
.getOperand(I
));
7185 Ops
.push_back(DAG
.getConstant(I
, dl
, MVT::i32
));
7186 N
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Ops
);
7191 if (VT
.getVectorElementType().isFloatingPoint()) {
7192 SmallVector
<SDValue
, 8> Ops
;
7193 MVT FVT
= VT
.getVectorElementType().getSimpleVT();
7194 assert(FVT
== MVT::f32
|| FVT
== MVT::f16
);
7195 MVT IVT
= (FVT
== MVT::f32
) ? MVT::i32
: MVT::i16
;
7196 for (unsigned i
= 0; i
< NumElts
; ++i
)
7197 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, IVT
,
7199 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), IVT
, NumElts
);
7200 SDValue Val
= DAG
.getBuildVector(VecVT
, dl
, Ops
);
7201 Val
= LowerBUILD_VECTOR(Val
, DAG
, ST
);
7203 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7205 if (usesOnlyOneValue
) {
7206 SDValue Val
= IsSingleInstrConstant(Value
, DAG
, ST
, dl
);
7207 if (isConstant
&& Val
.getNode())
7208 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Val
);
7212 // If all elements are constants and the case above didn't get hit, fall back
7213 // to the default expansion, which will generate a load from the constant
7218 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7220 SDValue shuffle
= ReconstructShuffle(Op
, DAG
);
7221 if (shuffle
!= SDValue())
7225 if (ST
->hasNEON() && VT
.is128BitVector() && VT
!= MVT::v2f64
&& VT
!= MVT::v4f32
) {
7226 // If we haven't found an efficient lowering, try splitting a 128-bit vector
7227 // into two 64-bit vectors; we might discover a better way to lower it.
7228 SmallVector
<SDValue
, 64> Ops(Op
->op_begin(), Op
->op_begin() + NumElts
);
7229 EVT ExtVT
= VT
.getVectorElementType();
7230 EVT HVT
= EVT::getVectorVT(*DAG
.getContext(), ExtVT
, NumElts
/ 2);
7232 DAG
.getBuildVector(HVT
, dl
, makeArrayRef(&Ops
[0], NumElts
/ 2));
7233 if (Lower
.getOpcode() == ISD::BUILD_VECTOR
)
7234 Lower
= LowerBUILD_VECTOR(Lower
, DAG
, ST
);
7235 SDValue Upper
= DAG
.getBuildVector(
7236 HVT
, dl
, makeArrayRef(&Ops
[NumElts
/ 2], NumElts
/ 2));
7237 if (Upper
.getOpcode() == ISD::BUILD_VECTOR
)
7238 Upper
= LowerBUILD_VECTOR(Upper
, DAG
, ST
);
7240 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Lower
, Upper
);
7243 // Vectors with 32- or 64-bit elements can be built by directly assigning
7244 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
7245 // will be legalized.
7246 if (EltSize
>= 32) {
7247 // Do the expansion with floating-point types, since that is what the VFP
7248 // registers are defined to use, and since i64 is not legal.
7249 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7250 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7251 SmallVector
<SDValue
, 8> Ops
;
7252 for (unsigned i
= 0; i
< NumElts
; ++i
)
7253 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, EltVT
, Op
.getOperand(i
)));
7254 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7255 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7258 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7259 // know the default expansion would otherwise fall back on something even
7260 // worse. For a vector with one or two non-undef values, that's
7261 // scalar_to_vector for the elements followed by a shuffle (provided the
7262 // shuffle is valid for the target) and materialization element by element
7263 // on the stack followed by a load for everything else.
7264 if (!isConstant
&& !usesOnlyOneValue
) {
7265 SDValue Vec
= DAG
.getUNDEF(VT
);
7266 for (unsigned i
= 0 ; i
< NumElts
; ++i
) {
7267 SDValue V
= Op
.getOperand(i
);
7270 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i32
);
7271 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Vec
, V
, LaneIdx
);
7279 // Gather data to see if the operation can be modelled as a
7280 // shuffle in combination with VEXTs.
7281 SDValue
ARMTargetLowering::ReconstructShuffle(SDValue Op
,
7282 SelectionDAG
&DAG
) const {
7283 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
7285 EVT VT
= Op
.getValueType();
7286 unsigned NumElts
= VT
.getVectorNumElements();
7288 struct ShuffleSourceInfo
{
7290 unsigned MinElt
= std::numeric_limits
<unsigned>::max();
7291 unsigned MaxElt
= 0;
7293 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7294 // be compatible with the shuffle we intend to construct. As a result
7295 // ShuffleVec will be some sliding window into the original Vec.
7298 // Code should guarantee that element i in Vec starts at element "WindowBase
7299 // + i * WindowScale in ShuffleVec".
7301 int WindowScale
= 1;
7303 ShuffleSourceInfo(SDValue Vec
) : Vec(Vec
), ShuffleVec(Vec
) {}
7305 bool operator ==(SDValue OtherVec
) { return Vec
== OtherVec
; }
7308 // First gather all vectors used as an immediate source for this BUILD_VECTOR
7310 SmallVector
<ShuffleSourceInfo
, 2> Sources
;
7311 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7312 SDValue V
= Op
.getOperand(i
);
7315 else if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
) {
7316 // A shuffle can only come from building a vector from various
7317 // elements of other vectors.
7319 } else if (!isa
<ConstantSDNode
>(V
.getOperand(1))) {
7320 // Furthermore, shuffles require a constant mask, whereas extractelts
7321 // accept variable indices.
7325 // Add this element source to the list if it's not already there.
7326 SDValue SourceVec
= V
.getOperand(0);
7327 auto Source
= llvm::find(Sources
, SourceVec
);
7328 if (Source
== Sources
.end())
7329 Source
= Sources
.insert(Sources
.end(), ShuffleSourceInfo(SourceVec
));
7331 // Update the minimum and maximum lane number seen.
7332 unsigned EltNo
= cast
<ConstantSDNode
>(V
.getOperand(1))->getZExtValue();
7333 Source
->MinElt
= std::min(Source
->MinElt
, EltNo
);
7334 Source
->MaxElt
= std::max(Source
->MaxElt
, EltNo
);
7337 // Currently only do something sane when at most two source vectors
7339 if (Sources
.size() > 2)
7342 // Find out the smallest element size among result and two sources, and use
7343 // it as element size to build the shuffle_vector.
7344 EVT SmallestEltTy
= VT
.getVectorElementType();
7345 for (auto &Source
: Sources
) {
7346 EVT SrcEltTy
= Source
.Vec
.getValueType().getVectorElementType();
7347 if (SrcEltTy
.bitsLT(SmallestEltTy
))
7348 SmallestEltTy
= SrcEltTy
;
7350 unsigned ResMultiplier
=
7351 VT
.getScalarSizeInBits() / SmallestEltTy
.getSizeInBits();
7352 NumElts
= VT
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7353 EVT ShuffleVT
= EVT::getVectorVT(*DAG
.getContext(), SmallestEltTy
, NumElts
);
7355 // If the source vector is too wide or too narrow, we may nevertheless be able
7356 // to construct a compatible shuffle either by concatenating it with UNDEF or
7357 // extracting a suitable range of elements.
7358 for (auto &Src
: Sources
) {
7359 EVT SrcVT
= Src
.ShuffleVec
.getValueType();
7361 if (SrcVT
.getSizeInBits() == VT
.getSizeInBits())
7364 // This stage of the search produces a source with the same element type as
7365 // the original, but with a total width matching the BUILD_VECTOR output.
7366 EVT EltVT
= SrcVT
.getVectorElementType();
7367 unsigned NumSrcElts
= VT
.getSizeInBits() / EltVT
.getSizeInBits();
7368 EVT DestVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumSrcElts
);
7370 if (SrcVT
.getSizeInBits() < VT
.getSizeInBits()) {
7371 if (2 * SrcVT
.getSizeInBits() != VT
.getSizeInBits())
7373 // We can pad out the smaller vector for free, so if it's part of a
7376 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestVT
, Src
.ShuffleVec
,
7377 DAG
.getUNDEF(Src
.ShuffleVec
.getValueType()));
7381 if (SrcVT
.getSizeInBits() != 2 * VT
.getSizeInBits())
7384 if (Src
.MaxElt
- Src
.MinElt
>= NumSrcElts
) {
7385 // Span too large for a VEXT to cope
7389 if (Src
.MinElt
>= NumSrcElts
) {
7390 // The extraction can just take the second half
7392 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7393 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7394 Src
.WindowBase
= -NumSrcElts
;
7395 } else if (Src
.MaxElt
< NumSrcElts
) {
7396 // The extraction can just take the first half
7398 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7399 DAG
.getConstant(0, dl
, MVT::i32
));
7401 // An actual VEXT is needed
7403 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7404 DAG
.getConstant(0, dl
, MVT::i32
));
7406 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7407 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7409 Src
.ShuffleVec
= DAG
.getNode(ARMISD::VEXT
, dl
, DestVT
, VEXTSrc1
,
7411 DAG
.getConstant(Src
.MinElt
, dl
, MVT::i32
));
7412 Src
.WindowBase
= -Src
.MinElt
;
7416 // Another possible incompatibility occurs from the vector element types. We
7417 // can fix this by bitcasting the source vectors to the same type we intend
7419 for (auto &Src
: Sources
) {
7420 EVT SrcEltTy
= Src
.ShuffleVec
.getValueType().getVectorElementType();
7421 if (SrcEltTy
== SmallestEltTy
)
7423 assert(ShuffleVT
.getVectorElementType() == SmallestEltTy
);
7424 Src
.ShuffleVec
= DAG
.getNode(ISD::BITCAST
, dl
, ShuffleVT
, Src
.ShuffleVec
);
7425 Src
.WindowScale
= SrcEltTy
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7426 Src
.WindowBase
*= Src
.WindowScale
;
7429 // Final sanity check before we try to actually produce a shuffle.
7430 LLVM_DEBUG(for (auto Src
7432 assert(Src
.ShuffleVec
.getValueType() == ShuffleVT
););
7434 // The stars all align, our next step is to produce the mask for the shuffle.
7435 SmallVector
<int, 8> Mask(ShuffleVT
.getVectorNumElements(), -1);
7436 int BitsPerShuffleLane
= ShuffleVT
.getScalarSizeInBits();
7437 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
7438 SDValue Entry
= Op
.getOperand(i
);
7439 if (Entry
.isUndef())
7442 auto Src
= llvm::find(Sources
, Entry
.getOperand(0));
7443 int EltNo
= cast
<ConstantSDNode
>(Entry
.getOperand(1))->getSExtValue();
7445 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7446 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7448 EVT OrigEltTy
= Entry
.getOperand(0).getValueType().getVectorElementType();
7449 int BitsDefined
= std::min(OrigEltTy
.getSizeInBits(),
7450 VT
.getScalarSizeInBits());
7451 int LanesDefined
= BitsDefined
/ BitsPerShuffleLane
;
7453 // This source is expected to fill ResMultiplier lanes of the final shuffle,
7454 // starting at the appropriate offset.
7455 int *LaneMask
= &Mask
[i
* ResMultiplier
];
7457 int ExtractBase
= EltNo
* Src
->WindowScale
+ Src
->WindowBase
;
7458 ExtractBase
+= NumElts
* (Src
- Sources
.begin());
7459 for (int j
= 0; j
< LanesDefined
; ++j
)
7460 LaneMask
[j
] = ExtractBase
+ j
;
7464 // We can't handle more than two sources. This should have already
7465 // been checked before this point.
7466 assert(Sources
.size() <= 2 && "Too many sources!");
7468 SDValue ShuffleOps
[] = { DAG
.getUNDEF(ShuffleVT
), DAG
.getUNDEF(ShuffleVT
) };
7469 for (unsigned i
= 0; i
< Sources
.size(); ++i
)
7470 ShuffleOps
[i
] = Sources
[i
].ShuffleVec
;
7472 SDValue Shuffle
= buildLegalVectorShuffle(ShuffleVT
, dl
, ShuffleOps
[0],
7473 ShuffleOps
[1], Mask
, DAG
);
7476 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Shuffle
);
7479 enum ShuffleOpCodes
{
7480 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7489 OP_VUZPL
, // VUZP, left result
7490 OP_VUZPR
, // VUZP, right result
7491 OP_VZIPL
, // VZIP, left result
7492 OP_VZIPR
, // VZIP, right result
7493 OP_VTRNL
, // VTRN, left result
7494 OP_VTRNR
// VTRN, right result
7497 static bool isLegalMVEShuffleOp(unsigned PFEntry
) {
7498 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7511 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7512 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7513 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7514 /// are assumed to be legal.
7515 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef
<int> M
, EVT VT
) const {
7516 if (VT
.getVectorNumElements() == 4 &&
7517 (VT
.is128BitVector() || VT
.is64BitVector())) {
7518 unsigned PFIndexes
[4];
7519 for (unsigned i
= 0; i
!= 4; ++i
) {
7523 PFIndexes
[i
] = M
[i
];
7526 // Compute the index in the perfect shuffle table.
7527 unsigned PFTableIndex
=
7528 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7529 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7530 unsigned Cost
= (PFEntry
>> 30);
7532 if (Cost
<= 4 && (Subtarget
->hasNEON() || isLegalMVEShuffleOp(PFEntry
)))
7536 bool ReverseVEXT
, isV_UNDEF
;
7537 unsigned Imm
, WhichResult
;
7539 unsigned EltSize
= VT
.getScalarSizeInBits();
7540 if (EltSize
>= 32 ||
7541 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
7542 ShuffleVectorInst::isIdentityMask(M
) ||
7543 isVREVMask(M
, VT
, 64) ||
7544 isVREVMask(M
, VT
, 32) ||
7545 isVREVMask(M
, VT
, 16))
7547 else if (Subtarget
->hasNEON() &&
7548 (isVEXTMask(M
, VT
, ReverseVEXT
, Imm
) ||
7549 isVTBLMask(M
, VT
) ||
7550 isNEONTwoResultShuffleMask(M
, VT
, WhichResult
, isV_UNDEF
)))
7552 else if (Subtarget
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7553 isReverseMask(M
, VT
))
7555 else if (Subtarget
->hasMVEIntegerOps() &&
7556 (isVMOVNMask(M
, VT
, 0) || isVMOVNMask(M
, VT
, 1)))
7562 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7563 /// the specified operations to build the shuffle.
7564 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
7565 SDValue RHS
, SelectionDAG
&DAG
,
7567 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7568 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7569 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7571 if (OpNum
== OP_COPY
) {
7572 if (LHSID
== (1*9+2)*9+3) return LHS
;
7573 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7577 SDValue OpLHS
, OpRHS
;
7578 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
7579 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
7580 EVT VT
= OpLHS
.getValueType();
7583 default: llvm_unreachable("Unknown shuffle opcode!");
7585 // VREV divides the vector in half and swaps within the half.
7586 if (VT
.getVectorElementType() == MVT::i32
||
7587 VT
.getVectorElementType() == MVT::f32
)
7588 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, OpLHS
);
7589 // vrev <4 x i16> -> VREV32
7590 if (VT
.getVectorElementType() == MVT::i16
)
7591 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, OpLHS
);
7592 // vrev <4 x i8> -> VREV16
7593 assert(VT
.getVectorElementType() == MVT::i8
);
7594 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, OpLHS
);
7599 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7600 OpLHS
, DAG
.getConstant(OpNum
-OP_VDUP0
, dl
, MVT::i32
));
7604 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
,
7606 DAG
.getConstant(OpNum
- OP_VEXT1
+ 1, dl
, MVT::i32
));
7609 return DAG
.getNode(ARMISD::VUZP
, dl
, DAG
.getVTList(VT
, VT
),
7610 OpLHS
, OpRHS
).getValue(OpNum
-OP_VUZPL
);
7613 return DAG
.getNode(ARMISD::VZIP
, dl
, DAG
.getVTList(VT
, VT
),
7614 OpLHS
, OpRHS
).getValue(OpNum
-OP_VZIPL
);
7617 return DAG
.getNode(ARMISD::VTRN
, dl
, DAG
.getVTList(VT
, VT
),
7618 OpLHS
, OpRHS
).getValue(OpNum
-OP_VTRNL
);
7622 static SDValue
LowerVECTOR_SHUFFLEv8i8(SDValue Op
,
7623 ArrayRef
<int> ShuffleMask
,
7624 SelectionDAG
&DAG
) {
7625 // Check to see if we can use the VTBL instruction.
7626 SDValue V1
= Op
.getOperand(0);
7627 SDValue V2
= Op
.getOperand(1);
7630 SmallVector
<SDValue
, 8> VTBLMask
;
7631 for (ArrayRef
<int>::iterator
7632 I
= ShuffleMask
.begin(), E
= ShuffleMask
.end(); I
!= E
; ++I
)
7633 VTBLMask
.push_back(DAG
.getConstant(*I
, DL
, MVT::i32
));
7635 if (V2
.getNode()->isUndef())
7636 return DAG
.getNode(ARMISD::VTBL1
, DL
, MVT::v8i8
, V1
,
7637 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7639 return DAG
.getNode(ARMISD::VTBL2
, DL
, MVT::v8i8
, V1
, V2
,
7640 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7643 static SDValue
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op
,
7644 SelectionDAG
&DAG
) {
7646 SDValue OpLHS
= Op
.getOperand(0);
7647 EVT VT
= OpLHS
.getValueType();
7649 assert((VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7650 "Expect an v8i16/v16i8 type");
7651 OpLHS
= DAG
.getNode(ARMISD::VREV64
, DL
, VT
, OpLHS
);
7652 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7653 // extract the first 8 bytes into the top double word and the last 8 bytes
7654 // into the bottom double word. The v8i16 case is similar.
7655 unsigned ExtractNum
= (VT
== MVT::v16i8
) ? 8 : 4;
7656 return DAG
.getNode(ARMISD::VEXT
, DL
, VT
, OpLHS
, OpLHS
,
7657 DAG
.getConstant(ExtractNum
, DL
, MVT::i32
));
7660 static EVT
getVectorTyFromPredicateVector(EVT VT
) {
7661 switch (VT
.getSimpleVT().SimpleTy
) {
7669 llvm_unreachable("Unexpected vector predicate type");
7673 static SDValue
PromoteMVEPredVector(SDLoc dl
, SDValue Pred
, EVT VT
,
7674 SelectionDAG
&DAG
) {
7675 // Converting from boolean predicates to integers involves creating a vector
7676 // of all ones or all zeroes and selecting the lanes based upon the real
7679 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl
, MVT::i32
);
7680 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllOnes
);
7683 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl
, MVT::i32
);
7684 AllZeroes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllZeroes
);
7686 // Get full vector type from predicate type
7687 EVT NewVT
= getVectorTyFromPredicateVector(VT
);
7690 // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
7691 // this to a v16i1. This cannot be done with an ordinary bitcast because the
7692 // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
7693 // since we know in hardware the sizes are really the same.
7694 if (VT
!= MVT::v16i1
)
7695 RecastV1
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Pred
);
7699 // Select either all ones or zeroes depending upon the real predicate bits.
7700 SDValue PredAsVector
=
7701 DAG
.getNode(ISD::VSELECT
, dl
, MVT::v16i8
, RecastV1
, AllOnes
, AllZeroes
);
7703 // Recast our new predicate-as-integer v16i8 vector into something
7704 // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
7705 return DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, PredAsVector
);
7708 static SDValue
LowerVECTOR_SHUFFLE_i1(SDValue Op
, SelectionDAG
&DAG
,
7709 const ARMSubtarget
*ST
) {
7710 EVT VT
= Op
.getValueType();
7711 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7712 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7714 assert(ST
->hasMVEIntegerOps() &&
7715 "No support for vector shuffle of boolean predicates");
7717 SDValue V1
= Op
.getOperand(0);
7719 if (isReverseMask(ShuffleMask
, VT
)) {
7720 SDValue cast
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, V1
);
7721 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, MVT::i32
, cast
);
7722 SDValue srl
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, rbit
,
7723 DAG
.getConstant(16, dl
, MVT::i32
));
7724 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
, srl
);
7727 // Until we can come up with optimised cases for every single vector
7728 // shuffle in existence we have chosen the least painful strategy. This is
7729 // to essentially promote the boolean predicate to a 8-bit integer, where
7730 // each predicate represents a byte. Then we fall back on a normal integer
7731 // vector shuffle and convert the result back into a predicate vector. In
7732 // many cases the generated code might be even better than scalar code
7733 // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
7734 // fields in a register into 8 other arbitrary 2-bit fields!
7735 SDValue PredAsVector
= PromoteMVEPredVector(dl
, V1
, VT
, DAG
);
7736 EVT NewVT
= PredAsVector
.getValueType();
7739 SDValue Shuffled
= DAG
.getVectorShuffle(NewVT
, dl
, PredAsVector
,
7740 DAG
.getUNDEF(NewVT
), ShuffleMask
);
7742 // Now return the result of comparing the shuffled vector with zero,
7743 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7744 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, Shuffled
,
7745 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
7748 static SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
,
7749 const ARMSubtarget
*ST
) {
7750 SDValue V1
= Op
.getOperand(0);
7751 SDValue V2
= Op
.getOperand(1);
7753 EVT VT
= Op
.getValueType();
7754 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7755 unsigned EltSize
= VT
.getScalarSizeInBits();
7757 if (ST
->hasMVEIntegerOps() && EltSize
== 1)
7758 return LowerVECTOR_SHUFFLE_i1(Op
, DAG
, ST
);
7760 // Convert shuffles that are directly supported on NEON to target-specific
7761 // DAG nodes, instead of keeping them as shuffles and matching them again
7762 // during code selection. This is more efficient and avoids the possibility
7763 // of inconsistencies between legalization and selection.
7764 // FIXME: floating-point vectors should be canonicalized to integer vectors
7765 // of the same time so that they get CSEd properly.
7766 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7768 if (EltSize
<= 32) {
7769 if (SVN
->isSplat()) {
7770 int Lane
= SVN
->getSplatIndex();
7771 // If this is undef splat, generate it via "just" vdup, if possible.
7772 if (Lane
== -1) Lane
= 0;
7774 // Test if V1 is a SCALAR_TO_VECTOR.
7775 if (Lane
== 0 && V1
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
7776 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7778 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7779 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7781 if (Lane
== 0 && V1
.getOpcode() == ISD::BUILD_VECTOR
&&
7782 !isa
<ConstantSDNode
>(V1
.getOperand(0))) {
7783 bool IsScalarToVector
= true;
7784 for (unsigned i
= 1, e
= V1
.getNumOperands(); i
!= e
; ++i
)
7785 if (!V1
.getOperand(i
).isUndef()) {
7786 IsScalarToVector
= false;
7789 if (IsScalarToVector
)
7790 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7792 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
, V1
,
7793 DAG
.getConstant(Lane
, dl
, MVT::i32
));
7796 bool ReverseVEXT
= false;
7798 if (ST
->hasNEON() && isVEXTMask(ShuffleMask
, VT
, ReverseVEXT
, Imm
)) {
7801 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V2
,
7802 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7805 if (isVREVMask(ShuffleMask
, VT
, 64))
7806 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, V1
);
7807 if (isVREVMask(ShuffleMask
, VT
, 32))
7808 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, V1
);
7809 if (isVREVMask(ShuffleMask
, VT
, 16))
7810 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, V1
);
7812 if (ST
->hasNEON() && V2
->isUndef() && isSingletonVEXTMask(ShuffleMask
, VT
, Imm
)) {
7813 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V1
,
7814 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7817 // Check for Neon shuffles that modify both input vectors in place.
7818 // If both results are used, i.e., if there are two shuffles with the same
7819 // source operands and with masks corresponding to both results of one of
7820 // these operations, DAG memoization will ensure that a single node is
7821 // used for both shuffles.
7822 unsigned WhichResult
= 0;
7823 bool isV_UNDEF
= false;
7824 if (ST
->hasNEON()) {
7825 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7826 ShuffleMask
, VT
, WhichResult
, isV_UNDEF
)) {
7829 return DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(VT
, VT
), V1
, V2
)
7830 .getValue(WhichResult
);
7833 if (ST
->hasMVEIntegerOps()) {
7834 if (isVMOVNMask(ShuffleMask
, VT
, 0))
7835 return DAG
.getNode(ARMISD::VMOVN
, dl
, VT
, V2
, V1
,
7836 DAG
.getConstant(0, dl
, MVT::i32
));
7837 if (isVMOVNMask(ShuffleMask
, VT
, 1))
7838 return DAG
.getNode(ARMISD::VMOVN
, dl
, VT
, V1
, V2
,
7839 DAG
.getConstant(1, dl
, MVT::i32
));
7842 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7843 // shuffles that produce a result larger than their operands with:
7844 // shuffle(concat(v1, undef), concat(v2, undef))
7846 // shuffle(concat(v1, v2), undef)
7847 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7849 // This is useful in the general case, but there are special cases where
7850 // native shuffles produce larger results: the two-result ops.
7852 // Look through the concat when lowering them:
7853 // shuffle(concat(v1, v2), undef)
7855 // concat(VZIP(v1, v2):0, :1)
7857 if (ST
->hasNEON() && V1
->getOpcode() == ISD::CONCAT_VECTORS
&& V2
->isUndef()) {
7858 SDValue SubV1
= V1
->getOperand(0);
7859 SDValue SubV2
= V1
->getOperand(1);
7860 EVT SubVT
= SubV1
.getValueType();
7862 // We expect these to have been canonicalized to -1.
7863 assert(llvm::all_of(ShuffleMask
, [&](int i
) {
7864 return i
< (int)VT
.getVectorNumElements();
7865 }) && "Unexpected shuffle index into UNDEF operand!");
7867 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7868 ShuffleMask
, SubVT
, WhichResult
, isV_UNDEF
)) {
7871 assert((WhichResult
== 0) &&
7872 "In-place shuffle of concat can only have one result!");
7873 SDValue Res
= DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(SubVT
, SubVT
),
7875 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Res
.getValue(0),
7881 // If the shuffle is not directly supported and it has 4 elements, use
7882 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7883 unsigned NumElts
= VT
.getVectorNumElements();
7885 unsigned PFIndexes
[4];
7886 for (unsigned i
= 0; i
!= 4; ++i
) {
7887 if (ShuffleMask
[i
] < 0)
7890 PFIndexes
[i
] = ShuffleMask
[i
];
7893 // Compute the index in the perfect shuffle table.
7894 unsigned PFTableIndex
=
7895 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7896 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7897 unsigned Cost
= (PFEntry
>> 30);
7901 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7902 else if (isLegalMVEShuffleOp(PFEntry
)) {
7903 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7904 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7905 unsigned PFEntryLHS
= PerfectShuffleTable
[LHSID
];
7906 unsigned PFEntryRHS
= PerfectShuffleTable
[RHSID
];
7907 if (isLegalMVEShuffleOp(PFEntryLHS
) && isLegalMVEShuffleOp(PFEntryRHS
))
7908 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7913 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7914 if (EltSize
>= 32) {
7915 // Do the expansion with floating-point types, since that is what the VFP
7916 // registers are defined to use, and since i64 is not legal.
7917 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7918 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7919 V1
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V1
);
7920 V2
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V2
);
7921 SmallVector
<SDValue
, 8> Ops
;
7922 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7923 if (ShuffleMask
[i
] < 0)
7924 Ops
.push_back(DAG
.getUNDEF(EltVT
));
7926 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
,
7927 ShuffleMask
[i
] < (int)NumElts
? V1
: V2
,
7928 DAG
.getConstant(ShuffleMask
[i
] & (NumElts
-1),
7931 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7932 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7935 if (ST
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) && isReverseMask(ShuffleMask
, VT
))
7936 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op
, DAG
);
7938 if (ST
->hasNEON() && VT
== MVT::v8i8
)
7939 if (SDValue NewOp
= LowerVECTOR_SHUFFLEv8i8(Op
, ShuffleMask
, DAG
))
7945 static SDValue
LowerINSERT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7946 const ARMSubtarget
*ST
) {
7947 EVT VecVT
= Op
.getOperand(0).getValueType();
7950 assert(ST
->hasMVEIntegerOps() &&
7951 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7954 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7955 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
7956 unsigned LaneWidth
=
7957 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7958 unsigned Mask
= ((1 << LaneWidth
) - 1) << Lane
* LaneWidth
;
7959 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i32
,
7960 Op
.getOperand(1), DAG
.getValueType(MVT::i1
));
7961 SDValue BFI
= DAG
.getNode(ARMISD::BFI
, dl
, MVT::i32
, Conv
, Ext
,
7962 DAG
.getConstant(~Mask
, dl
, MVT::i32
));
7963 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, Op
.getValueType(), BFI
);
7966 SDValue
ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
7967 SelectionDAG
&DAG
) const {
7968 // INSERT_VECTOR_ELT is legal only for immediate indexes.
7969 SDValue Lane
= Op
.getOperand(2);
7970 if (!isa
<ConstantSDNode
>(Lane
))
7973 SDValue Elt
= Op
.getOperand(1);
7974 EVT EltVT
= Elt
.getValueType();
7976 if (Subtarget
->hasMVEIntegerOps() &&
7977 Op
.getValueType().getScalarSizeInBits() == 1)
7978 return LowerINSERT_VECTOR_ELT_i1(Op
, DAG
, Subtarget
);
7980 if (getTypeAction(*DAG
.getContext(), EltVT
) ==
7981 TargetLowering::TypePromoteFloat
) {
7982 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
7983 // but the type system will try to do that if we don't intervene.
7984 // Reinterpret any such vector-element insertion as one with the
7985 // corresponding integer types.
7989 EVT IEltVT
= MVT::getIntegerVT(EltVT
.getScalarSizeInBits());
7990 assert(getTypeAction(*DAG
.getContext(), IEltVT
) !=
7991 TargetLowering::TypePromoteFloat
);
7993 SDValue VecIn
= Op
.getOperand(0);
7994 EVT VecVT
= VecIn
.getValueType();
7995 EVT IVecVT
= EVT::getVectorVT(*DAG
.getContext(), IEltVT
,
7996 VecVT
.getVectorNumElements());
7998 SDValue IElt
= DAG
.getNode(ISD::BITCAST
, dl
, IEltVT
, Elt
);
7999 SDValue IVecIn
= DAG
.getNode(ISD::BITCAST
, dl
, IVecVT
, VecIn
);
8000 SDValue IVecOut
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, IVecVT
,
8001 IVecIn
, IElt
, Lane
);
8002 return DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, IVecOut
);
8008 static SDValue
LowerEXTRACT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
8009 const ARMSubtarget
*ST
) {
8010 EVT VecVT
= Op
.getOperand(0).getValueType();
8013 assert(ST
->hasMVEIntegerOps() &&
8014 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
8017 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
8018 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
8019 unsigned LaneWidth
=
8020 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
8021 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Conv
,
8022 DAG
.getConstant(Lane
* LaneWidth
, dl
, MVT::i32
));
8026 static SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
,
8027 const ARMSubtarget
*ST
) {
8028 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
8029 SDValue Lane
= Op
.getOperand(1);
8030 if (!isa
<ConstantSDNode
>(Lane
))
8033 SDValue Vec
= Op
.getOperand(0);
8034 EVT VT
= Vec
.getValueType();
8036 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
8037 return LowerEXTRACT_VECTOR_ELT_i1(Op
, DAG
, ST
);
8039 if (Op
.getValueType() == MVT::i32
&& Vec
.getScalarValueSizeInBits() < 32) {
8041 return DAG
.getNode(ARMISD::VGETLANEu
, dl
, MVT::i32
, Vec
, Lane
);
8047 static SDValue
LowerCONCAT_VECTORS_i1(SDValue Op
, SelectionDAG
&DAG
,
8048 const ARMSubtarget
*ST
) {
8049 SDValue V1
= Op
.getOperand(0);
8050 SDValue V2
= Op
.getOperand(1);
8052 EVT VT
= Op
.getValueType();
8053 EVT Op1VT
= V1
.getValueType();
8054 EVT Op2VT
= V2
.getValueType();
8055 unsigned NumElts
= VT
.getVectorNumElements();
8057 assert(Op1VT
== Op2VT
&& "Operand types don't match!");
8058 assert(VT
.getScalarSizeInBits() == 1 &&
8059 "Unexpected custom CONCAT_VECTORS lowering");
8060 assert(ST
->hasMVEIntegerOps() &&
8061 "CONCAT_VECTORS lowering only supported for MVE");
8063 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
8064 SDValue NewV2
= PromoteMVEPredVector(dl
, V2
, Op2VT
, DAG
);
8066 // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
8067 // promoted to v8i16, etc.
8069 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
8071 // Extract the vector elements from Op1 and Op2 one by one and truncate them
8072 // to be the right size for the destination. For example, if Op1 is v4i1 then
8073 // the promoted vector is v4i32. The result of concatentation gives a v8i1,
8074 // which when promoted is v8i16. That means each i32 element from Op1 needs
8075 // truncating to i16 and inserting in the result.
8076 EVT ConcatVT
= MVT::getVectorVT(ElType
, NumElts
);
8077 SDValue ConVec
= DAG
.getNode(ISD::UNDEF
, dl
, ConcatVT
);
8078 auto ExractInto
= [&DAG
, &dl
](SDValue NewV
, SDValue ConVec
, unsigned &j
) {
8079 EVT NewVT
= NewV
.getValueType();
8080 EVT ConcatVT
= ConVec
.getValueType();
8081 for (unsigned i
= 0, e
= NewVT
.getVectorNumElements(); i
< e
; i
++, j
++) {
8082 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV
,
8083 DAG
.getIntPtrConstant(i
, dl
));
8084 ConVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, ConcatVT
, ConVec
, Elt
,
8085 DAG
.getConstant(j
, dl
, MVT::i32
));
8090 ConVec
= ExractInto(NewV1
, ConVec
, j
);
8091 ConVec
= ExractInto(NewV2
, ConVec
, j
);
8093 // Now return the result of comparing the subvector with zero,
8094 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8095 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, ConVec
,
8096 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
8099 static SDValue
LowerCONCAT_VECTORS(SDValue Op
, SelectionDAG
&DAG
,
8100 const ARMSubtarget
*ST
) {
8101 EVT VT
= Op
->getValueType(0);
8102 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
8103 return LowerCONCAT_VECTORS_i1(Op
, DAG
, ST
);
8105 // The only time a CONCAT_VECTORS operation can have legal types is when
8106 // two 64-bit vectors are concatenated to a 128-bit vector.
8107 assert(Op
.getValueType().is128BitVector() && Op
.getNumOperands() == 2 &&
8108 "unexpected CONCAT_VECTORS");
8110 SDValue Val
= DAG
.getUNDEF(MVT::v2f64
);
8111 SDValue Op0
= Op
.getOperand(0);
8112 SDValue Op1
= Op
.getOperand(1);
8114 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
8115 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op0
),
8116 DAG
.getIntPtrConstant(0, dl
));
8118 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
8119 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op1
),
8120 DAG
.getIntPtrConstant(1, dl
));
8121 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Val
);
8124 static SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op
, SelectionDAG
&DAG
,
8125 const ARMSubtarget
*ST
) {
8126 SDValue V1
= Op
.getOperand(0);
8127 SDValue V2
= Op
.getOperand(1);
8129 EVT VT
= Op
.getValueType();
8130 EVT Op1VT
= V1
.getValueType();
8131 unsigned NumElts
= VT
.getVectorNumElements();
8132 unsigned Index
= cast
<ConstantSDNode
>(V2
)->getZExtValue();
8134 assert(VT
.getScalarSizeInBits() == 1 &&
8135 "Unexpected custom EXTRACT_SUBVECTOR lowering");
8136 assert(ST
->hasMVEIntegerOps() &&
8137 "EXTRACT_SUBVECTOR lowering only supported for MVE");
8139 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
8141 // We now have Op1 promoted to a vector of integers, where v8i1 gets
8142 // promoted to v8i16, etc.
8144 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
8146 EVT SubVT
= MVT::getVectorVT(ElType
, NumElts
);
8147 SDValue SubVec
= DAG
.getNode(ISD::UNDEF
, dl
, SubVT
);
8148 for (unsigned i
= Index
, j
= 0; i
< (Index
+ NumElts
); i
++, j
++) {
8149 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV1
,
8150 DAG
.getIntPtrConstant(i
, dl
));
8151 SubVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, SubVT
, SubVec
, Elt
,
8152 DAG
.getConstant(j
, dl
, MVT::i32
));
8155 // Now return the result of comparing the subvector with zero,
8156 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8157 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, SubVec
,
8158 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
8161 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
8162 /// element has been zero/sign-extended, depending on the isSigned parameter,
8163 /// from an integer type half its size.
8164 static bool isExtendedBUILD_VECTOR(SDNode
*N
, SelectionDAG
&DAG
,
8166 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
8167 EVT VT
= N
->getValueType(0);
8168 if (VT
== MVT::v2i64
&& N
->getOpcode() == ISD::BITCAST
) {
8169 SDNode
*BVN
= N
->getOperand(0).getNode();
8170 if (BVN
->getValueType(0) != MVT::v4i32
||
8171 BVN
->getOpcode() != ISD::BUILD_VECTOR
)
8173 unsigned LoElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8174 unsigned HiElt
= 1 - LoElt
;
8175 ConstantSDNode
*Lo0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
));
8176 ConstantSDNode
*Hi0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
));
8177 ConstantSDNode
*Lo1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
+2));
8178 ConstantSDNode
*Hi1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
+2));
8179 if (!Lo0
|| !Hi0
|| !Lo1
|| !Hi1
)
8182 if (Hi0
->getSExtValue() == Lo0
->getSExtValue() >> 32 &&
8183 Hi1
->getSExtValue() == Lo1
->getSExtValue() >> 32)
8186 if (Hi0
->isNullValue() && Hi1
->isNullValue())
8192 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
8195 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
8196 SDNode
*Elt
= N
->getOperand(i
).getNode();
8197 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Elt
)) {
8198 unsigned EltSize
= VT
.getScalarSizeInBits();
8199 unsigned HalfSize
= EltSize
/ 2;
8201 if (!isIntN(HalfSize
, C
->getSExtValue()))
8204 if (!isUIntN(HalfSize
, C
->getZExtValue()))
8215 /// isSignExtended - Check if a node is a vector value that is sign-extended
8216 /// or a constant BUILD_VECTOR with sign-extended elements.
8217 static bool isSignExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8218 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| ISD::isSEXTLoad(N
))
8220 if (isExtendedBUILD_VECTOR(N
, DAG
, true))
8225 /// isZeroExtended - Check if a node is a vector value that is zero-extended
8226 /// or a constant BUILD_VECTOR with zero-extended elements.
8227 static bool isZeroExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8228 if (N
->getOpcode() == ISD::ZERO_EXTEND
|| ISD::isZEXTLoad(N
))
8230 if (isExtendedBUILD_VECTOR(N
, DAG
, false))
8235 static EVT
getExtensionTo64Bits(const EVT
&OrigVT
) {
8236 if (OrigVT
.getSizeInBits() >= 64)
8239 assert(OrigVT
.isSimple() && "Expecting a simple value type");
8241 MVT::SimpleValueType OrigSimpleTy
= OrigVT
.getSimpleVT().SimpleTy
;
8242 switch (OrigSimpleTy
) {
8243 default: llvm_unreachable("Unexpected Vector Type");
8252 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
8253 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
8254 /// We insert the required extension here to get the vector to fill a D register.
8255 static SDValue
AddRequiredExtensionForVMULL(SDValue N
, SelectionDAG
&DAG
,
8258 unsigned ExtOpcode
) {
8259 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
8260 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
8261 // 64-bits we need to insert a new extension so that it will be 64-bits.
8262 assert(ExtTy
.is128BitVector() && "Unexpected extension size");
8263 if (OrigTy
.getSizeInBits() >= 64)
8266 // Must extend size to at least 64 bits to be used as an operand for VMULL.
8267 EVT NewVT
= getExtensionTo64Bits(OrigTy
);
8269 return DAG
.getNode(ExtOpcode
, SDLoc(N
), NewVT
, N
);
8272 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
8273 /// does not do any sign/zero extension. If the original vector is less
8274 /// than 64 bits, an appropriate extension will be added after the load to
8275 /// reach a total size of 64 bits. We have to add the extension separately
8276 /// because ARM does not have a sign/zero extending load for vectors.
8277 static SDValue
SkipLoadExtensionForVMULL(LoadSDNode
*LD
, SelectionDAG
& DAG
) {
8278 EVT ExtendedTy
= getExtensionTo64Bits(LD
->getMemoryVT());
8280 // The load already has the right type.
8281 if (ExtendedTy
== LD
->getMemoryVT())
8282 return DAG
.getLoad(LD
->getMemoryVT(), SDLoc(LD
), LD
->getChain(),
8283 LD
->getBasePtr(), LD
->getPointerInfo(),
8284 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
8286 // We need to create a zextload/sextload. We cannot just create a load
8287 // followed by a zext/zext node because LowerMUL is also run during normal
8288 // operation legalization where we can't create illegal types.
8289 return DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
), ExtendedTy
,
8290 LD
->getChain(), LD
->getBasePtr(), LD
->getPointerInfo(),
8291 LD
->getMemoryVT(), LD
->getAlignment(),
8292 LD
->getMemOperand()->getFlags());
8295 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8296 /// extending load, or BUILD_VECTOR with extended elements, return the
8297 /// unextended value. The unextended vector should be 64 bits so that it can
8298 /// be used as an operand to a VMULL instruction. If the original vector size
8299 /// before extension is less than 64 bits we add a an extension to resize
8300 /// the vector to 64 bits.
8301 static SDValue
SkipExtensionForVMULL(SDNode
*N
, SelectionDAG
&DAG
) {
8302 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| N
->getOpcode() == ISD::ZERO_EXTEND
)
8303 return AddRequiredExtensionForVMULL(N
->getOperand(0), DAG
,
8304 N
->getOperand(0)->getValueType(0),
8308 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
8309 assert((ISD::isSEXTLoad(LD
) || ISD::isZEXTLoad(LD
)) &&
8310 "Expected extending load");
8312 SDValue newLoad
= SkipLoadExtensionForVMULL(LD
, DAG
);
8313 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), newLoad
.getValue(1));
8314 unsigned Opcode
= ISD::isSEXTLoad(LD
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
8316 DAG
.getNode(Opcode
, SDLoc(newLoad
), LD
->getValueType(0), newLoad
);
8317 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 0), extLoad
);
8322 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
8323 // have been legalized as a BITCAST from v4i32.
8324 if (N
->getOpcode() == ISD::BITCAST
) {
8325 SDNode
*BVN
= N
->getOperand(0).getNode();
8326 assert(BVN
->getOpcode() == ISD::BUILD_VECTOR
&&
8327 BVN
->getValueType(0) == MVT::v4i32
&& "expected v4i32 BUILD_VECTOR");
8328 unsigned LowElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8329 return DAG
.getBuildVector(
8330 MVT::v2i32
, SDLoc(N
),
8331 {BVN
->getOperand(LowElt
), BVN
->getOperand(LowElt
+ 2)});
8333 // Construct a new BUILD_VECTOR with elements truncated to half the size.
8334 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "expected BUILD_VECTOR");
8335 EVT VT
= N
->getValueType(0);
8336 unsigned EltSize
= VT
.getScalarSizeInBits() / 2;
8337 unsigned NumElts
= VT
.getVectorNumElements();
8338 MVT TruncVT
= MVT::getIntegerVT(EltSize
);
8339 SmallVector
<SDValue
, 8> Ops
;
8341 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
8342 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(i
));
8343 const APInt
&CInt
= C
->getAPIntValue();
8344 // Element types smaller than 32 bits are not legal, so use i32 elements.
8345 // The values are implicitly truncated so sext vs. zext doesn't matter.
8346 Ops
.push_back(DAG
.getConstant(CInt
.zextOrTrunc(32), dl
, MVT::i32
));
8348 return DAG
.getBuildVector(MVT::getVectorVT(TruncVT
, NumElts
), dl
, Ops
);
8351 static bool isAddSubSExt(SDNode
*N
, SelectionDAG
&DAG
) {
8352 unsigned Opcode
= N
->getOpcode();
8353 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8354 SDNode
*N0
= N
->getOperand(0).getNode();
8355 SDNode
*N1
= N
->getOperand(1).getNode();
8356 return N0
->hasOneUse() && N1
->hasOneUse() &&
8357 isSignExtended(N0
, DAG
) && isSignExtended(N1
, DAG
);
8362 static bool isAddSubZExt(SDNode
*N
, SelectionDAG
&DAG
) {
8363 unsigned Opcode
= N
->getOpcode();
8364 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8365 SDNode
*N0
= N
->getOperand(0).getNode();
8366 SDNode
*N1
= N
->getOperand(1).getNode();
8367 return N0
->hasOneUse() && N1
->hasOneUse() &&
8368 isZeroExtended(N0
, DAG
) && isZeroExtended(N1
, DAG
);
8373 static SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) {
8374 // Multiplications are only custom-lowered for 128-bit vectors so that
8375 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
8376 EVT VT
= Op
.getValueType();
8377 assert(VT
.is128BitVector() && VT
.isInteger() &&
8378 "unexpected type for custom-lowering ISD::MUL");
8379 SDNode
*N0
= Op
.getOperand(0).getNode();
8380 SDNode
*N1
= Op
.getOperand(1).getNode();
8381 unsigned NewOpc
= 0;
8383 bool isN0SExt
= isSignExtended(N0
, DAG
);
8384 bool isN1SExt
= isSignExtended(N1
, DAG
);
8385 if (isN0SExt
&& isN1SExt
)
8386 NewOpc
= ARMISD::VMULLs
;
8388 bool isN0ZExt
= isZeroExtended(N0
, DAG
);
8389 bool isN1ZExt
= isZeroExtended(N1
, DAG
);
8390 if (isN0ZExt
&& isN1ZExt
)
8391 NewOpc
= ARMISD::VMULLu
;
8392 else if (isN1SExt
|| isN1ZExt
) {
8393 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
8394 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
8395 if (isN1SExt
&& isAddSubSExt(N0
, DAG
)) {
8396 NewOpc
= ARMISD::VMULLs
;
8398 } else if (isN1ZExt
&& isAddSubZExt(N0
, DAG
)) {
8399 NewOpc
= ARMISD::VMULLu
;
8401 } else if (isN0ZExt
&& isAddSubZExt(N1
, DAG
)) {
8403 NewOpc
= ARMISD::VMULLu
;
8409 if (VT
== MVT::v2i64
)
8410 // Fall through to expand this. It is not legal.
8413 // Other vector multiplications are legal.
8418 // Legalize to a VMULL instruction.
8421 SDValue Op1
= SkipExtensionForVMULL(N1
, DAG
);
8423 Op0
= SkipExtensionForVMULL(N0
, DAG
);
8424 assert(Op0
.getValueType().is64BitVector() &&
8425 Op1
.getValueType().is64BitVector() &&
8426 "unexpected types for extended operands to VMULL");
8427 return DAG
.getNode(NewOpc
, DL
, VT
, Op0
, Op1
);
8430 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
8431 // isel lowering to take advantage of no-stall back to back vmul + vmla.
8438 SDValue N00
= SkipExtensionForVMULL(N0
->getOperand(0).getNode(), DAG
);
8439 SDValue N01
= SkipExtensionForVMULL(N0
->getOperand(1).getNode(), DAG
);
8440 EVT Op1VT
= Op1
.getValueType();
8441 return DAG
.getNode(N0
->getOpcode(), DL
, VT
,
8442 DAG
.getNode(NewOpc
, DL
, VT
,
8443 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N00
), Op1
),
8444 DAG
.getNode(NewOpc
, DL
, VT
,
8445 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N01
), Op1
));
8448 static SDValue
LowerSDIV_v4i8(SDValue X
, SDValue Y
, const SDLoc
&dl
,
8449 SelectionDAG
&DAG
) {
8450 // TODO: Should this propagate fast-math-flags?
8453 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
8454 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
8455 X
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, X
);
8456 Y
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, Y
);
8457 X
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, X
);
8458 Y
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, Y
);
8459 // Get reciprocal estimate.
8460 // float4 recip = vrecpeq_f32(yf);
8461 Y
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8462 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8464 // Because char has a smaller range than uchar, we can actually get away
8465 // without any newton steps. This requires that we use a weird bias
8466 // of 0xb000, however (again, this has been exhaustively tested).
8467 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
8468 X
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, X
, Y
);
8469 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, X
);
8470 Y
= DAG
.getConstant(0xb000, dl
, MVT::v4i32
);
8471 X
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, X
, Y
);
8472 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, X
);
8473 // Convert back to short.
8474 X
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, X
);
8475 X
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, X
);
8479 static SDValue
LowerSDIV_v4i16(SDValue N0
, SDValue N1
, const SDLoc
&dl
,
8480 SelectionDAG
&DAG
) {
8481 // TODO: Should this propagate fast-math-flags?
8484 // Convert to float.
8485 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
8486 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
8487 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N0
);
8488 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N1
);
8489 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8490 N1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8492 // Use reciprocal estimate and one refinement step.
8493 // float4 recip = vrecpeq_f32(yf);
8494 // recip *= vrecpsq_f32(yf, recip);
8495 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8496 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8498 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8499 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8501 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8502 // Because short has a smaller range than ushort, we can actually get away
8503 // with only a single newton step. This requires that we use a weird bias
8504 // of 89, however (again, this has been exhaustively tested).
8505 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
8506 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8507 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8508 N1
= DAG
.getConstant(0x89, dl
, MVT::v4i32
);
8509 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8510 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8511 // Convert back to integer and return.
8512 // return vmovn_s32(vcvt_s32_f32(result));
8513 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8514 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8518 static SDValue
LowerSDIV(SDValue Op
, SelectionDAG
&DAG
,
8519 const ARMSubtarget
*ST
) {
8520 EVT VT
= Op
.getValueType();
8521 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8522 "unexpected type for custom-lowering ISD::SDIV");
8525 SDValue N0
= Op
.getOperand(0);
8526 SDValue N1
= Op
.getOperand(1);
8529 if (VT
== MVT::v8i8
) {
8530 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N0
);
8531 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N1
);
8533 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8534 DAG
.getIntPtrConstant(4, dl
));
8535 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8536 DAG
.getIntPtrConstant(4, dl
));
8537 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8538 DAG
.getIntPtrConstant(0, dl
));
8539 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8540 DAG
.getIntPtrConstant(0, dl
));
8542 N0
= LowerSDIV_v4i8(N0
, N1
, dl
, DAG
); // v4i16
8543 N2
= LowerSDIV_v4i8(N2
, N3
, dl
, DAG
); // v4i16
8545 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8546 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8548 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v8i8
, N0
);
8551 return LowerSDIV_v4i16(N0
, N1
, dl
, DAG
);
8554 static SDValue
LowerUDIV(SDValue Op
, SelectionDAG
&DAG
,
8555 const ARMSubtarget
*ST
) {
8556 // TODO: Should this propagate fast-math-flags?
8557 EVT VT
= Op
.getValueType();
8558 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8559 "unexpected type for custom-lowering ISD::UDIV");
8562 SDValue N0
= Op
.getOperand(0);
8563 SDValue N1
= Op
.getOperand(1);
8566 if (VT
== MVT::v8i8
) {
8567 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N0
);
8568 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N1
);
8570 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8571 DAG
.getIntPtrConstant(4, dl
));
8572 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8573 DAG
.getIntPtrConstant(4, dl
));
8574 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8575 DAG
.getIntPtrConstant(0, dl
));
8576 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8577 DAG
.getIntPtrConstant(0, dl
));
8579 N0
= LowerSDIV_v4i16(N0
, N1
, dl
, DAG
); // v4i16
8580 N2
= LowerSDIV_v4i16(N2
, N3
, dl
, DAG
); // v4i16
8582 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8583 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8585 N0
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v8i8
,
8586 DAG
.getConstant(Intrinsic::arm_neon_vqmovnsu
, dl
,
8592 // v4i16 sdiv ... Convert to float.
8593 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
8594 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
8595 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N0
);
8596 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N1
);
8597 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8598 SDValue BN1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8600 // Use reciprocal estimate and two refinement steps.
8601 // float4 recip = vrecpeq_f32(yf);
8602 // recip *= vrecpsq_f32(yf, recip);
8603 // recip *= vrecpsq_f32(yf, recip);
8604 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8605 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8607 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8608 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8610 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8611 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8612 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8614 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8615 // Simply multiplying by the reciprocal estimate can leave us a few ulps
8616 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
8617 // and that it will never cause us to return an answer too large).
8618 // float4 result = as_float4(as_int4(xf*recip) + 2);
8619 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8620 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8621 N1
= DAG
.getConstant(2, dl
, MVT::v4i32
);
8622 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8623 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8624 // Convert back to integer and return.
8625 // return vmovn_u32(vcvt_s32_f32(result));
8626 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8627 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8631 static SDValue
LowerADDSUBCARRY(SDValue Op
, SelectionDAG
&DAG
) {
8632 SDNode
*N
= Op
.getNode();
8633 EVT VT
= N
->getValueType(0);
8634 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
8636 SDValue Carry
= Op
.getOperand(2);
8641 if (Op
.getOpcode() == ISD::ADDCARRY
) {
8642 // This converts the boolean value carry into the carry flag.
8643 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8645 // Do the addition proper using the carry flag we wanted.
8646 Result
= DAG
.getNode(ARMISD::ADDE
, DL
, VTs
, Op
.getOperand(0),
8647 Op
.getOperand(1), Carry
);
8649 // Now convert the carry flag into a boolean value.
8650 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8652 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
8653 // have to invert the carry first.
8654 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8655 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8656 // This converts the boolean value carry into the carry flag.
8657 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8659 // Do the subtraction proper using the carry flag we wanted.
8660 Result
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, Op
.getOperand(0),
8661 Op
.getOperand(1), Carry
);
8663 // Now convert the carry flag into a boolean value.
8664 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8665 // But the carry returned by ARMISD::SUBE is not a borrow as expected
8666 // by ISD::SUBCARRY, so compute 1 - C.
8667 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8668 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8671 // Return both values.
8672 return DAG
.getNode(ISD::MERGE_VALUES
, DL
, N
->getVTList(), Result
, Carry
);
8675 SDValue
ARMTargetLowering::LowerFSINCOS(SDValue Op
, SelectionDAG
&DAG
) const {
8676 assert(Subtarget
->isTargetDarwin());
8678 // For iOS, we want to call an alternative entry point: __sincos_stret,
8679 // return values are passed via sret.
8681 SDValue Arg
= Op
.getOperand(0);
8682 EVT ArgVT
= Arg
.getValueType();
8683 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
8684 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
8686 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
8687 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8689 // Pair of floats / doubles used to pass the result.
8690 Type
*RetTy
= StructType::get(ArgTy
, ArgTy
);
8691 auto &DL
= DAG
.getDataLayout();
8694 bool ShouldUseSRet
= Subtarget
->isAPCS_ABI();
8696 if (ShouldUseSRet
) {
8697 // Create stack object for sret.
8698 const uint64_t ByteSize
= DL
.getTypeAllocSize(RetTy
);
8699 const unsigned StackAlign
= DL
.getPrefTypeAlignment(RetTy
);
8700 int FrameIdx
= MFI
.CreateStackObject(ByteSize
, StackAlign
, false);
8701 SRet
= DAG
.getFrameIndex(FrameIdx
, TLI
.getPointerTy(DL
));
8705 Entry
.Ty
= RetTy
->getPointerTo();
8706 Entry
.IsSExt
= false;
8707 Entry
.IsZExt
= false;
8708 Entry
.IsSRet
= true;
8709 Args
.push_back(Entry
);
8710 RetTy
= Type::getVoidTy(*DAG
.getContext());
8716 Entry
.IsSExt
= false;
8717 Entry
.IsZExt
= false;
8718 Args
.push_back(Entry
);
8721 (ArgVT
== MVT::f64
) ? RTLIB::SINCOS_STRET_F64
: RTLIB::SINCOS_STRET_F32
;
8722 const char *LibcallName
= getLibcallName(LC
);
8723 CallingConv::ID CC
= getLibcallCallingConv(LC
);
8724 SDValue Callee
= DAG
.getExternalSymbol(LibcallName
, getPointerTy(DL
));
8726 TargetLowering::CallLoweringInfo
CLI(DAG
);
8728 .setChain(DAG
.getEntryNode())
8729 .setCallee(CC
, RetTy
, Callee
, std::move(Args
))
8730 .setDiscardResult(ShouldUseSRet
);
8731 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
8734 return CallResult
.first
;
8737 DAG
.getLoad(ArgVT
, dl
, CallResult
.second
, SRet
, MachinePointerInfo());
8739 // Address of cos field.
8740 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SRet
,
8741 DAG
.getIntPtrConstant(ArgVT
.getStoreSize(), dl
));
8743 DAG
.getLoad(ArgVT
, dl
, LoadSin
.getValue(1), Add
, MachinePointerInfo());
8745 SDVTList Tys
= DAG
.getVTList(ArgVT
, ArgVT
);
8746 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Tys
,
8747 LoadSin
.getValue(0), LoadCos
.getValue(0));
8750 SDValue
ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op
, SelectionDAG
&DAG
,
8752 SDValue
&Chain
) const {
8753 EVT VT
= Op
.getValueType();
8754 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
8755 "unexpected type for custom lowering DIV");
8758 const auto &DL
= DAG
.getDataLayout();
8759 const auto &TLI
= DAG
.getTargetLoweringInfo();
8761 const char *Name
= nullptr;
8763 Name
= (VT
== MVT::i32
) ? "__rt_sdiv" : "__rt_sdiv64";
8765 Name
= (VT
== MVT::i32
) ? "__rt_udiv" : "__rt_udiv64";
8767 SDValue ES
= DAG
.getExternalSymbol(Name
, TLI
.getPointerTy(DL
));
8769 ARMTargetLowering::ArgListTy Args
;
8771 for (auto AI
: {1, 0}) {
8773 Arg
.Node
= Op
.getOperand(AI
);
8774 Arg
.Ty
= Arg
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
8775 Args
.push_back(Arg
);
8778 CallLoweringInfo
CLI(DAG
);
8781 .setCallee(CallingConv::ARM_AAPCS_VFP
, VT
.getTypeForEVT(*DAG
.getContext()),
8782 ES
, std::move(Args
));
8784 return LowerCallTo(CLI
).first
;
8787 // This is a code size optimisation: return the original SDIV node to
8788 // DAGCombiner when we don't want to expand SDIV into a sequence of
8789 // instructions, and an empty node otherwise which will cause the
8790 // SDIV to be expanded in DAGCombine.
8792 ARMTargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
8794 SmallVectorImpl
<SDNode
*> &Created
) const {
8795 // TODO: Support SREM
8796 if (N
->getOpcode() != ISD::SDIV
)
8799 const auto &ST
= static_cast<const ARMSubtarget
&>(DAG
.getSubtarget());
8800 const bool MinSize
= ST
.hasMinSize();
8801 const bool HasDivide
= ST
.isThumb() ? ST
.hasDivideInThumbMode()
8802 : ST
.hasDivideInARMMode();
8804 // Don't touch vector types; rewriting this may lead to scalarizing
8806 if (N
->getOperand(0).getValueType().isVector())
8809 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
8810 // hwdiv support for this to be really profitable.
8811 if (!(MinSize
&& HasDivide
))
8814 // ARM mode is a bit simpler than Thumb: we can handle large power
8815 // of 2 immediates with 1 mov instruction; no further checks required,
8816 // just return the sdiv node.
8818 return SDValue(N
, 0);
8820 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
8821 // and thus lose the code size benefits of a MOVS that requires only 2.
8822 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
8823 // but as it's doing exactly this, it's not worth the trouble to get TTI.
8824 if (Divisor
.sgt(128))
8827 return SDValue(N
, 0);
8830 SDValue
ARMTargetLowering::LowerDIV_Windows(SDValue Op
, SelectionDAG
&DAG
,
8831 bool Signed
) const {
8832 assert(Op
.getValueType() == MVT::i32
&&
8833 "unexpected type for custom lowering DIV");
8836 SDValue DBZCHK
= DAG
.getNode(ARMISD::WIN__DBZCHK
, dl
, MVT::Other
,
8837 DAG
.getEntryNode(), Op
.getOperand(1));
8839 return LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8842 static SDValue
WinDBZCheckDenominator(SelectionDAG
&DAG
, SDNode
*N
, SDValue InChain
) {
8844 SDValue Op
= N
->getOperand(1);
8845 if (N
->getValueType(0) == MVT::i32
)
8846 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
, Op
);
8847 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8848 DAG
.getConstant(0, DL
, MVT::i32
));
8849 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8850 DAG
.getConstant(1, DL
, MVT::i32
));
8851 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
,
8852 DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Lo
, Hi
));
8855 void ARMTargetLowering::ExpandDIV_Windows(
8856 SDValue Op
, SelectionDAG
&DAG
, bool Signed
,
8857 SmallVectorImpl
<SDValue
> &Results
) const {
8858 const auto &DL
= DAG
.getDataLayout();
8859 const auto &TLI
= DAG
.getTargetLoweringInfo();
8861 assert(Op
.getValueType() == MVT::i64
&&
8862 "unexpected type for custom lowering DIV");
8865 SDValue DBZCHK
= WinDBZCheckDenominator(DAG
, Op
.getNode(), DAG
.getEntryNode());
8867 SDValue Result
= LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8869 SDValue Lower
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Result
);
8870 SDValue Upper
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, Result
,
8871 DAG
.getConstant(32, dl
, TLI
.getPointerTy(DL
)));
8872 Upper
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Upper
);
8874 Results
.push_back(Lower
);
8875 Results
.push_back(Upper
);
8878 static SDValue
LowerPredicateLoad(SDValue Op
, SelectionDAG
&DAG
) {
8879 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
.getNode());
8880 EVT MemVT
= LD
->getMemoryVT();
8881 assert((MemVT
== MVT::v4i1
|| MemVT
== MVT::v8i1
|| MemVT
== MVT::v16i1
) &&
8882 "Expected a predicate type!");
8883 assert(MemVT
== Op
.getValueType());
8884 assert(LD
->getExtensionType() == ISD::NON_EXTLOAD
&&
8885 "Expected a non-extending load");
8886 assert(LD
->isUnindexed() && "Expected a unindexed load");
8888 // The basic MVE VLDR on a v4i1/v8i1 actually loads the entire 16bit
8889 // predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
8890 // need to make sure that 8/4 bits are actually loaded into the correct
8891 // place, which means loading the value and then shuffling the values into
8892 // the bottom bits of the predicate.
8893 // Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
8897 SDValue Load
= DAG
.getExtLoad(
8898 ISD::EXTLOAD
, dl
, MVT::i32
, LD
->getChain(), LD
->getBasePtr(),
8899 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits()),
8900 LD
->getMemOperand());
8901 SDValue Pred
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Load
);
8902 if (MemVT
!= MVT::v16i1
)
8903 Pred
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MemVT
, Pred
,
8904 DAG
.getConstant(0, dl
, MVT::i32
));
8905 return DAG
.getMergeValues({Pred
, Load
.getValue(1)}, dl
);
8908 static SDValue
LowerPredicateStore(SDValue Op
, SelectionDAG
&DAG
) {
8909 StoreSDNode
*ST
= cast
<StoreSDNode
>(Op
.getNode());
8910 EVT MemVT
= ST
->getMemoryVT();
8911 assert((MemVT
== MVT::v4i1
|| MemVT
== MVT::v8i1
|| MemVT
== MVT::v16i1
) &&
8912 "Expected a predicate type!");
8913 assert(MemVT
== ST
->getValue().getValueType());
8914 assert(!ST
->isTruncatingStore() && "Expected a non-extending store");
8915 assert(ST
->isUnindexed() && "Expected a unindexed store");
8917 // Only store the v4i1 or v8i1 worth of bits, via a buildvector with top bits
8918 // unset and a scalar store.
8920 SDValue Build
= ST
->getValue();
8921 if (MemVT
!= MVT::v16i1
) {
8922 SmallVector
<SDValue
, 16> Ops
;
8923 for (unsigned I
= 0; I
< MemVT
.getVectorNumElements(); I
++)
8924 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, Build
,
8925 DAG
.getConstant(I
, dl
, MVT::i32
)));
8926 for (unsigned I
= MemVT
.getVectorNumElements(); I
< 16; I
++)
8927 Ops
.push_back(DAG
.getUNDEF(MVT::i32
));
8928 Build
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v16i1
, Ops
);
8930 SDValue GRP
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Build
);
8931 return DAG
.getTruncStore(
8932 ST
->getChain(), dl
, GRP
, ST
->getBasePtr(),
8933 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits()),
8934 ST
->getMemOperand());
8937 static SDValue
LowerMLOAD(SDValue Op
, SelectionDAG
&DAG
) {
8938 MaskedLoadSDNode
*N
= cast
<MaskedLoadSDNode
>(Op
.getNode());
8939 MVT VT
= Op
.getSimpleValueType();
8940 SDValue Mask
= N
->getMask();
8941 SDValue PassThru
= N
->getPassThru();
8944 auto IsZero
= [](SDValue PassThru
) {
8945 return (ISD::isBuildVectorAllZeros(PassThru
.getNode()) ||
8946 (PassThru
->getOpcode() == ARMISD::VMOVIMM
&&
8947 isNullConstant(PassThru
->getOperand(0))));
8950 if (IsZero(PassThru
))
8953 // MVE Masked loads use zero as the passthru value. Here we convert undef to
8954 // zero too, and other values are lowered to a select.
8955 SDValue ZeroVec
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
8956 DAG
.getTargetConstant(0, dl
, MVT::i32
));
8957 SDValue NewLoad
= DAG
.getMaskedLoad(
8958 VT
, dl
, N
->getChain(), N
->getBasePtr(), Mask
, ZeroVec
, N
->getMemoryVT(),
8959 N
->getMemOperand(), N
->getExtensionType(), N
->isExpandingLoad());
8960 SDValue Combo
= NewLoad
;
8961 if (!PassThru
.isUndef() &&
8962 (PassThru
.getOpcode() != ISD::BITCAST
||
8963 !IsZero(PassThru
->getOperand(0))))
8964 Combo
= DAG
.getNode(ISD::VSELECT
, dl
, VT
, Mask
, NewLoad
, PassThru
);
8965 return DAG
.getMergeValues({Combo
, NewLoad
.getValue(1)}, dl
);
8968 static SDValue
LowerAtomicLoadStore(SDValue Op
, SelectionDAG
&DAG
) {
8969 if (isStrongerThanMonotonic(cast
<AtomicSDNode
>(Op
)->getOrdering()))
8970 // Acquire/Release load/store is not legal for targets without a dmb or
8971 // equivalent available.
8974 // Monotonic load/store is legal for all targets.
8978 static void ReplaceREADCYCLECOUNTER(SDNode
*N
,
8979 SmallVectorImpl
<SDValue
> &Results
,
8981 const ARMSubtarget
*Subtarget
) {
8983 // Under Power Management extensions, the cycle-count is:
8984 // mrc p15, #0, <Rt>, c9, c13, #0
8985 SDValue Ops
[] = { N
->getOperand(0), // Chain
8986 DAG
.getTargetConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
8987 DAG
.getTargetConstant(15, DL
, MVT::i32
),
8988 DAG
.getTargetConstant(0, DL
, MVT::i32
),
8989 DAG
.getTargetConstant(9, DL
, MVT::i32
),
8990 DAG
.getTargetConstant(13, DL
, MVT::i32
),
8991 DAG
.getTargetConstant(0, DL
, MVT::i32
)
8994 SDValue Cycles32
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
8995 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
8996 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Cycles32
,
8997 DAG
.getConstant(0, DL
, MVT::i32
)));
8998 Results
.push_back(Cycles32
.getValue(1));
9001 static SDValue
createGPRPairNode(SelectionDAG
&DAG
, SDValue V
) {
9002 SDLoc
dl(V
.getNode());
9003 SDValue VLo
= DAG
.getAnyExtOrTrunc(V
, dl
, MVT::i32
);
9004 SDValue VHi
= DAG
.getAnyExtOrTrunc(
9005 DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, V
, DAG
.getConstant(32, dl
, MVT::i32
)),
9007 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
9009 std::swap (VLo
, VHi
);
9011 DAG
.getTargetConstant(ARM::GPRPairRegClassID
, dl
, MVT::i32
);
9012 SDValue SubReg0
= DAG
.getTargetConstant(ARM::gsub_0
, dl
, MVT::i32
);
9013 SDValue SubReg1
= DAG
.getTargetConstant(ARM::gsub_1
, dl
, MVT::i32
);
9014 const SDValue Ops
[] = { RegClass
, VLo
, SubReg0
, VHi
, SubReg1
};
9016 DAG
.getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, MVT::Untyped
, Ops
), 0);
9019 static void ReplaceCMP_SWAP_64Results(SDNode
*N
,
9020 SmallVectorImpl
<SDValue
> & Results
,
9021 SelectionDAG
&DAG
) {
9022 assert(N
->getValueType(0) == MVT::i64
&&
9023 "AtomicCmpSwap on types less than 64 should be legal");
9024 SDValue Ops
[] = {N
->getOperand(1),
9025 createGPRPairNode(DAG
, N
->getOperand(2)),
9026 createGPRPairNode(DAG
, N
->getOperand(3)),
9028 SDNode
*CmpSwap
= DAG
.getMachineNode(
9029 ARM::CMP_SWAP_64
, SDLoc(N
),
9030 DAG
.getVTList(MVT::Untyped
, MVT::i32
, MVT::Other
), Ops
);
9032 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
9033 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
9035 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
9038 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_1
: ARM::gsub_0
,
9039 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
9041 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_0
: ARM::gsub_1
,
9042 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
9043 Results
.push_back(SDValue(CmpSwap
, 2));
9046 static SDValue
LowerFPOWI(SDValue Op
, const ARMSubtarget
&Subtarget
,
9047 SelectionDAG
&DAG
) {
9048 const auto &TLI
= DAG
.getTargetLoweringInfo();
9050 assert(Subtarget
.getTargetTriple().isOSMSVCRT() &&
9051 "Custom lowering is MSVCRT specific!");
9054 SDValue Val
= Op
.getOperand(0);
9055 MVT Ty
= Val
->getSimpleValueType(0);
9056 SDValue Exponent
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, Ty
, Op
.getOperand(1));
9057 SDValue Callee
= DAG
.getExternalSymbol(Ty
== MVT::f32
? "powf" : "pow",
9058 TLI
.getPointerTy(DAG
.getDataLayout()));
9060 TargetLowering::ArgListTy Args
;
9061 TargetLowering::ArgListEntry Entry
;
9064 Entry
.Ty
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
9065 Entry
.IsZExt
= true;
9066 Args
.push_back(Entry
);
9068 Entry
.Node
= Exponent
;
9069 Entry
.Ty
= Exponent
.getValueType().getTypeForEVT(*DAG
.getContext());
9070 Entry
.IsZExt
= true;
9071 Args
.push_back(Entry
);
9073 Type
*LCRTy
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
9075 // In the in-chain to the call is the entry node If we are emitting a
9076 // tailcall, the chain will be mutated if the node has a non-entry input
9078 SDValue InChain
= DAG
.getEntryNode();
9079 SDValue TCChain
= InChain
;
9081 const Function
&F
= DAG
.getMachineFunction().getFunction();
9082 bool IsTC
= TLI
.isInTailCallPosition(DAG
, Op
.getNode(), TCChain
) &&
9083 F
.getReturnType() == LCRTy
;
9087 TargetLowering::CallLoweringInfo
CLI(DAG
);
9090 .setCallee(CallingConv::ARM_AAPCS_VFP
, LCRTy
, Callee
, std::move(Args
))
9092 std::pair
<SDValue
, SDValue
> CI
= TLI
.LowerCallTo(CLI
);
9094 // Return the chain (the DAG root) if it is a tail call
9095 return !CI
.second
.getNode() ? DAG
.getRoot() : CI
.first
;
9098 SDValue
ARMTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
9099 LLVM_DEBUG(dbgs() << "Lowering node: "; Op
.dump());
9100 switch (Op
.getOpcode()) {
9101 default: llvm_unreachable("Don't know how to custom lower this!");
9102 case ISD::WRITE_REGISTER
: return LowerWRITE_REGISTER(Op
, DAG
);
9103 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
9104 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
9105 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
9106 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
9107 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
9108 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
9109 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
9110 case ISD::BR_CC
: return LowerBR_CC(Op
, DAG
);
9111 case ISD::BR_JT
: return LowerBR_JT(Op
, DAG
);
9112 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
9113 case ISD::ATOMIC_FENCE
: return LowerATOMIC_FENCE(Op
, DAG
, Subtarget
);
9114 case ISD::PREFETCH
: return LowerPREFETCH(Op
, DAG
, Subtarget
);
9115 case ISD::SINT_TO_FP
:
9116 case ISD::UINT_TO_FP
: return LowerINT_TO_FP(Op
, DAG
);
9117 case ISD::FP_TO_SINT
:
9118 case ISD::FP_TO_UINT
: return LowerFP_TO_INT(Op
, DAG
);
9119 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
9120 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
9121 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
9122 case ISD::EH_SJLJ_SETJMP
: return LowerEH_SJLJ_SETJMP(Op
, DAG
);
9123 case ISD::EH_SJLJ_LONGJMP
: return LowerEH_SJLJ_LONGJMP(Op
, DAG
);
9124 case ISD::EH_SJLJ_SETUP_DISPATCH
: return LowerEH_SJLJ_SETUP_DISPATCH(Op
, DAG
);
9125 case ISD::INTRINSIC_VOID
: return LowerINTRINSIC_VOID(Op
, DAG
, Subtarget
);
9126 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
,
9128 case ISD::BITCAST
: return ExpandBITCAST(Op
.getNode(), DAG
, Subtarget
);
9131 case ISD::SRA
: return LowerShift(Op
.getNode(), DAG
, Subtarget
);
9132 case ISD::SREM
: return LowerREM(Op
.getNode(), DAG
);
9133 case ISD::UREM
: return LowerREM(Op
.getNode(), DAG
);
9134 case ISD::SHL_PARTS
: return LowerShiftLeftParts(Op
, DAG
);
9135 case ISD::SRL_PARTS
:
9136 case ISD::SRA_PARTS
: return LowerShiftRightParts(Op
, DAG
);
9138 case ISD::CTTZ_ZERO_UNDEF
: return LowerCTTZ(Op
.getNode(), DAG
, Subtarget
);
9139 case ISD::CTPOP
: return LowerCTPOP(Op
.getNode(), DAG
, Subtarget
);
9140 case ISD::SETCC
: return LowerVSETCC(Op
, DAG
, Subtarget
);
9141 case ISD::SETCCCARRY
: return LowerSETCCCARRY(Op
, DAG
);
9142 case ISD::ConstantFP
: return LowerConstantFP(Op
, DAG
, Subtarget
);
9143 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
, Subtarget
);
9144 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
, Subtarget
);
9145 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
, Subtarget
);
9146 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
9147 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
, Subtarget
);
9148 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
, Subtarget
);
9149 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
9150 case ISD::MUL
: return LowerMUL(Op
, DAG
);
9152 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
9153 return LowerDIV_Windows(Op
, DAG
, /* Signed */ true);
9154 return LowerSDIV(Op
, DAG
, Subtarget
);
9156 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
9157 return LowerDIV_Windows(Op
, DAG
, /* Signed */ false);
9158 return LowerUDIV(Op
, DAG
, Subtarget
);
9160 case ISD::SUBCARRY
: return LowerADDSUBCARRY(Op
, DAG
);
9163 return LowerSignedALUO(Op
, DAG
);
9166 return LowerUnsignedALUO(Op
, DAG
);
9169 return LowerSADDSUBSAT(Op
, DAG
, Subtarget
);
9171 return LowerPredicateLoad(Op
, DAG
);
9173 return LowerPredicateStore(Op
, DAG
);
9175 return LowerMLOAD(Op
, DAG
);
9176 case ISD::ATOMIC_LOAD
:
9177 case ISD::ATOMIC_STORE
: return LowerAtomicLoadStore(Op
, DAG
);
9178 case ISD::FSINCOS
: return LowerFSINCOS(Op
, DAG
);
9180 case ISD::UDIVREM
: return LowerDivRem(Op
, DAG
);
9181 case ISD::DYNAMIC_STACKALLOC
:
9182 if (Subtarget
->isTargetWindows())
9183 return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
9184 llvm_unreachable("Don't know how to custom lower this!");
9185 case ISD::FP_ROUND
: return LowerFP_ROUND(Op
, DAG
);
9186 case ISD::FP_EXTEND
: return LowerFP_EXTEND(Op
, DAG
);
9187 case ISD::FPOWI
: return LowerFPOWI(Op
, *Subtarget
, DAG
);
9188 case ARMISD::WIN__DBZCHK
: return SDValue();
9192 static void ReplaceLongIntrinsic(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
9193 SelectionDAG
&DAG
) {
9194 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
9196 if (IntNo
== Intrinsic::arm_smlald
)
9197 Opc
= ARMISD::SMLALD
;
9198 else if (IntNo
== Intrinsic::arm_smlaldx
)
9199 Opc
= ARMISD::SMLALDX
;
9200 else if (IntNo
== Intrinsic::arm_smlsld
)
9201 Opc
= ARMISD::SMLSLD
;
9202 else if (IntNo
== Intrinsic::arm_smlsldx
)
9203 Opc
= ARMISD::SMLSLDX
;
9208 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
9210 DAG
.getConstant(0, dl
, MVT::i32
));
9211 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
9213 DAG
.getConstant(1, dl
, MVT::i32
));
9215 SDValue LongMul
= DAG
.getNode(Opc
, dl
,
9216 DAG
.getVTList(MVT::i32
, MVT::i32
),
9217 N
->getOperand(1), N
->getOperand(2),
9219 Results
.push_back(LongMul
.getValue(0));
9220 Results
.push_back(LongMul
.getValue(1));
9223 /// ReplaceNodeResults - Replace the results of node with an illegal result
9224 /// type with new values built out of custom code.
9225 void ARMTargetLowering::ReplaceNodeResults(SDNode
*N
,
9226 SmallVectorImpl
<SDValue
> &Results
,
9227 SelectionDAG
&DAG
) const {
9229 switch (N
->getOpcode()) {
9231 llvm_unreachable("Don't know how to custom expand this!");
9232 case ISD::READ_REGISTER
:
9233 ExpandREAD_REGISTER(N
, Results
, DAG
);
9236 Res
= ExpandBITCAST(N
, DAG
, Subtarget
);
9241 Res
= Expand64BitShift(N
, DAG
, Subtarget
);
9245 Res
= LowerREM(N
, DAG
);
9249 Res
= LowerDivRem(SDValue(N
, 0), DAG
);
9250 assert(Res
.getNumOperands() == 2 && "DivRem needs two values");
9251 Results
.push_back(Res
.getValue(0));
9252 Results
.push_back(Res
.getValue(1));
9256 Res
= LowerSADDSUBSAT(SDValue(N
, 0), DAG
, Subtarget
);
9258 case ISD::READCYCLECOUNTER
:
9259 ReplaceREADCYCLECOUNTER(N
, Results
, DAG
, Subtarget
);
9263 assert(Subtarget
->isTargetWindows() && "can only expand DIV on Windows");
9264 return ExpandDIV_Windows(SDValue(N
, 0), DAG
, N
->getOpcode() == ISD::SDIV
,
9266 case ISD::ATOMIC_CMP_SWAP
:
9267 ReplaceCMP_SWAP_64Results(N
, Results
, DAG
);
9269 case ISD::INTRINSIC_WO_CHAIN
:
9270 return ReplaceLongIntrinsic(N
, Results
, DAG
);
9272 lowerABS(N
, Results
, DAG
);
9277 Results
.push_back(Res
);
9280 //===----------------------------------------------------------------------===//
9281 // ARM Scheduler Hooks
9282 //===----------------------------------------------------------------------===//
9284 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
9285 /// registers the function context.
9286 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr
&MI
,
9287 MachineBasicBlock
*MBB
,
9288 MachineBasicBlock
*DispatchBB
,
9290 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
9291 "ROPI/RWPI not currently supported with SjLj");
9292 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9293 DebugLoc dl
= MI
.getDebugLoc();
9294 MachineFunction
*MF
= MBB
->getParent();
9295 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9296 MachineConstantPool
*MCP
= MF
->getConstantPool();
9297 ARMFunctionInfo
*AFI
= MF
->getInfo
<ARMFunctionInfo
>();
9298 const Function
&F
= MF
->getFunction();
9300 bool isThumb
= Subtarget
->isThumb();
9301 bool isThumb2
= Subtarget
->isThumb2();
9303 unsigned PCLabelId
= AFI
->createPICLabelUId();
9304 unsigned PCAdj
= (isThumb
|| isThumb2
) ? 4 : 8;
9305 ARMConstantPoolValue
*CPV
=
9306 ARMConstantPoolMBB::Create(F
.getContext(), DispatchBB
, PCLabelId
, PCAdj
);
9307 unsigned CPI
= MCP
->getConstantPoolIndex(CPV
, 4);
9309 const TargetRegisterClass
*TRC
= isThumb
? &ARM::tGPRRegClass
9310 : &ARM::GPRRegClass
;
9312 // Grab constant pool and fixed stack memory operands.
9313 MachineMemOperand
*CPMMO
=
9314 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
9315 MachineMemOperand::MOLoad
, 4, 4);
9317 MachineMemOperand
*FIMMOSt
=
9318 MF
->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF
, FI
),
9319 MachineMemOperand::MOStore
, 4, 4);
9321 // Load the address of the dispatch MBB into the jump buffer.
9323 // Incoming value: jbuf
9324 // ldr.n r5, LCPI1_1
9327 // str r5, [$jbuf, #+4] ; &jbuf[1]
9328 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9329 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2LDRpci
), NewVReg1
)
9330 .addConstantPoolIndex(CPI
)
9331 .addMemOperand(CPMMO
)
9332 .add(predOps(ARMCC::AL
));
9333 // Set the low bit because of thumb mode.
9334 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9335 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2ORRri
), NewVReg2
)
9336 .addReg(NewVReg1
, RegState::Kill
)
9338 .add(predOps(ARMCC::AL
))
9340 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9341 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg3
)
9342 .addReg(NewVReg2
, RegState::Kill
)
9344 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2STRi12
))
9345 .addReg(NewVReg3
, RegState::Kill
)
9347 .addImm(36) // &jbuf[1] :: pc
9348 .addMemOperand(FIMMOSt
)
9349 .add(predOps(ARMCC::AL
));
9350 } else if (isThumb
) {
9351 // Incoming value: jbuf
9352 // ldr.n r1, LCPI1_4
9356 // add r2, $jbuf, #+4 ; &jbuf[1]
9358 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9359 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tLDRpci
), NewVReg1
)
9360 .addConstantPoolIndex(CPI
)
9361 .addMemOperand(CPMMO
)
9362 .add(predOps(ARMCC::AL
));
9363 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9364 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg2
)
9365 .addReg(NewVReg1
, RegState::Kill
)
9367 // Set the low bit because of thumb mode.
9368 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9369 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tMOVi8
), NewVReg3
)
9370 .addReg(ARM::CPSR
, RegState::Define
)
9372 .add(predOps(ARMCC::AL
));
9373 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9374 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tORR
), NewVReg4
)
9375 .addReg(ARM::CPSR
, RegState::Define
)
9376 .addReg(NewVReg2
, RegState::Kill
)
9377 .addReg(NewVReg3
, RegState::Kill
)
9378 .add(predOps(ARMCC::AL
));
9379 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9380 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tADDframe
), NewVReg5
)
9382 .addImm(36); // &jbuf[1] :: pc
9383 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tSTRi
))
9384 .addReg(NewVReg4
, RegState::Kill
)
9385 .addReg(NewVReg5
, RegState::Kill
)
9387 .addMemOperand(FIMMOSt
)
9388 .add(predOps(ARMCC::AL
));
9390 // Incoming value: jbuf
9393 // str r1, [$jbuf, #+4] ; &jbuf[1]
9394 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9395 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9396 .addConstantPoolIndex(CPI
)
9398 .addMemOperand(CPMMO
)
9399 .add(predOps(ARMCC::AL
));
9400 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9401 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::PICADD
), NewVReg2
)
9402 .addReg(NewVReg1
, RegState::Kill
)
9404 .add(predOps(ARMCC::AL
));
9405 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::STRi12
))
9406 .addReg(NewVReg2
, RegState::Kill
)
9408 .addImm(36) // &jbuf[1] :: pc
9409 .addMemOperand(FIMMOSt
)
9410 .add(predOps(ARMCC::AL
));
9414 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr
&MI
,
9415 MachineBasicBlock
*MBB
) const {
9416 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9417 DebugLoc dl
= MI
.getDebugLoc();
9418 MachineFunction
*MF
= MBB
->getParent();
9419 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9420 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
9421 int FI
= MFI
.getFunctionContextIndex();
9423 const TargetRegisterClass
*TRC
= Subtarget
->isThumb() ? &ARM::tGPRRegClass
9424 : &ARM::GPRnopcRegClass
;
9426 // Get a mapping of the call site numbers to all of the landing pads they're
9428 DenseMap
<unsigned, SmallVector
<MachineBasicBlock
*, 2>> CallSiteNumToLPad
;
9429 unsigned MaxCSNum
= 0;
9430 for (MachineFunction::iterator BB
= MF
->begin(), E
= MF
->end(); BB
!= E
;
9432 if (!BB
->isEHPad()) continue;
9434 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
9436 for (MachineBasicBlock::iterator
9437 II
= BB
->begin(), IE
= BB
->end(); II
!= IE
; ++II
) {
9438 if (!II
->isEHLabel()) continue;
9440 MCSymbol
*Sym
= II
->getOperand(0).getMCSymbol();
9441 if (!MF
->hasCallSiteLandingPad(Sym
)) continue;
9443 SmallVectorImpl
<unsigned> &CallSiteIdxs
= MF
->getCallSiteLandingPad(Sym
);
9444 for (SmallVectorImpl
<unsigned>::iterator
9445 CSI
= CallSiteIdxs
.begin(), CSE
= CallSiteIdxs
.end();
9446 CSI
!= CSE
; ++CSI
) {
9447 CallSiteNumToLPad
[*CSI
].push_back(&*BB
);
9448 MaxCSNum
= std::max(MaxCSNum
, *CSI
);
9454 // Get an ordered list of the machine basic blocks for the jump table.
9455 std::vector
<MachineBasicBlock
*> LPadList
;
9456 SmallPtrSet
<MachineBasicBlock
*, 32> InvokeBBs
;
9457 LPadList
.reserve(CallSiteNumToLPad
.size());
9458 for (unsigned I
= 1; I
<= MaxCSNum
; ++I
) {
9459 SmallVectorImpl
<MachineBasicBlock
*> &MBBList
= CallSiteNumToLPad
[I
];
9460 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9461 II
= MBBList
.begin(), IE
= MBBList
.end(); II
!= IE
; ++II
) {
9462 LPadList
.push_back(*II
);
9463 InvokeBBs
.insert((*II
)->pred_begin(), (*II
)->pred_end());
9467 assert(!LPadList
.empty() &&
9468 "No landing pad destinations for the dispatch jump table!");
9470 // Create the jump table and associated information.
9471 MachineJumpTableInfo
*JTI
=
9472 MF
->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline
);
9473 unsigned MJTI
= JTI
->createJumpTableIndex(LPadList
);
9475 // Create the MBBs for the dispatch code.
9477 // Shove the dispatch's address into the return slot in the function context.
9478 MachineBasicBlock
*DispatchBB
= MF
->CreateMachineBasicBlock();
9479 DispatchBB
->setIsEHPad();
9481 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
9482 unsigned trap_opcode
;
9483 if (Subtarget
->isThumb())
9484 trap_opcode
= ARM::tTRAP
;
9486 trap_opcode
= Subtarget
->useNaClTrap() ? ARM::TRAPNaCl
: ARM::TRAP
;
9488 BuildMI(TrapBB
, dl
, TII
->get(trap_opcode
));
9489 DispatchBB
->addSuccessor(TrapBB
);
9491 MachineBasicBlock
*DispContBB
= MF
->CreateMachineBasicBlock();
9492 DispatchBB
->addSuccessor(DispContBB
);
9495 MF
->insert(MF
->end(), DispatchBB
);
9496 MF
->insert(MF
->end(), DispContBB
);
9497 MF
->insert(MF
->end(), TrapBB
);
9499 // Insert code into the entry block that creates and registers the function
9501 SetupEntryBlockForSjLj(MI
, MBB
, DispatchBB
, FI
);
9503 MachineMemOperand
*FIMMOLd
= MF
->getMachineMemOperand(
9504 MachinePointerInfo::getFixedStack(*MF
, FI
),
9505 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
, 4, 4);
9507 MachineInstrBuilder MIB
;
9508 MIB
= BuildMI(DispatchBB
, dl
, TII
->get(ARM::Int_eh_sjlj_dispatchsetup
));
9510 const ARMBaseInstrInfo
*AII
= static_cast<const ARMBaseInstrInfo
*>(TII
);
9511 const ARMBaseRegisterInfo
&RI
= AII
->getRegisterInfo();
9513 // Add a register mask with no preserved registers. This results in all
9514 // registers being marked as clobbered. This can't work if the dispatch block
9515 // is in a Thumb1 function and is linked with ARM code which uses the FP
9516 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
9517 MIB
.addRegMask(RI
.getSjLjDispatchPreservedMask(*MF
));
9519 bool IsPositionIndependent
= isPositionIndependent();
9520 unsigned NumLPads
= LPadList
.size();
9521 if (Subtarget
->isThumb2()) {
9522 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9523 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2LDRi12
), NewVReg1
)
9526 .addMemOperand(FIMMOLd
)
9527 .add(predOps(ARMCC::AL
));
9529 if (NumLPads
< 256) {
9530 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPri
))
9532 .addImm(LPadList
.size())
9533 .add(predOps(ARMCC::AL
));
9535 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9536 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVi16
), VReg1
)
9537 .addImm(NumLPads
& 0xFFFF)
9538 .add(predOps(ARMCC::AL
));
9540 unsigned VReg2
= VReg1
;
9541 if ((NumLPads
& 0xFFFF0000) != 0) {
9542 VReg2
= MRI
->createVirtualRegister(TRC
);
9543 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVTi16
), VReg2
)
9545 .addImm(NumLPads
>> 16)
9546 .add(predOps(ARMCC::AL
));
9549 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPrr
))
9552 .add(predOps(ARMCC::AL
));
9555 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2Bcc
))
9560 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9561 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2LEApcrelJT
), NewVReg3
)
9562 .addJumpTableIndex(MJTI
)
9563 .add(predOps(ARMCC::AL
));
9565 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9566 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2ADDrs
), NewVReg4
)
9567 .addReg(NewVReg3
, RegState::Kill
)
9569 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9570 .add(predOps(ARMCC::AL
))
9573 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2BR_JT
))
9574 .addReg(NewVReg4
, RegState::Kill
)
9576 .addJumpTableIndex(MJTI
);
9577 } else if (Subtarget
->isThumb()) {
9578 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9579 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRspi
), NewVReg1
)
9582 .addMemOperand(FIMMOLd
)
9583 .add(predOps(ARMCC::AL
));
9585 if (NumLPads
< 256) {
9586 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPi8
))
9589 .add(predOps(ARMCC::AL
));
9591 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9592 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9593 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9595 // MachineConstantPool wants an explicit alignment.
9596 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9598 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9599 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9601 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9602 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRpci
))
9603 .addReg(VReg1
, RegState::Define
)
9604 .addConstantPoolIndex(Idx
)
9605 .add(predOps(ARMCC::AL
));
9606 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPr
))
9609 .add(predOps(ARMCC::AL
));
9612 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tBcc
))
9617 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9618 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLSLri
), NewVReg2
)
9619 .addReg(ARM::CPSR
, RegState::Define
)
9622 .add(predOps(ARMCC::AL
));
9624 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9625 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLEApcrelJT
), NewVReg3
)
9626 .addJumpTableIndex(MJTI
)
9627 .add(predOps(ARMCC::AL
));
9629 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9630 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg4
)
9631 .addReg(ARM::CPSR
, RegState::Define
)
9632 .addReg(NewVReg2
, RegState::Kill
)
9634 .add(predOps(ARMCC::AL
));
9636 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9637 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9639 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9640 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLDRi
), NewVReg5
)
9641 .addReg(NewVReg4
, RegState::Kill
)
9643 .addMemOperand(JTMMOLd
)
9644 .add(predOps(ARMCC::AL
));
9646 unsigned NewVReg6
= NewVReg5
;
9647 if (IsPositionIndependent
) {
9648 NewVReg6
= MRI
->createVirtualRegister(TRC
);
9649 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg6
)
9650 .addReg(ARM::CPSR
, RegState::Define
)
9651 .addReg(NewVReg5
, RegState::Kill
)
9653 .add(predOps(ARMCC::AL
));
9656 BuildMI(DispContBB
, dl
, TII
->get(ARM::tBR_JTr
))
9657 .addReg(NewVReg6
, RegState::Kill
)
9658 .addJumpTableIndex(MJTI
);
9660 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9661 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9664 .addMemOperand(FIMMOLd
)
9665 .add(predOps(ARMCC::AL
));
9667 if (NumLPads
< 256) {
9668 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPri
))
9671 .add(predOps(ARMCC::AL
));
9672 } else if (Subtarget
->hasV6T2Ops() && isUInt
<16>(NumLPads
)) {
9673 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9674 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVi16
), VReg1
)
9675 .addImm(NumLPads
& 0xFFFF)
9676 .add(predOps(ARMCC::AL
));
9678 unsigned VReg2
= VReg1
;
9679 if ((NumLPads
& 0xFFFF0000) != 0) {
9680 VReg2
= MRI
->createVirtualRegister(TRC
);
9681 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVTi16
), VReg2
)
9683 .addImm(NumLPads
>> 16)
9684 .add(predOps(ARMCC::AL
));
9687 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9690 .add(predOps(ARMCC::AL
));
9692 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9693 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9694 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9696 // MachineConstantPool wants an explicit alignment.
9697 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9699 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9700 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9702 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9703 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRcp
))
9704 .addReg(VReg1
, RegState::Define
)
9705 .addConstantPoolIndex(Idx
)
9707 .add(predOps(ARMCC::AL
));
9708 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9710 .addReg(VReg1
, RegState::Kill
)
9711 .add(predOps(ARMCC::AL
));
9714 BuildMI(DispatchBB
, dl
, TII
->get(ARM::Bcc
))
9719 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9720 BuildMI(DispContBB
, dl
, TII
->get(ARM::MOVsi
), NewVReg3
)
9722 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9723 .add(predOps(ARMCC::AL
))
9725 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9726 BuildMI(DispContBB
, dl
, TII
->get(ARM::LEApcrelJT
), NewVReg4
)
9727 .addJumpTableIndex(MJTI
)
9728 .add(predOps(ARMCC::AL
));
9730 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9731 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9732 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9733 BuildMI(DispContBB
, dl
, TII
->get(ARM::LDRrs
), NewVReg5
)
9734 .addReg(NewVReg3
, RegState::Kill
)
9737 .addMemOperand(JTMMOLd
)
9738 .add(predOps(ARMCC::AL
));
9740 if (IsPositionIndependent
) {
9741 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTadd
))
9742 .addReg(NewVReg5
, RegState::Kill
)
9744 .addJumpTableIndex(MJTI
);
9746 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTr
))
9747 .addReg(NewVReg5
, RegState::Kill
)
9748 .addJumpTableIndex(MJTI
);
9752 // Add the jump table entries as successors to the MBB.
9753 SmallPtrSet
<MachineBasicBlock
*, 8> SeenMBBs
;
9754 for (std::vector
<MachineBasicBlock
*>::iterator
9755 I
= LPadList
.begin(), E
= LPadList
.end(); I
!= E
; ++I
) {
9756 MachineBasicBlock
*CurMBB
= *I
;
9757 if (SeenMBBs
.insert(CurMBB
).second
)
9758 DispContBB
->addSuccessor(CurMBB
);
9761 // N.B. the order the invoke BBs are processed in doesn't matter here.
9762 const MCPhysReg
*SavedRegs
= RI
.getCalleeSavedRegs(MF
);
9763 SmallVector
<MachineBasicBlock
*, 64> MBBLPads
;
9764 for (MachineBasicBlock
*BB
: InvokeBBs
) {
9766 // Remove the landing pad successor from the invoke block and replace it
9767 // with the new dispatch block.
9768 SmallVector
<MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
9770 while (!Successors
.empty()) {
9771 MachineBasicBlock
*SMBB
= Successors
.pop_back_val();
9772 if (SMBB
->isEHPad()) {
9773 BB
->removeSuccessor(SMBB
);
9774 MBBLPads
.push_back(SMBB
);
9778 BB
->addSuccessor(DispatchBB
, BranchProbability::getZero());
9779 BB
->normalizeSuccProbs();
9781 // Find the invoke call and mark all of the callee-saved registers as
9782 // 'implicit defined' so that they're spilled. This prevents code from
9783 // moving instructions to before the EH block, where they will never be
9785 for (MachineBasicBlock::reverse_iterator
9786 II
= BB
->rbegin(), IE
= BB
->rend(); II
!= IE
; ++II
) {
9787 if (!II
->isCall()) continue;
9789 DenseMap
<unsigned, bool> DefRegs
;
9790 for (MachineInstr::mop_iterator
9791 OI
= II
->operands_begin(), OE
= II
->operands_end();
9793 if (!OI
->isReg()) continue;
9794 DefRegs
[OI
->getReg()] = true;
9797 MachineInstrBuilder
MIB(*MF
, &*II
);
9799 for (unsigned i
= 0; SavedRegs
[i
] != 0; ++i
) {
9800 unsigned Reg
= SavedRegs
[i
];
9801 if (Subtarget
->isThumb2() &&
9802 !ARM::tGPRRegClass
.contains(Reg
) &&
9803 !ARM::hGPRRegClass
.contains(Reg
))
9805 if (Subtarget
->isThumb1Only() && !ARM::tGPRRegClass
.contains(Reg
))
9807 if (!Subtarget
->isThumb() && !ARM::GPRRegClass
.contains(Reg
))
9810 MIB
.addReg(Reg
, RegState::ImplicitDefine
| RegState::Dead
);
9817 // Mark all former landing pads as non-landing pads. The dispatch is the only
9819 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9820 I
= MBBLPads
.begin(), E
= MBBLPads
.end(); I
!= E
; ++I
)
9821 (*I
)->setIsEHPad(false);
9823 // The instruction is gone now.
9824 MI
.eraseFromParent();
9828 MachineBasicBlock
*OtherSucc(MachineBasicBlock
*MBB
, MachineBasicBlock
*Succ
) {
9829 for (MachineBasicBlock::succ_iterator I
= MBB
->succ_begin(),
9830 E
= MBB
->succ_end(); I
!= E
; ++I
)
9833 llvm_unreachable("Expecting a BB with two successors!");
9836 /// Return the load opcode for a given load size. If load size >= 8,
9837 /// neon opcode will be returned.
9838 static unsigned getLdOpcode(unsigned LdSize
, bool IsThumb1
, bool IsThumb2
) {
9840 return LdSize
== 16 ? ARM::VLD1q32wb_fixed
9841 : LdSize
== 8 ? ARM::VLD1d32wb_fixed
: 0;
9843 return LdSize
== 4 ? ARM::tLDRi
9844 : LdSize
== 2 ? ARM::tLDRHi
9845 : LdSize
== 1 ? ARM::tLDRBi
: 0;
9847 return LdSize
== 4 ? ARM::t2LDR_POST
9848 : LdSize
== 2 ? ARM::t2LDRH_POST
9849 : LdSize
== 1 ? ARM::t2LDRB_POST
: 0;
9850 return LdSize
== 4 ? ARM::LDR_POST_IMM
9851 : LdSize
== 2 ? ARM::LDRH_POST
9852 : LdSize
== 1 ? ARM::LDRB_POST_IMM
: 0;
9855 /// Return the store opcode for a given store size. If store size >= 8,
9856 /// neon opcode will be returned.
9857 static unsigned getStOpcode(unsigned StSize
, bool IsThumb1
, bool IsThumb2
) {
9859 return StSize
== 16 ? ARM::VST1q32wb_fixed
9860 : StSize
== 8 ? ARM::VST1d32wb_fixed
: 0;
9862 return StSize
== 4 ? ARM::tSTRi
9863 : StSize
== 2 ? ARM::tSTRHi
9864 : StSize
== 1 ? ARM::tSTRBi
: 0;
9866 return StSize
== 4 ? ARM::t2STR_POST
9867 : StSize
== 2 ? ARM::t2STRH_POST
9868 : StSize
== 1 ? ARM::t2STRB_POST
: 0;
9869 return StSize
== 4 ? ARM::STR_POST_IMM
9870 : StSize
== 2 ? ARM::STRH_POST
9871 : StSize
== 1 ? ARM::STRB_POST_IMM
: 0;
9874 /// Emit a post-increment load operation with given size. The instructions
9875 /// will be added to BB at Pos.
9876 static void emitPostLd(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9877 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9878 unsigned LdSize
, unsigned Data
, unsigned AddrIn
,
9879 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9880 unsigned LdOpc
= getLdOpcode(LdSize
, IsThumb1
, IsThumb2
);
9881 assert(LdOpc
!= 0 && "Should have a load opcode");
9883 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9884 .addReg(AddrOut
, RegState::Define
)
9887 .add(predOps(ARMCC::AL
));
9888 } else if (IsThumb1
) {
9889 // load + update AddrIn
9890 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9893 .add(predOps(ARMCC::AL
));
9894 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9895 .add(t1CondCodeOp())
9898 .add(predOps(ARMCC::AL
));
9899 } else if (IsThumb2
) {
9900 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9901 .addReg(AddrOut
, RegState::Define
)
9904 .add(predOps(ARMCC::AL
));
9906 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9907 .addReg(AddrOut
, RegState::Define
)
9911 .add(predOps(ARMCC::AL
));
9915 /// Emit a post-increment store operation with given size. The instructions
9916 /// will be added to BB at Pos.
9917 static void emitPostSt(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9918 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9919 unsigned StSize
, unsigned Data
, unsigned AddrIn
,
9920 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9921 unsigned StOpc
= getStOpcode(StSize
, IsThumb1
, IsThumb2
);
9922 assert(StOpc
!= 0 && "Should have a store opcode");
9924 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9928 .add(predOps(ARMCC::AL
));
9929 } else if (IsThumb1
) {
9930 // store + update AddrIn
9931 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
))
9935 .add(predOps(ARMCC::AL
));
9936 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9937 .add(t1CondCodeOp())
9940 .add(predOps(ARMCC::AL
));
9941 } else if (IsThumb2
) {
9942 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9946 .add(predOps(ARMCC::AL
));
9948 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9953 .add(predOps(ARMCC::AL
));
9958 ARMTargetLowering::EmitStructByval(MachineInstr
&MI
,
9959 MachineBasicBlock
*BB
) const {
9960 // This pseudo instruction has 3 operands: dst, src, size
9961 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
9962 // Otherwise, we will generate unrolled scalar copies.
9963 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9964 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
9965 MachineFunction::iterator It
= ++BB
->getIterator();
9967 Register dest
= MI
.getOperand(0).getReg();
9968 Register src
= MI
.getOperand(1).getReg();
9969 unsigned SizeVal
= MI
.getOperand(2).getImm();
9970 unsigned Align
= MI
.getOperand(3).getImm();
9971 DebugLoc dl
= MI
.getDebugLoc();
9973 MachineFunction
*MF
= BB
->getParent();
9974 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
9975 unsigned UnitSize
= 0;
9976 const TargetRegisterClass
*TRC
= nullptr;
9977 const TargetRegisterClass
*VecTRC
= nullptr;
9979 bool IsThumb1
= Subtarget
->isThumb1Only();
9980 bool IsThumb2
= Subtarget
->isThumb2();
9981 bool IsThumb
= Subtarget
->isThumb();
9985 } else if (Align
& 2) {
9988 // Check whether we can use NEON instructions.
9989 if (!MF
->getFunction().hasFnAttribute(Attribute::NoImplicitFloat
) &&
9990 Subtarget
->hasNEON()) {
9991 if ((Align
% 16 == 0) && SizeVal
>= 16)
9993 else if ((Align
% 8 == 0) && SizeVal
>= 8)
9996 // Can't use NEON instructions.
10001 // Select the correct opcode and register class for unit size load/store
10002 bool IsNeon
= UnitSize
>= 8;
10003 TRC
= IsThumb
? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
10005 VecTRC
= UnitSize
== 16 ? &ARM::DPairRegClass
10006 : UnitSize
== 8 ? &ARM::DPRRegClass
10009 unsigned BytesLeft
= SizeVal
% UnitSize
;
10010 unsigned LoopSize
= SizeVal
- BytesLeft
;
10012 if (SizeVal
<= Subtarget
->getMaxInlineSizeThreshold()) {
10013 // Use LDR and STR to copy.
10014 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
10015 // [destOut] = STR_POST(scratch, destIn, UnitSize)
10016 unsigned srcIn
= src
;
10017 unsigned destIn
= dest
;
10018 for (unsigned i
= 0; i
< LoopSize
; i
+=UnitSize
) {
10019 Register srcOut
= MRI
.createVirtualRegister(TRC
);
10020 Register destOut
= MRI
.createVirtualRegister(TRC
);
10021 Register scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
10022 emitPostLd(BB
, MI
, TII
, dl
, UnitSize
, scratch
, srcIn
, srcOut
,
10023 IsThumb1
, IsThumb2
);
10024 emitPostSt(BB
, MI
, TII
, dl
, UnitSize
, scratch
, destIn
, destOut
,
10025 IsThumb1
, IsThumb2
);
10030 // Handle the leftover bytes with LDRB and STRB.
10031 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
10032 // [destOut] = STRB_POST(scratch, destIn, 1)
10033 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
10034 Register srcOut
= MRI
.createVirtualRegister(TRC
);
10035 Register destOut
= MRI
.createVirtualRegister(TRC
);
10036 Register scratch
= MRI
.createVirtualRegister(TRC
);
10037 emitPostLd(BB
, MI
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
10038 IsThumb1
, IsThumb2
);
10039 emitPostSt(BB
, MI
, TII
, dl
, 1, scratch
, destIn
, destOut
,
10040 IsThumb1
, IsThumb2
);
10044 MI
.eraseFromParent(); // The instruction is gone now.
10048 // Expand the pseudo op to a loop.
10051 // movw varEnd, # --> with thumb2
10053 // ldrcp varEnd, idx --> without thumb2
10054 // fallthrough --> loopMBB
10056 // PHI varPhi, varEnd, varLoop
10057 // PHI srcPhi, src, srcLoop
10058 // PHI destPhi, dst, destLoop
10059 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
10060 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
10061 // subs varLoop, varPhi, #UnitSize
10063 // fallthrough --> exitMBB
10065 // epilogue to handle left-over bytes
10066 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
10067 // [destOut] = STRB_POST(scratch, destLoop, 1)
10068 MachineBasicBlock
*loopMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
10069 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
10070 MF
->insert(It
, loopMBB
);
10071 MF
->insert(It
, exitMBB
);
10073 // Transfer the remainder of BB and its successor edges to exitMBB.
10074 exitMBB
->splice(exitMBB
->begin(), BB
,
10075 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10076 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10078 // Load an immediate to varEnd.
10079 Register varEnd
= MRI
.createVirtualRegister(TRC
);
10080 if (Subtarget
->useMovt()) {
10081 unsigned Vtmp
= varEnd
;
10082 if ((LoopSize
& 0xFFFF0000) != 0)
10083 Vtmp
= MRI
.createVirtualRegister(TRC
);
10084 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVi16
: ARM::MOVi16
), Vtmp
)
10085 .addImm(LoopSize
& 0xFFFF)
10086 .add(predOps(ARMCC::AL
));
10088 if ((LoopSize
& 0xFFFF0000) != 0)
10089 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVTi16
: ARM::MOVTi16
), varEnd
)
10091 .addImm(LoopSize
>> 16)
10092 .add(predOps(ARMCC::AL
));
10094 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
10095 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
10096 const Constant
*C
= ConstantInt::get(Int32Ty
, LoopSize
);
10098 // MachineConstantPool wants an explicit alignment.
10099 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
10101 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
10102 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
10103 MachineMemOperand
*CPMMO
=
10104 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
10105 MachineMemOperand::MOLoad
, 4, 4);
10108 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDRpci
))
10109 .addReg(varEnd
, RegState::Define
)
10110 .addConstantPoolIndex(Idx
)
10111 .add(predOps(ARMCC::AL
))
10112 .addMemOperand(CPMMO
);
10114 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::LDRcp
))
10115 .addReg(varEnd
, RegState::Define
)
10116 .addConstantPoolIndex(Idx
)
10118 .add(predOps(ARMCC::AL
))
10119 .addMemOperand(CPMMO
);
10121 BB
->addSuccessor(loopMBB
);
10123 // Generate the loop body:
10124 // varPhi = PHI(varLoop, varEnd)
10125 // srcPhi = PHI(srcLoop, src)
10126 // destPhi = PHI(destLoop, dst)
10127 MachineBasicBlock
*entryBB
= BB
;
10129 Register varLoop
= MRI
.createVirtualRegister(TRC
);
10130 Register varPhi
= MRI
.createVirtualRegister(TRC
);
10131 Register srcLoop
= MRI
.createVirtualRegister(TRC
);
10132 Register srcPhi
= MRI
.createVirtualRegister(TRC
);
10133 Register destLoop
= MRI
.createVirtualRegister(TRC
);
10134 Register destPhi
= MRI
.createVirtualRegister(TRC
);
10136 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), varPhi
)
10137 .addReg(varLoop
).addMBB(loopMBB
)
10138 .addReg(varEnd
).addMBB(entryBB
);
10139 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), srcPhi
)
10140 .addReg(srcLoop
).addMBB(loopMBB
)
10141 .addReg(src
).addMBB(entryBB
);
10142 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), destPhi
)
10143 .addReg(destLoop
).addMBB(loopMBB
)
10144 .addReg(dest
).addMBB(entryBB
);
10146 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
10147 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
10148 Register scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
10149 emitPostLd(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, srcPhi
, srcLoop
,
10150 IsThumb1
, IsThumb2
);
10151 emitPostSt(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, destPhi
, destLoop
,
10152 IsThumb1
, IsThumb2
);
10154 // Decrement loop variable by UnitSize.
10156 BuildMI(*BB
, BB
->end(), dl
, TII
->get(ARM::tSUBi8
), varLoop
)
10157 .add(t1CondCodeOp())
10160 .add(predOps(ARMCC::AL
));
10162 MachineInstrBuilder MIB
=
10163 BuildMI(*BB
, BB
->end(), dl
,
10164 TII
->get(IsThumb2
? ARM::t2SUBri
: ARM::SUBri
), varLoop
);
10167 .add(predOps(ARMCC::AL
))
10168 .add(condCodeOp());
10169 MIB
->getOperand(5).setReg(ARM::CPSR
);
10170 MIB
->getOperand(5).setIsDef(true);
10172 BuildMI(*BB
, BB
->end(), dl
,
10173 TII
->get(IsThumb1
? ARM::tBcc
: IsThumb2
? ARM::t2Bcc
: ARM::Bcc
))
10174 .addMBB(loopMBB
).addImm(ARMCC::NE
).addReg(ARM::CPSR
);
10176 // loopMBB can loop back to loopMBB or fall through to exitMBB.
10177 BB
->addSuccessor(loopMBB
);
10178 BB
->addSuccessor(exitMBB
);
10180 // Add epilogue to handle BytesLeft.
10182 auto StartOfExit
= exitMBB
->begin();
10184 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
10185 // [destOut] = STRB_POST(scratch, destLoop, 1)
10186 unsigned srcIn
= srcLoop
;
10187 unsigned destIn
= destLoop
;
10188 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
10189 Register srcOut
= MRI
.createVirtualRegister(TRC
);
10190 Register destOut
= MRI
.createVirtualRegister(TRC
);
10191 Register scratch
= MRI
.createVirtualRegister(TRC
);
10192 emitPostLd(BB
, StartOfExit
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
10193 IsThumb1
, IsThumb2
);
10194 emitPostSt(BB
, StartOfExit
, TII
, dl
, 1, scratch
, destIn
, destOut
,
10195 IsThumb1
, IsThumb2
);
10200 MI
.eraseFromParent(); // The instruction is gone now.
10204 MachineBasicBlock
*
10205 ARMTargetLowering::EmitLowered__chkstk(MachineInstr
&MI
,
10206 MachineBasicBlock
*MBB
) const {
10207 const TargetMachine
&TM
= getTargetMachine();
10208 const TargetInstrInfo
&TII
= *Subtarget
->getInstrInfo();
10209 DebugLoc DL
= MI
.getDebugLoc();
10211 assert(Subtarget
->isTargetWindows() &&
10212 "__chkstk is only supported on Windows");
10213 assert(Subtarget
->isThumb2() && "Windows on ARM requires Thumb-2 mode");
10215 // __chkstk takes the number of words to allocate on the stack in R4, and
10216 // returns the stack adjustment in number of bytes in R4. This will not
10217 // clober any other registers (other than the obvious lr).
10219 // Although, technically, IP should be considered a register which may be
10220 // clobbered, the call itself will not touch it. Windows on ARM is a pure
10221 // thumb-2 environment, so there is no interworking required. As a result, we
10222 // do not expect a veneer to be emitted by the linker, clobbering IP.
10224 // Each module receives its own copy of __chkstk, so no import thunk is
10225 // required, again, ensuring that IP is not clobbered.
10227 // Finally, although some linkers may theoretically provide a trampoline for
10228 // out of range calls (which is quite common due to a 32M range limitation of
10229 // branches for Thumb), we can generate the long-call version via
10230 // -mcmodel=large, alleviating the need for the trampoline which may clobber
10233 switch (TM
.getCodeModel()) {
10234 case CodeModel::Tiny
:
10235 llvm_unreachable("Tiny code model not available on ARM.");
10236 case CodeModel::Small
:
10237 case CodeModel::Medium
:
10238 case CodeModel::Kernel
:
10239 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBL
))
10240 .add(predOps(ARMCC::AL
))
10241 .addExternalSymbol("__chkstk")
10242 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
10243 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
10245 RegState::Implicit
| RegState::Define
| RegState::Dead
)
10247 RegState::Implicit
| RegState::Define
| RegState::Dead
);
10249 case CodeModel::Large
: {
10250 MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
10251 Register Reg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
10253 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2MOVi32imm
), Reg
)
10254 .addExternalSymbol("__chkstk");
10255 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBLXr
))
10256 .add(predOps(ARMCC::AL
))
10257 .addReg(Reg
, RegState::Kill
)
10258 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
10259 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
10261 RegState::Implicit
| RegState::Define
| RegState::Dead
)
10263 RegState::Implicit
| RegState::Define
| RegState::Dead
);
10268 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2SUBrr
), ARM::SP
)
10269 .addReg(ARM::SP
, RegState::Kill
)
10270 .addReg(ARM::R4
, RegState::Kill
)
10271 .setMIFlags(MachineInstr::FrameSetup
)
10272 .add(predOps(ARMCC::AL
))
10273 .add(condCodeOp());
10275 MI
.eraseFromParent();
10279 MachineBasicBlock
*
10280 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr
&MI
,
10281 MachineBasicBlock
*MBB
) const {
10282 DebugLoc DL
= MI
.getDebugLoc();
10283 MachineFunction
*MF
= MBB
->getParent();
10284 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10286 MachineBasicBlock
*ContBB
= MF
->CreateMachineBasicBlock();
10287 MF
->insert(++MBB
->getIterator(), ContBB
);
10288 ContBB
->splice(ContBB
->begin(), MBB
,
10289 std::next(MachineBasicBlock::iterator(MI
)), MBB
->end());
10290 ContBB
->transferSuccessorsAndUpdatePHIs(MBB
);
10291 MBB
->addSuccessor(ContBB
);
10293 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
10294 BuildMI(TrapBB
, DL
, TII
->get(ARM::t__brkdiv0
));
10295 MF
->push_back(TrapBB
);
10296 MBB
->addSuccessor(TrapBB
);
10298 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::tCMPi8
))
10299 .addReg(MI
.getOperand(0).getReg())
10301 .add(predOps(ARMCC::AL
));
10302 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::t2Bcc
))
10305 .addReg(ARM::CPSR
);
10307 MI
.eraseFromParent();
10311 // The CPSR operand of SelectItr might be missing a kill marker
10312 // because there were multiple uses of CPSR, and ISel didn't know
10313 // which to mark. Figure out whether SelectItr should have had a
10314 // kill marker, and set it if it should. Returns the correct kill
10316 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr
,
10317 MachineBasicBlock
* BB
,
10318 const TargetRegisterInfo
* TRI
) {
10319 // Scan forward through BB for a use/def of CPSR.
10320 MachineBasicBlock::iterator
miI(std::next(SelectItr
));
10321 for (MachineBasicBlock::iterator miE
= BB
->end(); miI
!= miE
; ++miI
) {
10322 const MachineInstr
& mi
= *miI
;
10323 if (mi
.readsRegister(ARM::CPSR
))
10325 if (mi
.definesRegister(ARM::CPSR
))
10326 break; // Should have kill-flag - update below.
10329 // If we hit the end of the block, check whether CPSR is live into a
10331 if (miI
== BB
->end()) {
10332 for (MachineBasicBlock::succ_iterator sItr
= BB
->succ_begin(),
10333 sEnd
= BB
->succ_end();
10334 sItr
!= sEnd
; ++sItr
) {
10335 MachineBasicBlock
* succ
= *sItr
;
10336 if (succ
->isLiveIn(ARM::CPSR
))
10341 // We found a def, or hit the end of the basic block and CPSR wasn't live
10342 // out. SelectMI should have a kill flag on CPSR.
10343 SelectItr
->addRegisterKilled(ARM::CPSR
, TRI
);
10347 MachineBasicBlock
*
10348 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
10349 MachineBasicBlock
*BB
) const {
10350 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10351 DebugLoc dl
= MI
.getDebugLoc();
10352 bool isThumb2
= Subtarget
->isThumb2();
10353 switch (MI
.getOpcode()) {
10356 llvm_unreachable("Unexpected instr type to insert");
10359 // Thumb1 post-indexed loads are really just single-register LDMs.
10360 case ARM::tLDR_postidx
: {
10361 MachineOperand
Def(MI
.getOperand(1));
10362 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDMIA_UPD
))
10364 .add(MI
.getOperand(2)) // Rn
10365 .add(MI
.getOperand(3)) // PredImm
10366 .add(MI
.getOperand(4)) // PredReg
10367 .add(MI
.getOperand(0)) // Rt
10369 MI
.eraseFromParent();
10373 // The Thumb2 pre-indexed stores have the same MI operands, they just
10374 // define them differently in the .td files from the isel patterns, so
10375 // they need pseudos.
10376 case ARM::t2STR_preidx
:
10377 MI
.setDesc(TII
->get(ARM::t2STR_PRE
));
10379 case ARM::t2STRB_preidx
:
10380 MI
.setDesc(TII
->get(ARM::t2STRB_PRE
));
10382 case ARM::t2STRH_preidx
:
10383 MI
.setDesc(TII
->get(ARM::t2STRH_PRE
));
10386 case ARM::STRi_preidx
:
10387 case ARM::STRBi_preidx
: {
10388 unsigned NewOpc
= MI
.getOpcode() == ARM::STRi_preidx
? ARM::STR_PRE_IMM
10389 : ARM::STRB_PRE_IMM
;
10390 // Decode the offset.
10391 unsigned Offset
= MI
.getOperand(4).getImm();
10392 bool isSub
= ARM_AM::getAM2Op(Offset
) == ARM_AM::sub
;
10393 Offset
= ARM_AM::getAM2Offset(Offset
);
10397 MachineMemOperand
*MMO
= *MI
.memoperands_begin();
10398 BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
))
10399 .add(MI
.getOperand(0)) // Rn_wb
10400 .add(MI
.getOperand(1)) // Rt
10401 .add(MI
.getOperand(2)) // Rn
10402 .addImm(Offset
) // offset (skip GPR==zero_reg)
10403 .add(MI
.getOperand(5)) // pred
10404 .add(MI
.getOperand(6))
10405 .addMemOperand(MMO
);
10406 MI
.eraseFromParent();
10409 case ARM::STRr_preidx
:
10410 case ARM::STRBr_preidx
:
10411 case ARM::STRH_preidx
: {
10413 switch (MI
.getOpcode()) {
10414 default: llvm_unreachable("unexpected opcode!");
10415 case ARM::STRr_preidx
: NewOpc
= ARM::STR_PRE_REG
; break;
10416 case ARM::STRBr_preidx
: NewOpc
= ARM::STRB_PRE_REG
; break;
10417 case ARM::STRH_preidx
: NewOpc
= ARM::STRH_PRE
; break;
10419 MachineInstrBuilder MIB
= BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
));
10420 for (unsigned i
= 0; i
< MI
.getNumOperands(); ++i
)
10421 MIB
.add(MI
.getOperand(i
));
10422 MI
.eraseFromParent();
10426 case ARM::tMOVCCr_pseudo
: {
10427 // To "insert" a SELECT_CC instruction, we actually have to insert the
10428 // diamond control-flow pattern. The incoming instruction knows the
10429 // destination vreg to set, the condition code register to branch on, the
10430 // true/false values to select between, and a branch opcode to use.
10431 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10432 MachineFunction::iterator It
= ++BB
->getIterator();
10437 // cmpTY ccX, r1, r2
10439 // fallthrough --> copy0MBB
10440 MachineBasicBlock
*thisMBB
= BB
;
10441 MachineFunction
*F
= BB
->getParent();
10442 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10443 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10444 F
->insert(It
, copy0MBB
);
10445 F
->insert(It
, sinkMBB
);
10447 // Check whether CPSR is live past the tMOVCCr_pseudo.
10448 const TargetRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
10449 if (!MI
.killsRegister(ARM::CPSR
) &&
10450 !checkAndUpdateCPSRKill(MI
, thisMBB
, TRI
)) {
10451 copy0MBB
->addLiveIn(ARM::CPSR
);
10452 sinkMBB
->addLiveIn(ARM::CPSR
);
10455 // Transfer the remainder of BB and its successor edges to sinkMBB.
10456 sinkMBB
->splice(sinkMBB
->begin(), BB
,
10457 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10458 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10460 BB
->addSuccessor(copy0MBB
);
10461 BB
->addSuccessor(sinkMBB
);
10463 BuildMI(BB
, dl
, TII
->get(ARM::tBcc
))
10465 .addImm(MI
.getOperand(3).getImm())
10466 .addReg(MI
.getOperand(4).getReg());
10469 // %FalseValue = ...
10470 // # fallthrough to sinkMBB
10473 // Update machine-CFG edges
10474 BB
->addSuccessor(sinkMBB
);
10477 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10480 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), MI
.getOperand(0).getReg())
10481 .addReg(MI
.getOperand(1).getReg())
10483 .addReg(MI
.getOperand(2).getReg())
10486 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10491 case ARM::BCCZi64
: {
10492 // If there is an unconditional branch to the other successor, remove it.
10493 BB
->erase(std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10495 // Compare both parts that make up the double comparison separately for
10497 bool RHSisZero
= MI
.getOpcode() == ARM::BCCZi64
;
10499 Register LHS1
= MI
.getOperand(1).getReg();
10500 Register LHS2
= MI
.getOperand(2).getReg();
10502 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10505 .add(predOps(ARMCC::AL
));
10506 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10507 .addReg(LHS2
).addImm(0)
10508 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10510 Register RHS1
= MI
.getOperand(3).getReg();
10511 Register RHS2
= MI
.getOperand(4).getReg();
10512 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10515 .add(predOps(ARMCC::AL
));
10516 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10517 .addReg(LHS2
).addReg(RHS2
)
10518 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10521 MachineBasicBlock
*destMBB
= MI
.getOperand(RHSisZero
? 3 : 5).getMBB();
10522 MachineBasicBlock
*exitMBB
= OtherSucc(BB
, destMBB
);
10523 if (MI
.getOperand(0).getImm() == ARMCC::NE
)
10524 std::swap(destMBB
, exitMBB
);
10526 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
))
10527 .addMBB(destMBB
).addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10529 BuildMI(BB
, dl
, TII
->get(ARM::t2B
))
10531 .add(predOps(ARMCC::AL
));
10533 BuildMI(BB
, dl
, TII
->get(ARM::B
)) .addMBB(exitMBB
);
10535 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10539 case ARM::Int_eh_sjlj_setjmp
:
10540 case ARM::Int_eh_sjlj_setjmp_nofp
:
10541 case ARM::tInt_eh_sjlj_setjmp
:
10542 case ARM::t2Int_eh_sjlj_setjmp
:
10543 case ARM::t2Int_eh_sjlj_setjmp_nofp
:
10546 case ARM::Int_eh_sjlj_setup_dispatch
:
10547 EmitSjLjDispatchBlock(MI
, BB
);
10552 // To insert an ABS instruction, we have to insert the
10553 // diamond control-flow pattern. The incoming instruction knows the
10554 // source vreg to test against 0, the destination vreg to set,
10555 // the condition code register to branch on, the
10556 // true/false values to select between, and a branch opcode to use.
10561 // BCC (branch to SinkBB if V0 >= 0)
10562 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
10563 // SinkBB: V1 = PHI(V2, V3)
10564 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10565 MachineFunction::iterator BBI
= ++BB
->getIterator();
10566 MachineFunction
*Fn
= BB
->getParent();
10567 MachineBasicBlock
*RSBBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10568 MachineBasicBlock
*SinkBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10569 Fn
->insert(BBI
, RSBBB
);
10570 Fn
->insert(BBI
, SinkBB
);
10572 Register ABSSrcReg
= MI
.getOperand(1).getReg();
10573 Register ABSDstReg
= MI
.getOperand(0).getReg();
10574 bool ABSSrcKIll
= MI
.getOperand(1).isKill();
10575 bool isThumb2
= Subtarget
->isThumb2();
10576 MachineRegisterInfo
&MRI
= Fn
->getRegInfo();
10577 // In Thumb mode S must not be specified if source register is the SP or
10578 // PC and if destination register is the SP, so restrict register class
10579 Register NewRsbDstReg
= MRI
.createVirtualRegister(
10580 isThumb2
? &ARM::rGPRRegClass
: &ARM::GPRRegClass
);
10582 // Transfer the remainder of BB and its successor edges to sinkMBB.
10583 SinkBB
->splice(SinkBB
->begin(), BB
,
10584 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10585 SinkBB
->transferSuccessorsAndUpdatePHIs(BB
);
10587 BB
->addSuccessor(RSBBB
);
10588 BB
->addSuccessor(SinkBB
);
10590 // fall through to SinkMBB
10591 RSBBB
->addSuccessor(SinkBB
);
10593 // insert a cmp at the end of BB
10594 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10597 .add(predOps(ARMCC::AL
));
10599 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
10601 TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
)).addMBB(SinkBB
)
10602 .addImm(ARMCC::getOppositeCondition(ARMCC::MI
)).addReg(ARM::CPSR
);
10604 // insert rsbri in RSBBB
10605 // Note: BCC and rsbri will be converted into predicated rsbmi
10606 // by if-conversion pass
10607 BuildMI(*RSBBB
, RSBBB
->begin(), dl
,
10608 TII
->get(isThumb2
? ARM::t2RSBri
: ARM::RSBri
), NewRsbDstReg
)
10609 .addReg(ABSSrcReg
, ABSSrcKIll
? RegState::Kill
: 0)
10611 .add(predOps(ARMCC::AL
))
10612 .add(condCodeOp());
10614 // insert PHI in SinkBB,
10615 // reuse ABSDstReg to not change uses of ABS instruction
10616 BuildMI(*SinkBB
, SinkBB
->begin(), dl
,
10617 TII
->get(ARM::PHI
), ABSDstReg
)
10618 .addReg(NewRsbDstReg
).addMBB(RSBBB
)
10619 .addReg(ABSSrcReg
).addMBB(BB
);
10621 // remove ABS instruction
10622 MI
.eraseFromParent();
10624 // return last added BB
10627 case ARM::COPY_STRUCT_BYVAL_I32
:
10629 return EmitStructByval(MI
, BB
);
10630 case ARM::WIN__CHKSTK
:
10631 return EmitLowered__chkstk(MI
, BB
);
10632 case ARM::WIN__DBZCHK
:
10633 return EmitLowered__dbzchk(MI
, BB
);
10637 /// Attaches vregs to MEMCPY that it will use as scratch registers
10638 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
10639 /// instead of as a custom inserter because we need the use list from the SDNode.
10640 static void attachMEMCPYScratchRegs(const ARMSubtarget
*Subtarget
,
10641 MachineInstr
&MI
, const SDNode
*Node
) {
10642 bool isThumb1
= Subtarget
->isThumb1Only();
10644 DebugLoc DL
= MI
.getDebugLoc();
10645 MachineFunction
*MF
= MI
.getParent()->getParent();
10646 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
10647 MachineInstrBuilder
MIB(*MF
, MI
);
10649 // If the new dst/src is unused mark it as dead.
10650 if (!Node
->hasAnyUseOfValue(0)) {
10651 MI
.getOperand(0).setIsDead(true);
10653 if (!Node
->hasAnyUseOfValue(1)) {
10654 MI
.getOperand(1).setIsDead(true);
10657 // The MEMCPY both defines and kills the scratch registers.
10658 for (unsigned I
= 0; I
!= MI
.getOperand(4).getImm(); ++I
) {
10659 Register TmpReg
= MRI
.createVirtualRegister(isThumb1
? &ARM::tGPRRegClass
10660 : &ARM::GPRRegClass
);
10661 MIB
.addReg(TmpReg
, RegState::Define
|RegState::Dead
);
10665 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
10666 SDNode
*Node
) const {
10667 if (MI
.getOpcode() == ARM::MEMCPY
) {
10668 attachMEMCPYScratchRegs(Subtarget
, MI
, Node
);
10672 const MCInstrDesc
*MCID
= &MI
.getDesc();
10673 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
10674 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
10675 // operand is still set to noreg. If needed, set the optional operand's
10676 // register to CPSR, and remove the redundant implicit def.
10678 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
10680 // Rename pseudo opcodes.
10681 unsigned NewOpc
= convertAddSubFlagsOpcode(MI
.getOpcode());
10684 const ARMBaseInstrInfo
*TII
= Subtarget
->getInstrInfo();
10685 MCID
= &TII
->get(NewOpc
);
10687 assert(MCID
->getNumOperands() ==
10688 MI
.getDesc().getNumOperands() + 5 - MI
.getDesc().getSize()
10689 && "converted opcode should be the same except for cc_out"
10690 " (and, on Thumb1, pred)");
10694 // Add the optional cc_out operand
10695 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
10697 // On Thumb1, move all input operands to the end, then add the predicate
10698 if (Subtarget
->isThumb1Only()) {
10699 for (unsigned c
= MCID
->getNumOperands() - 4; c
--;) {
10700 MI
.addOperand(MI
.getOperand(1));
10701 MI
.RemoveOperand(1);
10704 // Restore the ties
10705 for (unsigned i
= MI
.getNumOperands(); i
--;) {
10706 const MachineOperand
& op
= MI
.getOperand(i
);
10707 if (op
.isReg() && op
.isUse()) {
10708 int DefIdx
= MCID
->getOperandConstraint(i
, MCOI::TIED_TO
);
10710 MI
.tieOperands(DefIdx
, i
);
10714 MI
.addOperand(MachineOperand::CreateImm(ARMCC::AL
));
10715 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
10718 ccOutIdx
= MCID
->getNumOperands() - 1;
10720 ccOutIdx
= MCID
->getNumOperands() - 1;
10722 // Any ARM instruction that sets the 's' bit should specify an optional
10723 // "cc_out" operand in the last operand position.
10724 if (!MI
.hasOptionalDef() || !MCID
->OpInfo
[ccOutIdx
].isOptionalDef()) {
10725 assert(!NewOpc
&& "Optional cc_out operand required");
10728 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
10729 // since we already have an optional CPSR def.
10730 bool definesCPSR
= false;
10731 bool deadCPSR
= false;
10732 for (unsigned i
= MCID
->getNumOperands(), e
= MI
.getNumOperands(); i
!= e
;
10734 const MachineOperand
&MO
= MI
.getOperand(i
);
10735 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
) {
10736 definesCPSR
= true;
10739 MI
.RemoveOperand(i
);
10743 if (!definesCPSR
) {
10744 assert(!NewOpc
&& "Optional cc_out operand required");
10747 assert(deadCPSR
== !Node
->hasAnyUseOfValue(1) && "inconsistent dead flag");
10749 assert(!MI
.getOperand(ccOutIdx
).getReg() &&
10750 "expect uninitialized optional cc_out operand");
10751 // Thumb1 instructions must have the S bit even if the CPSR is dead.
10752 if (!Subtarget
->isThumb1Only())
10756 // If this instruction was defined with an optional CPSR def and its dag node
10757 // had a live implicit CPSR def, then activate the optional CPSR def.
10758 MachineOperand
&MO
= MI
.getOperand(ccOutIdx
);
10759 MO
.setReg(ARM::CPSR
);
10763 //===----------------------------------------------------------------------===//
10764 // ARM Optimization Hooks
10765 //===----------------------------------------------------------------------===//
10767 // Helper function that checks if N is a null or all ones constant.
10768 static inline bool isZeroOrAllOnes(SDValue N
, bool AllOnes
) {
10769 return AllOnes
? isAllOnesConstant(N
) : isNullConstant(N
);
10772 // Return true if N is conditionally 0 or all ones.
10773 // Detects these expressions where cc is an i1 value:
10775 // (select cc 0, y) [AllOnes=0]
10776 // (select cc y, 0) [AllOnes=0]
10777 // (zext cc) [AllOnes=0]
10778 // (sext cc) [AllOnes=0/1]
10779 // (select cc -1, y) [AllOnes=1]
10780 // (select cc y, -1) [AllOnes=1]
10782 // Invert is set when N is the null/all ones constant when CC is false.
10783 // OtherOp is set to the alternative value of N.
10784 static bool isConditionalZeroOrAllOnes(SDNode
*N
, bool AllOnes
,
10785 SDValue
&CC
, bool &Invert
,
10787 SelectionDAG
&DAG
) {
10788 switch (N
->getOpcode()) {
10789 default: return false;
10790 case ISD::SELECT
: {
10791 CC
= N
->getOperand(0);
10792 SDValue N1
= N
->getOperand(1);
10793 SDValue N2
= N
->getOperand(2);
10794 if (isZeroOrAllOnes(N1
, AllOnes
)) {
10799 if (isZeroOrAllOnes(N2
, AllOnes
)) {
10806 case ISD::ZERO_EXTEND
:
10807 // (zext cc) can never be the all ones value.
10811 case ISD::SIGN_EXTEND
: {
10813 EVT VT
= N
->getValueType(0);
10814 CC
= N
->getOperand(0);
10815 if (CC
.getValueType() != MVT::i1
|| CC
.getOpcode() != ISD::SETCC
)
10819 // When looking for an AllOnes constant, N is an sext, and the 'other'
10821 OtherOp
= DAG
.getConstant(0, dl
, VT
);
10822 else if (N
->getOpcode() == ISD::ZERO_EXTEND
)
10823 // When looking for a 0 constant, N can be zext or sext.
10824 OtherOp
= DAG
.getConstant(1, dl
, VT
);
10826 OtherOp
= DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), dl
,
10833 // Combine a constant select operand into its use:
10835 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10836 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10837 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
10838 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
10839 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
10841 // The transform is rejected if the select doesn't have a constant operand that
10842 // is null, or all ones when AllOnes is set.
10844 // Also recognize sext/zext from i1:
10846 // (add (zext cc), x) -> (select cc (add x, 1), x)
10847 // (add (sext cc), x) -> (select cc (add x, -1), x)
10849 // These transformations eventually create predicated instructions.
10851 // @param N The node to transform.
10852 // @param Slct The N operand that is a select.
10853 // @param OtherOp The other N operand (x above).
10854 // @param DCI Context.
10855 // @param AllOnes Require the select constant to be all ones instead of null.
10856 // @returns The new node, or SDValue() on failure.
10858 SDValue
combineSelectAndUse(SDNode
*N
, SDValue Slct
, SDValue OtherOp
,
10859 TargetLowering::DAGCombinerInfo
&DCI
,
10860 bool AllOnes
= false) {
10861 SelectionDAG
&DAG
= DCI
.DAG
;
10862 EVT VT
= N
->getValueType(0);
10863 SDValue NonConstantVal
;
10865 bool SwapSelectOps
;
10866 if (!isConditionalZeroOrAllOnes(Slct
.getNode(), AllOnes
, CCOp
, SwapSelectOps
,
10867 NonConstantVal
, DAG
))
10870 // Slct is now know to be the desired identity constant when CC is true.
10871 SDValue TrueVal
= OtherOp
;
10872 SDValue FalseVal
= DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
,
10873 OtherOp
, NonConstantVal
);
10874 // Unless SwapSelectOps says CC should be false.
10876 std::swap(TrueVal
, FalseVal
);
10878 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
,
10879 CCOp
, TrueVal
, FalseVal
);
10882 // Attempt combineSelectAndUse on each operand of a commutative operator N.
10884 SDValue
combineSelectAndUseCommutative(SDNode
*N
, bool AllOnes
,
10885 TargetLowering::DAGCombinerInfo
&DCI
) {
10886 SDValue N0
= N
->getOperand(0);
10887 SDValue N1
= N
->getOperand(1);
10888 if (N0
.getNode()->hasOneUse())
10889 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
, AllOnes
))
10891 if (N1
.getNode()->hasOneUse())
10892 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
, AllOnes
))
10897 static bool IsVUZPShuffleNode(SDNode
*N
) {
10898 // VUZP shuffle node.
10899 if (N
->getOpcode() == ARMISD::VUZP
)
10902 // "VUZP" on i32 is an alias for VTRN.
10903 if (N
->getOpcode() == ARMISD::VTRN
&& N
->getValueType(0) == MVT::v2i32
)
10909 static SDValue
AddCombineToVPADD(SDNode
*N
, SDValue N0
, SDValue N1
,
10910 TargetLowering::DAGCombinerInfo
&DCI
,
10911 const ARMSubtarget
*Subtarget
) {
10912 // Look for ADD(VUZP.0, VUZP.1).
10913 if (!IsVUZPShuffleNode(N0
.getNode()) || N0
.getNode() != N1
.getNode() ||
10917 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
10918 if (!N
->getValueType(0).is64BitVector())
10922 SelectionDAG
&DAG
= DCI
.DAG
;
10923 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10925 SDNode
*Unzip
= N0
.getNode();
10926 EVT VT
= N
->getValueType(0);
10928 SmallVector
<SDValue
, 8> Ops
;
10929 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpadd
, dl
,
10930 TLI
.getPointerTy(DAG
.getDataLayout())));
10931 Ops
.push_back(Unzip
->getOperand(0));
10932 Ops
.push_back(Unzip
->getOperand(1));
10934 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10937 static SDValue
AddCombineVUZPToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10938 TargetLowering::DAGCombinerInfo
&DCI
,
10939 const ARMSubtarget
*Subtarget
) {
10940 // Check for two extended operands.
10941 if (!(N0
.getOpcode() == ISD::SIGN_EXTEND
&&
10942 N1
.getOpcode() == ISD::SIGN_EXTEND
) &&
10943 !(N0
.getOpcode() == ISD::ZERO_EXTEND
&&
10944 N1
.getOpcode() == ISD::ZERO_EXTEND
))
10947 SDValue N00
= N0
.getOperand(0);
10948 SDValue N10
= N1
.getOperand(0);
10950 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
10951 if (!IsVUZPShuffleNode(N00
.getNode()) || N00
.getNode() != N10
.getNode() ||
10955 // We only recognize Q register paddl here; this can't be reached until
10956 // after type legalization.
10957 if (!N00
.getValueType().is64BitVector() ||
10958 !N0
.getValueType().is128BitVector())
10961 // Generate vpaddl.
10962 SelectionDAG
&DAG
= DCI
.DAG
;
10963 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10965 EVT VT
= N
->getValueType(0);
10967 SmallVector
<SDValue
, 8> Ops
;
10968 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
10970 if (N0
.getOpcode() == ISD::SIGN_EXTEND
)
10971 Opcode
= Intrinsic::arm_neon_vpaddls
;
10973 Opcode
= Intrinsic::arm_neon_vpaddlu
;
10974 Ops
.push_back(DAG
.getConstant(Opcode
, dl
,
10975 TLI
.getPointerTy(DAG
.getDataLayout())));
10976 EVT ElemTy
= N00
.getValueType().getVectorElementType();
10977 unsigned NumElts
= VT
.getVectorNumElements();
10978 EVT ConcatVT
= EVT::getVectorVT(*DAG
.getContext(), ElemTy
, NumElts
* 2);
10979 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), ConcatVT
,
10980 N00
.getOperand(0), N00
.getOperand(1));
10981 Ops
.push_back(Concat
);
10983 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10986 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
10987 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
10988 // much easier to match.
10990 AddCombineBUILD_VECTORToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10991 TargetLowering::DAGCombinerInfo
&DCI
,
10992 const ARMSubtarget
*Subtarget
) {
10993 // Only perform optimization if after legalize, and if NEON is available. We
10994 // also expected both operands to be BUILD_VECTORs.
10995 if (DCI
.isBeforeLegalize() || !Subtarget
->hasNEON()
10996 || N0
.getOpcode() != ISD::BUILD_VECTOR
10997 || N1
.getOpcode() != ISD::BUILD_VECTOR
)
11000 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
11001 EVT VT
= N
->getValueType(0);
11002 if (!VT
.isInteger() || VT
.getVectorElementType() == MVT::i64
)
11005 // Check that the vector operands are of the right form.
11006 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
11007 // operands, where N is the size of the formed vector.
11008 // Each EXTRACT_VECTOR should have the same input vector and odd or even
11009 // index such that we have a pair wise add pattern.
11011 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
11012 if (N0
->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
11014 SDValue Vec
= N0
->getOperand(0)->getOperand(0);
11015 SDNode
*V
= Vec
.getNode();
11016 unsigned nextIndex
= 0;
11018 // For each operands to the ADD which are BUILD_VECTORs,
11019 // check to see if each of their operands are an EXTRACT_VECTOR with
11020 // the same vector and appropriate index.
11021 for (unsigned i
= 0, e
= N0
->getNumOperands(); i
!= e
; ++i
) {
11022 if (N0
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
11023 && N1
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
11025 SDValue ExtVec0
= N0
->getOperand(i
);
11026 SDValue ExtVec1
= N1
->getOperand(i
);
11028 // First operand is the vector, verify its the same.
11029 if (V
!= ExtVec0
->getOperand(0).getNode() ||
11030 V
!= ExtVec1
->getOperand(0).getNode())
11033 // Second is the constant, verify its correct.
11034 ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(ExtVec0
->getOperand(1));
11035 ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(ExtVec1
->getOperand(1));
11037 // For the constant, we want to see all the even or all the odd.
11038 if (!C0
|| !C1
|| C0
->getZExtValue() != nextIndex
11039 || C1
->getZExtValue() != nextIndex
+1)
11042 // Increment index.
11048 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
11049 // we're using the entire input vector, otherwise there's a size/legality
11050 // mismatch somewhere.
11051 if (nextIndex
!= Vec
.getValueType().getVectorNumElements() ||
11052 Vec
.getValueType().getVectorElementType() == VT
.getVectorElementType())
11055 // Create VPADDL node.
11056 SelectionDAG
&DAG
= DCI
.DAG
;
11057 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11061 // Build operand list.
11062 SmallVector
<SDValue
, 8> Ops
;
11063 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddls
, dl
,
11064 TLI
.getPointerTy(DAG
.getDataLayout())));
11066 // Input is the vector.
11067 Ops
.push_back(Vec
);
11069 // Get widened type and narrowed type.
11071 unsigned numElem
= VT
.getVectorNumElements();
11073 EVT inputLaneType
= Vec
.getValueType().getVectorElementType();
11074 switch (inputLaneType
.getSimpleVT().SimpleTy
) {
11075 case MVT::i8
: widenType
= MVT::getVectorVT(MVT::i16
, numElem
); break;
11076 case MVT::i16
: widenType
= MVT::getVectorVT(MVT::i32
, numElem
); break;
11077 case MVT::i32
: widenType
= MVT::getVectorVT(MVT::i64
, numElem
); break;
11079 llvm_unreachable("Invalid vector element type for padd optimization.");
11082 SDValue tmp
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, widenType
, Ops
);
11083 unsigned ExtOp
= VT
.bitsGT(tmp
.getValueType()) ? ISD::ANY_EXTEND
: ISD::TRUNCATE
;
11084 return DAG
.getNode(ExtOp
, dl
, VT
, tmp
);
11087 static SDValue
findMUL_LOHI(SDValue V
) {
11088 if (V
->getOpcode() == ISD::UMUL_LOHI
||
11089 V
->getOpcode() == ISD::SMUL_LOHI
)
11094 static SDValue
AddCombineTo64BitSMLAL16(SDNode
*AddcNode
, SDNode
*AddeNode
,
11095 TargetLowering::DAGCombinerInfo
&DCI
,
11096 const ARMSubtarget
*Subtarget
) {
11097 if (!Subtarget
->hasBaseDSP())
11100 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
11101 // accumulates the product into a 64-bit value. The 16-bit values will
11102 // be sign extended somehow or SRA'd into 32-bit values
11103 // (addc (adde (mul 16bit, 16bit), lo), hi)
11104 SDValue Mul
= AddcNode
->getOperand(0);
11105 SDValue Lo
= AddcNode
->getOperand(1);
11106 if (Mul
.getOpcode() != ISD::MUL
) {
11107 Lo
= AddcNode
->getOperand(0);
11108 Mul
= AddcNode
->getOperand(1);
11109 if (Mul
.getOpcode() != ISD::MUL
)
11113 SDValue SRA
= AddeNode
->getOperand(0);
11114 SDValue Hi
= AddeNode
->getOperand(1);
11115 if (SRA
.getOpcode() != ISD::SRA
) {
11116 SRA
= AddeNode
->getOperand(1);
11117 Hi
= AddeNode
->getOperand(0);
11118 if (SRA
.getOpcode() != ISD::SRA
)
11121 if (auto Const
= dyn_cast
<ConstantSDNode
>(SRA
.getOperand(1))) {
11122 if (Const
->getZExtValue() != 31)
11127 if (SRA
.getOperand(0) != Mul
)
11130 SelectionDAG
&DAG
= DCI
.DAG
;
11131 SDLoc
dl(AddcNode
);
11132 unsigned Opcode
= 0;
11136 if (isS16(Mul
.getOperand(0), DAG
) && isS16(Mul
.getOperand(1), DAG
)) {
11137 Opcode
= ARMISD::SMLALBB
;
11138 Op0
= Mul
.getOperand(0);
11139 Op1
= Mul
.getOperand(1);
11140 } else if (isS16(Mul
.getOperand(0), DAG
) && isSRA16(Mul
.getOperand(1))) {
11141 Opcode
= ARMISD::SMLALBT
;
11142 Op0
= Mul
.getOperand(0);
11143 Op1
= Mul
.getOperand(1).getOperand(0);
11144 } else if (isSRA16(Mul
.getOperand(0)) && isS16(Mul
.getOperand(1), DAG
)) {
11145 Opcode
= ARMISD::SMLALTB
;
11146 Op0
= Mul
.getOperand(0).getOperand(0);
11147 Op1
= Mul
.getOperand(1);
11148 } else if (isSRA16(Mul
.getOperand(0)) && isSRA16(Mul
.getOperand(1))) {
11149 Opcode
= ARMISD::SMLALTT
;
11150 Op0
= Mul
->getOperand(0).getOperand(0);
11151 Op1
= Mul
->getOperand(1).getOperand(0);
11157 SDValue SMLAL
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
11159 // Replace the ADDs' nodes uses by the MLA node's values.
11160 SDValue
HiMLALResult(SMLAL
.getNode(), 1);
11161 SDValue
LoMLALResult(SMLAL
.getNode(), 0);
11163 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), LoMLALResult
);
11164 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), HiMLALResult
);
11166 // Return original node to notify the driver to stop replacing.
11167 SDValue
resNode(AddcNode
, 0);
11171 static SDValue
AddCombineTo64bitMLAL(SDNode
*AddeSubeNode
,
11172 TargetLowering::DAGCombinerInfo
&DCI
,
11173 const ARMSubtarget
*Subtarget
) {
11174 // Look for multiply add opportunities.
11175 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
11176 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
11177 // a glue link from the first add to the second add.
11178 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
11179 // a S/UMLAL instruction.
11182 // V \ [no multiline comment]
11188 // In the special case where only the higher part of a signed result is used
11189 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
11190 // a constant with the exact value of 0x80000000, we recognize we are dealing
11191 // with a "rounded multiply and add" (or subtract) and transform it into
11192 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
11194 assert((AddeSubeNode
->getOpcode() == ARMISD::ADDE
||
11195 AddeSubeNode
->getOpcode() == ARMISD::SUBE
) &&
11196 "Expect an ADDE or SUBE");
11198 assert(AddeSubeNode
->getNumOperands() == 3 &&
11199 AddeSubeNode
->getOperand(2).getValueType() == MVT::i32
&&
11200 "ADDE node has the wrong inputs");
11202 // Check that we are chained to the right ADDC or SUBC node.
11203 SDNode
*AddcSubcNode
= AddeSubeNode
->getOperand(2).getNode();
11204 if ((AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
11205 AddcSubcNode
->getOpcode() != ARMISD::ADDC
) ||
11206 (AddeSubeNode
->getOpcode() == ARMISD::SUBE
&&
11207 AddcSubcNode
->getOpcode() != ARMISD::SUBC
))
11210 SDValue AddcSubcOp0
= AddcSubcNode
->getOperand(0);
11211 SDValue AddcSubcOp1
= AddcSubcNode
->getOperand(1);
11213 // Check if the two operands are from the same mul_lohi node.
11214 if (AddcSubcOp0
.getNode() == AddcSubcOp1
.getNode())
11217 assert(AddcSubcNode
->getNumValues() == 2 &&
11218 AddcSubcNode
->getValueType(0) == MVT::i32
&&
11219 "Expect ADDC with two result values. First: i32");
11221 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
11222 // maybe a SMLAL which multiplies two 16-bit values.
11223 if (AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
11224 AddcSubcOp0
->getOpcode() != ISD::UMUL_LOHI
&&
11225 AddcSubcOp0
->getOpcode() != ISD::SMUL_LOHI
&&
11226 AddcSubcOp1
->getOpcode() != ISD::UMUL_LOHI
&&
11227 AddcSubcOp1
->getOpcode() != ISD::SMUL_LOHI
)
11228 return AddCombineTo64BitSMLAL16(AddcSubcNode
, AddeSubeNode
, DCI
, Subtarget
);
11230 // Check for the triangle shape.
11231 SDValue AddeSubeOp0
= AddeSubeNode
->getOperand(0);
11232 SDValue AddeSubeOp1
= AddeSubeNode
->getOperand(1);
11234 // Make sure that the ADDE/SUBE operands are not coming from the same node.
11235 if (AddeSubeOp0
.getNode() == AddeSubeOp1
.getNode())
11238 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
11239 bool IsLeftOperandMUL
= false;
11240 SDValue MULOp
= findMUL_LOHI(AddeSubeOp0
);
11241 if (MULOp
== SDValue())
11242 MULOp
= findMUL_LOHI(AddeSubeOp1
);
11244 IsLeftOperandMUL
= true;
11245 if (MULOp
== SDValue())
11248 // Figure out the right opcode.
11249 unsigned Opc
= MULOp
->getOpcode();
11250 unsigned FinalOpc
= (Opc
== ISD::SMUL_LOHI
) ? ARMISD::SMLAL
: ARMISD::UMLAL
;
11252 // Figure out the high and low input values to the MLAL node.
11253 SDValue
*HiAddSub
= nullptr;
11254 SDValue
*LoMul
= nullptr;
11255 SDValue
*LowAddSub
= nullptr;
11257 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
11258 if ((AddeSubeOp0
!= MULOp
.getValue(1)) && (AddeSubeOp1
!= MULOp
.getValue(1)))
11261 if (IsLeftOperandMUL
)
11262 HiAddSub
= &AddeSubeOp1
;
11264 HiAddSub
= &AddeSubeOp0
;
11266 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
11267 // whose low result is fed to the ADDC/SUBC we are checking.
11269 if (AddcSubcOp0
== MULOp
.getValue(0)) {
11270 LoMul
= &AddcSubcOp0
;
11271 LowAddSub
= &AddcSubcOp1
;
11273 if (AddcSubcOp1
== MULOp
.getValue(0)) {
11274 LoMul
= &AddcSubcOp1
;
11275 LowAddSub
= &AddcSubcOp0
;
11281 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
11282 // the replacement below will create a cycle.
11283 if (AddcSubcNode
== HiAddSub
->getNode() ||
11284 AddcSubcNode
->isPredecessorOf(HiAddSub
->getNode()))
11287 // Create the merged node.
11288 SelectionDAG
&DAG
= DCI
.DAG
;
11290 // Start building operand list.
11291 SmallVector
<SDValue
, 8> Ops
;
11292 Ops
.push_back(LoMul
->getOperand(0));
11293 Ops
.push_back(LoMul
->getOperand(1));
11295 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
11296 // the case, we must be doing signed multiplication and only use the higher
11297 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
11298 // addition or subtraction with the value of 0x800000.
11299 if (Subtarget
->hasV6Ops() && Subtarget
->hasDSP() && Subtarget
->useMulOps() &&
11300 FinalOpc
== ARMISD::SMLAL
&& !AddeSubeNode
->hasAnyUseOfValue(1) &&
11301 LowAddSub
->getNode()->getOpcode() == ISD::Constant
&&
11302 static_cast<ConstantSDNode
*>(LowAddSub
->getNode())->getZExtValue() ==
11304 Ops
.push_back(*HiAddSub
);
11305 if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
) {
11306 FinalOpc
= ARMISD::SMMLSR
;
11308 FinalOpc
= ARMISD::SMMLAR
;
11310 SDValue NewNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
), MVT::i32
, Ops
);
11311 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), NewNode
);
11313 return SDValue(AddeSubeNode
, 0);
11314 } else if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
)
11315 // SMMLS is generated during instruction selection and the rest of this
11316 // function can not handle the case where AddcSubcNode is a SUBC.
11319 // Finish building the operand list for {U/S}MLAL
11320 Ops
.push_back(*LowAddSub
);
11321 Ops
.push_back(*HiAddSub
);
11323 SDValue MLALNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
),
11324 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11326 // Replace the ADDs' nodes uses by the MLA node's values.
11327 SDValue
HiMLALResult(MLALNode
.getNode(), 1);
11328 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), HiMLALResult
);
11330 SDValue
LoMLALResult(MLALNode
.getNode(), 0);
11331 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode
, 0), LoMLALResult
);
11333 // Return original node to notify the driver to stop replacing.
11334 return SDValue(AddeSubeNode
, 0);
11337 static SDValue
AddCombineTo64bitUMAAL(SDNode
*AddeNode
,
11338 TargetLowering::DAGCombinerInfo
&DCI
,
11339 const ARMSubtarget
*Subtarget
) {
11340 // UMAAL is similar to UMLAL except that it adds two unsigned values.
11341 // While trying to combine for the other MLAL nodes, first search for the
11342 // chance to use UMAAL. Check if Addc uses a node which has already
11343 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
11344 // as the addend, and it's handled in PerformUMLALCombine.
11346 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11347 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11349 // Check that we have a glued ADDC node.
11350 SDNode
* AddcNode
= AddeNode
->getOperand(2).getNode();
11351 if (AddcNode
->getOpcode() != ARMISD::ADDC
)
11354 // Find the converted UMAAL or quit if it doesn't exist.
11355 SDNode
*UmlalNode
= nullptr;
11357 if (AddcNode
->getOperand(0).getOpcode() == ARMISD::UMLAL
) {
11358 UmlalNode
= AddcNode
->getOperand(0).getNode();
11359 AddHi
= AddcNode
->getOperand(1);
11360 } else if (AddcNode
->getOperand(1).getOpcode() == ARMISD::UMLAL
) {
11361 UmlalNode
= AddcNode
->getOperand(1).getNode();
11362 AddHi
= AddcNode
->getOperand(0);
11364 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11367 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
11368 // the ADDC as well as Zero.
11369 if (!isNullConstant(UmlalNode
->getOperand(3)))
11372 if ((isNullConstant(AddeNode
->getOperand(0)) &&
11373 AddeNode
->getOperand(1).getNode() == UmlalNode
) ||
11374 (AddeNode
->getOperand(0).getNode() == UmlalNode
&&
11375 isNullConstant(AddeNode
->getOperand(1)))) {
11376 SelectionDAG
&DAG
= DCI
.DAG
;
11377 SDValue Ops
[] = { UmlalNode
->getOperand(0), UmlalNode
->getOperand(1),
11378 UmlalNode
->getOperand(2), AddHi
};
11379 SDValue UMAAL
= DAG
.getNode(ARMISD::UMAAL
, SDLoc(AddcNode
),
11380 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11382 // Replace the ADDs' nodes uses by the UMAAL node's values.
11383 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), SDValue(UMAAL
.getNode(), 1));
11384 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), SDValue(UMAAL
.getNode(), 0));
11386 // Return original node to notify the driver to stop replacing.
11387 return SDValue(AddeNode
, 0);
11392 static SDValue
PerformUMLALCombine(SDNode
*N
, SelectionDAG
&DAG
,
11393 const ARMSubtarget
*Subtarget
) {
11394 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11397 // Check that we have a pair of ADDC and ADDE as operands.
11398 // Both addends of the ADDE must be zero.
11399 SDNode
* AddcNode
= N
->getOperand(2).getNode();
11400 SDNode
* AddeNode
= N
->getOperand(3).getNode();
11401 if ((AddcNode
->getOpcode() == ARMISD::ADDC
) &&
11402 (AddeNode
->getOpcode() == ARMISD::ADDE
) &&
11403 isNullConstant(AddeNode
->getOperand(0)) &&
11404 isNullConstant(AddeNode
->getOperand(1)) &&
11405 (AddeNode
->getOperand(2).getNode() == AddcNode
))
11406 return DAG
.getNode(ARMISD::UMAAL
, SDLoc(N
),
11407 DAG
.getVTList(MVT::i32
, MVT::i32
),
11408 {N
->getOperand(0), N
->getOperand(1),
11409 AddcNode
->getOperand(0), AddcNode
->getOperand(1)});
11414 static SDValue
PerformAddcSubcCombine(SDNode
*N
,
11415 TargetLowering::DAGCombinerInfo
&DCI
,
11416 const ARMSubtarget
*Subtarget
) {
11417 SelectionDAG
&DAG(DCI
.DAG
);
11419 if (N
->getOpcode() == ARMISD::SUBC
) {
11420 // (SUBC (ADDE 0, 0, C), 1) -> C
11421 SDValue LHS
= N
->getOperand(0);
11422 SDValue RHS
= N
->getOperand(1);
11423 if (LHS
->getOpcode() == ARMISD::ADDE
&&
11424 isNullConstant(LHS
->getOperand(0)) &&
11425 isNullConstant(LHS
->getOperand(1)) && isOneConstant(RHS
)) {
11426 return DCI
.CombineTo(N
, SDValue(N
, 0), LHS
->getOperand(2));
11430 if (Subtarget
->isThumb1Only()) {
11431 SDValue RHS
= N
->getOperand(1);
11432 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11433 int32_t imm
= C
->getSExtValue();
11434 if (imm
< 0 && imm
> std::numeric_limits
<int>::min()) {
11436 RHS
= DAG
.getConstant(-imm
, DL
, MVT::i32
);
11437 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDC
) ? ARMISD::SUBC
11439 return DAG
.getNode(Opcode
, DL
, N
->getVTList(), N
->getOperand(0), RHS
);
11447 static SDValue
PerformAddeSubeCombine(SDNode
*N
,
11448 TargetLowering::DAGCombinerInfo
&DCI
,
11449 const ARMSubtarget
*Subtarget
) {
11450 if (Subtarget
->isThumb1Only()) {
11451 SelectionDAG
&DAG
= DCI
.DAG
;
11452 SDValue RHS
= N
->getOperand(1);
11453 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11454 int64_t imm
= C
->getSExtValue();
11458 // The with-carry-in form matches bitwise not instead of the negation.
11459 // Effectively, the inverse interpretation of the carry flag already
11460 // accounts for part of the negation.
11461 RHS
= DAG
.getConstant(~imm
, DL
, MVT::i32
);
11463 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDE
) ? ARMISD::SUBE
11465 return DAG
.getNode(Opcode
, DL
, N
->getVTList(),
11466 N
->getOperand(0), RHS
, N
->getOperand(2));
11469 } else if (N
->getOperand(1)->getOpcode() == ISD::SMUL_LOHI
) {
11470 return AddCombineTo64bitMLAL(N
, DCI
, Subtarget
);
11475 static SDValue
PerformABSCombine(SDNode
*N
,
11476 TargetLowering::DAGCombinerInfo
&DCI
,
11477 const ARMSubtarget
*Subtarget
) {
11479 SelectionDAG
&DAG
= DCI
.DAG
;
11480 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11482 if (TLI
.isOperationLegal(N
->getOpcode(), N
->getValueType(0)))
11485 if (!TLI
.expandABS(N
, res
, DAG
))
11491 /// PerformADDECombine - Target-specific dag combine transform from
11492 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
11493 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
11494 static SDValue
PerformADDECombine(SDNode
*N
,
11495 TargetLowering::DAGCombinerInfo
&DCI
,
11496 const ARMSubtarget
*Subtarget
) {
11497 // Only ARM and Thumb2 support UMLAL/SMLAL.
11498 if (Subtarget
->isThumb1Only())
11499 return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
11501 // Only perform the checks after legalize when the pattern is available.
11502 if (DCI
.isBeforeLegalize()) return SDValue();
11504 return AddCombineTo64bitUMAAL(N
, DCI
, Subtarget
);
11507 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
11508 /// operands N0 and N1. This is a helper for PerformADDCombine that is
11509 /// called with the default operands, and if that fails, with commuted
11511 static SDValue
PerformADDCombineWithOperands(SDNode
*N
, SDValue N0
, SDValue N1
,
11512 TargetLowering::DAGCombinerInfo
&DCI
,
11513 const ARMSubtarget
*Subtarget
){
11514 // Attempt to create vpadd for this add.
11515 if (SDValue Result
= AddCombineToVPADD(N
, N0
, N1
, DCI
, Subtarget
))
11518 // Attempt to create vpaddl for this add.
11519 if (SDValue Result
= AddCombineVUZPToVPADDL(N
, N0
, N1
, DCI
, Subtarget
))
11521 if (SDValue Result
= AddCombineBUILD_VECTORToVPADDL(N
, N0
, N1
, DCI
,
11525 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
11526 if (N0
.getNode()->hasOneUse())
11527 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
))
11533 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode
*N
,
11534 CombineLevel Level
) const {
11535 if (Level
== BeforeLegalizeTypes
)
11538 if (N
->getOpcode() != ISD::SHL
)
11541 if (Subtarget
->isThumb1Only()) {
11542 // Avoid making expensive immediates by commuting shifts. (This logic
11543 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
11545 if (N
->getOpcode() != ISD::SHL
)
11547 SDValue N1
= N
->getOperand(0);
11548 if (N1
->getOpcode() != ISD::ADD
&& N1
->getOpcode() != ISD::AND
&&
11549 N1
->getOpcode() != ISD::OR
&& N1
->getOpcode() != ISD::XOR
)
11551 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N1
->getOperand(1))) {
11552 if (Const
->getAPIntValue().ult(256))
11554 if (N1
->getOpcode() == ISD::ADD
&& Const
->getAPIntValue().slt(0) &&
11555 Const
->getAPIntValue().sgt(-256))
11561 // Turn off commute-with-shift transform after legalization, so it doesn't
11562 // conflict with PerformSHLSimplify. (We could try to detect when
11563 // PerformSHLSimplify would trigger more precisely, but it isn't
11564 // really necessary.)
11568 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
11569 const SDNode
*N
, CombineLevel Level
) const {
11570 if (!Subtarget
->isThumb1Only())
11573 if (Level
== BeforeLegalizeTypes
)
11579 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
11580 if (!Subtarget
->hasNEON()) {
11581 if (Subtarget
->isThumb1Only())
11582 return VT
.getScalarSizeInBits() <= 32;
11585 return VT
.isScalarInteger();
11588 static SDValue
PerformSHLSimplify(SDNode
*N
,
11589 TargetLowering::DAGCombinerInfo
&DCI
,
11590 const ARMSubtarget
*ST
) {
11591 // Allow the generic combiner to identify potential bswaps.
11592 if (DCI
.isBeforeLegalize())
11595 // DAG combiner will fold:
11596 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
11597 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
11598 // Other code patterns that can be also be modified have the following form:
11599 // b + ((a << 1) | 510)
11600 // b + ((a << 1) & 510)
11601 // b + ((a << 1) ^ 510)
11602 // b + ((a << 1) + 510)
11604 // Many instructions can perform the shift for free, but it requires both
11605 // the operands to be registers. If c1 << c2 is too large, a mov immediate
11606 // instruction will needed. So, unfold back to the original pattern if:
11607 // - if c1 and c2 are small enough that they don't require mov imms.
11608 // - the user(s) of the node can perform an shl
11610 // No shifted operands for 16-bit instructions.
11611 if (ST
->isThumb() && ST
->isThumb1Only())
11614 // Check that all the users could perform the shl themselves.
11615 for (auto U
: N
->uses()) {
11616 switch(U
->getOpcode()) {
11626 // Check that the user isn't already using a constant because there
11627 // aren't any instructions that support an immediate operand and a
11628 // shifted operand.
11629 if (isa
<ConstantSDNode
>(U
->getOperand(0)) ||
11630 isa
<ConstantSDNode
>(U
->getOperand(1)))
11633 // Check that it's not already using a shift.
11634 if (U
->getOperand(0).getOpcode() == ISD::SHL
||
11635 U
->getOperand(1).getOpcode() == ISD::SHL
)
11641 if (N
->getOpcode() != ISD::ADD
&& N
->getOpcode() != ISD::OR
&&
11642 N
->getOpcode() != ISD::XOR
&& N
->getOpcode() != ISD::AND
)
11645 if (N
->getOperand(0).getOpcode() != ISD::SHL
)
11648 SDValue SHL
= N
->getOperand(0);
11650 auto *C1ShlC2
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11651 auto *C2
= dyn_cast
<ConstantSDNode
>(SHL
.getOperand(1));
11652 if (!C1ShlC2
|| !C2
)
11655 APInt C2Int
= C2
->getAPIntValue();
11656 APInt C1Int
= C1ShlC2
->getAPIntValue();
11658 // Check that performing a lshr will not lose any information.
11659 APInt Mask
= APInt::getHighBitsSet(C2Int
.getBitWidth(),
11660 C2Int
.getBitWidth() - C2
->getZExtValue());
11661 if ((C1Int
& Mask
) != C1Int
)
11664 // Shift the first constant.
11665 C1Int
.lshrInPlace(C2Int
);
11667 // The immediates are encoded as an 8-bit value that can be rotated.
11668 auto LargeImm
= [](const APInt
&Imm
) {
11669 unsigned Zeros
= Imm
.countLeadingZeros() + Imm
.countTrailingZeros();
11670 return Imm
.getBitWidth() - Zeros
> 8;
11673 if (LargeImm(C1Int
) || LargeImm(C2Int
))
11676 SelectionDAG
&DAG
= DCI
.DAG
;
11678 SDValue X
= SHL
.getOperand(0);
11679 SDValue BinOp
= DAG
.getNode(N
->getOpcode(), dl
, MVT::i32
, X
,
11680 DAG
.getConstant(C1Int
, dl
, MVT::i32
));
11681 // Shift left to compensate for the lshr of C1Int.
11682 SDValue Res
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, BinOp
, SHL
.getOperand(1));
11684 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL
.getOperand(0).dump();
11685 SHL
.dump(); N
->dump());
11686 LLVM_DEBUG(dbgs() << "Into:\n"; X
.dump(); BinOp
.dump(); Res
.dump());
11691 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
11693 static SDValue
PerformADDCombine(SDNode
*N
,
11694 TargetLowering::DAGCombinerInfo
&DCI
,
11695 const ARMSubtarget
*Subtarget
) {
11696 SDValue N0
= N
->getOperand(0);
11697 SDValue N1
= N
->getOperand(1);
11699 // Only works one way, because it needs an immediate operand.
11700 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11703 // First try with the default operand order.
11704 if (SDValue Result
= PerformADDCombineWithOperands(N
, N0
, N1
, DCI
, Subtarget
))
11707 // If that didn't work, try again with the operands commuted.
11708 return PerformADDCombineWithOperands(N
, N1
, N0
, DCI
, Subtarget
);
11711 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
11713 static SDValue
PerformSUBCombine(SDNode
*N
,
11714 TargetLowering::DAGCombinerInfo
&DCI
) {
11715 SDValue N0
= N
->getOperand(0);
11716 SDValue N1
= N
->getOperand(1);
11718 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
11719 if (N1
.getNode()->hasOneUse())
11720 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
))
11726 /// PerformVMULCombine
11727 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
11728 /// special multiplier accumulator forwarding.
11729 /// vmul d3, d0, d2
11730 /// vmla d3, d1, d2
11732 /// vadd d3, d0, d1
11733 /// vmul d3, d3, d2
11734 // However, for (A + B) * (A + B),
11741 static SDValue
PerformVMULCombine(SDNode
*N
,
11742 TargetLowering::DAGCombinerInfo
&DCI
,
11743 const ARMSubtarget
*Subtarget
) {
11744 if (!Subtarget
->hasVMLxForwarding())
11747 SelectionDAG
&DAG
= DCI
.DAG
;
11748 SDValue N0
= N
->getOperand(0);
11749 SDValue N1
= N
->getOperand(1);
11750 unsigned Opcode
= N0
.getOpcode();
11751 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11752 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
) {
11753 Opcode
= N1
.getOpcode();
11754 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11755 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
)
11763 EVT VT
= N
->getValueType(0);
11765 SDValue N00
= N0
->getOperand(0);
11766 SDValue N01
= N0
->getOperand(1);
11767 return DAG
.getNode(Opcode
, DL
, VT
,
11768 DAG
.getNode(ISD::MUL
, DL
, VT
, N00
, N1
),
11769 DAG
.getNode(ISD::MUL
, DL
, VT
, N01
, N1
));
11772 static SDValue
PerformMULCombine(SDNode
*N
,
11773 TargetLowering::DAGCombinerInfo
&DCI
,
11774 const ARMSubtarget
*Subtarget
) {
11775 SelectionDAG
&DAG
= DCI
.DAG
;
11777 if (Subtarget
->isThumb1Only())
11780 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11783 EVT VT
= N
->getValueType(0);
11784 if (VT
.is64BitVector() || VT
.is128BitVector())
11785 return PerformVMULCombine(N
, DCI
, Subtarget
);
11786 if (VT
!= MVT::i32
)
11789 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11793 int64_t MulAmt
= C
->getSExtValue();
11794 unsigned ShiftAmt
= countTrailingZeros
<uint64_t>(MulAmt
);
11796 ShiftAmt
= ShiftAmt
& (32 - 1);
11797 SDValue V
= N
->getOperand(0);
11801 MulAmt
>>= ShiftAmt
;
11804 if (isPowerOf2_32(MulAmt
- 1)) {
11805 // (mul x, 2^N + 1) => (add (shl x, N), x)
11806 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11808 DAG
.getNode(ISD::SHL
, DL
, VT
,
11810 DAG
.getConstant(Log2_32(MulAmt
- 1), DL
,
11812 } else if (isPowerOf2_32(MulAmt
+ 1)) {
11813 // (mul x, 2^N - 1) => (sub (shl x, N), x)
11814 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11815 DAG
.getNode(ISD::SHL
, DL
, VT
,
11817 DAG
.getConstant(Log2_32(MulAmt
+ 1), DL
,
11823 uint64_t MulAmtAbs
= -MulAmt
;
11824 if (isPowerOf2_32(MulAmtAbs
+ 1)) {
11825 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
11826 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11828 DAG
.getNode(ISD::SHL
, DL
, VT
,
11830 DAG
.getConstant(Log2_32(MulAmtAbs
+ 1), DL
,
11832 } else if (isPowerOf2_32(MulAmtAbs
- 1)) {
11833 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
11834 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11836 DAG
.getNode(ISD::SHL
, DL
, VT
,
11838 DAG
.getConstant(Log2_32(MulAmtAbs
- 1), DL
,
11840 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11841 DAG
.getConstant(0, DL
, MVT::i32
), Res
);
11847 Res
= DAG
.getNode(ISD::SHL
, DL
, VT
,
11848 Res
, DAG
.getConstant(ShiftAmt
, DL
, MVT::i32
));
11850 // Do not add new nodes to DAG combiner worklist.
11851 DCI
.CombineTo(N
, Res
, false);
11855 static SDValue
CombineANDShift(SDNode
*N
,
11856 TargetLowering::DAGCombinerInfo
&DCI
,
11857 const ARMSubtarget
*Subtarget
) {
11858 // Allow DAGCombine to pattern-match before we touch the canonical form.
11859 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11862 if (N
->getValueType(0) != MVT::i32
)
11865 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11869 uint32_t C1
= (uint32_t)N1C
->getZExtValue();
11870 // Don't transform uxtb/uxth.
11871 if (C1
== 255 || C1
== 65535)
11874 SDNode
*N0
= N
->getOperand(0).getNode();
11875 if (!N0
->hasOneUse())
11878 if (N0
->getOpcode() != ISD::SHL
&& N0
->getOpcode() != ISD::SRL
)
11881 bool LeftShift
= N0
->getOpcode() == ISD::SHL
;
11883 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
11887 uint32_t C2
= (uint32_t)N01C
->getZExtValue();
11888 if (!C2
|| C2
>= 32)
11891 // Clear irrelevant bits in the mask.
11897 SelectionDAG
&DAG
= DCI
.DAG
;
11900 // We have a pattern of the form "(and (shl x, c2) c1)" or
11901 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
11902 // transform to a pair of shifts, to save materializing c1.
11904 // First pattern: right shift, then mask off leading bits.
11905 // FIXME: Use demanded bits?
11906 if (!LeftShift
&& isMask_32(C1
)) {
11907 uint32_t C3
= countLeadingZeros(C1
);
11909 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11910 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11911 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11912 DAG
.getConstant(C3
, DL
, MVT::i32
));
11916 // First pattern, reversed: left shift, then mask off trailing bits.
11917 if (LeftShift
&& isMask_32(~C1
)) {
11918 uint32_t C3
= countTrailingZeros(C1
);
11920 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11921 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11922 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11923 DAG
.getConstant(C3
, DL
, MVT::i32
));
11927 // Second pattern: left shift, then mask off leading bits.
11928 // FIXME: Use demanded bits?
11929 if (LeftShift
&& isShiftedMask_32(C1
)) {
11930 uint32_t Trailing
= countTrailingZeros(C1
);
11931 uint32_t C3
= countLeadingZeros(C1
);
11932 if (Trailing
== C2
&& C2
+ C3
< 32) {
11933 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11934 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11935 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11936 DAG
.getConstant(C3
, DL
, MVT::i32
));
11940 // Second pattern, reversed: right shift, then mask off trailing bits.
11941 // FIXME: Handle other patterns of known/demanded bits.
11942 if (!LeftShift
&& isShiftedMask_32(C1
)) {
11943 uint32_t Leading
= countLeadingZeros(C1
);
11944 uint32_t C3
= countTrailingZeros(C1
);
11945 if (Leading
== C2
&& C2
+ C3
< 32) {
11946 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11947 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11948 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11949 DAG
.getConstant(C3
, DL
, MVT::i32
));
11953 // FIXME: Transform "(and (shl x, c2) c1)" ->
11954 // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
11959 static SDValue
PerformANDCombine(SDNode
*N
,
11960 TargetLowering::DAGCombinerInfo
&DCI
,
11961 const ARMSubtarget
*Subtarget
) {
11962 // Attempt to use immediate-form VBIC
11963 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
11965 EVT VT
= N
->getValueType(0);
11966 SelectionDAG
&DAG
= DCI
.DAG
;
11968 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11971 APInt SplatBits
, SplatUndef
;
11972 unsigned SplatBitSize
;
11974 if (BVN
&& Subtarget
->hasNEON() &&
11975 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
11976 if (SplatBitSize
<= 64) {
11978 SDValue Val
= isVMOVModifiedImm((~SplatBits
).getZExtValue(),
11979 SplatUndef
.getZExtValue(), SplatBitSize
,
11980 DAG
, dl
, VbicVT
, VT
.is128BitVector(),
11982 if (Val
.getNode()) {
11984 DAG
.getNode(ISD::BITCAST
, dl
, VbicVT
, N
->getOperand(0));
11985 SDValue Vbic
= DAG
.getNode(ARMISD::VBICIMM
, dl
, VbicVT
, Input
, Val
);
11986 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vbic
);
11991 if (!Subtarget
->isThumb1Only()) {
11992 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
11993 if (SDValue Result
= combineSelectAndUseCommutative(N
, true, DCI
))
11996 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12000 if (Subtarget
->isThumb1Only())
12001 if (SDValue Result
= CombineANDShift(N
, DCI
, Subtarget
))
12007 // Try combining OR nodes to SMULWB, SMULWT.
12008 static SDValue
PerformORCombineToSMULWBT(SDNode
*OR
,
12009 TargetLowering::DAGCombinerInfo
&DCI
,
12010 const ARMSubtarget
*Subtarget
) {
12011 if (!Subtarget
->hasV6Ops() ||
12012 (Subtarget
->isThumb() &&
12013 (!Subtarget
->hasThumb2() || !Subtarget
->hasDSP())))
12016 SDValue SRL
= OR
->getOperand(0);
12017 SDValue SHL
= OR
->getOperand(1);
12019 if (SRL
.getOpcode() != ISD::SRL
|| SHL
.getOpcode() != ISD::SHL
) {
12020 SRL
= OR
->getOperand(1);
12021 SHL
= OR
->getOperand(0);
12023 if (!isSRL16(SRL
) || !isSHL16(SHL
))
12026 // The first operands to the shifts need to be the two results from the
12027 // same smul_lohi node.
12028 if ((SRL
.getOperand(0).getNode() != SHL
.getOperand(0).getNode()) ||
12029 SRL
.getOperand(0).getOpcode() != ISD::SMUL_LOHI
)
12032 SDNode
*SMULLOHI
= SRL
.getOperand(0).getNode();
12033 if (SRL
.getOperand(0) != SDValue(SMULLOHI
, 0) ||
12034 SHL
.getOperand(0) != SDValue(SMULLOHI
, 1))
12038 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
12039 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
12040 // For SMUWB the 16-bit value will signed extended somehow.
12041 // For SMULWT only the SRA is required.
12042 // Check both sides of SMUL_LOHI
12043 SDValue OpS16
= SMULLOHI
->getOperand(0);
12044 SDValue OpS32
= SMULLOHI
->getOperand(1);
12046 SelectionDAG
&DAG
= DCI
.DAG
;
12047 if (!isS16(OpS16
, DAG
) && !isSRA16(OpS16
)) {
12049 OpS32
= SMULLOHI
->getOperand(0);
12053 unsigned Opcode
= 0;
12054 if (isS16(OpS16
, DAG
))
12055 Opcode
= ARMISD::SMULWB
;
12056 else if (isSRA16(OpS16
)) {
12057 Opcode
= ARMISD::SMULWT
;
12058 OpS16
= OpS16
->getOperand(0);
12063 SDValue Res
= DAG
.getNode(Opcode
, dl
, MVT::i32
, OpS32
, OpS16
);
12064 DAG
.ReplaceAllUsesOfValueWith(SDValue(OR
, 0), Res
);
12065 return SDValue(OR
, 0);
12068 static SDValue
PerformORCombineToBFI(SDNode
*N
,
12069 TargetLowering::DAGCombinerInfo
&DCI
,
12070 const ARMSubtarget
*Subtarget
) {
12071 // BFI is only available on V6T2+
12072 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6T2Ops())
12075 EVT VT
= N
->getValueType(0);
12076 SDValue N0
= N
->getOperand(0);
12077 SDValue N1
= N
->getOperand(1);
12078 SelectionDAG
&DAG
= DCI
.DAG
;
12080 // 1) or (and A, mask), val => ARMbfi A, val, mask
12081 // iff (val & mask) == val
12083 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
12084 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
12085 // && mask == ~mask2
12086 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
12087 // && ~mask == mask2
12088 // (i.e., copy a bitfield value into another bitfield of the same width)
12090 if (VT
!= MVT::i32
)
12093 SDValue N00
= N0
.getOperand(0);
12095 // The value and the mask need to be constants so we can verify this is
12096 // actually a bitfield set. If the mask is 0xffff, we can do better
12097 // via a movt instruction, so don't use BFI in that case.
12098 SDValue MaskOp
= N0
.getOperand(1);
12099 ConstantSDNode
*MaskC
= dyn_cast
<ConstantSDNode
>(MaskOp
);
12102 unsigned Mask
= MaskC
->getZExtValue();
12103 if (Mask
== 0xffff)
12106 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
12107 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
12109 unsigned Val
= N1C
->getZExtValue();
12110 if ((Val
& ~Mask
) != Val
)
12113 if (ARM::isBitFieldInvertedMask(Mask
)) {
12114 Val
>>= countTrailingZeros(~Mask
);
12116 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
,
12117 DAG
.getConstant(Val
, DL
, MVT::i32
),
12118 DAG
.getConstant(Mask
, DL
, MVT::i32
));
12120 DCI
.CombineTo(N
, Res
, false);
12121 // Return value from the original node to inform the combiner than N is
12123 return SDValue(N
, 0);
12125 } else if (N1
.getOpcode() == ISD::AND
) {
12126 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
12127 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
12130 unsigned Mask2
= N11C
->getZExtValue();
12132 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
12134 if (ARM::isBitFieldInvertedMask(Mask
) &&
12135 (Mask
== ~Mask2
)) {
12136 // The pack halfword instruction works better for masks that fit it,
12137 // so use that when it's available.
12138 if (Subtarget
->hasDSP() &&
12139 (Mask
== 0xffff || Mask
== 0xffff0000))
12142 unsigned amt
= countTrailingZeros(Mask2
);
12143 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N1
.getOperand(0),
12144 DAG
.getConstant(amt
, DL
, MVT::i32
));
12145 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
, Res
,
12146 DAG
.getConstant(Mask
, DL
, MVT::i32
));
12147 DCI
.CombineTo(N
, Res
, false);
12148 // Return value from the original node to inform the combiner than N is
12150 return SDValue(N
, 0);
12151 } else if (ARM::isBitFieldInvertedMask(~Mask
) &&
12152 (~Mask
== Mask2
)) {
12153 // The pack halfword instruction works better for masks that fit it,
12154 // so use that when it's available.
12155 if (Subtarget
->hasDSP() &&
12156 (Mask2
== 0xffff || Mask2
== 0xffff0000))
12159 unsigned lsb
= countTrailingZeros(Mask
);
12160 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N00
,
12161 DAG
.getConstant(lsb
, DL
, MVT::i32
));
12162 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
.getOperand(0), Res
,
12163 DAG
.getConstant(Mask2
, DL
, MVT::i32
));
12164 DCI
.CombineTo(N
, Res
, false);
12165 // Return value from the original node to inform the combiner than N is
12167 return SDValue(N
, 0);
12171 if (DAG
.MaskedValueIsZero(N1
, MaskC
->getAPIntValue()) &&
12172 N00
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N00
.getOperand(1)) &&
12173 ARM::isBitFieldInvertedMask(~Mask
)) {
12174 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
12175 // where lsb(mask) == #shamt and masked bits of B are known zero.
12176 SDValue ShAmt
= N00
.getOperand(1);
12177 unsigned ShAmtC
= cast
<ConstantSDNode
>(ShAmt
)->getZExtValue();
12178 unsigned LSB
= countTrailingZeros(Mask
);
12182 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
, N00
.getOperand(0),
12183 DAG
.getConstant(~Mask
, DL
, MVT::i32
));
12185 DCI
.CombineTo(N
, Res
, false);
12186 // Return value from the original node to inform the combiner than N is
12188 return SDValue(N
, 0);
12194 static bool isValidMVECond(unsigned CC
, bool IsFloat
) {
12211 static SDValue
PerformORCombine_i1(SDNode
*N
,
12212 TargetLowering::DAGCombinerInfo
&DCI
,
12213 const ARMSubtarget
*Subtarget
) {
12214 // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
12215 // together with predicates
12216 EVT VT
= N
->getValueType(0);
12217 SDValue N0
= N
->getOperand(0);
12218 SDValue N1
= N
->getOperand(1);
12220 ARMCC::CondCodes CondCode0
= ARMCC::AL
;
12221 ARMCC::CondCodes CondCode1
= ARMCC::AL
;
12222 if (N0
->getOpcode() == ARMISD::VCMP
)
12223 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(2))
12225 else if (N0
->getOpcode() == ARMISD::VCMPZ
)
12226 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(1))
12228 if (N1
->getOpcode() == ARMISD::VCMP
)
12229 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(2))
12231 else if (N1
->getOpcode() == ARMISD::VCMPZ
)
12232 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(1))
12235 if (CondCode0
== ARMCC::AL
|| CondCode1
== ARMCC::AL
)
12238 unsigned Opposite0
= ARMCC::getOppositeCondition(CondCode0
);
12239 unsigned Opposite1
= ARMCC::getOppositeCondition(CondCode1
);
12241 if (!isValidMVECond(Opposite0
,
12242 N0
->getOperand(0)->getValueType(0).isFloatingPoint()) ||
12243 !isValidMVECond(Opposite1
,
12244 N1
->getOperand(0)->getValueType(0).isFloatingPoint()))
12247 SmallVector
<SDValue
, 4> Ops0
;
12248 Ops0
.push_back(N0
->getOperand(0));
12249 if (N0
->getOpcode() == ARMISD::VCMP
)
12250 Ops0
.push_back(N0
->getOperand(1));
12251 Ops0
.push_back(DCI
.DAG
.getConstant(Opposite0
, SDLoc(N0
), MVT::i32
));
12252 SmallVector
<SDValue
, 4> Ops1
;
12253 Ops1
.push_back(N1
->getOperand(0));
12254 if (N1
->getOpcode() == ARMISD::VCMP
)
12255 Ops1
.push_back(N1
->getOperand(1));
12256 Ops1
.push_back(DCI
.DAG
.getConstant(Opposite1
, SDLoc(N1
), MVT::i32
));
12258 SDValue NewN0
= DCI
.DAG
.getNode(N0
->getOpcode(), SDLoc(N0
), VT
, Ops0
);
12259 SDValue NewN1
= DCI
.DAG
.getNode(N1
->getOpcode(), SDLoc(N1
), VT
, Ops1
);
12260 SDValue And
= DCI
.DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, NewN0
, NewN1
);
12261 return DCI
.DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, And
,
12262 DCI
.DAG
.getAllOnesConstant(SDLoc(N
), VT
));
12265 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
12266 static SDValue
PerformORCombine(SDNode
*N
,
12267 TargetLowering::DAGCombinerInfo
&DCI
,
12268 const ARMSubtarget
*Subtarget
) {
12269 // Attempt to use immediate-form VORR
12270 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
12272 EVT VT
= N
->getValueType(0);
12273 SelectionDAG
&DAG
= DCI
.DAG
;
12275 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12278 APInt SplatBits
, SplatUndef
;
12279 unsigned SplatBitSize
;
12281 if (BVN
&& Subtarget
->hasNEON() &&
12282 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
12283 if (SplatBitSize
<= 64) {
12285 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
12286 SplatUndef
.getZExtValue(), SplatBitSize
,
12287 DAG
, dl
, VorrVT
, VT
.is128BitVector(),
12289 if (Val
.getNode()) {
12291 DAG
.getNode(ISD::BITCAST
, dl
, VorrVT
, N
->getOperand(0));
12292 SDValue Vorr
= DAG
.getNode(ARMISD::VORRIMM
, dl
, VorrVT
, Input
, Val
);
12293 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vorr
);
12298 if (!Subtarget
->isThumb1Only()) {
12299 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
12300 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12302 if (SDValue Result
= PerformORCombineToSMULWBT(N
, DCI
, Subtarget
))
12306 SDValue N0
= N
->getOperand(0);
12307 SDValue N1
= N
->getOperand(1);
12309 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
12310 if (Subtarget
->hasNEON() && N1
.getOpcode() == ISD::AND
&& VT
.isVector() &&
12311 DAG
.getTargetLoweringInfo().isTypeLegal(VT
)) {
12313 // The code below optimizes (or (and X, Y), Z).
12314 // The AND operand needs to have a single user to make these optimizations
12316 if (N0
.getOpcode() != ISD::AND
|| !N0
.hasOneUse())
12320 unsigned SplatBitSize
;
12323 APInt SplatBits0
, SplatBits1
;
12324 BuildVectorSDNode
*BVN0
= dyn_cast
<BuildVectorSDNode
>(N0
->getOperand(1));
12325 BuildVectorSDNode
*BVN1
= dyn_cast
<BuildVectorSDNode
>(N1
->getOperand(1));
12326 // Ensure that the second operand of both ands are constants
12327 if (BVN0
&& BVN0
->isConstantSplat(SplatBits0
, SplatUndef
, SplatBitSize
,
12328 HasAnyUndefs
) && !HasAnyUndefs
) {
12329 if (BVN1
&& BVN1
->isConstantSplat(SplatBits1
, SplatUndef
, SplatBitSize
,
12330 HasAnyUndefs
) && !HasAnyUndefs
) {
12331 // Ensure that the bit width of the constants are the same and that
12332 // the splat arguments are logical inverses as per the pattern we
12333 // are trying to simplify.
12334 if (SplatBits0
.getBitWidth() == SplatBits1
.getBitWidth() &&
12335 SplatBits0
== ~SplatBits1
) {
12336 // Canonicalize the vector type to make instruction selection
12338 EVT CanonicalVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
12339 SDValue Result
= DAG
.getNode(ARMISD::VBSL
, dl
, CanonicalVT
,
12342 N1
->getOperand(0));
12343 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Result
);
12349 if (Subtarget
->hasMVEIntegerOps() &&
12350 (VT
== MVT::v4i1
|| VT
== MVT::v8i1
|| VT
== MVT::v16i1
))
12351 return PerformORCombine_i1(N
, DCI
, Subtarget
);
12353 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
12355 if (N0
.getOpcode() == ISD::AND
&& N0
.hasOneUse()) {
12356 if (SDValue Res
= PerformORCombineToBFI(N
, DCI
, Subtarget
))
12360 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12366 static SDValue
PerformXORCombine(SDNode
*N
,
12367 TargetLowering::DAGCombinerInfo
&DCI
,
12368 const ARMSubtarget
*Subtarget
) {
12369 EVT VT
= N
->getValueType(0);
12370 SelectionDAG
&DAG
= DCI
.DAG
;
12372 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12375 if (!Subtarget
->isThumb1Only()) {
12376 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
12377 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12380 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12387 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
12388 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
12389 // their position in "to" (Rd).
12390 static SDValue
ParseBFI(SDNode
*N
, APInt
&ToMask
, APInt
&FromMask
) {
12391 assert(N
->getOpcode() == ARMISD::BFI
);
12393 SDValue From
= N
->getOperand(1);
12394 ToMask
= ~cast
<ConstantSDNode
>(N
->getOperand(2))->getAPIntValue();
12395 FromMask
= APInt::getLowBitsSet(ToMask
.getBitWidth(), ToMask
.countPopulation());
12397 // If the Base came from a SHR #C, we can deduce that it is really testing bit
12398 // #C in the base of the SHR.
12399 if (From
->getOpcode() == ISD::SRL
&&
12400 isa
<ConstantSDNode
>(From
->getOperand(1))) {
12401 APInt Shift
= cast
<ConstantSDNode
>(From
->getOperand(1))->getAPIntValue();
12402 assert(Shift
.getLimitedValue() < 32 && "Shift too large!");
12403 FromMask
<<= Shift
.getLimitedValue(31);
12404 From
= From
->getOperand(0);
12410 // If A and B contain one contiguous set of bits, does A | B == A . B?
12412 // Neither A nor B must be zero.
12413 static bool BitsProperlyConcatenate(const APInt
&A
, const APInt
&B
) {
12414 unsigned LastActiveBitInA
= A
.countTrailingZeros();
12415 unsigned FirstActiveBitInB
= B
.getBitWidth() - B
.countLeadingZeros() - 1;
12416 return LastActiveBitInA
- 1 == FirstActiveBitInB
;
12419 static SDValue
FindBFIToCombineWith(SDNode
*N
) {
12420 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
12422 APInt ToMask
, FromMask
;
12423 SDValue From
= ParseBFI(N
, ToMask
, FromMask
);
12424 SDValue To
= N
->getOperand(0);
12426 // Now check for a compatible BFI to merge with. We can pass through BFIs that
12427 // aren't compatible, but not if they set the same bit in their destination as
12428 // we do (or that of any BFI we're going to combine with).
12430 APInt CombinedToMask
= ToMask
;
12431 while (V
.getOpcode() == ARMISD::BFI
) {
12432 APInt NewToMask
, NewFromMask
;
12433 SDValue NewFrom
= ParseBFI(V
.getNode(), NewToMask
, NewFromMask
);
12434 if (NewFrom
!= From
) {
12435 // This BFI has a different base. Keep going.
12436 CombinedToMask
|= NewToMask
;
12437 V
= V
.getOperand(0);
12441 // Do the written bits conflict with any we've seen so far?
12442 if ((NewToMask
& CombinedToMask
).getBoolValue())
12443 // Conflicting bits - bail out because going further is unsafe.
12446 // Are the new bits contiguous when combined with the old bits?
12447 if (BitsProperlyConcatenate(ToMask
, NewToMask
) &&
12448 BitsProperlyConcatenate(FromMask
, NewFromMask
))
12450 if (BitsProperlyConcatenate(NewToMask
, ToMask
) &&
12451 BitsProperlyConcatenate(NewFromMask
, FromMask
))
12454 // We've seen a write to some bits, so track it.
12455 CombinedToMask
|= NewToMask
;
12457 V
= V
.getOperand(0);
12463 static SDValue
PerformBFICombine(SDNode
*N
,
12464 TargetLowering::DAGCombinerInfo
&DCI
) {
12465 SDValue N1
= N
->getOperand(1);
12466 if (N1
.getOpcode() == ISD::AND
) {
12467 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
12468 // the bits being cleared by the AND are not demanded by the BFI.
12469 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
12472 unsigned InvMask
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
12473 unsigned LSB
= countTrailingZeros(~InvMask
);
12474 unsigned Width
= (32 - countLeadingZeros(~InvMask
)) - LSB
;
12476 static_cast<unsigned>(std::numeric_limits
<unsigned>::digits
) &&
12477 "undefined behavior");
12478 unsigned Mask
= (1u << Width
) - 1;
12479 unsigned Mask2
= N11C
->getZExtValue();
12480 if ((Mask
& (~Mask2
)) == 0)
12481 return DCI
.DAG
.getNode(ARMISD::BFI
, SDLoc(N
), N
->getValueType(0),
12482 N
->getOperand(0), N1
.getOperand(0),
12484 } else if (N
->getOperand(0).getOpcode() == ARMISD::BFI
) {
12485 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
12486 // Keep track of any consecutive bits set that all come from the same base
12487 // value. We can combine these together into a single BFI.
12488 SDValue CombineBFI
= FindBFIToCombineWith(N
);
12489 if (CombineBFI
== SDValue())
12492 // We've found a BFI.
12493 APInt ToMask1
, FromMask1
;
12494 SDValue From1
= ParseBFI(N
, ToMask1
, FromMask1
);
12496 APInt ToMask2
, FromMask2
;
12497 SDValue From2
= ParseBFI(CombineBFI
.getNode(), ToMask2
, FromMask2
);
12498 assert(From1
== From2
);
12501 // First, unlink CombineBFI.
12502 DCI
.DAG
.ReplaceAllUsesWith(CombineBFI
, CombineBFI
.getOperand(0));
12503 // Then create a new BFI, combining the two together.
12504 APInt NewFromMask
= FromMask1
| FromMask2
;
12505 APInt NewToMask
= ToMask1
| ToMask2
;
12507 EVT VT
= N
->getValueType(0);
12510 if (NewFromMask
[0] == 0)
12511 From1
= DCI
.DAG
.getNode(
12512 ISD::SRL
, dl
, VT
, From1
,
12513 DCI
.DAG
.getConstant(NewFromMask
.countTrailingZeros(), dl
, VT
));
12514 return DCI
.DAG
.getNode(ARMISD::BFI
, dl
, VT
, N
->getOperand(0), From1
,
12515 DCI
.DAG
.getConstant(~NewToMask
, dl
, VT
));
12520 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
12521 /// ARMISD::VMOVRRD.
12522 static SDValue
PerformVMOVRRDCombine(SDNode
*N
,
12523 TargetLowering::DAGCombinerInfo
&DCI
,
12524 const ARMSubtarget
*Subtarget
) {
12525 // vmovrrd(vmovdrr x, y) -> x,y
12526 SDValue InDouble
= N
->getOperand(0);
12527 if (InDouble
.getOpcode() == ARMISD::VMOVDRR
&& Subtarget
->hasFP64())
12528 return DCI
.CombineTo(N
, InDouble
.getOperand(0), InDouble
.getOperand(1));
12530 // vmovrrd(load f64) -> (load i32), (load i32)
12531 SDNode
*InNode
= InDouble
.getNode();
12532 if (ISD::isNormalLoad(InNode
) && InNode
->hasOneUse() &&
12533 InNode
->getValueType(0) == MVT::f64
&&
12534 InNode
->getOperand(1).getOpcode() == ISD::FrameIndex
&&
12535 !cast
<LoadSDNode
>(InNode
)->isVolatile()) {
12536 // TODO: Should this be done for non-FrameIndex operands?
12537 LoadSDNode
*LD
= cast
<LoadSDNode
>(InNode
);
12539 SelectionDAG
&DAG
= DCI
.DAG
;
12541 SDValue BasePtr
= LD
->getBasePtr();
12543 DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), BasePtr
, LD
->getPointerInfo(),
12544 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
12546 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
12547 DAG
.getConstant(4, DL
, MVT::i32
));
12549 SDValue NewLD2
= DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), OffsetPtr
,
12550 LD
->getPointerInfo().getWithOffset(4),
12551 std::min(4U, LD
->getAlignment()),
12552 LD
->getMemOperand()->getFlags());
12554 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewLD2
.getValue(1));
12555 if (DCI
.DAG
.getDataLayout().isBigEndian())
12556 std::swap (NewLD1
, NewLD2
);
12557 SDValue Result
= DCI
.CombineTo(N
, NewLD1
, NewLD2
);
12564 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
12565 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
12566 static SDValue
PerformVMOVDRRCombine(SDNode
*N
, SelectionDAG
&DAG
) {
12567 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
12568 SDValue Op0
= N
->getOperand(0);
12569 SDValue Op1
= N
->getOperand(1);
12570 if (Op0
.getOpcode() == ISD::BITCAST
)
12571 Op0
= Op0
.getOperand(0);
12572 if (Op1
.getOpcode() == ISD::BITCAST
)
12573 Op1
= Op1
.getOperand(0);
12574 if (Op0
.getOpcode() == ARMISD::VMOVRRD
&&
12575 Op0
.getNode() == Op1
.getNode() &&
12576 Op0
.getResNo() == 0 && Op1
.getResNo() == 1)
12577 return DAG
.getNode(ISD::BITCAST
, SDLoc(N
),
12578 N
->getValueType(0), Op0
.getOperand(0));
12582 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
12583 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
12584 /// i64 vector to have f64 elements, since the value can then be loaded
12585 /// directly into a VFP register.
12586 static bool hasNormalLoadOperand(SDNode
*N
) {
12587 unsigned NumElts
= N
->getValueType(0).getVectorNumElements();
12588 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12589 SDNode
*Elt
= N
->getOperand(i
).getNode();
12590 if (ISD::isNormalLoad(Elt
) && !cast
<LoadSDNode
>(Elt
)->isVolatile())
12596 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
12597 /// ISD::BUILD_VECTOR.
12598 static SDValue
PerformBUILD_VECTORCombine(SDNode
*N
,
12599 TargetLowering::DAGCombinerInfo
&DCI
,
12600 const ARMSubtarget
*Subtarget
) {
12601 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
12602 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
12603 // into a pair of GPRs, which is fine when the value is used as a scalar,
12604 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
12605 SelectionDAG
&DAG
= DCI
.DAG
;
12606 if (N
->getNumOperands() == 2)
12607 if (SDValue RV
= PerformVMOVDRRCombine(N
, DAG
))
12610 // Load i64 elements as f64 values so that type legalization does not split
12611 // them up into i32 values.
12612 EVT VT
= N
->getValueType(0);
12613 if (VT
.getVectorElementType() != MVT::i64
|| !hasNormalLoadOperand(N
))
12616 SmallVector
<SDValue
, 8> Ops
;
12617 unsigned NumElts
= VT
.getVectorNumElements();
12618 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12619 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(i
));
12621 // Make the DAGCombiner fold the bitcast.
12622 DCI
.AddToWorklist(V
.getNode());
12624 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
, NumElts
);
12625 SDValue BV
= DAG
.getBuildVector(FloatVT
, dl
, Ops
);
12626 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, BV
);
12629 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
12631 PerformARMBUILD_VECTORCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12632 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
12633 // At that time, we may have inserted bitcasts from integer to float.
12634 // If these bitcasts have survived DAGCombine, change the lowering of this
12635 // BUILD_VECTOR in something more vector friendly, i.e., that does not
12636 // force to use floating point types.
12638 // Make sure we can change the type of the vector.
12639 // This is possible iff:
12640 // 1. The vector is only used in a bitcast to a integer type. I.e.,
12641 // 1.1. Vector is used only once.
12642 // 1.2. Use is a bit convert to an integer type.
12643 // 2. The size of its operands are 32-bits (64-bits are not legal).
12644 EVT VT
= N
->getValueType(0);
12645 EVT EltVT
= VT
.getVectorElementType();
12647 // Check 1.1. and 2.
12648 if (EltVT
.getSizeInBits() != 32 || !N
->hasOneUse())
12651 // By construction, the input type must be float.
12652 assert(EltVT
== MVT::f32
&& "Unexpected type!");
12655 SDNode
*Use
= *N
->use_begin();
12656 if (Use
->getOpcode() != ISD::BITCAST
||
12657 Use
->getValueType(0).isFloatingPoint())
12660 // Check profitability.
12661 // Model is, if more than half of the relevant operands are bitcast from
12662 // i32, turn the build_vector into a sequence of insert_vector_elt.
12663 // Relevant operands are everything that is not statically
12664 // (i.e., at compile time) bitcasted.
12665 unsigned NumOfBitCastedElts
= 0;
12666 unsigned NumElts
= VT
.getVectorNumElements();
12667 unsigned NumOfRelevantElts
= NumElts
;
12668 for (unsigned Idx
= 0; Idx
< NumElts
; ++Idx
) {
12669 SDValue Elt
= N
->getOperand(Idx
);
12670 if (Elt
->getOpcode() == ISD::BITCAST
) {
12671 // Assume only bit cast to i32 will go away.
12672 if (Elt
->getOperand(0).getValueType() == MVT::i32
)
12673 ++NumOfBitCastedElts
;
12674 } else if (Elt
.isUndef() || isa
<ConstantSDNode
>(Elt
))
12675 // Constants are statically casted, thus do not count them as
12676 // relevant operands.
12677 --NumOfRelevantElts
;
12680 // Check if more than half of the elements require a non-free bitcast.
12681 if (NumOfBitCastedElts
<= NumOfRelevantElts
/ 2)
12684 SelectionDAG
&DAG
= DCI
.DAG
;
12685 // Create the new vector type.
12686 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, NumElts
);
12687 // Check if the type is legal.
12688 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12689 if (!TLI
.isTypeLegal(VecVT
))
12693 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
12694 // => BITCAST INSERT_VECTOR_ELT
12695 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
12696 // (BITCAST EN), N.
12697 SDValue Vec
= DAG
.getUNDEF(VecVT
);
12699 for (unsigned Idx
= 0 ; Idx
< NumElts
; ++Idx
) {
12700 SDValue V
= N
->getOperand(Idx
);
12703 if (V
.getOpcode() == ISD::BITCAST
&&
12704 V
->getOperand(0).getValueType() == MVT::i32
)
12705 // Fold obvious case.
12706 V
= V
.getOperand(0);
12708 V
= DAG
.getNode(ISD::BITCAST
, SDLoc(V
), MVT::i32
, V
);
12709 // Make the DAGCombiner fold the bitcasts.
12710 DCI
.AddToWorklist(V
.getNode());
12712 SDValue LaneIdx
= DAG
.getConstant(Idx
, dl
, MVT::i32
);
12713 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VecVT
, Vec
, V
, LaneIdx
);
12715 Vec
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vec
);
12716 // Make the DAGCombiner fold the bitcasts.
12717 DCI
.AddToWorklist(Vec
.getNode());
12722 PerformPREDICATE_CASTCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12723 EVT VT
= N
->getValueType(0);
12724 SDValue Op
= N
->getOperand(0);
12727 // PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x)
12728 if (Op
->getOpcode() == ARMISD::PREDICATE_CAST
) {
12729 // If the valuetypes are the same, we can remove the cast entirely.
12730 if (Op
->getOperand(0).getValueType() == VT
)
12731 return Op
->getOperand(0);
12732 return DCI
.DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
,
12733 Op
->getOperand(0).getValueType(), Op
->getOperand(0));
12739 /// PerformInsertEltCombine - Target-specific dag combine xforms for
12740 /// ISD::INSERT_VECTOR_ELT.
12741 static SDValue
PerformInsertEltCombine(SDNode
*N
,
12742 TargetLowering::DAGCombinerInfo
&DCI
) {
12743 // Bitcast an i64 load inserted into a vector to f64.
12744 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12745 EVT VT
= N
->getValueType(0);
12746 SDNode
*Elt
= N
->getOperand(1).getNode();
12747 if (VT
.getVectorElementType() != MVT::i64
||
12748 !ISD::isNormalLoad(Elt
) || cast
<LoadSDNode
>(Elt
)->isVolatile())
12751 SelectionDAG
&DAG
= DCI
.DAG
;
12753 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
12754 VT
.getVectorNumElements());
12755 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, N
->getOperand(0));
12756 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(1));
12757 // Make the DAGCombiner fold the bitcasts.
12758 DCI
.AddToWorklist(Vec
.getNode());
12759 DCI
.AddToWorklist(V
.getNode());
12760 SDValue InsElt
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, FloatVT
,
12761 Vec
, V
, N
->getOperand(2));
12762 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, InsElt
);
12765 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
12766 /// ISD::VECTOR_SHUFFLE.
12767 static SDValue
PerformVECTOR_SHUFFLECombine(SDNode
*N
, SelectionDAG
&DAG
) {
12768 // The LLVM shufflevector instruction does not require the shuffle mask
12769 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
12770 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
12771 // operands do not match the mask length, they are extended by concatenating
12772 // them with undef vectors. That is probably the right thing for other
12773 // targets, but for NEON it is better to concatenate two double-register
12774 // size vector operands into a single quad-register size vector. Do that
12775 // transformation here:
12776 // shuffle(concat(v1, undef), concat(v2, undef)) ->
12777 // shuffle(concat(v1, v2), undef)
12778 SDValue Op0
= N
->getOperand(0);
12779 SDValue Op1
= N
->getOperand(1);
12780 if (Op0
.getOpcode() != ISD::CONCAT_VECTORS
||
12781 Op1
.getOpcode() != ISD::CONCAT_VECTORS
||
12782 Op0
.getNumOperands() != 2 ||
12783 Op1
.getNumOperands() != 2)
12785 SDValue Concat0Op1
= Op0
.getOperand(1);
12786 SDValue Concat1Op1
= Op1
.getOperand(1);
12787 if (!Concat0Op1
.isUndef() || !Concat1Op1
.isUndef())
12789 // Skip the transformation if any of the types are illegal.
12790 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12791 EVT VT
= N
->getValueType(0);
12792 if (!TLI
.isTypeLegal(VT
) ||
12793 !TLI
.isTypeLegal(Concat0Op1
.getValueType()) ||
12794 !TLI
.isTypeLegal(Concat1Op1
.getValueType()))
12797 SDValue NewConcat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
,
12798 Op0
.getOperand(0), Op1
.getOperand(0));
12799 // Translate the shuffle mask.
12800 SmallVector
<int, 16> NewMask
;
12801 unsigned NumElts
= VT
.getVectorNumElements();
12802 unsigned HalfElts
= NumElts
/2;
12803 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
12804 for (unsigned n
= 0; n
< NumElts
; ++n
) {
12805 int MaskElt
= SVN
->getMaskElt(n
);
12807 if (MaskElt
< (int)HalfElts
)
12809 else if (MaskElt
>= (int)NumElts
&& MaskElt
< (int)(NumElts
+ HalfElts
))
12810 NewElt
= HalfElts
+ MaskElt
- NumElts
;
12811 NewMask
.push_back(NewElt
);
12813 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewConcat
,
12814 DAG
.getUNDEF(VT
), NewMask
);
12817 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
12818 /// NEON load/store intrinsics, and generic vector load/stores, to merge
12819 /// base address updates.
12820 /// For generic load/stores, the memory type is assumed to be a vector.
12821 /// The caller is assumed to have checked legality.
12822 static SDValue
CombineBaseUpdate(SDNode
*N
,
12823 TargetLowering::DAGCombinerInfo
&DCI
) {
12824 SelectionDAG
&DAG
= DCI
.DAG
;
12825 const bool isIntrinsic
= (N
->getOpcode() == ISD::INTRINSIC_VOID
||
12826 N
->getOpcode() == ISD::INTRINSIC_W_CHAIN
);
12827 const bool isStore
= N
->getOpcode() == ISD::STORE
;
12828 const unsigned AddrOpIdx
= ((isIntrinsic
|| isStore
) ? 2 : 1);
12829 SDValue Addr
= N
->getOperand(AddrOpIdx
);
12830 MemSDNode
*MemN
= cast
<MemSDNode
>(N
);
12833 // Search for a use of the address operand that is an increment.
12834 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(),
12835 UE
= Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
12836 SDNode
*User
= *UI
;
12837 if (User
->getOpcode() != ISD::ADD
||
12838 UI
.getUse().getResNo() != Addr
.getResNo())
12841 // Check that the add is independent of the load/store. Otherwise, folding
12842 // it would create a cycle. We can avoid searching through Addr as it's a
12843 // predecessor to both.
12844 SmallPtrSet
<const SDNode
*, 32> Visited
;
12845 SmallVector
<const SDNode
*, 16> Worklist
;
12846 Visited
.insert(Addr
.getNode());
12847 Worklist
.push_back(N
);
12848 Worklist
.push_back(User
);
12849 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) ||
12850 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
12853 // Find the new opcode for the updating load/store.
12854 bool isLoadOp
= true;
12855 bool isLaneOp
= false;
12856 unsigned NewOpc
= 0;
12857 unsigned NumVecs
= 0;
12859 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
12861 default: llvm_unreachable("unexpected intrinsic for Neon base update");
12862 case Intrinsic::arm_neon_vld1
: NewOpc
= ARMISD::VLD1_UPD
;
12863 NumVecs
= 1; break;
12864 case Intrinsic::arm_neon_vld2
: NewOpc
= ARMISD::VLD2_UPD
;
12865 NumVecs
= 2; break;
12866 case Intrinsic::arm_neon_vld3
: NewOpc
= ARMISD::VLD3_UPD
;
12867 NumVecs
= 3; break;
12868 case Intrinsic::arm_neon_vld4
: NewOpc
= ARMISD::VLD4_UPD
;
12869 NumVecs
= 4; break;
12870 case Intrinsic::arm_neon_vld2dup
:
12871 case Intrinsic::arm_neon_vld3dup
:
12872 case Intrinsic::arm_neon_vld4dup
:
12873 // TODO: Support updating VLDxDUP nodes. For now, we just skip
12874 // combining base updates for such intrinsics.
12876 case Intrinsic::arm_neon_vld2lane
: NewOpc
= ARMISD::VLD2LN_UPD
;
12877 NumVecs
= 2; isLaneOp
= true; break;
12878 case Intrinsic::arm_neon_vld3lane
: NewOpc
= ARMISD::VLD3LN_UPD
;
12879 NumVecs
= 3; isLaneOp
= true; break;
12880 case Intrinsic::arm_neon_vld4lane
: NewOpc
= ARMISD::VLD4LN_UPD
;
12881 NumVecs
= 4; isLaneOp
= true; break;
12882 case Intrinsic::arm_neon_vst1
: NewOpc
= ARMISD::VST1_UPD
;
12883 NumVecs
= 1; isLoadOp
= false; break;
12884 case Intrinsic::arm_neon_vst2
: NewOpc
= ARMISD::VST2_UPD
;
12885 NumVecs
= 2; isLoadOp
= false; break;
12886 case Intrinsic::arm_neon_vst3
: NewOpc
= ARMISD::VST3_UPD
;
12887 NumVecs
= 3; isLoadOp
= false; break;
12888 case Intrinsic::arm_neon_vst4
: NewOpc
= ARMISD::VST4_UPD
;
12889 NumVecs
= 4; isLoadOp
= false; break;
12890 case Intrinsic::arm_neon_vst2lane
: NewOpc
= ARMISD::VST2LN_UPD
;
12891 NumVecs
= 2; isLoadOp
= false; isLaneOp
= true; break;
12892 case Intrinsic::arm_neon_vst3lane
: NewOpc
= ARMISD::VST3LN_UPD
;
12893 NumVecs
= 3; isLoadOp
= false; isLaneOp
= true; break;
12894 case Intrinsic::arm_neon_vst4lane
: NewOpc
= ARMISD::VST4LN_UPD
;
12895 NumVecs
= 4; isLoadOp
= false; isLaneOp
= true; break;
12899 switch (N
->getOpcode()) {
12900 default: llvm_unreachable("unexpected opcode for Neon base update");
12901 case ARMISD::VLD1DUP
: NewOpc
= ARMISD::VLD1DUP_UPD
; NumVecs
= 1; break;
12902 case ARMISD::VLD2DUP
: NewOpc
= ARMISD::VLD2DUP_UPD
; NumVecs
= 2; break;
12903 case ARMISD::VLD3DUP
: NewOpc
= ARMISD::VLD3DUP_UPD
; NumVecs
= 3; break;
12904 case ARMISD::VLD4DUP
: NewOpc
= ARMISD::VLD4DUP_UPD
; NumVecs
= 4; break;
12905 case ISD::LOAD
: NewOpc
= ARMISD::VLD1_UPD
;
12906 NumVecs
= 1; isLaneOp
= false; break;
12907 case ISD::STORE
: NewOpc
= ARMISD::VST1_UPD
;
12908 NumVecs
= 1; isLaneOp
= false; isLoadOp
= false; break;
12912 // Find the size of memory referenced by the load/store.
12915 VecTy
= N
->getValueType(0);
12916 } else if (isIntrinsic
) {
12917 VecTy
= N
->getOperand(AddrOpIdx
+1).getValueType();
12919 assert(isStore
&& "Node has to be a load, a store, or an intrinsic!");
12920 VecTy
= N
->getOperand(1).getValueType();
12923 unsigned NumBytes
= NumVecs
* VecTy
.getSizeInBits() / 8;
12925 NumBytes
/= VecTy
.getVectorNumElements();
12927 // If the increment is a constant, it must match the memory ref size.
12928 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
12929 ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode());
12930 if (NumBytes
>= 3 * 16 && (!CInc
|| CInc
->getZExtValue() != NumBytes
)) {
12931 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
12932 // separate instructions that make it harder to use a non-constant update.
12936 // OK, we found an ADD we can fold into the base update.
12937 // Now, create a _UPD node, taking care of not breaking alignment.
12939 EVT AlignedVecTy
= VecTy
;
12940 unsigned Alignment
= MemN
->getAlignment();
12942 // If this is a less-than-standard-aligned load/store, change the type to
12943 // match the standard alignment.
12944 // The alignment is overlooked when selecting _UPD variants; and it's
12945 // easier to introduce bitcasts here than fix that.
12946 // There are 3 ways to get to this base-update combine:
12947 // - intrinsics: they are assumed to be properly aligned (to the standard
12948 // alignment of the memory type), so we don't need to do anything.
12949 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
12950 // intrinsics, so, likewise, there's nothing to do.
12951 // - generic load/store instructions: the alignment is specified as an
12952 // explicit operand, rather than implicitly as the standard alignment
12953 // of the memory type (like the intrisics). We need to change the
12954 // memory type to match the explicit alignment. That way, we don't
12955 // generate non-standard-aligned ARMISD::VLDx nodes.
12956 if (isa
<LSBaseSDNode
>(N
)) {
12957 if (Alignment
== 0)
12959 if (Alignment
< VecTy
.getScalarSizeInBits() / 8) {
12960 MVT EltTy
= MVT::getIntegerVT(Alignment
* 8);
12961 assert(NumVecs
== 1 && "Unexpected multi-element generic load/store.");
12962 assert(!isLaneOp
&& "Unexpected generic load/store lane.");
12963 unsigned NumElts
= NumBytes
/ (EltTy
.getSizeInBits() / 8);
12964 AlignedVecTy
= MVT::getVectorVT(EltTy
, NumElts
);
12966 // Don't set an explicit alignment on regular load/stores that we want
12967 // to transform to VLD/VST 1_UPD nodes.
12968 // This matches the behavior of regular load/stores, which only get an
12969 // explicit alignment if the MMO alignment is larger than the standard
12970 // alignment of the memory type.
12971 // Intrinsics, however, always get an explicit alignment, set to the
12972 // alignment of the MMO.
12976 // Create the new updating load/store node.
12977 // First, create an SDVTList for the new updating node's results.
12979 unsigned NumResultVecs
= (isLoadOp
? NumVecs
: 0);
12981 for (n
= 0; n
< NumResultVecs
; ++n
)
12982 Tys
[n
] = AlignedVecTy
;
12983 Tys
[n
++] = MVT::i32
;
12984 Tys
[n
] = MVT::Other
;
12985 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumResultVecs
+2));
12987 // Then, gather the new node's operands.
12988 SmallVector
<SDValue
, 8> Ops
;
12989 Ops
.push_back(N
->getOperand(0)); // incoming chain
12990 Ops
.push_back(N
->getOperand(AddrOpIdx
));
12991 Ops
.push_back(Inc
);
12993 if (StoreSDNode
*StN
= dyn_cast
<StoreSDNode
>(N
)) {
12994 // Try to match the intrinsic's signature
12995 Ops
.push_back(StN
->getValue());
12997 // Loads (and of course intrinsics) match the intrinsics' signature,
12998 // so just add all but the alignment operand.
12999 for (unsigned i
= AddrOpIdx
+ 1; i
< N
->getNumOperands() - 1; ++i
)
13000 Ops
.push_back(N
->getOperand(i
));
13003 // For all node types, the alignment operand is always the last one.
13004 Ops
.push_back(DAG
.getConstant(Alignment
, dl
, MVT::i32
));
13006 // If this is a non-standard-aligned STORE, the penultimate operand is the
13007 // stored value. Bitcast it to the aligned type.
13008 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::STORE
) {
13009 SDValue
&StVal
= Ops
[Ops
.size()-2];
13010 StVal
= DAG
.getNode(ISD::BITCAST
, dl
, AlignedVecTy
, StVal
);
13013 EVT LoadVT
= isLaneOp
? VecTy
.getVectorElementType() : AlignedVecTy
;
13014 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOpc
, dl
, SDTys
, Ops
, LoadVT
,
13015 MemN
->getMemOperand());
13017 // Update the uses.
13018 SmallVector
<SDValue
, 5> NewResults
;
13019 for (unsigned i
= 0; i
< NumResultVecs
; ++i
)
13020 NewResults
.push_back(SDValue(UpdN
.getNode(), i
));
13022 // If this is an non-standard-aligned LOAD, the first result is the loaded
13023 // value. Bitcast it to the expected result type.
13024 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::LOAD
) {
13025 SDValue
&LdVal
= NewResults
[0];
13026 LdVal
= DAG
.getNode(ISD::BITCAST
, dl
, VecTy
, LdVal
);
13029 NewResults
.push_back(SDValue(UpdN
.getNode(), NumResultVecs
+1)); // chain
13030 DCI
.CombineTo(N
, NewResults
);
13031 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), NumResultVecs
));
13038 static SDValue
PerformVLDCombine(SDNode
*N
,
13039 TargetLowering::DAGCombinerInfo
&DCI
) {
13040 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
13043 return CombineBaseUpdate(N
, DCI
);
13046 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
13047 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
13048 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
13050 static bool CombineVLDDUP(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
13051 SelectionDAG
&DAG
= DCI
.DAG
;
13052 EVT VT
= N
->getValueType(0);
13053 // vldN-dup instructions only support 64-bit vectors for N > 1.
13054 if (!VT
.is64BitVector())
13057 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
13058 SDNode
*VLD
= N
->getOperand(0).getNode();
13059 if (VLD
->getOpcode() != ISD::INTRINSIC_W_CHAIN
)
13061 unsigned NumVecs
= 0;
13062 unsigned NewOpc
= 0;
13063 unsigned IntNo
= cast
<ConstantSDNode
>(VLD
->getOperand(1))->getZExtValue();
13064 if (IntNo
== Intrinsic::arm_neon_vld2lane
) {
13066 NewOpc
= ARMISD::VLD2DUP
;
13067 } else if (IntNo
== Intrinsic::arm_neon_vld3lane
) {
13069 NewOpc
= ARMISD::VLD3DUP
;
13070 } else if (IntNo
== Intrinsic::arm_neon_vld4lane
) {
13072 NewOpc
= ARMISD::VLD4DUP
;
13077 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
13078 // numbers match the load.
13079 unsigned VLDLaneNo
=
13080 cast
<ConstantSDNode
>(VLD
->getOperand(NumVecs
+3))->getZExtValue();
13081 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
13083 // Ignore uses of the chain result.
13084 if (UI
.getUse().getResNo() == NumVecs
)
13086 SDNode
*User
= *UI
;
13087 if (User
->getOpcode() != ARMISD::VDUPLANE
||
13088 VLDLaneNo
!= cast
<ConstantSDNode
>(User
->getOperand(1))->getZExtValue())
13092 // Create the vldN-dup node.
13095 for (n
= 0; n
< NumVecs
; ++n
)
13097 Tys
[n
] = MVT::Other
;
13098 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumVecs
+1));
13099 SDValue Ops
[] = { VLD
->getOperand(0), VLD
->getOperand(2) };
13100 MemIntrinsicSDNode
*VLDMemInt
= cast
<MemIntrinsicSDNode
>(VLD
);
13101 SDValue VLDDup
= DAG
.getMemIntrinsicNode(NewOpc
, SDLoc(VLD
), SDTys
,
13102 Ops
, VLDMemInt
->getMemoryVT(),
13103 VLDMemInt
->getMemOperand());
13105 // Update the uses.
13106 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
13108 unsigned ResNo
= UI
.getUse().getResNo();
13109 // Ignore uses of the chain result.
13110 if (ResNo
== NumVecs
)
13112 SDNode
*User
= *UI
;
13113 DCI
.CombineTo(User
, SDValue(VLDDup
.getNode(), ResNo
));
13116 // Now the vldN-lane intrinsic is dead except for its chain result.
13117 // Update uses of the chain.
13118 std::vector
<SDValue
> VLDDupResults
;
13119 for (unsigned n
= 0; n
< NumVecs
; ++n
)
13120 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), n
));
13121 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), NumVecs
));
13122 DCI
.CombineTo(VLD
, VLDDupResults
);
13127 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
13128 /// ARMISD::VDUPLANE.
13129 static SDValue
PerformVDUPLANECombine(SDNode
*N
,
13130 TargetLowering::DAGCombinerInfo
&DCI
) {
13131 SDValue Op
= N
->getOperand(0);
13133 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
13134 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
13135 if (CombineVLDDUP(N
, DCI
))
13136 return SDValue(N
, 0);
13138 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
13139 // redundant. Ignore bit_converts for now; element sizes are checked below.
13140 while (Op
.getOpcode() == ISD::BITCAST
)
13141 Op
= Op
.getOperand(0);
13142 if (Op
.getOpcode() != ARMISD::VMOVIMM
&& Op
.getOpcode() != ARMISD::VMVNIMM
)
13145 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
13146 unsigned EltSize
= Op
.getScalarValueSizeInBits();
13147 // The canonical VMOV for a zero vector uses a 32-bit element size.
13148 unsigned Imm
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
13150 if (ARM_AM::decodeVMOVModImm(Imm
, EltBits
) == 0)
13152 EVT VT
= N
->getValueType(0);
13153 if (EltSize
> VT
.getScalarSizeInBits())
13156 return DCI
.DAG
.getNode(ISD::BITCAST
, SDLoc(N
), VT
, Op
);
13159 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
13160 static SDValue
PerformVDUPCombine(SDNode
*N
,
13161 TargetLowering::DAGCombinerInfo
&DCI
,
13162 const ARMSubtarget
*Subtarget
) {
13163 SelectionDAG
&DAG
= DCI
.DAG
;
13164 SDValue Op
= N
->getOperand(0);
13166 if (!Subtarget
->hasNEON())
13169 // Match VDUP(LOAD) -> VLD1DUP.
13170 // We match this pattern here rather than waiting for isel because the
13171 // transform is only legal for unindexed loads.
13172 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
.getNode());
13173 if (LD
&& Op
.hasOneUse() && LD
->isUnindexed() &&
13174 LD
->getMemoryVT() == N
->getValueType(0).getVectorElementType()) {
13175 SDValue Ops
[] = { LD
->getOperand(0), LD
->getOperand(1),
13176 DAG
.getConstant(LD
->getAlignment(), SDLoc(N
), MVT::i32
) };
13177 SDVTList SDTys
= DAG
.getVTList(N
->getValueType(0), MVT::Other
);
13178 SDValue VLDDup
= DAG
.getMemIntrinsicNode(ARMISD::VLD1DUP
, SDLoc(N
), SDTys
,
13179 Ops
, LD
->getMemoryVT(),
13180 LD
->getMemOperand());
13181 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), VLDDup
.getValue(1));
13188 static SDValue
PerformLOADCombine(SDNode
*N
,
13189 TargetLowering::DAGCombinerInfo
&DCI
) {
13190 EVT VT
= N
->getValueType(0);
13192 // If this is a legal vector load, try to combine it into a VLD1_UPD.
13193 if (ISD::isNormalLoad(N
) && VT
.isVector() &&
13194 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
13195 return CombineBaseUpdate(N
, DCI
);
13200 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
13201 // pack all of the elements in one place. Next, store to memory in fewer
13203 static SDValue
PerformTruncatingStoreCombine(StoreSDNode
*St
,
13204 SelectionDAG
&DAG
) {
13205 SDValue StVal
= St
->getValue();
13206 EVT VT
= StVal
.getValueType();
13207 if (!St
->isTruncatingStore() || !VT
.isVector())
13209 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13210 EVT StVT
= St
->getMemoryVT();
13211 unsigned NumElems
= VT
.getVectorNumElements();
13212 assert(StVT
!= VT
&& "Cannot truncate to the same type");
13213 unsigned FromEltSz
= VT
.getScalarSizeInBits();
13214 unsigned ToEltSz
= StVT
.getScalarSizeInBits();
13216 // From, To sizes and ElemCount must be pow of two
13217 if (!isPowerOf2_32(NumElems
* FromEltSz
* ToEltSz
))
13220 // We are going to use the original vector elt for storing.
13221 // Accumulated smaller vector elements must be a multiple of the store size.
13222 if (0 != (NumElems
* FromEltSz
) % ToEltSz
)
13225 unsigned SizeRatio
= FromEltSz
/ ToEltSz
;
13226 assert(SizeRatio
* NumElems
* ToEltSz
== VT
.getSizeInBits());
13228 // Create a type on which we perform the shuffle.
13229 EVT WideVecVT
= EVT::getVectorVT(*DAG
.getContext(), StVT
.getScalarType(),
13230 NumElems
* SizeRatio
);
13231 assert(WideVecVT
.getSizeInBits() == VT
.getSizeInBits());
13234 SDValue WideVec
= DAG
.getNode(ISD::BITCAST
, DL
, WideVecVT
, StVal
);
13235 SmallVector
<int, 8> ShuffleVec(NumElems
* SizeRatio
, -1);
13236 for (unsigned i
= 0; i
< NumElems
; ++i
)
13237 ShuffleVec
[i
] = DAG
.getDataLayout().isBigEndian() ? (i
+ 1) * SizeRatio
- 1
13240 // Can't shuffle using an illegal type.
13241 if (!TLI
.isTypeLegal(WideVecVT
))
13244 SDValue Shuff
= DAG
.getVectorShuffle(
13245 WideVecVT
, DL
, WideVec
, DAG
.getUNDEF(WideVec
.getValueType()), ShuffleVec
);
13246 // At this point all of the data is stored at the bottom of the
13247 // register. We now need to save it to mem.
13249 // Find the largest store unit
13250 MVT StoreType
= MVT::i8
;
13251 for (MVT Tp
: MVT::integer_valuetypes()) {
13252 if (TLI
.isTypeLegal(Tp
) && Tp
.getSizeInBits() <= NumElems
* ToEltSz
)
13255 // Didn't find a legal store type.
13256 if (!TLI
.isTypeLegal(StoreType
))
13259 // Bitcast the original vector into a vector of store-size units
13261 EVT::getVectorVT(*DAG
.getContext(), StoreType
,
13262 VT
.getSizeInBits() / EVT(StoreType
).getSizeInBits());
13263 assert(StoreVecVT
.getSizeInBits() == VT
.getSizeInBits());
13264 SDValue ShuffWide
= DAG
.getNode(ISD::BITCAST
, DL
, StoreVecVT
, Shuff
);
13265 SmallVector
<SDValue
, 8> Chains
;
13266 SDValue Increment
= DAG
.getConstant(StoreType
.getSizeInBits() / 8, DL
,
13267 TLI
.getPointerTy(DAG
.getDataLayout()));
13268 SDValue BasePtr
= St
->getBasePtr();
13270 // Perform one or more big stores into memory.
13271 unsigned E
= (ToEltSz
* NumElems
) / StoreType
.getSizeInBits();
13272 for (unsigned I
= 0; I
< E
; I
++) {
13273 SDValue SubVec
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, StoreType
,
13274 ShuffWide
, DAG
.getIntPtrConstant(I
, DL
));
13276 DAG
.getStore(St
->getChain(), DL
, SubVec
, BasePtr
, St
->getPointerInfo(),
13277 St
->getAlignment(), St
->getMemOperand()->getFlags());
13279 DAG
.getNode(ISD::ADD
, DL
, BasePtr
.getValueType(), BasePtr
, Increment
);
13280 Chains
.push_back(Ch
);
13282 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
13285 // Try taking a single vector store from an truncate (which would otherwise turn
13286 // into an expensive buildvector) and splitting it into a series of narrowing
13288 static SDValue
PerformSplittingToNarrowingStores(StoreSDNode
*St
,
13289 SelectionDAG
&DAG
) {
13290 if (!St
->isSimple() || St
->isTruncatingStore() || !St
->isUnindexed())
13292 SDValue Trunc
= St
->getValue();
13293 if (Trunc
->getOpcode() != ISD::TRUNCATE
)
13295 EVT FromVT
= Trunc
->getOperand(0).getValueType();
13296 EVT ToVT
= Trunc
.getValueType();
13297 if (!ToVT
.isVector())
13299 assert(FromVT
.getVectorNumElements() == ToVT
.getVectorNumElements());
13300 EVT ToEltVT
= ToVT
.getVectorElementType();
13301 EVT FromEltVT
= FromVT
.getVectorElementType();
13303 unsigned NumElements
= 0;
13304 if (FromEltVT
== MVT::i32
&& (ToEltVT
== MVT::i16
|| ToEltVT
== MVT::i8
))
13306 if (FromEltVT
== MVT::i16
&& ToEltVT
== MVT::i8
)
13308 if (NumElements
== 0 || FromVT
.getVectorNumElements() == NumElements
||
13309 FromVT
.getVectorNumElements() % NumElements
!= 0)
13313 // Details about the old store
13314 SDValue Ch
= St
->getChain();
13315 SDValue BasePtr
= St
->getBasePtr();
13316 unsigned Alignment
= St
->getOriginalAlignment();
13317 MachineMemOperand::Flags MMOFlags
= St
->getMemOperand()->getFlags();
13318 AAMDNodes AAInfo
= St
->getAAInfo();
13320 EVT NewFromVT
= EVT::getVectorVT(*DAG
.getContext(), FromEltVT
, NumElements
);
13321 EVT NewToVT
= EVT::getVectorVT(*DAG
.getContext(), ToEltVT
, NumElements
);
13323 SmallVector
<SDValue
, 4> Stores
;
13324 for (unsigned i
= 0; i
< FromVT
.getVectorNumElements() / NumElements
; i
++) {
13325 unsigned NewOffset
= i
* NumElements
* ToEltVT
.getSizeInBits() / 8;
13326 SDValue NewPtr
= DAG
.getObjectPtrOffset(DL
, BasePtr
, NewOffset
);
13329 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NewFromVT
, Trunc
.getOperand(0),
13330 DAG
.getConstant(i
* NumElements
, DL
, MVT::i32
));
13331 SDValue Store
= DAG
.getTruncStore(
13332 Ch
, DL
, Extract
, NewPtr
, St
->getPointerInfo().getWithOffset(NewOffset
),
13333 NewToVT
, Alignment
, MMOFlags
, AAInfo
);
13334 Stores
.push_back(Store
);
13336 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Stores
);
13339 /// PerformSTORECombine - Target-specific dag combine xforms for
13341 static SDValue
PerformSTORECombine(SDNode
*N
,
13342 TargetLowering::DAGCombinerInfo
&DCI
,
13343 const ARMSubtarget
*Subtarget
) {
13344 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
13345 if (St
->isVolatile())
13347 SDValue StVal
= St
->getValue();
13348 EVT VT
= StVal
.getValueType();
13350 if (Subtarget
->hasNEON())
13351 if (SDValue Store
= PerformTruncatingStoreCombine(St
, DCI
.DAG
))
13354 if (Subtarget
->hasMVEIntegerOps())
13355 if (SDValue NewToken
= PerformSplittingToNarrowingStores(St
, DCI
.DAG
))
13358 if (!ISD::isNormalStore(St
))
13361 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
13362 // ARM stores of arguments in the same cache line.
13363 if (StVal
.getNode()->getOpcode() == ARMISD::VMOVDRR
&&
13364 StVal
.getNode()->hasOneUse()) {
13365 SelectionDAG
&DAG
= DCI
.DAG
;
13366 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
13368 SDValue BasePtr
= St
->getBasePtr();
13369 SDValue NewST1
= DAG
.getStore(
13370 St
->getChain(), DL
, StVal
.getNode()->getOperand(isBigEndian
? 1 : 0),
13371 BasePtr
, St
->getPointerInfo(), St
->getAlignment(),
13372 St
->getMemOperand()->getFlags());
13374 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
13375 DAG
.getConstant(4, DL
, MVT::i32
));
13376 return DAG
.getStore(NewST1
.getValue(0), DL
,
13377 StVal
.getNode()->getOperand(isBigEndian
? 0 : 1),
13378 OffsetPtr
, St
->getPointerInfo(),
13379 std::min(4U, St
->getAlignment() / 2),
13380 St
->getMemOperand()->getFlags());
13383 if (StVal
.getValueType() == MVT::i64
&&
13384 StVal
.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13386 // Bitcast an i64 store extracted from a vector to f64.
13387 // Otherwise, the i64 value will be legalized to a pair of i32 values.
13388 SelectionDAG
&DAG
= DCI
.DAG
;
13390 SDValue IntVec
= StVal
.getOperand(0);
13391 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
13392 IntVec
.getValueType().getVectorNumElements());
13393 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, IntVec
);
13394 SDValue ExtElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
13395 Vec
, StVal
.getOperand(1));
13397 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, ExtElt
);
13398 // Make the DAGCombiner fold the bitcasts.
13399 DCI
.AddToWorklist(Vec
.getNode());
13400 DCI
.AddToWorklist(ExtElt
.getNode());
13401 DCI
.AddToWorklist(V
.getNode());
13402 return DAG
.getStore(St
->getChain(), dl
, V
, St
->getBasePtr(),
13403 St
->getPointerInfo(), St
->getAlignment(),
13404 St
->getMemOperand()->getFlags(), St
->getAAInfo());
13407 // If this is a legal vector store, try to combine it into a VST1_UPD.
13408 if (Subtarget
->hasNEON() && ISD::isNormalStore(N
) && VT
.isVector() &&
13409 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
13410 return CombineBaseUpdate(N
, DCI
);
13415 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
13416 /// can replace combinations of VMUL and VCVT (floating-point to integer)
13417 /// when the VMUL has a constant operand that is a power of 2.
13419 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13420 /// vmul.f32 d16, d17, d16
13421 /// vcvt.s32.f32 d16, d16
13423 /// vcvt.s32.f32 d16, d16, #3
13424 static SDValue
PerformVCVTCombine(SDNode
*N
, SelectionDAG
&DAG
,
13425 const ARMSubtarget
*Subtarget
) {
13426 if (!Subtarget
->hasNEON())
13429 SDValue Op
= N
->getOperand(0);
13430 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
13431 Op
.getOpcode() != ISD::FMUL
)
13434 SDValue ConstVec
= Op
->getOperand(1);
13435 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13438 MVT FloatTy
= Op
.getSimpleValueType().getVectorElementType();
13439 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13440 MVT IntTy
= N
->getSimpleValueType(0).getVectorElementType();
13441 uint32_t IntBits
= IntTy
.getSizeInBits();
13442 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13443 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13444 // These instructions only exist converting from f32 to i32. We can handle
13445 // smaller integers by generating an extra truncate, but larger ones would
13446 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13447 // these intructions only support v2i32/v4i32 types.
13451 BitVector UndefElements
;
13452 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13453 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13454 if (C
== -1 || C
== 0 || C
> 32)
13458 bool isSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
13459 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfp2fxs
:
13460 Intrinsic::arm_neon_vcvtfp2fxu
;
13461 SDValue FixConv
= DAG
.getNode(
13462 ISD::INTRINSIC_WO_CHAIN
, dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13463 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
), Op
->getOperand(0),
13464 DAG
.getConstant(C
, dl
, MVT::i32
));
13466 if (IntBits
< FloatBits
)
13467 FixConv
= DAG
.getNode(ISD::TRUNCATE
, dl
, N
->getValueType(0), FixConv
);
13472 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
13473 /// can replace combinations of VCVT (integer to floating-point) and VDIV
13474 /// when the VDIV has a constant operand that is a power of 2.
13476 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13477 /// vcvt.f32.s32 d16, d16
13478 /// vdiv.f32 d16, d17, d16
13480 /// vcvt.f32.s32 d16, d16, #3
13481 static SDValue
PerformVDIVCombine(SDNode
*N
, SelectionDAG
&DAG
,
13482 const ARMSubtarget
*Subtarget
) {
13483 if (!Subtarget
->hasNEON())
13486 SDValue Op
= N
->getOperand(0);
13487 unsigned OpOpcode
= Op
.getNode()->getOpcode();
13488 if (!N
->getValueType(0).isVector() || !N
->getValueType(0).isSimple() ||
13489 (OpOpcode
!= ISD::SINT_TO_FP
&& OpOpcode
!= ISD::UINT_TO_FP
))
13492 SDValue ConstVec
= N
->getOperand(1);
13493 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13496 MVT FloatTy
= N
->getSimpleValueType(0).getVectorElementType();
13497 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13498 MVT IntTy
= Op
.getOperand(0).getSimpleValueType().getVectorElementType();
13499 uint32_t IntBits
= IntTy
.getSizeInBits();
13500 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13501 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13502 // These instructions only exist converting from i32 to f32. We can handle
13503 // smaller integers by generating an extra extend, but larger ones would
13504 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13505 // these intructions only support v2i32/v4i32 types.
13509 BitVector UndefElements
;
13510 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13511 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13512 if (C
== -1 || C
== 0 || C
> 32)
13516 bool isSigned
= OpOpcode
== ISD::SINT_TO_FP
;
13517 SDValue ConvInput
= Op
.getOperand(0);
13518 if (IntBits
< FloatBits
)
13519 ConvInput
= DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
13520 dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13523 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfxs2fp
:
13524 Intrinsic::arm_neon_vcvtfxu2fp
;
13525 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
,
13527 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
),
13528 ConvInput
, DAG
.getConstant(C
, dl
, MVT::i32
));
13531 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
13532 static SDValue
PerformIntrinsicCombine(SDNode
*N
, SelectionDAG
&DAG
) {
13533 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
13536 // Don't do anything for most intrinsics.
13539 // Vector shifts: check for immediate versions and lower them.
13540 // Note: This is done during DAG combining instead of DAG legalizing because
13541 // the build_vectors for 64-bit vector element shift counts are generally
13542 // not legal, and it is hard to see their values after they get legalized to
13543 // loads from a constant pool.
13544 case Intrinsic::arm_neon_vshifts
:
13545 case Intrinsic::arm_neon_vshiftu
:
13546 case Intrinsic::arm_neon_vrshifts
:
13547 case Intrinsic::arm_neon_vrshiftu
:
13548 case Intrinsic::arm_neon_vrshiftn
:
13549 case Intrinsic::arm_neon_vqshifts
:
13550 case Intrinsic::arm_neon_vqshiftu
:
13551 case Intrinsic::arm_neon_vqshiftsu
:
13552 case Intrinsic::arm_neon_vqshiftns
:
13553 case Intrinsic::arm_neon_vqshiftnu
:
13554 case Intrinsic::arm_neon_vqshiftnsu
:
13555 case Intrinsic::arm_neon_vqrshiftns
:
13556 case Intrinsic::arm_neon_vqrshiftnu
:
13557 case Intrinsic::arm_neon_vqrshiftnsu
: {
13558 EVT VT
= N
->getOperand(1).getValueType();
13560 unsigned VShiftOpc
= 0;
13563 case Intrinsic::arm_neon_vshifts
:
13564 case Intrinsic::arm_neon_vshiftu
:
13565 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
)) {
13566 VShiftOpc
= ARMISD::VSHLIMM
;
13569 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
)) {
13570 VShiftOpc
= (IntNo
== Intrinsic::arm_neon_vshifts
? ARMISD::VSHRsIMM
13571 : ARMISD::VSHRuIMM
);
13576 case Intrinsic::arm_neon_vrshifts
:
13577 case Intrinsic::arm_neon_vrshiftu
:
13578 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
))
13582 case Intrinsic::arm_neon_vqshifts
:
13583 case Intrinsic::arm_neon_vqshiftu
:
13584 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13588 case Intrinsic::arm_neon_vqshiftsu
:
13589 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13591 llvm_unreachable("invalid shift count for vqshlu intrinsic");
13593 case Intrinsic::arm_neon_vrshiftn
:
13594 case Intrinsic::arm_neon_vqshiftns
:
13595 case Intrinsic::arm_neon_vqshiftnu
:
13596 case Intrinsic::arm_neon_vqshiftnsu
:
13597 case Intrinsic::arm_neon_vqrshiftns
:
13598 case Intrinsic::arm_neon_vqrshiftnu
:
13599 case Intrinsic::arm_neon_vqrshiftnsu
:
13600 // Narrowing shifts require an immediate right shift.
13601 if (isVShiftRImm(N
->getOperand(2), VT
, true, true, Cnt
))
13603 llvm_unreachable("invalid shift count for narrowing vector shift "
13607 llvm_unreachable("unhandled vector shift");
13611 case Intrinsic::arm_neon_vshifts
:
13612 case Intrinsic::arm_neon_vshiftu
:
13613 // Opcode already set above.
13615 case Intrinsic::arm_neon_vrshifts
:
13616 VShiftOpc
= ARMISD::VRSHRsIMM
;
13618 case Intrinsic::arm_neon_vrshiftu
:
13619 VShiftOpc
= ARMISD::VRSHRuIMM
;
13621 case Intrinsic::arm_neon_vrshiftn
:
13622 VShiftOpc
= ARMISD::VRSHRNIMM
;
13624 case Intrinsic::arm_neon_vqshifts
:
13625 VShiftOpc
= ARMISD::VQSHLsIMM
;
13627 case Intrinsic::arm_neon_vqshiftu
:
13628 VShiftOpc
= ARMISD::VQSHLuIMM
;
13630 case Intrinsic::arm_neon_vqshiftsu
:
13631 VShiftOpc
= ARMISD::VQSHLsuIMM
;
13633 case Intrinsic::arm_neon_vqshiftns
:
13634 VShiftOpc
= ARMISD::VQSHRNsIMM
;
13636 case Intrinsic::arm_neon_vqshiftnu
:
13637 VShiftOpc
= ARMISD::VQSHRNuIMM
;
13639 case Intrinsic::arm_neon_vqshiftnsu
:
13640 VShiftOpc
= ARMISD::VQSHRNsuIMM
;
13642 case Intrinsic::arm_neon_vqrshiftns
:
13643 VShiftOpc
= ARMISD::VQRSHRNsIMM
;
13645 case Intrinsic::arm_neon_vqrshiftnu
:
13646 VShiftOpc
= ARMISD::VQRSHRNuIMM
;
13648 case Intrinsic::arm_neon_vqrshiftnsu
:
13649 VShiftOpc
= ARMISD::VQRSHRNsuIMM
;
13654 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13655 N
->getOperand(1), DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13658 case Intrinsic::arm_neon_vshiftins
: {
13659 EVT VT
= N
->getOperand(1).getValueType();
13661 unsigned VShiftOpc
= 0;
13663 if (isVShiftLImm(N
->getOperand(3), VT
, false, Cnt
))
13664 VShiftOpc
= ARMISD::VSLIIMM
;
13665 else if (isVShiftRImm(N
->getOperand(3), VT
, false, true, Cnt
))
13666 VShiftOpc
= ARMISD::VSRIIMM
;
13668 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
13672 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13673 N
->getOperand(1), N
->getOperand(2),
13674 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13677 case Intrinsic::arm_neon_vqrshifts
:
13678 case Intrinsic::arm_neon_vqrshiftu
:
13679 // No immediate versions of these to check for.
13686 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
13687 /// lowers them. As with the vector shift intrinsics, this is done during DAG
13688 /// combining instead of DAG legalizing because the build_vectors for 64-bit
13689 /// vector element shift counts are generally not legal, and it is hard to see
13690 /// their values after they get legalized to loads from a constant pool.
13691 static SDValue
PerformShiftCombine(SDNode
*N
,
13692 TargetLowering::DAGCombinerInfo
&DCI
,
13693 const ARMSubtarget
*ST
) {
13694 SelectionDAG
&DAG
= DCI
.DAG
;
13695 EVT VT
= N
->getValueType(0);
13696 if (N
->getOpcode() == ISD::SRL
&& VT
== MVT::i32
&& ST
->hasV6Ops()) {
13697 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
13698 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
13699 SDValue N1
= N
->getOperand(1);
13700 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
13701 SDValue N0
= N
->getOperand(0);
13702 if (C
->getZExtValue() == 16 && N0
.getOpcode() == ISD::BSWAP
&&
13703 DAG
.MaskedValueIsZero(N0
.getOperand(0),
13704 APInt::getHighBitsSet(32, 16)))
13705 return DAG
.getNode(ISD::ROTR
, SDLoc(N
), VT
, N0
, N1
);
13709 if (ST
->isThumb1Only() && N
->getOpcode() == ISD::SHL
&& VT
== MVT::i32
&&
13710 N
->getOperand(0)->getOpcode() == ISD::AND
&&
13711 N
->getOperand(0)->hasOneUse()) {
13712 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
13714 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
13715 // usually show up because instcombine prefers to canonicalize it to
13716 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
13717 // out of GEP lowering in some cases.
13718 SDValue N0
= N
->getOperand(0);
13719 ConstantSDNode
*ShiftAmtNode
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13722 uint32_t ShiftAmt
= static_cast<uint32_t>(ShiftAmtNode
->getZExtValue());
13723 ConstantSDNode
*AndMaskNode
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
13726 uint32_t AndMask
= static_cast<uint32_t>(AndMaskNode
->getZExtValue());
13727 // Don't transform uxtb/uxth.
13728 if (AndMask
== 255 || AndMask
== 65535)
13730 if (isMask_32(AndMask
)) {
13731 uint32_t MaskedBits
= countLeadingZeros(AndMask
);
13732 if (MaskedBits
> ShiftAmt
) {
13734 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
13735 DAG
.getConstant(MaskedBits
, DL
, MVT::i32
));
13736 return DAG
.getNode(
13737 ISD::SRL
, DL
, MVT::i32
, SHL
,
13738 DAG
.getConstant(MaskedBits
- ShiftAmt
, DL
, MVT::i32
));
13743 // Nothing to be done for scalar shifts.
13744 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13745 if (!VT
.isVector() || !TLI
.isTypeLegal(VT
))
13747 if (ST
->hasMVEIntegerOps() && VT
== MVT::v2i64
)
13752 switch (N
->getOpcode()) {
13753 default: llvm_unreachable("unexpected shift opcode");
13756 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
)) {
13758 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
13759 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13765 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
13766 unsigned VShiftOpc
=
13767 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
13769 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
13770 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13776 // Look for a sign/zero extend of a larger than legal load. This can be split
13777 // into two extending loads, which are simpler to deal with than an arbitrary
13779 static SDValue
PerformSplittingToWideningLoad(SDNode
*N
, SelectionDAG
&DAG
) {
13780 SDValue N0
= N
->getOperand(0);
13781 if (N0
.getOpcode() != ISD::LOAD
)
13783 LoadSDNode
*LD
= cast
<LoadSDNode
>(N0
.getNode());
13784 if (!LD
->isSimple() || !N0
.hasOneUse() || LD
->isIndexed() ||
13785 LD
->getExtensionType() != ISD::NON_EXTLOAD
)
13787 EVT FromVT
= LD
->getValueType(0);
13788 EVT ToVT
= N
->getValueType(0);
13789 if (!ToVT
.isVector())
13791 assert(FromVT
.getVectorNumElements() == ToVT
.getVectorNumElements());
13792 EVT ToEltVT
= ToVT
.getVectorElementType();
13793 EVT FromEltVT
= FromVT
.getVectorElementType();
13795 unsigned NumElements
= 0;
13796 if (ToEltVT
== MVT::i32
&& (FromEltVT
== MVT::i16
|| FromEltVT
== MVT::i8
))
13798 if (ToEltVT
== MVT::i16
&& FromEltVT
== MVT::i8
)
13800 if (NumElements
== 0 ||
13801 FromVT
.getVectorNumElements() == NumElements
||
13802 FromVT
.getVectorNumElements() % NumElements
!= 0 ||
13803 !isPowerOf2_32(NumElements
))
13807 // Details about the old load
13808 SDValue Ch
= LD
->getChain();
13809 SDValue BasePtr
= LD
->getBasePtr();
13810 unsigned Alignment
= LD
->getOriginalAlignment();
13811 MachineMemOperand::Flags MMOFlags
= LD
->getMemOperand()->getFlags();
13812 AAMDNodes AAInfo
= LD
->getAAInfo();
13814 ISD::LoadExtType NewExtType
=
13815 N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
13816 SDValue Offset
= DAG
.getUNDEF(BasePtr
.getValueType());
13817 EVT NewFromVT
= FromVT
.getHalfNumVectorElementsVT(*DAG
.getContext());
13818 EVT NewToVT
= ToVT
.getHalfNumVectorElementsVT(*DAG
.getContext());
13819 unsigned NewOffset
= NewFromVT
.getSizeInBits() / 8;
13820 SDValue NewPtr
= DAG
.getObjectPtrOffset(DL
, BasePtr
, NewOffset
);
13822 // Split the load in half, each side of which is extended separately. This
13823 // is good enough, as legalisation will take it from there. They are either
13824 // already legal or they will be split further into something that is
13827 DAG
.getLoad(ISD::UNINDEXED
, NewExtType
, NewToVT
, DL
, Ch
, BasePtr
, Offset
,
13828 LD
->getPointerInfo(), NewFromVT
, Alignment
, MMOFlags
, AAInfo
);
13830 DAG
.getLoad(ISD::UNINDEXED
, NewExtType
, NewToVT
, DL
, Ch
, NewPtr
, Offset
,
13831 LD
->getPointerInfo().getWithOffset(NewOffset
), NewFromVT
,
13832 Alignment
, MMOFlags
, AAInfo
);
13834 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
,
13835 SDValue(NewLoad1
.getNode(), 1),
13836 SDValue(NewLoad2
.getNode(), 1));
13837 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewChain
);
13838 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ToVT
, NewLoad1
, NewLoad2
);
13841 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
13842 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
13843 static SDValue
PerformExtendCombine(SDNode
*N
, SelectionDAG
&DAG
,
13844 const ARMSubtarget
*ST
) {
13845 SDValue N0
= N
->getOperand(0);
13847 // Check for sign- and zero-extensions of vector extract operations of 8-
13848 // and 16-bit vector elements. NEON supports these directly. They are
13849 // handled during DAG combining because type legalization will promote them
13850 // to 32-bit types and it is messy to recognize the operations after that.
13851 if (ST
->hasNEON() && N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13852 SDValue Vec
= N0
.getOperand(0);
13853 SDValue Lane
= N0
.getOperand(1);
13854 EVT VT
= N
->getValueType(0);
13855 EVT EltVT
= N0
.getValueType();
13856 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13858 if (VT
== MVT::i32
&&
13859 (EltVT
== MVT::i8
|| EltVT
== MVT::i16
) &&
13860 TLI
.isTypeLegal(Vec
.getValueType()) &&
13861 isa
<ConstantSDNode
>(Lane
)) {
13864 switch (N
->getOpcode()) {
13865 default: llvm_unreachable("unexpected opcode");
13866 case ISD::SIGN_EXTEND
:
13867 Opc
= ARMISD::VGETLANEs
;
13869 case ISD::ZERO_EXTEND
:
13870 case ISD::ANY_EXTEND
:
13871 Opc
= ARMISD::VGETLANEu
;
13874 return DAG
.getNode(Opc
, SDLoc(N
), VT
, Vec
, Lane
);
13878 if (ST
->hasMVEIntegerOps())
13879 if (SDValue NewLoad
= PerformSplittingToWideningLoad(N
, DAG
))
13885 static const APInt
*isPowerOf2Constant(SDValue V
) {
13886 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(V
);
13889 const APInt
*CV
= &C
->getAPIntValue();
13890 return CV
->isPowerOf2() ? CV
: nullptr;
13893 SDValue
ARMTargetLowering::PerformCMOVToBFICombine(SDNode
*CMOV
, SelectionDAG
&DAG
) const {
13894 // If we have a CMOV, OR and AND combination such as:
13899 // * CN is a single bit;
13900 // * All bits covered by CM are known zero in y
13902 // Then we can convert this into a sequence of BFI instructions. This will
13903 // always be a win if CM is a single bit, will always be no worse than the
13904 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
13905 // three bits (due to the extra IT instruction).
13907 SDValue Op0
= CMOV
->getOperand(0);
13908 SDValue Op1
= CMOV
->getOperand(1);
13909 auto CCNode
= cast
<ConstantSDNode
>(CMOV
->getOperand(2));
13910 auto CC
= CCNode
->getAPIntValue().getLimitedValue();
13911 SDValue CmpZ
= CMOV
->getOperand(4);
13913 // The compare must be against zero.
13914 if (!isNullConstant(CmpZ
->getOperand(1)))
13917 assert(CmpZ
->getOpcode() == ARMISD::CMPZ
);
13918 SDValue And
= CmpZ
->getOperand(0);
13919 if (And
->getOpcode() != ISD::AND
)
13921 const APInt
*AndC
= isPowerOf2Constant(And
->getOperand(1));
13924 SDValue X
= And
->getOperand(0);
13926 if (CC
== ARMCC::EQ
) {
13927 // We're performing an "equal to zero" compare. Swap the operands so we
13928 // canonicalize on a "not equal to zero" compare.
13929 std::swap(Op0
, Op1
);
13931 assert(CC
== ARMCC::NE
&& "How can a CMPZ node not be EQ or NE?");
13934 if (Op1
->getOpcode() != ISD::OR
)
13937 ConstantSDNode
*OrC
= dyn_cast
<ConstantSDNode
>(Op1
->getOperand(1));
13940 SDValue Y
= Op1
->getOperand(0);
13945 // Now, is it profitable to continue?
13946 APInt OrCI
= OrC
->getAPIntValue();
13947 unsigned Heuristic
= Subtarget
->isThumb() ? 3 : 2;
13948 if (OrCI
.countPopulation() > Heuristic
)
13951 // Lastly, can we determine that the bits defined by OrCI
13953 KnownBits Known
= DAG
.computeKnownBits(Y
);
13954 if ((OrCI
& Known
.Zero
) != OrCI
)
13957 // OK, we can do the combine.
13960 EVT VT
= X
.getValueType();
13961 unsigned BitInX
= AndC
->logBase2();
13964 // We must shift X first.
13965 X
= DAG
.getNode(ISD::SRL
, dl
, VT
, X
,
13966 DAG
.getConstant(BitInX
, dl
, VT
));
13969 for (unsigned BitInY
= 0, NumActiveBits
= OrCI
.getActiveBits();
13970 BitInY
< NumActiveBits
; ++BitInY
) {
13971 if (OrCI
[BitInY
] == 0)
13973 APInt
Mask(VT
.getSizeInBits(), 0);
13974 Mask
.setBit(BitInY
);
13975 V
= DAG
.getNode(ARMISD::BFI
, dl
, VT
, V
, X
,
13976 // Confusingly, the operand is an *inverted* mask.
13977 DAG
.getConstant(~Mask
, dl
, VT
));
13983 // Given N, the value controlling the conditional branch, search for the loop
13984 // intrinsic, returning it, along with how the value is used. We need to handle
13985 // patterns such as the following:
13986 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
13987 // (brcond (setcc (loop.decrement), 0, eq), exit)
13988 // (brcond (setcc (loop.decrement), 0, ne), header)
13989 static SDValue
SearchLoopIntrinsic(SDValue N
, ISD::CondCode
&CC
, int &Imm
,
13991 switch (N
->getOpcode()) {
13995 if (!isa
<ConstantSDNode
>(N
.getOperand(1)))
13997 if (!cast
<ConstantSDNode
>(N
.getOperand(1))->isOne())
14000 return SearchLoopIntrinsic(N
.getOperand(0), CC
, Imm
, Negate
);
14003 auto *Const
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
14006 if (Const
->isNullValue())
14008 else if (Const
->isOne())
14012 CC
= cast
<CondCodeSDNode
>(N
.getOperand(2))->get();
14013 return SearchLoopIntrinsic(N
->getOperand(0), CC
, Imm
, Negate
);
14015 case ISD::INTRINSIC_W_CHAIN
: {
14016 unsigned IntOp
= cast
<ConstantSDNode
>(N
.getOperand(1))->getZExtValue();
14017 if (IntOp
!= Intrinsic::test_set_loop_iterations
&&
14018 IntOp
!= Intrinsic::loop_decrement_reg
)
14026 static SDValue
PerformHWLoopCombine(SDNode
*N
,
14027 TargetLowering::DAGCombinerInfo
&DCI
,
14028 const ARMSubtarget
*ST
) {
14030 // The hwloop intrinsics that we're interested are used for control-flow,
14031 // either for entering or exiting the loop:
14032 // - test.set.loop.iterations will test whether its operand is zero. If it
14033 // is zero, the proceeding branch should not enter the loop.
14034 // - loop.decrement.reg also tests whether its operand is zero. If it is
14035 // zero, the proceeding branch should not branch back to the beginning of
14037 // So here, we need to check that how the brcond is using the result of each
14038 // of the intrinsics to ensure that we're branching to the right place at the
14044 bool Negate
= false;
14045 SDValue Chain
= N
->getOperand(0);
14048 if (N
->getOpcode() == ISD::BRCOND
) {
14050 Cond
= N
->getOperand(1);
14051 Dest
= N
->getOperand(2);
14053 assert(N
->getOpcode() == ISD::BR_CC
&& "Expected BRCOND or BR_CC!");
14054 CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
14055 Cond
= N
->getOperand(2);
14056 Dest
= N
->getOperand(4);
14057 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N
->getOperand(3))) {
14058 if (!Const
->isOne() && !Const
->isNullValue())
14060 Imm
= Const
->getZExtValue();
14065 SDValue Int
= SearchLoopIntrinsic(Cond
, CC
, Imm
, Negate
);
14070 CC
= ISD::getSetCCInverse(CC
, true);
14072 auto IsTrueIfZero
= [](ISD::CondCode CC
, int Imm
) {
14073 return (CC
== ISD::SETEQ
&& Imm
== 0) ||
14074 (CC
== ISD::SETNE
&& Imm
== 1) ||
14075 (CC
== ISD::SETLT
&& Imm
== 1) ||
14076 (CC
== ISD::SETULT
&& Imm
== 1);
14079 auto IsFalseIfZero
= [](ISD::CondCode CC
, int Imm
) {
14080 return (CC
== ISD::SETEQ
&& Imm
== 1) ||
14081 (CC
== ISD::SETNE
&& Imm
== 0) ||
14082 (CC
== ISD::SETGT
&& Imm
== 0) ||
14083 (CC
== ISD::SETUGT
&& Imm
== 0) ||
14084 (CC
== ISD::SETGE
&& Imm
== 1) ||
14085 (CC
== ISD::SETUGE
&& Imm
== 1);
14088 assert((IsTrueIfZero(CC
, Imm
) || IsFalseIfZero(CC
, Imm
)) &&
14089 "unsupported condition");
14092 SelectionDAG
&DAG
= DCI
.DAG
;
14093 SDValue Elements
= Int
.getOperand(2);
14094 unsigned IntOp
= cast
<ConstantSDNode
>(Int
->getOperand(1))->getZExtValue();
14095 assert((N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BR
)
14096 && "expected single br user");
14097 SDNode
*Br
= *N
->use_begin();
14098 SDValue OtherTarget
= Br
->getOperand(1);
14100 // Update the unconditional branch to branch to the given Dest.
14101 auto UpdateUncondBr
= [](SDNode
*Br
, SDValue Dest
, SelectionDAG
&DAG
) {
14102 SDValue NewBrOps
[] = { Br
->getOperand(0), Dest
};
14103 SDValue NewBr
= DAG
.getNode(ISD::BR
, SDLoc(Br
), MVT::Other
, NewBrOps
);
14104 DAG
.ReplaceAllUsesOfValueWith(SDValue(Br
, 0), NewBr
);
14107 if (IntOp
== Intrinsic::test_set_loop_iterations
) {
14109 // We expect this 'instruction' to branch when the counter is zero.
14110 if (IsTrueIfZero(CC
, Imm
)) {
14111 SDValue Ops
[] = { Chain
, Elements
, Dest
};
14112 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
14114 // The logic is the reverse of what we need for WLS, so find the other
14115 // basic block target: the target of the proceeding br.
14116 UpdateUncondBr(Br
, Dest
, DAG
);
14118 SDValue Ops
[] = { Chain
, Elements
, OtherTarget
};
14119 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
14121 DAG
.ReplaceAllUsesOfValueWith(Int
.getValue(1), Int
.getOperand(0));
14124 SDValue Size
= DAG
.getTargetConstant(
14125 cast
<ConstantSDNode
>(Int
.getOperand(3))->getZExtValue(), dl
, MVT::i32
);
14126 SDValue Args
[] = { Int
.getOperand(0), Elements
, Size
, };
14127 SDValue LoopDec
= DAG
.getNode(ARMISD::LOOP_DEC
, dl
,
14128 DAG
.getVTList(MVT::i32
, MVT::Other
), Args
);
14129 DAG
.ReplaceAllUsesWith(Int
.getNode(), LoopDec
.getNode());
14131 // We expect this instruction to branch when the count is not zero.
14132 SDValue Target
= IsFalseIfZero(CC
, Imm
) ? Dest
: OtherTarget
;
14134 // Update the unconditional branch to target the loop preheader if we've
14135 // found the condition has been reversed.
14136 if (Target
== OtherTarget
)
14137 UpdateUncondBr(Br
, Dest
, DAG
);
14139 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
14140 SDValue(LoopDec
.getNode(), 1), Chain
);
14142 SDValue EndArgs
[] = { Chain
, SDValue(LoopDec
.getNode(), 0), Target
};
14143 return DAG
.getNode(ARMISD::LE
, dl
, MVT::Other
, EndArgs
);
14148 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
14150 ARMTargetLowering::PerformBRCONDCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
14151 SDValue Cmp
= N
->getOperand(4);
14152 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
14153 // Only looking at NE cases.
14156 EVT VT
= N
->getValueType(0);
14158 SDValue LHS
= Cmp
.getOperand(0);
14159 SDValue RHS
= Cmp
.getOperand(1);
14160 SDValue Chain
= N
->getOperand(0);
14161 SDValue BB
= N
->getOperand(1);
14162 SDValue ARMcc
= N
->getOperand(2);
14163 ARMCC::CondCodes CC
=
14164 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
14166 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
14167 // -> (brcond Chain BB CC CPSR Cmp)
14168 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ISD::AND
&& LHS
->hasOneUse() &&
14169 LHS
->getOperand(0)->getOpcode() == ARMISD::CMOV
&&
14170 LHS
->getOperand(0)->hasOneUse()) {
14171 auto *LHS00C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(0));
14172 auto *LHS01C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(1));
14173 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
14174 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
14175 if ((LHS00C
&& LHS00C
->getZExtValue() == 0) &&
14176 (LHS01C
&& LHS01C
->getZExtValue() == 1) &&
14177 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
14178 (RHSC
&& RHSC
->getZExtValue() == 0)) {
14179 return DAG
.getNode(
14180 ARMISD::BRCOND
, dl
, VT
, Chain
, BB
, LHS
->getOperand(0)->getOperand(2),
14181 LHS
->getOperand(0)->getOperand(3), LHS
->getOperand(0)->getOperand(4));
14188 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
14190 ARMTargetLowering::PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
14191 SDValue Cmp
= N
->getOperand(4);
14192 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
14193 // Only looking at EQ and NE cases.
14196 EVT VT
= N
->getValueType(0);
14198 SDValue LHS
= Cmp
.getOperand(0);
14199 SDValue RHS
= Cmp
.getOperand(1);
14200 SDValue FalseVal
= N
->getOperand(0);
14201 SDValue TrueVal
= N
->getOperand(1);
14202 SDValue ARMcc
= N
->getOperand(2);
14203 ARMCC::CondCodes CC
=
14204 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
14206 // BFI is only available on V6T2+.
14207 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops()) {
14208 SDValue R
= PerformCMOVToBFICombine(N
, DAG
);
14229 /// FIXME: Turn this into a target neutral optimization?
14231 if (CC
== ARMCC::NE
&& FalseVal
== RHS
&& FalseVal
!= LHS
) {
14232 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, TrueVal
, ARMcc
,
14233 N
->getOperand(3), Cmp
);
14234 } else if (CC
== ARMCC::EQ
&& TrueVal
== RHS
) {
14236 SDValue NewCmp
= getARMCmp(LHS
, RHS
, ISD::SETNE
, ARMcc
, DAG
, dl
);
14237 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, FalseVal
, ARMcc
,
14238 N
->getOperand(3), NewCmp
);
14241 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
14242 // -> (cmov F T CC CPSR Cmp)
14243 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ARMISD::CMOV
&& LHS
->hasOneUse()) {
14244 auto *LHS0C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0));
14245 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
14246 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
14247 if ((LHS0C
&& LHS0C
->getZExtValue() == 0) &&
14248 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
14249 (RHSC
&& RHSC
->getZExtValue() == 0)) {
14250 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
,
14251 LHS
->getOperand(2), LHS
->getOperand(3),
14252 LHS
->getOperand(4));
14256 if (!VT
.isInteger())
14259 // Materialize a boolean comparison for integers so we can avoid branching.
14260 if (isNullConstant(FalseVal
)) {
14261 if (CC
== ARMCC::EQ
&& isOneConstant(TrueVal
)) {
14262 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TOps()) {
14263 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
14264 // right 5 bits will make that 32 be 1, otherwise it will be 0.
14265 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
14266 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
14267 Res
= DAG
.getNode(ISD::SRL
, dl
, VT
, DAG
.getNode(ISD::CTLZ
, dl
, VT
, Sub
),
14268 DAG
.getConstant(5, dl
, MVT::i32
));
14270 // CMOV 0, 1, ==, (CMPZ x, y) ->
14271 // (ADDCARRY (SUB x, y), t:0, t:1)
14272 // where t = (SUBCARRY 0, (SUB x, y), 0)
14274 // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
14275 // x != y. In other words, a carry C == 1 when x == y, C == 0
14277 // The final ADDCARRY computes
14278 // x - y + (0 - (x - y)) + C == C
14279 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
14280 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
14281 SDValue Neg
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, Sub
);
14282 // ISD::SUBCARRY returns a borrow but we want the carry here
14285 DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
14286 DAG
.getConstant(1, dl
, MVT::i32
), Neg
.getValue(1));
14287 Res
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTs
, Sub
, Neg
, Carry
);
14289 } else if (CC
== ARMCC::NE
&& !isNullConstant(RHS
) &&
14290 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(TrueVal
))) {
14291 // This seems pointless but will allow us to combine it further below.
14292 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
14294 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
14295 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
14296 Sub
.getValue(1), SDValue());
14297 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, TrueVal
, ARMcc
,
14298 N
->getOperand(3), CPSRGlue
.getValue(1));
14301 } else if (isNullConstant(TrueVal
)) {
14302 if (CC
== ARMCC::EQ
&& !isNullConstant(RHS
) &&
14303 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(FalseVal
))) {
14304 // This seems pointless but will allow us to combine it further below
14305 // Note that we change == for != as this is the dual for the case above.
14306 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
14308 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
14309 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
14310 Sub
.getValue(1), SDValue());
14311 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, FalseVal
,
14312 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
),
14313 N
->getOperand(3), CPSRGlue
.getValue(1));
14318 // On Thumb1, the DAG above may be further combined if z is a power of 2
14320 // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
14321 // t1 = (USUBO (SUB x, y), 1)
14322 // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
14323 // Result = if K != 0 then (SHL t2:0, K) else t2:0
14325 // This also handles the special case of comparing against zero; it's
14326 // essentially, the same pattern, except there's no SUBS:
14327 // CMOV x, z, !=, (CMPZ x, 0) ->
14328 // t1 = (USUBO x, 1)
14329 // t2 = (SUBCARRY x, t1:0, t1:1)
14330 // Result = if K != 0 then (SHL t2:0, K) else t2:0
14331 const APInt
*TrueConst
;
14332 if (Subtarget
->isThumb1Only() && CC
== ARMCC::NE
&&
14333 ((FalseVal
.getOpcode() == ARMISD::SUBS
&&
14334 FalseVal
.getOperand(0) == LHS
&& FalseVal
.getOperand(1) == RHS
) ||
14335 (FalseVal
== LHS
&& isNullConstant(RHS
))) &&
14336 (TrueConst
= isPowerOf2Constant(TrueVal
))) {
14337 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
14338 unsigned ShiftAmount
= TrueConst
->logBase2();
14340 TrueVal
= DAG
.getConstant(1, dl
, VT
);
14341 SDValue Subc
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, TrueVal
);
14342 Res
= DAG
.getNode(ISD::SUBCARRY
, dl
, VTs
, FalseVal
, Subc
, Subc
.getValue(1));
14345 Res
= DAG
.getNode(ISD::SHL
, dl
, VT
, Res
,
14346 DAG
.getConstant(ShiftAmount
, dl
, MVT::i32
));
14349 if (Res
.getNode()) {
14350 KnownBits Known
= DAG
.computeKnownBits(SDValue(N
,0));
14351 // Capture demanded bits information that would be otherwise lost.
14352 if (Known
.Zero
== 0xfffffffe)
14353 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14354 DAG
.getValueType(MVT::i1
));
14355 else if (Known
.Zero
== 0xffffff00)
14356 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14357 DAG
.getValueType(MVT::i8
));
14358 else if (Known
.Zero
== 0xffff0000)
14359 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14360 DAG
.getValueType(MVT::i16
));
14366 SDValue
ARMTargetLowering::PerformDAGCombine(SDNode
*N
,
14367 DAGCombinerInfo
&DCI
) const {
14368 switch (N
->getOpcode()) {
14370 case ISD::ABS
: return PerformABSCombine(N
, DCI
, Subtarget
);
14371 case ARMISD::ADDE
: return PerformADDECombine(N
, DCI
, Subtarget
);
14372 case ARMISD::UMLAL
: return PerformUMLALCombine(N
, DCI
.DAG
, Subtarget
);
14373 case ISD::ADD
: return PerformADDCombine(N
, DCI
, Subtarget
);
14374 case ISD::SUB
: return PerformSUBCombine(N
, DCI
);
14375 case ISD::MUL
: return PerformMULCombine(N
, DCI
, Subtarget
);
14376 case ISD::OR
: return PerformORCombine(N
, DCI
, Subtarget
);
14377 case ISD::XOR
: return PerformXORCombine(N
, DCI
, Subtarget
);
14378 case ISD::AND
: return PerformANDCombine(N
, DCI
, Subtarget
);
14380 case ISD::BR_CC
: return PerformHWLoopCombine(N
, DCI
, Subtarget
);
14382 case ARMISD::SUBC
: return PerformAddcSubcCombine(N
, DCI
, Subtarget
);
14383 case ARMISD::SUBE
: return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
14384 case ARMISD::BFI
: return PerformBFICombine(N
, DCI
);
14385 case ARMISD::VMOVRRD
: return PerformVMOVRRDCombine(N
, DCI
, Subtarget
);
14386 case ARMISD::VMOVDRR
: return PerformVMOVDRRCombine(N
, DCI
.DAG
);
14387 case ISD::STORE
: return PerformSTORECombine(N
, DCI
, Subtarget
);
14388 case ISD::BUILD_VECTOR
: return PerformBUILD_VECTORCombine(N
, DCI
, Subtarget
);
14389 case ISD::INSERT_VECTOR_ELT
: return PerformInsertEltCombine(N
, DCI
);
14390 case ISD::VECTOR_SHUFFLE
: return PerformVECTOR_SHUFFLECombine(N
, DCI
.DAG
);
14391 case ARMISD::VDUPLANE
: return PerformVDUPLANECombine(N
, DCI
);
14392 case ARMISD::VDUP
: return PerformVDUPCombine(N
, DCI
, Subtarget
);
14393 case ISD::FP_TO_SINT
:
14394 case ISD::FP_TO_UINT
:
14395 return PerformVCVTCombine(N
, DCI
.DAG
, Subtarget
);
14397 return PerformVDIVCombine(N
, DCI
.DAG
, Subtarget
);
14398 case ISD::INTRINSIC_WO_CHAIN
: return PerformIntrinsicCombine(N
, DCI
.DAG
);
14402 return PerformShiftCombine(N
, DCI
, Subtarget
);
14403 case ISD::SIGN_EXTEND
:
14404 case ISD::ZERO_EXTEND
:
14405 case ISD::ANY_EXTEND
: return PerformExtendCombine(N
, DCI
.DAG
, Subtarget
);
14406 case ARMISD::CMOV
: return PerformCMOVCombine(N
, DCI
.DAG
);
14407 case ARMISD::BRCOND
: return PerformBRCONDCombine(N
, DCI
.DAG
);
14408 case ISD::LOAD
: return PerformLOADCombine(N
, DCI
);
14409 case ARMISD::VLD1DUP
:
14410 case ARMISD::VLD2DUP
:
14411 case ARMISD::VLD3DUP
:
14412 case ARMISD::VLD4DUP
:
14413 return PerformVLDCombine(N
, DCI
);
14414 case ARMISD::BUILD_VECTOR
:
14415 return PerformARMBUILD_VECTORCombine(N
, DCI
);
14416 case ARMISD::PREDICATE_CAST
:
14417 return PerformPREDICATE_CASTCombine(N
, DCI
);
14418 case ARMISD::SMULWB
: {
14419 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14420 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
14421 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
14425 case ARMISD::SMULWT
: {
14426 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14427 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
14428 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
14432 case ARMISD::SMLALBB
:
14433 case ARMISD::QADD16b
:
14434 case ARMISD::QSUB16b
: {
14435 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14436 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
14437 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14438 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14442 case ARMISD::SMLALBT
: {
14443 unsigned LowWidth
= N
->getOperand(0).getValueType().getSizeInBits();
14444 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
14445 unsigned HighWidth
= N
->getOperand(1).getValueType().getSizeInBits();
14446 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
14447 if ((SimplifyDemandedBits(N
->getOperand(0), LowMask
, DCI
)) ||
14448 (SimplifyDemandedBits(N
->getOperand(1), HighMask
, DCI
)))
14452 case ARMISD::SMLALTB
: {
14453 unsigned HighWidth
= N
->getOperand(0).getValueType().getSizeInBits();
14454 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
14455 unsigned LowWidth
= N
->getOperand(1).getValueType().getSizeInBits();
14456 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
14457 if ((SimplifyDemandedBits(N
->getOperand(0), HighMask
, DCI
)) ||
14458 (SimplifyDemandedBits(N
->getOperand(1), LowMask
, DCI
)))
14462 case ARMISD::SMLALTT
: {
14463 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14464 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
14465 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14466 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14470 case ARMISD::QADD8b
:
14471 case ARMISD::QSUB8b
: {
14472 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14473 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 8);
14474 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14475 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14479 case ISD::INTRINSIC_VOID
:
14480 case ISD::INTRINSIC_W_CHAIN
:
14481 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
14482 case Intrinsic::arm_neon_vld1
:
14483 case Intrinsic::arm_neon_vld1x2
:
14484 case Intrinsic::arm_neon_vld1x3
:
14485 case Intrinsic::arm_neon_vld1x4
:
14486 case Intrinsic::arm_neon_vld2
:
14487 case Intrinsic::arm_neon_vld3
:
14488 case Intrinsic::arm_neon_vld4
:
14489 case Intrinsic::arm_neon_vld2lane
:
14490 case Intrinsic::arm_neon_vld3lane
:
14491 case Intrinsic::arm_neon_vld4lane
:
14492 case Intrinsic::arm_neon_vld2dup
:
14493 case Intrinsic::arm_neon_vld3dup
:
14494 case Intrinsic::arm_neon_vld4dup
:
14495 case Intrinsic::arm_neon_vst1
:
14496 case Intrinsic::arm_neon_vst1x2
:
14497 case Intrinsic::arm_neon_vst1x3
:
14498 case Intrinsic::arm_neon_vst1x4
:
14499 case Intrinsic::arm_neon_vst2
:
14500 case Intrinsic::arm_neon_vst3
:
14501 case Intrinsic::arm_neon_vst4
:
14502 case Intrinsic::arm_neon_vst2lane
:
14503 case Intrinsic::arm_neon_vst3lane
:
14504 case Intrinsic::arm_neon_vst4lane
:
14505 return PerformVLDCombine(N
, DCI
);
14513 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc
,
14515 return (VT
== MVT::f32
) && (Opc
== ISD::LOAD
|| Opc
== ISD::STORE
);
14518 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT
, unsigned,
14519 unsigned Alignment
,
14520 MachineMemOperand::Flags
,
14521 bool *Fast
) const {
14522 // Depends what it gets converted into if the type is weird.
14523 if (!VT
.isSimple())
14526 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
14527 bool AllowsUnaligned
= Subtarget
->allowsUnalignedMem();
14528 auto Ty
= VT
.getSimpleVT().SimpleTy
;
14530 if (Ty
== MVT::i8
|| Ty
== MVT::i16
|| Ty
== MVT::i32
) {
14531 // Unaligned access can use (for example) LRDB, LRDH, LDR
14532 if (AllowsUnaligned
) {
14534 *Fast
= Subtarget
->hasV7Ops();
14539 if (Ty
== MVT::f64
|| Ty
== MVT::v2f64
) {
14540 // For any little-endian targets with neon, we can support unaligned ld/st
14541 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
14542 // A big-endian target may also explicitly support unaligned accesses
14543 if (Subtarget
->hasNEON() && (AllowsUnaligned
|| Subtarget
->isLittle())) {
14550 if (!Subtarget
->hasMVEIntegerOps())
14553 // These are for predicates
14554 if ((Ty
== MVT::v16i1
|| Ty
== MVT::v8i1
|| Ty
== MVT::v4i1
)) {
14560 // These are for truncated stores/narrowing loads. They are fine so long as
14561 // the alignment is at least the size of the item being loaded
14562 if ((Ty
== MVT::v4i8
|| Ty
== MVT::v8i8
|| Ty
== MVT::v4i16
) &&
14563 Alignment
>= VT
.getScalarSizeInBits() / 8) {
14569 // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
14570 // VSTRW.U32 all store the vector register in exactly the same format, and
14571 // differ only in the range of their immediate offset field and the required
14572 // alignment. So there is always a store that can be used, regardless of
14575 // For big endian, that is not the case. But can still emit a (VSTRB.U8;
14576 // VREV64.8) pair and get the same effect. This will likely be better than
14577 // aligning the vector through the stack.
14578 if (Ty
== MVT::v16i8
|| Ty
== MVT::v8i16
|| Ty
== MVT::v8f16
||
14579 Ty
== MVT::v4i32
|| Ty
== MVT::v4f32
|| Ty
== MVT::v2i64
||
14580 Ty
== MVT::v2f64
) {
14589 static bool memOpAlign(unsigned DstAlign
, unsigned SrcAlign
,
14590 unsigned AlignCheck
) {
14591 return ((SrcAlign
== 0 || SrcAlign
% AlignCheck
== 0) &&
14592 (DstAlign
== 0 || DstAlign
% AlignCheck
== 0));
14595 EVT
ARMTargetLowering::getOptimalMemOpType(
14596 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
14597 bool ZeroMemset
, bool MemcpyStrSrc
,
14598 const AttributeList
&FuncAttributes
) const {
14599 // See if we can use NEON instructions for this...
14600 if ((!IsMemset
|| ZeroMemset
) && Subtarget
->hasNEON() &&
14601 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
)) {
14604 (memOpAlign(SrcAlign
, DstAlign
, 16) ||
14605 (allowsMisalignedMemoryAccesses(MVT::v2f64
, 0, 1,
14606 MachineMemOperand::MONone
, &Fast
) &&
14609 } else if (Size
>= 8 &&
14610 (memOpAlign(SrcAlign
, DstAlign
, 8) ||
14611 (allowsMisalignedMemoryAccesses(
14612 MVT::f64
, 0, 1, MachineMemOperand::MONone
, &Fast
) &&
14618 // Let the target-independent logic figure it out.
14622 // 64-bit integers are split into their high and low parts and held in two
14623 // different registers, so the trunc is free since the low register can just
14625 bool ARMTargetLowering::isTruncateFree(Type
*SrcTy
, Type
*DstTy
) const {
14626 if (!SrcTy
->isIntegerTy() || !DstTy
->isIntegerTy())
14628 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits();
14629 unsigned DestBits
= DstTy
->getPrimitiveSizeInBits();
14630 return (SrcBits
== 64 && DestBits
== 32);
14633 bool ARMTargetLowering::isTruncateFree(EVT SrcVT
, EVT DstVT
) const {
14634 if (SrcVT
.isVector() || DstVT
.isVector() || !SrcVT
.isInteger() ||
14635 !DstVT
.isInteger())
14637 unsigned SrcBits
= SrcVT
.getSizeInBits();
14638 unsigned DestBits
= DstVT
.getSizeInBits();
14639 return (SrcBits
== 64 && DestBits
== 32);
14642 bool ARMTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
14643 if (Val
.getOpcode() != ISD::LOAD
)
14646 EVT VT1
= Val
.getValueType();
14647 if (!VT1
.isSimple() || !VT1
.isInteger() ||
14648 !VT2
.isSimple() || !VT2
.isInteger())
14651 switch (VT1
.getSimpleVT().SimpleTy
) {
14656 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
14663 bool ARMTargetLowering::isFNegFree(EVT VT
) const {
14664 if (!VT
.isSimple())
14667 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
14668 // negate values directly (fneg is free). So, we don't want to let the DAG
14669 // combiner rewrite fneg into xors and some other instructions. For f16 and
14670 // FullFP16 argument passing, some bitcast nodes may be introduced,
14671 // triggering this DAG combine rewrite, so we are avoiding that with this.
14672 switch (VT
.getSimpleVT().SimpleTy
) {
14675 return Subtarget
->hasFullFP16();
14681 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
14682 /// of the vector elements.
14683 static bool areExtractExts(Value
*Ext1
, Value
*Ext2
) {
14684 auto areExtDoubled
= [](Instruction
*Ext
) {
14685 return Ext
->getType()->getScalarSizeInBits() ==
14686 2 * Ext
->getOperand(0)->getType()->getScalarSizeInBits();
14689 if (!match(Ext1
, m_ZExtOrSExt(m_Value())) ||
14690 !match(Ext2
, m_ZExtOrSExt(m_Value())) ||
14691 !areExtDoubled(cast
<Instruction
>(Ext1
)) ||
14692 !areExtDoubled(cast
<Instruction
>(Ext2
)))
14698 /// Check if sinking \p I's operands to I's basic block is profitable, because
14699 /// the operands can be folded into a target instruction, e.g.
14700 /// sext/zext can be folded into vsubl.
14701 bool ARMTargetLowering::shouldSinkOperands(Instruction
*I
,
14702 SmallVectorImpl
<Use
*> &Ops
) const {
14703 if (!I
->getType()->isVectorTy())
14706 if (Subtarget
->hasNEON()) {
14707 switch (I
->getOpcode()) {
14708 case Instruction::Sub
:
14709 case Instruction::Add
: {
14710 if (!areExtractExts(I
->getOperand(0), I
->getOperand(1)))
14712 Ops
.push_back(&I
->getOperandUse(0));
14713 Ops
.push_back(&I
->getOperandUse(1));
14721 if (!Subtarget
->hasMVEIntegerOps())
14724 auto IsSinker
= [](Instruction
*I
, int Operand
) {
14725 switch (I
->getOpcode()) {
14726 case Instruction::Add
:
14727 case Instruction::Mul
:
14729 case Instruction::Sub
:
14730 return Operand
== 1;
14737 if (!isa
<ShuffleVectorInst
>(I
->getOperand(Op
)))
14739 if (!IsSinker(I
, Op
))
14741 if (!match(I
->getOperand(Op
),
14742 m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_ZeroInt()),
14743 m_Undef(), m_Zero()))) {
14746 Instruction
*Shuffle
= cast
<Instruction
>(I
->getOperand(Op
));
14747 // All uses of the shuffle should be sunk to avoid duplicating it across gpr
14748 // and vector registers
14749 for (Use
&U
: Shuffle
->uses()) {
14750 Instruction
*Insn
= cast
<Instruction
>(U
.getUser());
14751 if (!IsSinker(Insn
, U
.getOperandNo()))
14754 Ops
.push_back(&Shuffle
->getOperandUse(0));
14755 Ops
.push_back(&I
->getOperandUse(Op
));
14759 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal
) const {
14760 EVT VT
= ExtVal
.getValueType();
14762 if (!isTypeLegal(VT
))
14765 if (auto *Ld
= dyn_cast
<MaskedLoadSDNode
>(ExtVal
.getOperand(0))) {
14766 if (Ld
->isExpandingLoad())
14770 // Don't create a loadext if we can fold the extension into a wide/long
14772 // If there's more than one user instruction, the loadext is desirable no
14773 // matter what. There can be two uses by the same instruction.
14774 if (ExtVal
->use_empty() ||
14775 !ExtVal
->use_begin()->isOnlyUserOf(ExtVal
.getNode()))
14778 SDNode
*U
= *ExtVal
->use_begin();
14779 if ((U
->getOpcode() == ISD::ADD
|| U
->getOpcode() == ISD::SUB
||
14780 U
->getOpcode() == ISD::SHL
|| U
->getOpcode() == ARMISD::VSHLIMM
))
14786 bool ARMTargetLowering::allowTruncateForTailCall(Type
*Ty1
, Type
*Ty2
) const {
14787 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
14790 if (!isTypeLegal(EVT::getEVT(Ty1
)))
14793 assert(Ty1
->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
14795 // Assuming the caller doesn't have a zeroext or signext return parameter,
14796 // truncation all the way down to i1 is valid.
14800 int ARMTargetLowering::getScalingFactorCost(const DataLayout
&DL
,
14801 const AddrMode
&AM
, Type
*Ty
,
14802 unsigned AS
) const {
14803 if (isLegalAddressingMode(DL
, AM
, Ty
, AS
)) {
14804 if (Subtarget
->hasFPAO())
14805 return AM
.Scale
< 0 ? 1 : 0; // positive offsets execute faster
14811 static bool isLegalT1AddressImmediate(int64_t V
, EVT VT
) {
14815 unsigned Scale
= 1;
14816 switch (VT
.getSimpleVT().SimpleTy
) {
14826 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
14832 if ((V
& (Scale
- 1)) != 0)
14834 return isUInt
<5>(V
/ Scale
);
14837 static bool isLegalT2AddressImmediate(int64_t V
, EVT VT
,
14838 const ARMSubtarget
*Subtarget
) {
14839 if (!VT
.isInteger() && !VT
.isFloatingPoint())
14841 if (VT
.isVector() && Subtarget
->hasNEON())
14843 if (VT
.isVector() && VT
.isFloatingPoint() && Subtarget
->hasMVEIntegerOps() &&
14844 !Subtarget
->hasMVEFloatOps())
14847 bool IsNeg
= false;
14853 unsigned NumBytes
= std::max(VT
.getSizeInBits() / 8, 1U);
14855 // MVE: size * imm7
14856 if (VT
.isVector() && Subtarget
->hasMVEIntegerOps()) {
14857 switch (VT
.getSimpleVT().getVectorElementType().SimpleTy
) {
14860 return isShiftedUInt
<7,2>(V
);
14863 return isShiftedUInt
<7,1>(V
);
14865 return isUInt
<7>(V
);
14871 // half VLDR: 2 * imm8
14872 if (VT
.isFloatingPoint() && NumBytes
== 2 && Subtarget
->hasFPRegs16())
14873 return isShiftedUInt
<8, 1>(V
);
14874 // VLDR and LDRD: 4 * imm8
14875 if ((VT
.isFloatingPoint() && Subtarget
->hasVFP2Base()) || NumBytes
== 8)
14876 return isShiftedUInt
<8, 2>(V
);
14878 if (NumBytes
== 1 || NumBytes
== 2 || NumBytes
== 4) {
14879 // + imm12 or - imm8
14881 return isUInt
<8>(V
);
14882 return isUInt
<12>(V
);
14888 /// isLegalAddressImmediate - Return true if the integer value can be used
14889 /// as the offset of the target addressing mode for load / store of the
14891 static bool isLegalAddressImmediate(int64_t V
, EVT VT
,
14892 const ARMSubtarget
*Subtarget
) {
14896 if (!VT
.isSimple())
14899 if (Subtarget
->isThumb1Only())
14900 return isLegalT1AddressImmediate(V
, VT
);
14901 else if (Subtarget
->isThumb2())
14902 return isLegalT2AddressImmediate(V
, VT
, Subtarget
);
14907 switch (VT
.getSimpleVT().SimpleTy
) {
14908 default: return false;
14913 return isUInt
<12>(V
);
14916 return isUInt
<8>(V
);
14919 if (!Subtarget
->hasVFP2Base()) // FIXME: NEON?
14921 return isShiftedUInt
<8, 2>(V
);
14925 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode
&AM
,
14927 int Scale
= AM
.Scale
;
14931 switch (VT
.getSimpleVT().SimpleTy
) {
14932 default: return false;
14940 Scale
= Scale
& ~1;
14941 return Scale
== 2 || Scale
== 4 || Scale
== 8;
14943 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
14944 // version in Thumb mode.
14948 // r * 2 (this can be lowered to r + r).
14949 if (!AM
.HasBaseReg
&& Scale
== 2)
14953 // Note, we allow "void" uses (basically, uses that aren't loads or
14954 // stores), because arm allows folding a scale into many arithmetic
14955 // operations. This should be made more precise and revisited later.
14957 // Allow r << imm, but the imm has to be a multiple of two.
14958 if (Scale
& 1) return false;
14959 return isPowerOf2_32(Scale
);
14963 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode
&AM
,
14965 const int Scale
= AM
.Scale
;
14967 // Negative scales are not supported in Thumb1.
14971 // Thumb1 addressing modes do not support register scaling excepting the
14972 // following cases:
14973 // 1. Scale == 1 means no scaling.
14974 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
14975 return (Scale
== 1) || (!AM
.HasBaseReg
&& Scale
== 2);
14978 /// isLegalAddressingMode - Return true if the addressing mode represented
14979 /// by AM is legal for this target, for a load/store of the specified type.
14980 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
14981 const AddrMode
&AM
, Type
*Ty
,
14982 unsigned AS
, Instruction
*I
) const {
14983 EVT VT
= getValueType(DL
, Ty
, true);
14984 if (!isLegalAddressImmediate(AM
.BaseOffs
, VT
, Subtarget
))
14987 // Can never fold addr of global into load/store.
14991 switch (AM
.Scale
) {
14992 case 0: // no scale reg, must be "r+i" or "r", or "i".
14995 // ARM doesn't support any R+R*scale+imm addr modes.
14999 if (!VT
.isSimple())
15002 if (Subtarget
->isThumb1Only())
15003 return isLegalT1ScaledAddressingMode(AM
, VT
);
15005 if (Subtarget
->isThumb2())
15006 return isLegalT2ScaledAddressingMode(AM
, VT
);
15008 int Scale
= AM
.Scale
;
15009 switch (VT
.getSimpleVT().SimpleTy
) {
15010 default: return false;
15014 if (Scale
< 0) Scale
= -Scale
;
15018 return isPowerOf2_32(Scale
& ~1);
15022 if (Scale
== 1 || (AM
.HasBaseReg
&& Scale
== -1))
15024 // r * 2 (this can be lowered to r + r).
15025 if (!AM
.HasBaseReg
&& Scale
== 2)
15030 // Note, we allow "void" uses (basically, uses that aren't loads or
15031 // stores), because arm allows folding a scale into many arithmetic
15032 // operations. This should be made more precise and revisited later.
15034 // Allow r << imm, but the imm has to be a multiple of two.
15035 if (Scale
& 1) return false;
15036 return isPowerOf2_32(Scale
);
15042 /// isLegalICmpImmediate - Return true if the specified immediate is legal
15043 /// icmp immediate, that is the target has icmp instructions which can compare
15044 /// a register against the immediate without having to materialize the
15045 /// immediate into a register.
15046 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm
) const {
15047 // Thumb2 and ARM modes can use cmn for negative immediates.
15048 if (!Subtarget
->isThumb())
15049 return ARM_AM::getSOImmVal((uint32_t)Imm
) != -1 ||
15050 ARM_AM::getSOImmVal(-(uint32_t)Imm
) != -1;
15051 if (Subtarget
->isThumb2())
15052 return ARM_AM::getT2SOImmVal((uint32_t)Imm
) != -1 ||
15053 ARM_AM::getT2SOImmVal(-(uint32_t)Imm
) != -1;
15054 // Thumb1 doesn't have cmn, and only 8-bit immediates.
15055 return Imm
>= 0 && Imm
<= 255;
15058 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
15059 /// *or sub* immediate, that is the target has add or sub instructions which can
15060 /// add a register with the immediate without having to materialize the
15061 /// immediate into a register.
15062 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm
) const {
15063 // Same encoding for add/sub, just flip the sign.
15064 int64_t AbsImm
= std::abs(Imm
);
15065 if (!Subtarget
->isThumb())
15066 return ARM_AM::getSOImmVal(AbsImm
) != -1;
15067 if (Subtarget
->isThumb2())
15068 return ARM_AM::getT2SOImmVal(AbsImm
) != -1;
15069 // Thumb1 only has 8-bit unsigned immediate.
15070 return AbsImm
>= 0 && AbsImm
<= 255;
15073 static bool getARMIndexedAddressParts(SDNode
*Ptr
, EVT VT
,
15074 bool isSEXTLoad
, SDValue
&Base
,
15075 SDValue
&Offset
, bool &isInc
,
15076 SelectionDAG
&DAG
) {
15077 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
15080 if (VT
== MVT::i16
|| ((VT
== MVT::i8
|| VT
== MVT::i1
) && isSEXTLoad
)) {
15081 // AddressingMode 3
15082 Base
= Ptr
->getOperand(0);
15083 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
15084 int RHSC
= (int)RHS
->getZExtValue();
15085 if (RHSC
< 0 && RHSC
> -256) {
15086 assert(Ptr
->getOpcode() == ISD::ADD
);
15088 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15092 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
15093 Offset
= Ptr
->getOperand(1);
15095 } else if (VT
== MVT::i32
|| VT
== MVT::i8
|| VT
== MVT::i1
) {
15096 // AddressingMode 2
15097 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
15098 int RHSC
= (int)RHS
->getZExtValue();
15099 if (RHSC
< 0 && RHSC
> -0x1000) {
15100 assert(Ptr
->getOpcode() == ISD::ADD
);
15102 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15103 Base
= Ptr
->getOperand(0);
15108 if (Ptr
->getOpcode() == ISD::ADD
) {
15110 ARM_AM::ShiftOpc ShOpcVal
=
15111 ARM_AM::getShiftOpcForNode(Ptr
->getOperand(0).getOpcode());
15112 if (ShOpcVal
!= ARM_AM::no_shift
) {
15113 Base
= Ptr
->getOperand(1);
15114 Offset
= Ptr
->getOperand(0);
15116 Base
= Ptr
->getOperand(0);
15117 Offset
= Ptr
->getOperand(1);
15122 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
15123 Base
= Ptr
->getOperand(0);
15124 Offset
= Ptr
->getOperand(1);
15128 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
15132 static bool getT2IndexedAddressParts(SDNode
*Ptr
, EVT VT
,
15133 bool isSEXTLoad
, SDValue
&Base
,
15134 SDValue
&Offset
, bool &isInc
,
15135 SelectionDAG
&DAG
) {
15136 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
15139 Base
= Ptr
->getOperand(0);
15140 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
15141 int RHSC
= (int)RHS
->getZExtValue();
15142 if (RHSC
< 0 && RHSC
> -0x100) { // 8 bits.
15143 assert(Ptr
->getOpcode() == ISD::ADD
);
15145 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15147 } else if (RHSC
> 0 && RHSC
< 0x100) { // 8 bit, no zero.
15148 isInc
= Ptr
->getOpcode() == ISD::ADD
;
15149 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15157 static bool getMVEIndexedAddressParts(SDNode
*Ptr
, EVT VT
, unsigned Align
,
15158 bool isSEXTLoad
, bool isLE
, SDValue
&Base
,
15159 SDValue
&Offset
, bool &isInc
,
15160 SelectionDAG
&DAG
) {
15161 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
15163 if (!isa
<ConstantSDNode
>(Ptr
->getOperand(1)))
15166 ConstantSDNode
*RHS
= cast
<ConstantSDNode
>(Ptr
->getOperand(1));
15167 int RHSC
= (int)RHS
->getZExtValue();
15169 auto IsInRange
= [&](int RHSC
, int Limit
, int Scale
) {
15170 if (RHSC
< 0 && RHSC
> -Limit
* Scale
&& RHSC
% Scale
== 0) {
15171 assert(Ptr
->getOpcode() == ISD::ADD
);
15173 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15175 } else if (RHSC
> 0 && RHSC
< Limit
* Scale
&& RHSC
% Scale
== 0) {
15176 isInc
= Ptr
->getOpcode() == ISD::ADD
;
15177 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15183 // Try to find a matching instruction based on s/zext, Alignment, Offset and
15185 Base
= Ptr
->getOperand(0);
15186 if (VT
== MVT::v4i16
) {
15187 if (Align
>= 2 && IsInRange(RHSC
, 0x80, 2))
15189 } else if (VT
== MVT::v4i8
|| VT
== MVT::v8i8
) {
15190 if (IsInRange(RHSC
, 0x80, 1))
15192 } else if (Align
>= 4 && (isLE
|| VT
== MVT::v4i32
|| VT
== MVT::v4f32
) &&
15193 IsInRange(RHSC
, 0x80, 4))
15195 else if (Align
>= 2 && (isLE
|| VT
== MVT::v8i16
|| VT
== MVT::v8f16
) &&
15196 IsInRange(RHSC
, 0x80, 2))
15198 else if ((isLE
|| VT
== MVT::v16i8
) && IsInRange(RHSC
, 0x80, 1))
15203 /// getPreIndexedAddressParts - returns true by value, base pointer and
15204 /// offset pointer and addressing mode by reference if the node's address
15205 /// can be legally represented as pre-indexed load / store address.
15207 ARMTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
15209 ISD::MemIndexedMode
&AM
,
15210 SelectionDAG
&DAG
) const {
15211 if (Subtarget
->isThumb1Only())
15217 bool isSEXTLoad
= false;
15218 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
15219 Ptr
= LD
->getBasePtr();
15220 VT
= LD
->getMemoryVT();
15221 Align
= LD
->getAlignment();
15222 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
15223 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
15224 Ptr
= ST
->getBasePtr();
15225 VT
= ST
->getMemoryVT();
15226 Align
= ST
->getAlignment();
15231 bool isLegal
= false;
15233 isLegal
= Subtarget
->hasMVEIntegerOps() &&
15234 getMVEIndexedAddressParts(Ptr
.getNode(), VT
, Align
, isSEXTLoad
,
15235 Subtarget
->isLittle(), Base
, Offset
,
15238 if (Subtarget
->isThumb2())
15239 isLegal
= getT2IndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
15240 Offset
, isInc
, DAG
);
15242 isLegal
= getARMIndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
15243 Offset
, isInc
, DAG
);
15248 AM
= isInc
? ISD::PRE_INC
: ISD::PRE_DEC
;
15252 /// getPostIndexedAddressParts - returns true by value, base pointer and
15253 /// offset pointer and addressing mode by reference if this node can be
15254 /// combined with a load / store to form a post-indexed load / store.
15255 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode
*N
, SDNode
*Op
,
15258 ISD::MemIndexedMode
&AM
,
15259 SelectionDAG
&DAG
) const {
15263 bool isSEXTLoad
= false, isNonExt
;
15264 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
15265 VT
= LD
->getMemoryVT();
15266 Ptr
= LD
->getBasePtr();
15267 Align
= LD
->getAlignment();
15268 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
15269 isNonExt
= LD
->getExtensionType() == ISD::NON_EXTLOAD
;
15270 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
15271 VT
= ST
->getMemoryVT();
15272 Ptr
= ST
->getBasePtr();
15273 Align
= ST
->getAlignment();
15274 isNonExt
= !ST
->isTruncatingStore();
15278 if (Subtarget
->isThumb1Only()) {
15279 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
15280 // must be non-extending/truncating, i32, with an offset of 4.
15281 assert(Op
->getValueType(0) == MVT::i32
&& "Non-i32 post-inc op?!");
15282 if (Op
->getOpcode() != ISD::ADD
|| !isNonExt
)
15284 auto *RHS
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
15285 if (!RHS
|| RHS
->getZExtValue() != 4)
15288 Offset
= Op
->getOperand(1);
15289 Base
= Op
->getOperand(0);
15290 AM
= ISD::POST_INC
;
15295 bool isLegal
= false;
15297 isLegal
= Subtarget
->hasMVEIntegerOps() &&
15298 getMVEIndexedAddressParts(Op
, VT
, Align
, isSEXTLoad
,
15299 Subtarget
->isLittle(), Base
, Offset
,
15302 if (Subtarget
->isThumb2())
15303 isLegal
= getT2IndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
15306 isLegal
= getARMIndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
15313 // Swap base ptr and offset to catch more post-index load / store when
15314 // it's legal. In Thumb2 mode, offset must be an immediate.
15315 if (Ptr
== Offset
&& Op
->getOpcode() == ISD::ADD
&&
15316 !Subtarget
->isThumb2())
15317 std::swap(Base
, Offset
);
15319 // Post-indexed load / store update the base pointer.
15324 AM
= isInc
? ISD::POST_INC
: ISD::POST_DEC
;
15328 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
15330 const APInt
&DemandedElts
,
15331 const SelectionDAG
&DAG
,
15332 unsigned Depth
) const {
15333 unsigned BitWidth
= Known
.getBitWidth();
15335 switch (Op
.getOpcode()) {
15341 // Special cases when we convert a carry to a boolean.
15342 if (Op
.getResNo() == 0) {
15343 SDValue LHS
= Op
.getOperand(0);
15344 SDValue RHS
= Op
.getOperand(1);
15345 // (ADDE 0, 0, C) will give us a single bit.
15346 if (Op
->getOpcode() == ARMISD::ADDE
&& isNullConstant(LHS
) &&
15347 isNullConstant(RHS
)) {
15348 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
15353 case ARMISD::CMOV
: {
15354 // Bits are known zero/one if known on the LHS and RHS.
15355 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+1);
15356 if (Known
.isUnknown())
15359 KnownBits KnownRHS
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+1);
15360 Known
.Zero
&= KnownRHS
.Zero
;
15361 Known
.One
&= KnownRHS
.One
;
15364 case ISD::INTRINSIC_W_CHAIN
: {
15365 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(Op
->getOperand(1));
15366 Intrinsic::ID IntID
= static_cast<Intrinsic::ID
>(CN
->getZExtValue());
15369 case Intrinsic::arm_ldaex
:
15370 case Intrinsic::arm_ldrex
: {
15371 EVT VT
= cast
<MemIntrinsicSDNode
>(Op
)->getMemoryVT();
15372 unsigned MemBits
= VT
.getScalarSizeInBits();
15373 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
);
15378 case ARMISD::BFI
: {
15379 // Conservatively, we can recurse down the first operand
15380 // and just mask out all affected bits.
15381 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
15383 // The operand to BFI is already a mask suitable for removing the bits it
15385 ConstantSDNode
*CI
= cast
<ConstantSDNode
>(Op
.getOperand(2));
15386 const APInt
&Mask
= CI
->getAPIntValue();
15387 Known
.Zero
&= Mask
;
15391 case ARMISD::VGETLANEs
:
15392 case ARMISD::VGETLANEu
: {
15393 const SDValue
&SrcSV
= Op
.getOperand(0);
15394 EVT VecVT
= SrcSV
.getValueType();
15395 assert(VecVT
.isVector() && "VGETLANE expected a vector type");
15396 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
15397 ConstantSDNode
*Pos
= cast
<ConstantSDNode
>(Op
.getOperand(1).getNode());
15398 assert(Pos
->getAPIntValue().ult(NumSrcElts
) &&
15399 "VGETLANE index out of bounds");
15400 unsigned Idx
= Pos
->getZExtValue();
15401 APInt DemandedElt
= APInt::getOneBitSet(NumSrcElts
, Idx
);
15402 Known
= DAG
.computeKnownBits(SrcSV
, DemandedElt
, Depth
+ 1);
15404 EVT VT
= Op
.getValueType();
15405 const unsigned DstSz
= VT
.getScalarSizeInBits();
15406 const unsigned SrcSz
= VecVT
.getVectorElementType().getSizeInBits();
15408 assert(SrcSz
== Known
.getBitWidth());
15409 assert(DstSz
> SrcSz
);
15410 if (Op
.getOpcode() == ARMISD::VGETLANEs
)
15411 Known
= Known
.sext(DstSz
);
15413 Known
= Known
.zext(DstSz
, true /* extended bits are known zero */);
15415 assert(DstSz
== Known
.getBitWidth());
15422 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op
,
15423 const APInt
&DemandedAPInt
,
15424 TargetLoweringOpt
&TLO
) const {
15425 // Delay optimization, so we don't have to deal with illegal types, or block
15430 // Only optimize AND for now.
15431 if (Op
.getOpcode() != ISD::AND
)
15434 EVT VT
= Op
.getValueType();
15440 assert(VT
== MVT::i32
&& "Unexpected integer type");
15442 // Make sure the RHS really is a constant.
15443 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
15447 unsigned Mask
= C
->getZExtValue();
15449 unsigned Demanded
= DemandedAPInt
.getZExtValue();
15450 unsigned ShrunkMask
= Mask
& Demanded
;
15451 unsigned ExpandedMask
= Mask
| ~Demanded
;
15453 // If the mask is all zeros, let the target-independent code replace the
15454 // result with zero.
15455 if (ShrunkMask
== 0)
15458 // If the mask is all ones, erase the AND. (Currently, the target-independent
15459 // code won't do this, so we have to do it explicitly to avoid an infinite
15460 // loop in obscure cases.)
15461 if (ExpandedMask
== ~0U)
15462 return TLO
.CombineTo(Op
, Op
.getOperand(0));
15464 auto IsLegalMask
= [ShrunkMask
, ExpandedMask
](unsigned Mask
) -> bool {
15465 return (ShrunkMask
& Mask
) == ShrunkMask
&& (~ExpandedMask
& Mask
) == 0;
15467 auto UseMask
= [Mask
, Op
, VT
, &TLO
](unsigned NewMask
) -> bool {
15468 if (NewMask
== Mask
)
15471 SDValue NewC
= TLO
.DAG
.getConstant(NewMask
, DL
, VT
);
15472 SDValue NewOp
= TLO
.DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(0), NewC
);
15473 return TLO
.CombineTo(Op
, NewOp
);
15476 // Prefer uxtb mask.
15477 if (IsLegalMask(0xFF))
15478 return UseMask(0xFF);
15480 // Prefer uxth mask.
15481 if (IsLegalMask(0xFFFF))
15482 return UseMask(0xFFFF);
15484 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
15485 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15486 if (ShrunkMask
< 256)
15487 return UseMask(ShrunkMask
);
15489 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
15490 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15491 if ((int)ExpandedMask
<= -2 && (int)ExpandedMask
>= -256)
15492 return UseMask(ExpandedMask
);
15494 // Potential improvements:
15496 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
15497 // We could try to prefer Thumb1 immediates which can be lowered to a
15498 // two-instruction sequence.
15499 // We could try to recognize more legal ARM/Thumb2 immediates here.
15505 //===----------------------------------------------------------------------===//
15506 // ARM Inline Assembly Support
15507 //===----------------------------------------------------------------------===//
15509 bool ARMTargetLowering::ExpandInlineAsm(CallInst
*CI
) const {
15510 // Looking for "rev" which is V6+.
15511 if (!Subtarget
->hasV6Ops())
15514 InlineAsm
*IA
= cast
<InlineAsm
>(CI
->getCalledValue());
15515 std::string AsmStr
= IA
->getAsmString();
15516 SmallVector
<StringRef
, 4> AsmPieces
;
15517 SplitString(AsmStr
, AsmPieces
, ";\n");
15519 switch (AsmPieces
.size()) {
15520 default: return false;
15522 AsmStr
= AsmPieces
[0];
15524 SplitString(AsmStr
, AsmPieces
, " \t,");
15527 if (AsmPieces
.size() == 3 &&
15528 AsmPieces
[0] == "rev" && AsmPieces
[1] == "$0" && AsmPieces
[2] == "$1" &&
15529 IA
->getConstraintString().compare(0, 4, "=l,l") == 0) {
15530 IntegerType
*Ty
= dyn_cast
<IntegerType
>(CI
->getType());
15531 if (Ty
&& Ty
->getBitWidth() == 32)
15532 return IntrinsicLowering::LowerToByteSwap(CI
);
15540 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
15541 // At this point, we have to lower this constraint to something else, so we
15542 // lower it to an "r" or "w". However, by doing this we will force the result
15543 // to be in register, while the X constraint is much more permissive.
15545 // Although we are correct (we are free to emit anything, without
15546 // constraints), we might break use cases that would expect us to be more
15547 // efficient and emit something else.
15548 if (!Subtarget
->hasVFP2Base())
15550 if (ConstraintVT
.isFloatingPoint())
15552 if (ConstraintVT
.isVector() && Subtarget
->hasNEON() &&
15553 (ConstraintVT
.getSizeInBits() == 64 ||
15554 ConstraintVT
.getSizeInBits() == 128))
15560 /// getConstraintType - Given a constraint letter, return the type of
15561 /// constraint it is for this target.
15562 ARMTargetLowering::ConstraintType
15563 ARMTargetLowering::getConstraintType(StringRef Constraint
) const {
15564 unsigned S
= Constraint
.size();
15566 switch (Constraint
[0]) {
15568 case 'l': return C_RegisterClass
;
15569 case 'w': return C_RegisterClass
;
15570 case 'h': return C_RegisterClass
;
15571 case 'x': return C_RegisterClass
;
15572 case 't': return C_RegisterClass
;
15573 case 'j': return C_Immediate
; // Constant for movw.
15574 // An address with a single base register. Due to the way we
15575 // currently handle addresses it is the same as an 'r' memory constraint.
15576 case 'Q': return C_Memory
;
15578 } else if (S
== 2) {
15579 switch (Constraint
[0]) {
15581 case 'T': return C_RegisterClass
;
15582 // All 'U+' constraints are addresses.
15583 case 'U': return C_Memory
;
15586 return TargetLowering::getConstraintType(Constraint
);
15589 /// Examine constraint type and operand type and determine a weight value.
15590 /// This object must already have been set up with the operand type
15591 /// and the current alternative constraint selected.
15592 TargetLowering::ConstraintWeight
15593 ARMTargetLowering::getSingleConstraintMatchWeight(
15594 AsmOperandInfo
&info
, const char *constraint
) const {
15595 ConstraintWeight weight
= CW_Invalid
;
15596 Value
*CallOperandVal
= info
.CallOperandVal
;
15597 // If we don't have a value, we can't do a match,
15598 // but allow it at the lowest weight.
15599 if (!CallOperandVal
)
15601 Type
*type
= CallOperandVal
->getType();
15602 // Look at the constraint type.
15603 switch (*constraint
) {
15605 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
15608 if (type
->isIntegerTy()) {
15609 if (Subtarget
->isThumb())
15610 weight
= CW_SpecificReg
;
15612 weight
= CW_Register
;
15616 if (type
->isFloatingPointTy())
15617 weight
= CW_Register
;
15623 using RCPair
= std::pair
<unsigned, const TargetRegisterClass
*>;
15625 RCPair
ARMTargetLowering::getRegForInlineAsmConstraint(
15626 const TargetRegisterInfo
*TRI
, StringRef Constraint
, MVT VT
) const {
15627 switch (Constraint
.size()) {
15629 // GCC ARM Constraint Letters
15630 switch (Constraint
[0]) {
15631 case 'l': // Low regs or general regs.
15632 if (Subtarget
->isThumb())
15633 return RCPair(0U, &ARM::tGPRRegClass
);
15634 return RCPair(0U, &ARM::GPRRegClass
);
15635 case 'h': // High regs or no regs.
15636 if (Subtarget
->isThumb())
15637 return RCPair(0U, &ARM::hGPRRegClass
);
15640 if (Subtarget
->isThumb1Only())
15641 return RCPair(0U, &ARM::tGPRRegClass
);
15642 return RCPair(0U, &ARM::GPRRegClass
);
15644 if (VT
== MVT::Other
)
15646 if (VT
== MVT::f32
)
15647 return RCPair(0U, &ARM::SPRRegClass
);
15648 if (VT
.getSizeInBits() == 64)
15649 return RCPair(0U, &ARM::DPRRegClass
);
15650 if (VT
.getSizeInBits() == 128)
15651 return RCPair(0U, &ARM::QPRRegClass
);
15654 if (VT
== MVT::Other
)
15656 if (VT
== MVT::f32
)
15657 return RCPair(0U, &ARM::SPR_8RegClass
);
15658 if (VT
.getSizeInBits() == 64)
15659 return RCPair(0U, &ARM::DPR_8RegClass
);
15660 if (VT
.getSizeInBits() == 128)
15661 return RCPair(0U, &ARM::QPR_8RegClass
);
15664 if (VT
== MVT::Other
)
15666 if (VT
== MVT::f32
|| VT
== MVT::i32
)
15667 return RCPair(0U, &ARM::SPRRegClass
);
15668 if (VT
.getSizeInBits() == 64)
15669 return RCPair(0U, &ARM::DPR_VFP2RegClass
);
15670 if (VT
.getSizeInBits() == 128)
15671 return RCPair(0U, &ARM::QPR_VFP2RegClass
);
15677 if (Constraint
[0] == 'T') {
15678 switch (Constraint
[1]) {
15682 return RCPair(0U, &ARM::tGPREvenRegClass
);
15684 return RCPair(0U, &ARM::tGPROddRegClass
);
15693 if (StringRef("{cc}").equals_lower(Constraint
))
15694 return std::make_pair(unsigned(ARM::CPSR
), &ARM::CCRRegClass
);
15696 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
15699 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15700 /// vector. If it is invalid, don't add anything to Ops.
15701 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
15702 std::string
&Constraint
,
15703 std::vector
<SDValue
>&Ops
,
15704 SelectionDAG
&DAG
) const {
15707 // Currently only support length 1 constraints.
15708 if (Constraint
.length() != 1) return;
15710 char ConstraintLetter
= Constraint
[0];
15711 switch (ConstraintLetter
) {
15714 case 'I': case 'J': case 'K': case 'L':
15715 case 'M': case 'N': case 'O':
15716 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
15720 int64_t CVal64
= C
->getSExtValue();
15721 int CVal
= (int) CVal64
;
15722 // None of these constraints allow values larger than 32 bits. Check
15723 // that the value fits in an int.
15724 if (CVal
!= CVal64
)
15727 switch (ConstraintLetter
) {
15729 // Constant suitable for movw, must be between 0 and
15731 if (Subtarget
->hasV6T2Ops() || (Subtarget
->hasV8MBaselineOps()))
15732 if (CVal
>= 0 && CVal
<= 65535)
15736 if (Subtarget
->isThumb1Only()) {
15737 // This must be a constant between 0 and 255, for ADD
15739 if (CVal
>= 0 && CVal
<= 255)
15741 } else if (Subtarget
->isThumb2()) {
15742 // A constant that can be used as an immediate value in a
15743 // data-processing instruction.
15744 if (ARM_AM::getT2SOImmVal(CVal
) != -1)
15747 // A constant that can be used as an immediate value in a
15748 // data-processing instruction.
15749 if (ARM_AM::getSOImmVal(CVal
) != -1)
15755 if (Subtarget
->isThumb1Only()) {
15756 // This must be a constant between -255 and -1, for negated ADD
15757 // immediates. This can be used in GCC with an "n" modifier that
15758 // prints the negated value, for use with SUB instructions. It is
15759 // not useful otherwise but is implemented for compatibility.
15760 if (CVal
>= -255 && CVal
<= -1)
15763 // This must be a constant between -4095 and 4095. It is not clear
15764 // what this constraint is intended for. Implemented for
15765 // compatibility with GCC.
15766 if (CVal
>= -4095 && CVal
<= 4095)
15772 if (Subtarget
->isThumb1Only()) {
15773 // A 32-bit value where only one byte has a nonzero value. Exclude
15774 // zero to match GCC. This constraint is used by GCC internally for
15775 // constants that can be loaded with a move/shift combination.
15776 // It is not useful otherwise but is implemented for compatibility.
15777 if (CVal
!= 0 && ARM_AM::isThumbImmShiftedVal(CVal
))
15779 } else if (Subtarget
->isThumb2()) {
15780 // A constant whose bitwise inverse can be used as an immediate
15781 // value in a data-processing instruction. This can be used in GCC
15782 // with a "B" modifier that prints the inverted value, for use with
15783 // BIC and MVN instructions. It is not useful otherwise but is
15784 // implemented for compatibility.
15785 if (ARM_AM::getT2SOImmVal(~CVal
) != -1)
15788 // A constant whose bitwise inverse can be used as an immediate
15789 // value in a data-processing instruction. This can be used in GCC
15790 // with a "B" modifier that prints the inverted value, for use with
15791 // BIC and MVN instructions. It is not useful otherwise but is
15792 // implemented for compatibility.
15793 if (ARM_AM::getSOImmVal(~CVal
) != -1)
15799 if (Subtarget
->isThumb1Only()) {
15800 // This must be a constant between -7 and 7,
15801 // for 3-operand ADD/SUB immediate instructions.
15802 if (CVal
>= -7 && CVal
< 7)
15804 } else if (Subtarget
->isThumb2()) {
15805 // A constant whose negation can be used as an immediate value in a
15806 // data-processing instruction. This can be used in GCC with an "n"
15807 // modifier that prints the negated value, for use with SUB
15808 // instructions. It is not useful otherwise but is implemented for
15810 if (ARM_AM::getT2SOImmVal(-CVal
) != -1)
15813 // A constant whose negation can be used as an immediate value in a
15814 // data-processing instruction. This can be used in GCC with an "n"
15815 // modifier that prints the negated value, for use with SUB
15816 // instructions. It is not useful otherwise but is implemented for
15818 if (ARM_AM::getSOImmVal(-CVal
) != -1)
15824 if (Subtarget
->isThumb1Only()) {
15825 // This must be a multiple of 4 between 0 and 1020, for
15826 // ADD sp + immediate.
15827 if ((CVal
>= 0 && CVal
<= 1020) && ((CVal
& 3) == 0))
15830 // A power of two or a constant between 0 and 32. This is used in
15831 // GCC for the shift amount on shifted register operands, but it is
15832 // useful in general for any shift amounts.
15833 if ((CVal
>= 0 && CVal
<= 32) || ((CVal
& (CVal
- 1)) == 0))
15839 if (Subtarget
->isThumb1Only()) {
15840 // This must be a constant between 0 and 31, for shift amounts.
15841 if (CVal
>= 0 && CVal
<= 31)
15847 if (Subtarget
->isThumb1Only()) {
15848 // This must be a multiple of 4 between -508 and 508, for
15849 // ADD/SUB sp = sp + immediate.
15850 if ((CVal
>= -508 && CVal
<= 508) && ((CVal
& 3) == 0))
15855 Result
= DAG
.getTargetConstant(CVal
, SDLoc(Op
), Op
.getValueType());
15859 if (Result
.getNode()) {
15860 Ops
.push_back(Result
);
15863 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
15866 static RTLIB::Libcall
getDivRemLibcall(
15867 const SDNode
*N
, MVT::SimpleValueType SVT
) {
15868 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15869 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15870 "Unhandled Opcode in getDivRemLibcall");
15871 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15872 N
->getOpcode() == ISD::SREM
;
15875 default: llvm_unreachable("Unexpected request for libcall!");
15876 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
15877 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
15878 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
15879 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
15884 static TargetLowering::ArgListTy
getDivRemArgList(
15885 const SDNode
*N
, LLVMContext
*Context
, const ARMSubtarget
*Subtarget
) {
15886 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15887 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15888 "Unhandled Opcode in getDivRemArgList");
15889 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15890 N
->getOpcode() == ISD::SREM
;
15891 TargetLowering::ArgListTy Args
;
15892 TargetLowering::ArgListEntry Entry
;
15893 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
15894 EVT ArgVT
= N
->getOperand(i
).getValueType();
15895 Type
*ArgTy
= ArgVT
.getTypeForEVT(*Context
);
15896 Entry
.Node
= N
->getOperand(i
);
15898 Entry
.IsSExt
= isSigned
;
15899 Entry
.IsZExt
= !isSigned
;
15900 Args
.push_back(Entry
);
15902 if (Subtarget
->isTargetWindows() && Args
.size() >= 2)
15903 std::swap(Args
[0], Args
[1]);
15907 SDValue
ARMTargetLowering::LowerDivRem(SDValue Op
, SelectionDAG
&DAG
) const {
15908 assert((Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
15909 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
15910 Subtarget
->isTargetWindows()) &&
15911 "Register-based DivRem lowering only");
15912 unsigned Opcode
= Op
->getOpcode();
15913 assert((Opcode
== ISD::SDIVREM
|| Opcode
== ISD::UDIVREM
) &&
15914 "Invalid opcode for Div/Rem lowering");
15915 bool isSigned
= (Opcode
== ISD::SDIVREM
);
15916 EVT VT
= Op
->getValueType(0);
15917 Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
15920 // If the target has hardware divide, use divide + multiply + subtract:
15922 // rem = a - b * div
15923 // return {div, rem}
15924 // This should be lowered into UDIV/SDIV + MLS later on.
15925 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
15926 : Subtarget
->hasDivideInARMMode();
15927 if (hasDivide
&& Op
->getValueType(0).isSimple() &&
15928 Op
->getSimpleValueType(0) == MVT::i32
) {
15929 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
15930 const SDValue Dividend
= Op
->getOperand(0);
15931 const SDValue Divisor
= Op
->getOperand(1);
15932 SDValue Div
= DAG
.getNode(DivOpcode
, dl
, VT
, Dividend
, Divisor
);
15933 SDValue Mul
= DAG
.getNode(ISD::MUL
, dl
, VT
, Div
, Divisor
);
15934 SDValue Rem
= DAG
.getNode(ISD::SUB
, dl
, VT
, Dividend
, Mul
);
15936 SDValue Values
[2] = {Div
, Rem
};
15937 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(VT
, VT
), Values
);
15940 RTLIB::Libcall LC
= getDivRemLibcall(Op
.getNode(),
15941 VT
.getSimpleVT().SimpleTy
);
15942 SDValue InChain
= DAG
.getEntryNode();
15944 TargetLowering::ArgListTy Args
= getDivRemArgList(Op
.getNode(),
15948 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15949 getPointerTy(DAG
.getDataLayout()));
15951 Type
*RetTy
= StructType::get(Ty
, Ty
);
15953 if (Subtarget
->isTargetWindows())
15954 InChain
= WinDBZCheckDenominator(DAG
, Op
.getNode(), InChain
);
15956 TargetLowering::CallLoweringInfo
CLI(DAG
);
15957 CLI
.setDebugLoc(dl
).setChain(InChain
)
15958 .setCallee(getLibcallCallingConv(LC
), RetTy
, Callee
, std::move(Args
))
15959 .setInRegister().setSExtResult(isSigned
).setZExtResult(!isSigned
);
15961 std::pair
<SDValue
, SDValue
> CallInfo
= LowerCallTo(CLI
);
15962 return CallInfo
.first
;
15965 // Lowers REM using divmod helpers
15966 // see RTABI section 4.2/4.3
15967 SDValue
ARMTargetLowering::LowerREM(SDNode
*N
, SelectionDAG
&DAG
) const {
15968 // Build return types (div and rem)
15969 std::vector
<Type
*> RetTyParams
;
15970 Type
*RetTyElement
;
15972 switch (N
->getValueType(0).getSimpleVT().SimpleTy
) {
15973 default: llvm_unreachable("Unexpected request for libcall!");
15974 case MVT::i8
: RetTyElement
= Type::getInt8Ty(*DAG
.getContext()); break;
15975 case MVT::i16
: RetTyElement
= Type::getInt16Ty(*DAG
.getContext()); break;
15976 case MVT::i32
: RetTyElement
= Type::getInt32Ty(*DAG
.getContext()); break;
15977 case MVT::i64
: RetTyElement
= Type::getInt64Ty(*DAG
.getContext()); break;
15980 RetTyParams
.push_back(RetTyElement
);
15981 RetTyParams
.push_back(RetTyElement
);
15982 ArrayRef
<Type
*> ret
= ArrayRef
<Type
*>(RetTyParams
);
15983 Type
*RetTy
= StructType::get(*DAG
.getContext(), ret
);
15985 RTLIB::Libcall LC
= getDivRemLibcall(N
, N
->getValueType(0).getSimpleVT().
15987 SDValue InChain
= DAG
.getEntryNode();
15988 TargetLowering::ArgListTy Args
= getDivRemArgList(N
, DAG
.getContext(),
15990 bool isSigned
= N
->getOpcode() == ISD::SREM
;
15991 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15992 getPointerTy(DAG
.getDataLayout()));
15994 if (Subtarget
->isTargetWindows())
15995 InChain
= WinDBZCheckDenominator(DAG
, N
, InChain
);
15998 CallLoweringInfo
CLI(DAG
);
15999 CLI
.setChain(InChain
)
16000 .setCallee(CallingConv::ARM_AAPCS
, RetTy
, Callee
, std::move(Args
))
16001 .setSExtResult(isSigned
).setZExtResult(!isSigned
).setDebugLoc(SDLoc(N
));
16002 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
16004 // Return second (rem) result operand (first contains div)
16005 SDNode
*ResNode
= CallResult
.first
.getNode();
16006 assert(ResNode
->getNumOperands() == 2 && "divmod should return two operands");
16007 return ResNode
->getOperand(1);
16011 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const {
16012 assert(Subtarget
->isTargetWindows() && "unsupported target platform");
16016 SDValue Chain
= Op
.getOperand(0);
16017 SDValue Size
= Op
.getOperand(1);
16019 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
16020 "no-stack-arg-probe")) {
16021 unsigned Align
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
16022 SDValue SP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
16023 Chain
= SP
.getValue(1);
16024 SP
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
, SP
, Size
);
16026 SP
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, SP
.getValue(0),
16027 DAG
.getConstant(-(uint64_t)Align
, DL
, MVT::i32
));
16028 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::SP
, SP
);
16029 SDValue Ops
[2] = { SP
, Chain
};
16030 return DAG
.getMergeValues(Ops
, DL
);
16033 SDValue Words
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Size
,
16034 DAG
.getConstant(2, DL
, MVT::i32
));
16037 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R4
, Words
, Flag
);
16038 Flag
= Chain
.getValue(1);
16040 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
16041 Chain
= DAG
.getNode(ARMISD::WIN__CHKSTK
, DL
, NodeTys
, Chain
, Flag
);
16043 SDValue NewSP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
16044 Chain
= NewSP
.getValue(1);
16046 SDValue Ops
[2] = { NewSP
, Chain
};
16047 return DAG
.getMergeValues(Ops
, DL
);
16050 SDValue
ARMTargetLowering::LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const {
16051 SDValue SrcVal
= Op
.getOperand(0);
16052 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
16053 const unsigned SrcSz
= SrcVal
.getValueType().getSizeInBits();
16054 assert(DstSz
> SrcSz
&& DstSz
<= 64 && SrcSz
>= 16 &&
16055 "Unexpected type for custom-lowering FP_EXTEND");
16057 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
16058 "With both FP DP and 16, any FP conversion is legal!");
16060 assert(!(DstSz
== 32 && Subtarget
->hasFP16()) &&
16061 "With FP16, 16 to 32 conversion is legal!");
16063 // Either we are converting from 16 -> 64, without FP16 and/or
16064 // FP.double-precision or without Armv8-fp. So we must do it in two
16066 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
16067 // without FP16. So we must do a function call.
16070 MakeLibCallOptions CallOptions
;
16072 // Instruction from 16 -> 32
16073 if (Subtarget
->hasFP16())
16074 SrcVal
= DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f32
, SrcVal
);
16075 // Lib call from 16 -> 32
16077 LC
= RTLIB::getFPEXT(MVT::f16
, MVT::f32
);
16078 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
16079 "Unexpected type for custom-lowering FP_EXTEND");
16081 makeLibCall(DAG
, LC
, MVT::f32
, SrcVal
, CallOptions
, Loc
).first
;
16087 // For sure now SrcVal is 32 bits
16088 if (Subtarget
->hasFP64()) // Instruction from 32 -> 64
16089 return DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f64
, SrcVal
);
16091 LC
= RTLIB::getFPEXT(MVT::f32
, MVT::f64
);
16092 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
16093 "Unexpected type for custom-lowering FP_EXTEND");
16094 return makeLibCall(DAG
, LC
, MVT::f64
, SrcVal
, CallOptions
, Loc
).first
;
16097 SDValue
ARMTargetLowering::LowerFP_ROUND(SDValue Op
, SelectionDAG
&DAG
) const {
16098 SDValue SrcVal
= Op
.getOperand(0);
16099 EVT SrcVT
= SrcVal
.getValueType();
16100 EVT DstVT
= Op
.getValueType();
16101 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
16102 const unsigned SrcSz
= SrcVT
.getSizeInBits();
16104 assert(DstSz
< SrcSz
&& SrcSz
<= 64 && DstSz
>= 16 &&
16105 "Unexpected type for custom-lowering FP_ROUND");
16107 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
16108 "With both FP DP and 16, any FP conversion is legal!");
16112 // Instruction from 32 -> 16 if hasFP16 is valid
16113 if (SrcSz
== 32 && Subtarget
->hasFP16())
16116 // Lib call from 32 -> 16 / 64 -> [32, 16]
16117 RTLIB::Libcall LC
= RTLIB::getFPROUND(SrcVT
, DstVT
);
16118 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
16119 "Unexpected type for custom-lowering FP_ROUND");
16120 MakeLibCallOptions CallOptions
;
16121 return makeLibCall(DAG
, LC
, DstVT
, SrcVal
, CallOptions
, Loc
).first
;
16124 void ARMTargetLowering::lowerABS(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
16125 SelectionDAG
&DAG
) const {
16126 assert(N
->getValueType(0) == MVT::i64
&& "Unexpected type (!= i64) on ABS.");
16127 MVT HalfT
= MVT::i32
;
16129 SDValue Hi
, Lo
, Tmp
;
16131 if (!isOperationLegalOrCustom(ISD::ADDCARRY
, HalfT
) ||
16132 !isOperationLegalOrCustom(ISD::UADDO
, HalfT
))
16135 unsigned OpTypeBits
= HalfT
.getScalarSizeInBits();
16136 SDVTList VTList
= DAG
.getVTList(HalfT
, MVT::i1
);
16138 Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
16139 DAG
.getConstant(0, dl
, HalfT
));
16140 Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
16141 DAG
.getConstant(1, dl
, HalfT
));
16143 Tmp
= DAG
.getNode(ISD::SRA
, dl
, HalfT
, Hi
,
16144 DAG
.getConstant(OpTypeBits
- 1, dl
,
16145 getShiftAmountTy(HalfT
, DAG
.getDataLayout())));
16146 Lo
= DAG
.getNode(ISD::UADDO
, dl
, VTList
, Tmp
, Lo
);
16147 Hi
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTList
, Tmp
, Hi
,
16148 SDValue(Lo
.getNode(), 1));
16149 Hi
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Hi
);
16150 Lo
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Lo
);
16152 Results
.push_back(Lo
);
16153 Results
.push_back(Hi
);
16157 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
16158 // The ARM target isn't yet aware of offsets.
16162 bool ARM::isBitFieldInvertedMask(unsigned v
) {
16163 if (v
== 0xffffffff)
16166 // there can be 1's on either or both "outsides", all the "inside"
16167 // bits must be 0's
16168 return isShiftedMask_32(~v
);
16171 /// isFPImmLegal - Returns true if the target can instruction select the
16172 /// specified FP immediate natively. If false, the legalizer will
16173 /// materialize the FP immediate as a load from a constant pool.
16174 bool ARMTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
16175 bool ForCodeSize
) const {
16176 if (!Subtarget
->hasVFP3Base())
16178 if (VT
== MVT::f16
&& Subtarget
->hasFullFP16())
16179 return ARM_AM::getFP16Imm(Imm
) != -1;
16180 if (VT
== MVT::f32
)
16181 return ARM_AM::getFP32Imm(Imm
) != -1;
16182 if (VT
== MVT::f64
&& Subtarget
->hasFP64())
16183 return ARM_AM::getFP64Imm(Imm
) != -1;
16187 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
16188 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
16189 /// specified in the intrinsic calls.
16190 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
16192 MachineFunction
&MF
,
16193 unsigned Intrinsic
) const {
16194 switch (Intrinsic
) {
16195 case Intrinsic::arm_neon_vld1
:
16196 case Intrinsic::arm_neon_vld2
:
16197 case Intrinsic::arm_neon_vld3
:
16198 case Intrinsic::arm_neon_vld4
:
16199 case Intrinsic::arm_neon_vld2lane
:
16200 case Intrinsic::arm_neon_vld3lane
:
16201 case Intrinsic::arm_neon_vld4lane
:
16202 case Intrinsic::arm_neon_vld2dup
:
16203 case Intrinsic::arm_neon_vld3dup
:
16204 case Intrinsic::arm_neon_vld4dup
: {
16205 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16206 // Conservatively set memVT to the entire set of vectors loaded.
16207 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16208 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
16209 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
16210 Info
.ptrVal
= I
.getArgOperand(0);
16212 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
16213 Info
.align
= MaybeAlign(cast
<ConstantInt
>(AlignArg
)->getZExtValue());
16214 // volatile loads with NEON intrinsics not supported
16215 Info
.flags
= MachineMemOperand::MOLoad
;
16218 case Intrinsic::arm_neon_vld1x2
:
16219 case Intrinsic::arm_neon_vld1x3
:
16220 case Intrinsic::arm_neon_vld1x4
: {
16221 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16222 // Conservatively set memVT to the entire set of vectors loaded.
16223 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16224 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
16225 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
16226 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
16228 Info
.align
.reset();
16229 // volatile loads with NEON intrinsics not supported
16230 Info
.flags
= MachineMemOperand::MOLoad
;
16233 case Intrinsic::arm_neon_vst1
:
16234 case Intrinsic::arm_neon_vst2
:
16235 case Intrinsic::arm_neon_vst3
:
16236 case Intrinsic::arm_neon_vst4
:
16237 case Intrinsic::arm_neon_vst2lane
:
16238 case Intrinsic::arm_neon_vst3lane
:
16239 case Intrinsic::arm_neon_vst4lane
: {
16240 Info
.opc
= ISD::INTRINSIC_VOID
;
16241 // Conservatively set memVT to the entire set of vectors stored.
16242 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16243 unsigned NumElts
= 0;
16244 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
16245 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
16246 if (!ArgTy
->isVectorTy())
16248 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
16250 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
16251 Info
.ptrVal
= I
.getArgOperand(0);
16253 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
16254 Info
.align
= MaybeAlign(cast
<ConstantInt
>(AlignArg
)->getZExtValue());
16255 // volatile stores with NEON intrinsics not supported
16256 Info
.flags
= MachineMemOperand::MOStore
;
16259 case Intrinsic::arm_neon_vst1x2
:
16260 case Intrinsic::arm_neon_vst1x3
:
16261 case Intrinsic::arm_neon_vst1x4
: {
16262 Info
.opc
= ISD::INTRINSIC_VOID
;
16263 // Conservatively set memVT to the entire set of vectors stored.
16264 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16265 unsigned NumElts
= 0;
16266 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
16267 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
16268 if (!ArgTy
->isVectorTy())
16270 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
16272 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
16273 Info
.ptrVal
= I
.getArgOperand(0);
16275 Info
.align
.reset();
16276 // volatile stores with NEON intrinsics not supported
16277 Info
.flags
= MachineMemOperand::MOStore
;
16280 case Intrinsic::arm_ldaex
:
16281 case Intrinsic::arm_ldrex
: {
16282 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16283 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(0)->getType());
16284 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16285 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
16286 Info
.ptrVal
= I
.getArgOperand(0);
16288 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
16289 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
16292 case Intrinsic::arm_stlex
:
16293 case Intrinsic::arm_strex
: {
16294 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16295 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(1)->getType());
16296 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16297 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
16298 Info
.ptrVal
= I
.getArgOperand(1);
16300 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
16301 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
16304 case Intrinsic::arm_stlexd
:
16305 case Intrinsic::arm_strexd
:
16306 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16307 Info
.memVT
= MVT::i64
;
16308 Info
.ptrVal
= I
.getArgOperand(2);
16310 Info
.align
= Align(8);
16311 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
16314 case Intrinsic::arm_ldaexd
:
16315 case Intrinsic::arm_ldrexd
:
16316 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16317 Info
.memVT
= MVT::i64
;
16318 Info
.ptrVal
= I
.getArgOperand(0);
16320 Info
.align
= Align(8);
16321 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
16331 /// Returns true if it is beneficial to convert a load of a constant
16332 /// to just the constant itself.
16333 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
16335 assert(Ty
->isIntegerTy());
16337 unsigned Bits
= Ty
->getPrimitiveSizeInBits();
16338 if (Bits
== 0 || Bits
> 32)
16343 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
16344 unsigned Index
) const {
16345 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, ResVT
))
16348 return (Index
== 0 || Index
== ResVT
.getVectorNumElements());
16351 Instruction
* ARMTargetLowering::makeDMB(IRBuilder
<> &Builder
,
16352 ARM_MB::MemBOpt Domain
) const {
16353 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16355 // First, if the target has no DMB, see what fallback we can use.
16356 if (!Subtarget
->hasDataBarrier()) {
16357 // Some ARMv6 cpus can support data barriers with an mcr instruction.
16358 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
16360 if (Subtarget
->hasV6Ops() && !Subtarget
->isThumb()) {
16361 Function
*MCR
= Intrinsic::getDeclaration(M
, Intrinsic::arm_mcr
);
16362 Value
* args
[6] = {Builder
.getInt32(15), Builder
.getInt32(0),
16363 Builder
.getInt32(0), Builder
.getInt32(7),
16364 Builder
.getInt32(10), Builder
.getInt32(5)};
16365 return Builder
.CreateCall(MCR
, args
);
16367 // Instead of using barriers, atomic accesses on these subtargets use
16369 llvm_unreachable("makeDMB on a target so old that it has no barriers");
16372 Function
*DMB
= Intrinsic::getDeclaration(M
, Intrinsic::arm_dmb
);
16373 // Only a full system barrier exists in the M-class architectures.
16374 Domain
= Subtarget
->isMClass() ? ARM_MB::SY
: Domain
;
16375 Constant
*CDomain
= Builder
.getInt32(Domain
);
16376 return Builder
.CreateCall(DMB
, CDomain
);
16380 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
16381 Instruction
*ARMTargetLowering::emitLeadingFence(IRBuilder
<> &Builder
,
16383 AtomicOrdering Ord
) const {
16385 case AtomicOrdering::NotAtomic
:
16386 case AtomicOrdering::Unordered
:
16387 llvm_unreachable("Invalid fence: unordered/non-atomic");
16388 case AtomicOrdering::Monotonic
:
16389 case AtomicOrdering::Acquire
:
16390 return nullptr; // Nothing to do
16391 case AtomicOrdering::SequentiallyConsistent
:
16392 if (!Inst
->hasAtomicStore())
16393 return nullptr; // Nothing to do
16395 case AtomicOrdering::Release
:
16396 case AtomicOrdering::AcquireRelease
:
16397 if (Subtarget
->preferISHSTBarriers())
16398 return makeDMB(Builder
, ARM_MB::ISHST
);
16399 // FIXME: add a comment with a link to documentation justifying this.
16401 return makeDMB(Builder
, ARM_MB::ISH
);
16403 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
16406 Instruction
*ARMTargetLowering::emitTrailingFence(IRBuilder
<> &Builder
,
16408 AtomicOrdering Ord
) const {
16410 case AtomicOrdering::NotAtomic
:
16411 case AtomicOrdering::Unordered
:
16412 llvm_unreachable("Invalid fence: unordered/not-atomic");
16413 case AtomicOrdering::Monotonic
:
16414 case AtomicOrdering::Release
:
16415 return nullptr; // Nothing to do
16416 case AtomicOrdering::Acquire
:
16417 case AtomicOrdering::AcquireRelease
:
16418 case AtomicOrdering::SequentiallyConsistent
:
16419 return makeDMB(Builder
, ARM_MB::ISH
);
16421 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
16424 // Loads and stores less than 64-bits are already atomic; ones above that
16425 // are doomed anyway, so defer to the default libcall and blame the OS when
16426 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
16427 // anything for those.
16428 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst
*SI
) const {
16429 unsigned Size
= SI
->getValueOperand()->getType()->getPrimitiveSizeInBits();
16430 return (Size
== 64) && !Subtarget
->isMClass();
16433 // Loads and stores less than 64-bits are already atomic; ones above that
16434 // are doomed anyway, so defer to the default libcall and blame the OS when
16435 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
16436 // anything for those.
16437 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
16438 // guarantee, see DDI0406C ARM architecture reference manual,
16439 // sections A8.8.72-74 LDRD)
16440 TargetLowering::AtomicExpansionKind
16441 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst
*LI
) const {
16442 unsigned Size
= LI
->getType()->getPrimitiveSizeInBits();
16443 return ((Size
== 64) && !Subtarget
->isMClass()) ? AtomicExpansionKind::LLOnly
16444 : AtomicExpansionKind::None
;
16447 // For the real atomic operations, we have ldrex/strex up to 32 bits,
16448 // and up to 64 bits on the non-M profiles
16449 TargetLowering::AtomicExpansionKind
16450 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
16451 if (AI
->isFloatingPointOperation())
16452 return AtomicExpansionKind::CmpXChg
;
16454 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
16455 bool hasAtomicRMW
= !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
16456 return (Size
<= (Subtarget
->isMClass() ? 32U : 64U) && hasAtomicRMW
)
16457 ? AtomicExpansionKind::LLSC
16458 : AtomicExpansionKind::None
;
16461 TargetLowering::AtomicExpansionKind
16462 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst
*AI
) const {
16463 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
16464 // implement cmpxchg without spilling. If the address being exchanged is also
16465 // on the stack and close enough to the spill slot, this can lead to a
16466 // situation where the monitor always gets cleared and the atomic operation
16467 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
16468 bool HasAtomicCmpXchg
=
16469 !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
16470 if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg
)
16471 return AtomicExpansionKind::LLSC
;
16472 return AtomicExpansionKind::None
;
16475 bool ARMTargetLowering::shouldInsertFencesForAtomic(
16476 const Instruction
*I
) const {
16477 return InsertFencesForAtomic
;
16480 // This has so far only been implemented for MachO.
16481 bool ARMTargetLowering::useLoadStackGuardNode() const {
16482 return Subtarget
->isTargetMachO();
16485 void ARMTargetLowering::insertSSPDeclarations(Module
&M
) const {
16486 if (!Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16487 return TargetLowering::insertSSPDeclarations(M
);
16489 // MSVC CRT has a global variable holding security cookie.
16490 M
.getOrInsertGlobal("__security_cookie",
16491 Type::getInt8PtrTy(M
.getContext()));
16493 // MSVC CRT has a function to validate security cookie.
16494 FunctionCallee SecurityCheckCookie
= M
.getOrInsertFunction(
16495 "__security_check_cookie", Type::getVoidTy(M
.getContext()),
16496 Type::getInt8PtrTy(M
.getContext()));
16497 if (Function
*F
= dyn_cast
<Function
>(SecurityCheckCookie
.getCallee()))
16498 F
->addAttribute(1, Attribute::AttrKind::InReg
);
16501 Value
*ARMTargetLowering::getSDagStackGuard(const Module
&M
) const {
16502 // MSVC CRT has a global variable holding security cookie.
16503 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16504 return M
.getGlobalVariable("__security_cookie");
16505 return TargetLowering::getSDagStackGuard(M
);
16508 Function
*ARMTargetLowering::getSSPStackGuardCheck(const Module
&M
) const {
16509 // MSVC CRT has a function to validate security cookie.
16510 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16511 return M
.getFunction("__security_check_cookie");
16512 return TargetLowering::getSSPStackGuardCheck(M
);
16515 bool ARMTargetLowering::canCombineStoreAndExtract(Type
*VectorTy
, Value
*Idx
,
16516 unsigned &Cost
) const {
16517 // If we do not have NEON, vector types are not natively supported.
16518 if (!Subtarget
->hasNEON())
16521 // Floating point values and vector values map to the same register file.
16522 // Therefore, although we could do a store extract of a vector type, this is
16523 // better to leave at float as we have more freedom in the addressing mode for
16525 if (VectorTy
->isFPOrFPVectorTy())
16528 // If the index is unknown at compile time, this is very expensive to lower
16529 // and it is not possible to combine the store with the extract.
16530 if (!isa
<ConstantInt
>(Idx
))
16533 assert(VectorTy
->isVectorTy() && "VectorTy is not a vector type");
16534 unsigned BitWidth
= cast
<VectorType
>(VectorTy
)->getBitWidth();
16535 // We can do a store + vector extract on any vector that fits perfectly in a D
16537 if (BitWidth
== 64 || BitWidth
== 128) {
16544 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
16545 return Subtarget
->hasV6T2Ops();
16548 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
16549 return Subtarget
->hasV6T2Ops();
16552 bool ARMTargetLowering::shouldExpandShift(SelectionDAG
&DAG
, SDNode
*N
) const {
16553 return !Subtarget
->hasMinSize();
16556 Value
*ARMTargetLowering::emitLoadLinked(IRBuilder
<> &Builder
, Value
*Addr
,
16557 AtomicOrdering Ord
) const {
16558 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16559 Type
*ValTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
16560 bool IsAcquire
= isAcquireOrStronger(Ord
);
16562 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
16563 // intrinsic must return {i32, i32} and we have to recombine them into a
16564 // single i64 here.
16565 if (ValTy
->getPrimitiveSizeInBits() == 64) {
16566 Intrinsic::ID Int
=
16567 IsAcquire
? Intrinsic::arm_ldaexd
: Intrinsic::arm_ldrexd
;
16568 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
);
16570 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16571 Value
*LoHi
= Builder
.CreateCall(Ldrex
, Addr
, "lohi");
16573 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
16574 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
16575 if (!Subtarget
->isLittle())
16576 std::swap (Lo
, Hi
);
16577 Lo
= Builder
.CreateZExt(Lo
, ValTy
, "lo64");
16578 Hi
= Builder
.CreateZExt(Hi
, ValTy
, "hi64");
16579 return Builder
.CreateOr(
16580 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValTy
, 32)), "val64");
16583 Type
*Tys
[] = { Addr
->getType() };
16584 Intrinsic::ID Int
= IsAcquire
? Intrinsic::arm_ldaex
: Intrinsic::arm_ldrex
;
16585 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16587 return Builder
.CreateTruncOrBitCast(
16588 Builder
.CreateCall(Ldrex
, Addr
),
16589 cast
<PointerType
>(Addr
->getType())->getElementType());
16592 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
16593 IRBuilder
<> &Builder
) const {
16594 if (!Subtarget
->hasV7Ops())
16596 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16597 Builder
.CreateCall(Intrinsic::getDeclaration(M
, Intrinsic::arm_clrex
));
16600 Value
*ARMTargetLowering::emitStoreConditional(IRBuilder
<> &Builder
, Value
*Val
,
16602 AtomicOrdering Ord
) const {
16603 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16604 bool IsRelease
= isReleaseOrStronger(Ord
);
16606 // Since the intrinsics must have legal type, the i64 intrinsics take two
16607 // parameters: "i32, i32". We must marshal Val into the appropriate form
16608 // before the call.
16609 if (Val
->getType()->getPrimitiveSizeInBits() == 64) {
16610 Intrinsic::ID Int
=
16611 IsRelease
? Intrinsic::arm_stlexd
: Intrinsic::arm_strexd
;
16612 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
);
16613 Type
*Int32Ty
= Type::getInt32Ty(M
->getContext());
16615 Value
*Lo
= Builder
.CreateTrunc(Val
, Int32Ty
, "lo");
16616 Value
*Hi
= Builder
.CreateTrunc(Builder
.CreateLShr(Val
, 32), Int32Ty
, "hi");
16617 if (!Subtarget
->isLittle())
16619 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16620 return Builder
.CreateCall(Strex
, {Lo
, Hi
, Addr
});
16623 Intrinsic::ID Int
= IsRelease
? Intrinsic::arm_stlex
: Intrinsic::arm_strex
;
16624 Type
*Tys
[] = { Addr
->getType() };
16625 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16627 return Builder
.CreateCall(
16628 Strex
, {Builder
.CreateZExtOrBitCast(
16629 Val
, Strex
->getFunctionType()->getParamType(0)),
16634 bool ARMTargetLowering::alignLoopsWithOptSize() const {
16635 return Subtarget
->isMClass();
16638 /// A helper function for determining the number of interleaved accesses we
16639 /// will generate when lowering accesses of the given type.
16641 ARMTargetLowering::getNumInterleavedAccesses(VectorType
*VecTy
,
16642 const DataLayout
&DL
) const {
16643 return (DL
.getTypeSizeInBits(VecTy
) + 127) / 128;
16646 bool ARMTargetLowering::isLegalInterleavedAccessType(
16647 VectorType
*VecTy
, const DataLayout
&DL
) const {
16649 unsigned VecSize
= DL
.getTypeSizeInBits(VecTy
);
16650 unsigned ElSize
= DL
.getTypeSizeInBits(VecTy
->getElementType());
16652 // Ensure the vector doesn't have f16 elements. Even though we could do an
16653 // i16 vldN, we can't hold the f16 vectors and will end up converting via
16655 if (VecTy
->getElementType()->isHalfTy())
16658 // Ensure the number of vector elements is greater than 1.
16659 if (VecTy
->getNumElements() < 2)
16662 // Ensure the element type is legal.
16663 if (ElSize
!= 8 && ElSize
!= 16 && ElSize
!= 32)
16666 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
16667 // 128 will be split into multiple interleaved accesses.
16668 return VecSize
== 64 || VecSize
% 128 == 0;
16671 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
16672 if (Subtarget
->hasNEON())
16674 return TargetLoweringBase::getMaxSupportedInterleaveFactor();
16677 /// Lower an interleaved load into a vldN intrinsic.
16679 /// E.g. Lower an interleaved load (Factor = 2):
16680 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
16681 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
16682 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
16685 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
16686 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
16687 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
16688 bool ARMTargetLowering::lowerInterleavedLoad(
16689 LoadInst
*LI
, ArrayRef
<ShuffleVectorInst
*> Shuffles
,
16690 ArrayRef
<unsigned> Indices
, unsigned Factor
) const {
16691 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16692 "Invalid interleave factor");
16693 assert(!Shuffles
.empty() && "Empty shufflevector input");
16694 assert(Shuffles
.size() == Indices
.size() &&
16695 "Unmatched number of shufflevectors and indices");
16697 VectorType
*VecTy
= Shuffles
[0]->getType();
16698 Type
*EltTy
= VecTy
->getVectorElementType();
16700 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
16702 // Skip if we do not have NEON and skip illegal vector types. We can
16703 // "legalize" wide vector types into multiple interleaved accesses as long as
16704 // the vector types are divisible by 128.
16705 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(VecTy
, DL
))
16708 unsigned NumLoads
= getNumInterleavedAccesses(VecTy
, DL
);
16710 // A pointer vector can not be the return type of the ldN intrinsics. Need to
16711 // load integer vectors first and then convert to pointer vectors.
16712 if (EltTy
->isPointerTy())
16714 VectorType::get(DL
.getIntPtrType(EltTy
), VecTy
->getVectorNumElements());
16716 IRBuilder
<> Builder(LI
);
16718 // The base address of the load.
16719 Value
*BaseAddr
= LI
->getPointerOperand();
16721 if (NumLoads
> 1) {
16722 // If we're going to generate more than one load, reset the sub-vector type
16723 // to something legal.
16724 VecTy
= VectorType::get(VecTy
->getVectorElementType(),
16725 VecTy
->getVectorNumElements() / NumLoads
);
16727 // We will compute the pointer operand of each load from the original base
16728 // address using GEPs. Cast the base address to a pointer to the scalar
16730 BaseAddr
= Builder
.CreateBitCast(
16731 BaseAddr
, VecTy
->getVectorElementType()->getPointerTo(
16732 LI
->getPointerAddressSpace()));
16735 assert(isTypeLegal(EVT::getEVT(VecTy
)) && "Illegal vldN vector type!");
16737 Type
*Int8Ptr
= Builder
.getInt8PtrTy(LI
->getPointerAddressSpace());
16738 Type
*Tys
[] = {VecTy
, Int8Ptr
};
16739 static const Intrinsic::ID LoadInts
[3] = {Intrinsic::arm_neon_vld2
,
16740 Intrinsic::arm_neon_vld3
,
16741 Intrinsic::arm_neon_vld4
};
16742 Function
*VldnFunc
=
16743 Intrinsic::getDeclaration(LI
->getModule(), LoadInts
[Factor
- 2], Tys
);
16745 // Holds sub-vectors extracted from the load intrinsic return values. The
16746 // sub-vectors are associated with the shufflevector instructions they will
16748 DenseMap
<ShuffleVectorInst
*, SmallVector
<Value
*, 4>> SubVecs
;
16750 for (unsigned LoadCount
= 0; LoadCount
< NumLoads
; ++LoadCount
) {
16751 // If we're generating more than one load, compute the base address of
16752 // subsequent loads as an offset from the previous.
16755 Builder
.CreateConstGEP1_32(VecTy
->getVectorElementType(), BaseAddr
,
16756 VecTy
->getVectorNumElements() * Factor
);
16758 SmallVector
<Value
*, 2> Ops
;
16759 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16760 Ops
.push_back(Builder
.getInt32(LI
->getAlignment()));
16762 CallInst
*VldN
= Builder
.CreateCall(VldnFunc
, Ops
, "vldN");
16764 // Replace uses of each shufflevector with the corresponding vector loaded
16766 for (unsigned i
= 0; i
< Shuffles
.size(); i
++) {
16767 ShuffleVectorInst
*SV
= Shuffles
[i
];
16768 unsigned Index
= Indices
[i
];
16770 Value
*SubVec
= Builder
.CreateExtractValue(VldN
, Index
);
16772 // Convert the integer vector to pointer vector if the element is pointer.
16773 if (EltTy
->isPointerTy())
16774 SubVec
= Builder
.CreateIntToPtr(
16775 SubVec
, VectorType::get(SV
->getType()->getVectorElementType(),
16776 VecTy
->getVectorNumElements()));
16778 SubVecs
[SV
].push_back(SubVec
);
16782 // Replace uses of the shufflevector instructions with the sub-vectors
16783 // returned by the load intrinsic. If a shufflevector instruction is
16784 // associated with more than one sub-vector, those sub-vectors will be
16785 // concatenated into a single wide vector.
16786 for (ShuffleVectorInst
*SVI
: Shuffles
) {
16787 auto &SubVec
= SubVecs
[SVI
];
16789 SubVec
.size() > 1 ? concatenateVectors(Builder
, SubVec
) : SubVec
[0];
16790 SVI
->replaceAllUsesWith(WideVec
);
16796 /// Lower an interleaved store into a vstN intrinsic.
16798 /// E.g. Lower an interleaved store (Factor = 3):
16799 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
16800 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
16801 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
16804 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
16805 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
16806 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
16807 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16809 /// Note that the new shufflevectors will be removed and we'll only generate one
16810 /// vst3 instruction in CodeGen.
16812 /// Example for a more general valid mask (Factor 3). Lower:
16813 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
16814 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
16815 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
16818 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
16819 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
16820 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
16821 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16822 bool ARMTargetLowering::lowerInterleavedStore(StoreInst
*SI
,
16823 ShuffleVectorInst
*SVI
,
16824 unsigned Factor
) const {
16825 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16826 "Invalid interleave factor");
16828 VectorType
*VecTy
= SVI
->getType();
16829 assert(VecTy
->getVectorNumElements() % Factor
== 0 &&
16830 "Invalid interleaved store");
16832 unsigned LaneLen
= VecTy
->getVectorNumElements() / Factor
;
16833 Type
*EltTy
= VecTy
->getVectorElementType();
16834 VectorType
*SubVecTy
= VectorType::get(EltTy
, LaneLen
);
16836 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
16838 // Skip if we do not have NEON and skip illegal vector types. We can
16839 // "legalize" wide vector types into multiple interleaved accesses as long as
16840 // the vector types are divisible by 128.
16841 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(SubVecTy
, DL
))
16844 unsigned NumStores
= getNumInterleavedAccesses(SubVecTy
, DL
);
16846 Value
*Op0
= SVI
->getOperand(0);
16847 Value
*Op1
= SVI
->getOperand(1);
16848 IRBuilder
<> Builder(SI
);
16850 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
16851 // vectors to integer vectors.
16852 if (EltTy
->isPointerTy()) {
16853 Type
*IntTy
= DL
.getIntPtrType(EltTy
);
16855 // Convert to the corresponding integer vector.
16857 VectorType::get(IntTy
, Op0
->getType()->getVectorNumElements());
16858 Op0
= Builder
.CreatePtrToInt(Op0
, IntVecTy
);
16859 Op1
= Builder
.CreatePtrToInt(Op1
, IntVecTy
);
16861 SubVecTy
= VectorType::get(IntTy
, LaneLen
);
16864 // The base address of the store.
16865 Value
*BaseAddr
= SI
->getPointerOperand();
16867 if (NumStores
> 1) {
16868 // If we're going to generate more than one store, reset the lane length
16869 // and sub-vector type to something legal.
16870 LaneLen
/= NumStores
;
16871 SubVecTy
= VectorType::get(SubVecTy
->getVectorElementType(), LaneLen
);
16873 // We will compute the pointer operand of each store from the original base
16874 // address using GEPs. Cast the base address to a pointer to the scalar
16876 BaseAddr
= Builder
.CreateBitCast(
16877 BaseAddr
, SubVecTy
->getVectorElementType()->getPointerTo(
16878 SI
->getPointerAddressSpace()));
16881 assert(isTypeLegal(EVT::getEVT(SubVecTy
)) && "Illegal vstN vector type!");
16883 auto Mask
= SVI
->getShuffleMask();
16885 Type
*Int8Ptr
= Builder
.getInt8PtrTy(SI
->getPointerAddressSpace());
16886 Type
*Tys
[] = {Int8Ptr
, SubVecTy
};
16887 static const Intrinsic::ID StoreInts
[3] = {Intrinsic::arm_neon_vst2
,
16888 Intrinsic::arm_neon_vst3
,
16889 Intrinsic::arm_neon_vst4
};
16891 for (unsigned StoreCount
= 0; StoreCount
< NumStores
; ++StoreCount
) {
16892 // If we generating more than one store, we compute the base address of
16893 // subsequent stores as an offset from the previous.
16894 if (StoreCount
> 0)
16895 BaseAddr
= Builder
.CreateConstGEP1_32(SubVecTy
->getVectorElementType(),
16896 BaseAddr
, LaneLen
* Factor
);
16898 SmallVector
<Value
*, 6> Ops
;
16899 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16901 Function
*VstNFunc
=
16902 Intrinsic::getDeclaration(SI
->getModule(), StoreInts
[Factor
- 2], Tys
);
16904 // Split the shufflevector operands into sub vectors for the new vstN call.
16905 for (unsigned i
= 0; i
< Factor
; i
++) {
16906 unsigned IdxI
= StoreCount
* LaneLen
* Factor
+ i
;
16907 if (Mask
[IdxI
] >= 0) {
16908 Ops
.push_back(Builder
.CreateShuffleVector(
16909 Op0
, Op1
, createSequentialMask(Builder
, Mask
[IdxI
], LaneLen
, 0)));
16911 unsigned StartMask
= 0;
16912 for (unsigned j
= 1; j
< LaneLen
; j
++) {
16913 unsigned IdxJ
= StoreCount
* LaneLen
* Factor
+ j
;
16914 if (Mask
[IdxJ
* Factor
+ IdxI
] >= 0) {
16915 StartMask
= Mask
[IdxJ
* Factor
+ IdxI
] - IdxJ
;
16919 // Note: If all elements in a chunk are undefs, StartMask=0!
16920 // Note: Filling undef gaps with random elements is ok, since
16921 // those elements were being written anyway (with undefs).
16922 // In the case of all undefs we're defaulting to using elems from 0
16923 // Note: StartMask cannot be negative, it's checked in
16924 // isReInterleaveMask
16925 Ops
.push_back(Builder
.CreateShuffleVector(
16926 Op0
, Op1
, createSequentialMask(Builder
, StartMask
, LaneLen
, 0)));
16930 Ops
.push_back(Builder
.getInt32(SI
->getAlignment()));
16931 Builder
.CreateCall(VstNFunc
, Ops
);
16944 static bool isHomogeneousAggregate(Type
*Ty
, HABaseType
&Base
,
16945 uint64_t &Members
) {
16946 if (auto *ST
= dyn_cast
<StructType
>(Ty
)) {
16947 for (unsigned i
= 0; i
< ST
->getNumElements(); ++i
) {
16948 uint64_t SubMembers
= 0;
16949 if (!isHomogeneousAggregate(ST
->getElementType(i
), Base
, SubMembers
))
16951 Members
+= SubMembers
;
16953 } else if (auto *AT
= dyn_cast
<ArrayType
>(Ty
)) {
16954 uint64_t SubMembers
= 0;
16955 if (!isHomogeneousAggregate(AT
->getElementType(), Base
, SubMembers
))
16957 Members
+= SubMembers
* AT
->getNumElements();
16958 } else if (Ty
->isFloatTy()) {
16959 if (Base
!= HA_UNKNOWN
&& Base
!= HA_FLOAT
)
16963 } else if (Ty
->isDoubleTy()) {
16964 if (Base
!= HA_UNKNOWN
&& Base
!= HA_DOUBLE
)
16968 } else if (auto *VT
= dyn_cast
<VectorType
>(Ty
)) {
16975 return VT
->getBitWidth() == 64;
16977 return VT
->getBitWidth() == 128;
16979 switch (VT
->getBitWidth()) {
16992 return (Members
> 0 && Members
<= 4);
16995 /// Return the correct alignment for the current calling convention.
16996 Align
ARMTargetLowering::getABIAlignmentForCallingConv(Type
*ArgTy
,
16997 DataLayout DL
) const {
16998 const Align
ABITypeAlign(DL
.getABITypeAlignment(ArgTy
));
16999 if (!ArgTy
->isVectorTy())
17000 return ABITypeAlign
;
17002 // Avoid over-aligning vector parameters. It would require realigning the
17003 // stack and waste space for no real benefit.
17004 return std::min(ABITypeAlign
, DL
.getStackAlignment());
17007 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
17008 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
17009 /// passing according to AAPCS rules.
17010 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
17011 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const {
17012 if (getEffectiveCallingConv(CallConv
, isVarArg
) !=
17013 CallingConv::ARM_AAPCS_VFP
)
17016 HABaseType Base
= HA_UNKNOWN
;
17017 uint64_t Members
= 0;
17018 bool IsHA
= isHomogeneousAggregate(Ty
, Base
, Members
);
17019 LLVM_DEBUG(dbgs() << "isHA: " << IsHA
<< " "; Ty
->dump());
17021 bool IsIntArray
= Ty
->isArrayTy() && Ty
->getArrayElementType()->isIntegerTy();
17022 return IsHA
|| IsIntArray
;
17025 unsigned ARMTargetLowering::getExceptionPointerRegister(
17026 const Constant
*PersonalityFn
) const {
17027 // Platforms which do not use SjLj EH may return values in these registers
17028 // via the personality function.
17029 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R0
;
17032 unsigned ARMTargetLowering::getExceptionSelectorRegister(
17033 const Constant
*PersonalityFn
) const {
17034 // Platforms which do not use SjLj EH may return values in these registers
17035 // via the personality function.
17036 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R1
;
17039 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock
*Entry
) const {
17040 // Update IsSplitCSR in ARMFunctionInfo.
17041 ARMFunctionInfo
*AFI
= Entry
->getParent()->getInfo
<ARMFunctionInfo
>();
17042 AFI
->setIsSplitCSR(true);
17045 void ARMTargetLowering::insertCopiesSplitCSR(
17046 MachineBasicBlock
*Entry
,
17047 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
17048 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
17049 const MCPhysReg
*IStart
= TRI
->getCalleeSavedRegsViaCopy(Entry
->getParent());
17053 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
17054 MachineRegisterInfo
*MRI
= &Entry
->getParent()->getRegInfo();
17055 MachineBasicBlock::iterator MBBI
= Entry
->begin();
17056 for (const MCPhysReg
*I
= IStart
; *I
; ++I
) {
17057 const TargetRegisterClass
*RC
= nullptr;
17058 if (ARM::GPRRegClass
.contains(*I
))
17059 RC
= &ARM::GPRRegClass
;
17060 else if (ARM::DPRRegClass
.contains(*I
))
17061 RC
= &ARM::DPRRegClass
;
17063 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
17065 Register NewVR
= MRI
->createVirtualRegister(RC
);
17066 // Create copy from CSR to a virtual register.
17067 // FIXME: this currently does not emit CFI pseudo-instructions, it works
17068 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
17069 // nounwind. If we want to generalize this later, we may need to emit
17070 // CFI pseudo-instructions.
17071 assert(Entry
->getParent()->getFunction().hasFnAttribute(
17072 Attribute::NoUnwind
) &&
17073 "Function should be nounwind in insertCopiesSplitCSR!");
17074 Entry
->addLiveIn(*I
);
17075 BuildMI(*Entry
, MBBI
, DebugLoc(), TII
->get(TargetOpcode::COPY
), NewVR
)
17078 // Insert the copy-back instructions right before the terminator.
17079 for (auto *Exit
: Exits
)
17080 BuildMI(*Exit
, Exit
->getFirstTerminator(), DebugLoc(),
17081 TII
->get(TargetOpcode::COPY
), *I
)
17086 void ARMTargetLowering::finalizeLowering(MachineFunction
&MF
) const {
17087 MF
.getFrameInfo().computeMaxCallFrameSize(MF
);
17088 TargetLoweringBase::finalizeLowering(MF
);