[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Target / ARM / ARMSubtarget.h
blobef460342a69e3a729695832f4370794362963d59
1 //===-- ARMSubtarget.h - Define Subtarget for the ARM ----------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the ARM specific subclass of TargetSubtargetInfo.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
14 #define LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMFrameLowering.h"
20 #include "ARMISelLowering.h"
21 #include "ARMSelectionDAGInfo.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
25 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/TargetSubtargetInfo.h"
29 #include "llvm/MC/MCInstrItineraries.h"
30 #include "llvm/MC/MCSchedule.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include <memory>
33 #include <string>
35 #define GET_SUBTARGETINFO_HEADER
36 #include "ARMGenSubtargetInfo.inc"
38 namespace llvm {
40 class ARMBaseTargetMachine;
41 class GlobalValue;
42 class StringRef;
44 class ARMSubtarget : public ARMGenSubtargetInfo {
45 protected:
46 enum ARMProcFamilyEnum {
47 Others,
49 CortexA12,
50 CortexA15,
51 CortexA17,
52 CortexA32,
53 CortexA35,
54 CortexA5,
55 CortexA53,
56 CortexA55,
57 CortexA57,
58 CortexA7,
59 CortexA72,
60 CortexA73,
61 CortexA75,
62 CortexA76,
63 CortexA8,
64 CortexA9,
65 CortexM3,
66 CortexR4,
67 CortexR4F,
68 CortexR5,
69 CortexR52,
70 CortexR7,
71 Exynos,
72 Krait,
73 Kryo,
74 NeoverseN1,
75 Swift
77 enum ARMProcClassEnum {
78 None,
80 AClass,
81 MClass,
82 RClass
84 enum ARMArchEnum {
85 ARMv2,
86 ARMv2a,
87 ARMv3,
88 ARMv3m,
89 ARMv4,
90 ARMv4t,
91 ARMv5,
92 ARMv5t,
93 ARMv5te,
94 ARMv5tej,
95 ARMv6,
96 ARMv6k,
97 ARMv6kz,
98 ARMv6m,
99 ARMv6sm,
100 ARMv6t2,
101 ARMv7a,
102 ARMv7em,
103 ARMv7m,
104 ARMv7r,
105 ARMv7ve,
106 ARMv81a,
107 ARMv82a,
108 ARMv83a,
109 ARMv84a,
110 ARMv85a,
111 ARMv8a,
112 ARMv8mBaseline,
113 ARMv8mMainline,
114 ARMv8r,
115 ARMv81mMainline,
118 public:
119 /// What kind of timing do load multiple/store multiple instructions have.
120 enum ARMLdStMultipleTiming {
121 /// Can load/store 2 registers/cycle.
122 DoubleIssue,
123 /// Can load/store 2 registers/cycle, but needs an extra cycle if the access
124 /// is not 64-bit aligned.
125 DoubleIssueCheckUnalignedAccess,
126 /// Can load/store 1 register/cycle.
127 SingleIssue,
128 /// Can load/store 1 register/cycle, but needs an extra cycle for address
129 /// computation and potentially also for register writeback.
130 SingleIssuePlusExtras,
133 protected:
134 /// ARMProcFamily - ARM processor family: Cortex-A8, Cortex-A9, and others.
135 ARMProcFamilyEnum ARMProcFamily = Others;
137 /// ARMProcClass - ARM processor class: None, AClass, RClass or MClass.
138 ARMProcClassEnum ARMProcClass = None;
140 /// ARMArch - ARM architecture
141 ARMArchEnum ARMArch = ARMv4t;
143 /// HasV4TOps, HasV5TOps, HasV5TEOps,
144 /// HasV6Ops, HasV6MOps, HasV6KOps, HasV6T2Ops, HasV7Ops, HasV8Ops -
145 /// Specify whether target support specific ARM ISA variants.
146 bool HasV4TOps = false;
147 bool HasV5TOps = false;
148 bool HasV5TEOps = false;
149 bool HasV6Ops = false;
150 bool HasV6MOps = false;
151 bool HasV6KOps = false;
152 bool HasV6T2Ops = false;
153 bool HasV7Ops = false;
154 bool HasV8Ops = false;
155 bool HasV8_1aOps = false;
156 bool HasV8_2aOps = false;
157 bool HasV8_3aOps = false;
158 bool HasV8_4aOps = false;
159 bool HasV8_5aOps = false;
160 bool HasV8MBaselineOps = false;
161 bool HasV8MMainlineOps = false;
162 bool HasV8_1MMainlineOps = false;
163 bool HasMVEIntegerOps = false;
164 bool HasMVEFloatOps = false;
166 /// HasVFPv2, HasVFPv3, HasVFPv4, HasFPARMv8, HasNEON - Specify what
167 /// floating point ISAs are supported.
168 bool HasVFPv2 = false;
169 bool HasVFPv3 = false;
170 bool HasVFPv4 = false;
171 bool HasFPARMv8 = false;
172 bool HasNEON = false;
173 bool HasFPRegs = false;
174 bool HasFPRegs16 = false;
175 bool HasFPRegs64 = false;
177 /// Versions of the VFP flags restricted to single precision, or to
178 /// 16 d-registers, or both.
179 bool HasVFPv2SP = false;
180 bool HasVFPv3SP = false;
181 bool HasVFPv4SP = false;
182 bool HasFPARMv8SP = false;
183 bool HasVFPv3D16 = false;
184 bool HasVFPv4D16 = false;
185 bool HasFPARMv8D16 = false;
186 bool HasVFPv3D16SP = false;
187 bool HasVFPv4D16SP = false;
188 bool HasFPARMv8D16SP = false;
190 /// HasDotProd - True if the ARMv8.2A dot product instructions are supported.
191 bool HasDotProd = false;
193 /// UseNEONForSinglePrecisionFP - if the NEONFP attribute has been
194 /// specified. Use the method useNEONForSinglePrecisionFP() to
195 /// determine if NEON should actually be used.
196 bool UseNEONForSinglePrecisionFP = false;
198 /// UseMulOps - True if non-microcoded fused integer multiply-add and
199 /// multiply-subtract instructions should be used.
200 bool UseMulOps = false;
202 /// SlowFPVMLx - If the VFP2 / NEON instructions are available, indicates
203 /// whether the FP VML[AS] instructions are slow (if so, don't use them).
204 bool SlowFPVMLx = false;
206 /// HasVMLxForwarding - If true, NEON has special multiplier accumulator
207 /// forwarding to allow mul + mla being issued back to back.
208 bool HasVMLxForwarding = false;
210 /// SlowFPBrcc - True if floating point compare + branch is slow.
211 bool SlowFPBrcc = false;
213 /// InThumbMode - True if compiling for Thumb, false for ARM.
214 bool InThumbMode = false;
216 /// UseSoftFloat - True if we're using software floating point features.
217 bool UseSoftFloat = false;
219 /// UseMISched - True if MachineScheduler should be used for this subtarget.
220 bool UseMISched = false;
222 /// DisablePostRAScheduler - False if scheduling should happen again after
223 /// register allocation.
224 bool DisablePostRAScheduler = false;
226 /// UseAA - True if using AA during codegen (DAGCombine, MISched, etc)
227 bool UseAA = false;
229 /// HasThumb2 - True if Thumb2 instructions are supported.
230 bool HasThumb2 = false;
232 /// NoARM - True if subtarget does not support ARM mode execution.
233 bool NoARM = false;
235 /// ReserveR9 - True if R9 is not available as a general purpose register.
236 bool ReserveR9 = false;
238 /// NoMovt - True if MOVT / MOVW pairs are not used for materialization of
239 /// 32-bit imms (including global addresses).
240 bool NoMovt = false;
242 /// SupportsTailCall - True if the OS supports tail call. The dynamic linker
243 /// must be able to synthesize call stubs for interworking between ARM and
244 /// Thumb.
245 bool SupportsTailCall = false;
247 /// HasFP16 - True if subtarget supports half-precision FP conversions
248 bool HasFP16 = false;
250 /// HasFullFP16 - True if subtarget supports half-precision FP operations
251 bool HasFullFP16 = false;
253 /// HasFP16FML - True if subtarget supports half-precision FP fml operations
254 bool HasFP16FML = false;
256 /// HasD32 - True if subtarget has the full 32 double precision
257 /// FP registers for VFPv3.
258 bool HasD32 = false;
260 /// HasHardwareDivide - True if subtarget supports [su]div in Thumb mode
261 bool HasHardwareDivideInThumb = false;
263 /// HasHardwareDivideInARM - True if subtarget supports [su]div in ARM mode
264 bool HasHardwareDivideInARM = false;
266 /// HasDataBarrier - True if the subtarget supports DMB / DSB data barrier
267 /// instructions.
268 bool HasDataBarrier = false;
270 /// HasFullDataBarrier - True if the subtarget supports DFB data barrier
271 /// instruction.
272 bool HasFullDataBarrier = false;
274 /// HasV7Clrex - True if the subtarget supports CLREX instructions
275 bool HasV7Clrex = false;
277 /// HasAcquireRelease - True if the subtarget supports v8 atomics (LDA/LDAEX etc)
278 /// instructions
279 bool HasAcquireRelease = false;
281 /// Pref32BitThumb - If true, codegen would prefer 32-bit Thumb instructions
282 /// over 16-bit ones.
283 bool Pref32BitThumb = false;
285 /// AvoidCPSRPartialUpdate - If true, codegen would avoid using instructions
286 /// that partially update CPSR and add false dependency on the previous
287 /// CPSR setting instruction.
288 bool AvoidCPSRPartialUpdate = false;
290 /// CheapPredicableCPSRDef - If true, disable +1 predication cost
291 /// for instructions updating CPSR. Enabled for Cortex-A57.
292 bool CheapPredicableCPSRDef = false;
294 /// AvoidMOVsShifterOperand - If true, codegen should avoid using flag setting
295 /// movs with shifter operand (i.e. asr, lsl, lsr).
296 bool AvoidMOVsShifterOperand = false;
298 /// HasRetAddrStack - Some processors perform return stack prediction. CodeGen should
299 /// avoid issue "normal" call instructions to callees which do not return.
300 bool HasRetAddrStack = false;
302 /// HasBranchPredictor - True if the subtarget has a branch predictor. Having
303 /// a branch predictor or not changes the expected cost of taking a branch
304 /// which affects the choice of whether to use predicated instructions.
305 bool HasBranchPredictor = true;
307 /// HasMPExtension - True if the subtarget supports Multiprocessing
308 /// extension (ARMv7 only).
309 bool HasMPExtension = false;
311 /// HasVirtualization - True if the subtarget supports the Virtualization
312 /// extension.
313 bool HasVirtualization = false;
315 /// HasFP64 - If true, the floating point unit supports double
316 /// precision.
317 bool HasFP64 = false;
319 /// If true, the processor supports the Performance Monitor Extensions. These
320 /// include a generic cycle-counter as well as more fine-grained (often
321 /// implementation-specific) events.
322 bool HasPerfMon = false;
324 /// HasTrustZone - if true, processor supports TrustZone security extensions
325 bool HasTrustZone = false;
327 /// Has8MSecExt - if true, processor supports ARMv8-M Security Extensions
328 bool Has8MSecExt = false;
330 /// HasSHA2 - if true, processor supports SHA1 and SHA256
331 bool HasSHA2 = false;
333 /// HasAES - if true, processor supports AES
334 bool HasAES = false;
336 /// HasCrypto - if true, processor supports Cryptography extensions
337 bool HasCrypto = false;
339 /// HasCRC - if true, processor supports CRC instructions
340 bool HasCRC = false;
342 /// HasRAS - if true, the processor supports RAS extensions
343 bool HasRAS = false;
345 /// HasLOB - if true, the processor supports the Low Overhead Branch extension
346 bool HasLOB = false;
348 /// If true, the instructions "vmov.i32 d0, #0" and "vmov.i32 q0, #0" are
349 /// particularly effective at zeroing a VFP register.
350 bool HasZeroCycleZeroing = false;
352 /// HasFPAO - if true, processor does positive address offset computation faster
353 bool HasFPAO = false;
355 /// HasFuseAES - if true, processor executes back to back AES instruction
356 /// pairs faster.
357 bool HasFuseAES = false;
359 /// HasFuseLiterals - if true, processor executes back to back
360 /// bottom and top halves of literal generation faster.
361 bool HasFuseLiterals = false;
363 /// If true, if conversion may decide to leave some instructions unpredicated.
364 bool IsProfitableToUnpredicate = false;
366 /// If true, VMOV will be favored over VGETLNi32.
367 bool HasSlowVGETLNi32 = false;
369 /// If true, VMOV will be favored over VDUP.
370 bool HasSlowVDUP32 = false;
372 /// If true, VMOVSR will be favored over VMOVDRR.
373 bool PreferVMOVSR = false;
375 /// If true, ISHST barriers will be used for Release semantics.
376 bool PreferISHST = false;
378 /// If true, a VLDM/VSTM starting with an odd register number is considered to
379 /// take more microops than single VLDRS/VSTRS.
380 bool SlowOddRegister = false;
382 /// If true, loading into a D subregister will be penalized.
383 bool SlowLoadDSubregister = false;
385 /// If true, use a wider stride when allocating VFP registers.
386 bool UseWideStrideVFP = false;
388 /// If true, the AGU and NEON/FPU units are multiplexed.
389 bool HasMuxedUnits = false;
391 /// If true, VMOVS will never be widened to VMOVD.
392 bool DontWidenVMOVS = false;
394 /// If true, splat a register between VFP and NEON instructions.
395 bool SplatVFPToNeon = false;
397 /// If true, run the MLx expansion pass.
398 bool ExpandMLx = false;
400 /// If true, VFP/NEON VMLA/VMLS have special RAW hazards.
401 bool HasVMLxHazards = false;
403 // If true, read thread pointer from coprocessor register.
404 bool ReadTPHard = false;
406 /// If true, VMOVRS, VMOVSR and VMOVS will be converted from VFP to NEON.
407 bool UseNEONForFPMovs = false;
409 /// If true, VLDn instructions take an extra cycle for unaligned accesses.
410 bool CheckVLDnAlign = false;
412 /// If true, VFP instructions are not pipelined.
413 bool NonpipelinedVFP = false;
415 /// StrictAlign - If true, the subtarget disallows unaligned memory
416 /// accesses for some types. For details, see
417 /// ARMTargetLowering::allowsMisalignedMemoryAccesses().
418 bool StrictAlign = false;
420 /// RestrictIT - If true, the subtarget disallows generation of deprecated IT
421 /// blocks to conform to ARMv8 rule.
422 bool RestrictIT = false;
424 /// HasDSP - If true, the subtarget supports the DSP (saturating arith
425 /// and such) instructions.
426 bool HasDSP = false;
428 /// NaCl TRAP instruction is generated instead of the regular TRAP.
429 bool UseNaClTrap = false;
431 /// Generate calls via indirect call instructions.
432 bool GenLongCalls = false;
434 /// Generate code that does not contain data access to code sections.
435 bool GenExecuteOnly = false;
437 /// Target machine allowed unsafe FP math (such as use of NEON fp)
438 bool UnsafeFPMath = false;
440 /// UseSjLjEH - If true, the target uses SjLj exception handling (e.g. iOS).
441 bool UseSjLjEH = false;
443 /// Has speculation barrier
444 bool HasSB = false;
446 /// Implicitly convert an instruction to a different one if its immediates
447 /// cannot be encoded. For example, ADD r0, r1, #FFFFFFFF -> SUB r0, r1, #1.
448 bool NegativeImmediates = true;
450 /// stackAlignment - The minimum alignment known to hold of the stack frame on
451 /// entry to the function and which must be maintained by every function.
452 Align stackAlignment = Align(4);
454 /// CPUString - String name of used CPU.
455 std::string CPUString;
457 unsigned MaxInterleaveFactor = 1;
459 /// Clearance before partial register updates (in number of instructions)
460 unsigned PartialUpdateClearance = 0;
462 /// What kind of timing do load multiple/store multiple have (double issue,
463 /// single issue etc).
464 ARMLdStMultipleTiming LdStMultipleTiming = SingleIssue;
466 /// The adjustment that we need to apply to get the operand latency from the
467 /// operand cycle returned by the itinerary data for pre-ISel operands.
468 int PreISelOperandLatencyAdjustment = 2;
470 /// What alignment is preferred for loop bodies, in log2(bytes).
471 unsigned PrefLoopLogAlignment = 0;
473 /// The cost factor for MVE instructions, representing the multiple beats an
474 // instruction can take. The default is 2, (set in initSubtargetFeatures so
475 // that we can use subtarget features less than 2).
476 unsigned MVEVectorCostFactor = 0;
478 /// OptMinSize - True if we're optimising for minimum code size, equal to
479 /// the function attribute.
480 bool OptMinSize = false;
482 /// IsLittle - The target is Little Endian
483 bool IsLittle;
485 /// TargetTriple - What processor and OS we're targeting.
486 Triple TargetTriple;
488 /// SchedModel - Processor specific instruction costs.
489 MCSchedModel SchedModel;
491 /// Selected instruction itineraries (one entry per itinerary class.)
492 InstrItineraryData InstrItins;
494 /// Options passed via command line that could influence the target
495 const TargetOptions &Options;
497 const ARMBaseTargetMachine &TM;
499 public:
500 /// This constructor initializes the data members to match that
501 /// of the specified triple.
503 ARMSubtarget(const Triple &TT, const std::string &CPU, const std::string &FS,
504 const ARMBaseTargetMachine &TM, bool IsLittle,
505 bool MinSize = false);
507 /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
508 /// that still makes it profitable to inline the call.
509 unsigned getMaxInlineSizeThreshold() const {
510 return 64;
513 /// ParseSubtargetFeatures - Parses features string setting specified
514 /// subtarget options. Definition of function is auto generated by tblgen.
515 void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
517 /// initializeSubtargetDependencies - Initializes using a CPU and feature string
518 /// so that we can use initializer lists for subtarget initialization.
519 ARMSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
521 const ARMSelectionDAGInfo *getSelectionDAGInfo() const override {
522 return &TSInfo;
525 const ARMBaseInstrInfo *getInstrInfo() const override {
526 return InstrInfo.get();
529 const ARMTargetLowering *getTargetLowering() const override {
530 return &TLInfo;
533 const ARMFrameLowering *getFrameLowering() const override {
534 return FrameLowering.get();
537 const ARMBaseRegisterInfo *getRegisterInfo() const override {
538 return &InstrInfo->getRegisterInfo();
541 const CallLowering *getCallLowering() const override;
542 InstructionSelector *getInstructionSelector() const override;
543 const LegalizerInfo *getLegalizerInfo() const override;
544 const RegisterBankInfo *getRegBankInfo() const override;
546 private:
547 ARMSelectionDAGInfo TSInfo;
548 // Either Thumb1FrameLowering or ARMFrameLowering.
549 std::unique_ptr<ARMFrameLowering> FrameLowering;
550 // Either Thumb1InstrInfo or Thumb2InstrInfo.
551 std::unique_ptr<ARMBaseInstrInfo> InstrInfo;
552 ARMTargetLowering TLInfo;
554 /// GlobalISel related APIs.
555 std::unique_ptr<CallLowering> CallLoweringInfo;
556 std::unique_ptr<InstructionSelector> InstSelector;
557 std::unique_ptr<LegalizerInfo> Legalizer;
558 std::unique_ptr<RegisterBankInfo> RegBankInfo;
560 void initializeEnvironment();
561 void initSubtargetFeatures(StringRef CPU, StringRef FS);
562 ARMFrameLowering *initializeFrameLowering(StringRef CPU, StringRef FS);
564 public:
565 void computeIssueWidth();
567 bool hasV4TOps() const { return HasV4TOps; }
568 bool hasV5TOps() const { return HasV5TOps; }
569 bool hasV5TEOps() const { return HasV5TEOps; }
570 bool hasV6Ops() const { return HasV6Ops; }
571 bool hasV6MOps() const { return HasV6MOps; }
572 bool hasV6KOps() const { return HasV6KOps; }
573 bool hasV6T2Ops() const { return HasV6T2Ops; }
574 bool hasV7Ops() const { return HasV7Ops; }
575 bool hasV8Ops() const { return HasV8Ops; }
576 bool hasV8_1aOps() const { return HasV8_1aOps; }
577 bool hasV8_2aOps() const { return HasV8_2aOps; }
578 bool hasV8_3aOps() const { return HasV8_3aOps; }
579 bool hasV8_4aOps() const { return HasV8_4aOps; }
580 bool hasV8_5aOps() const { return HasV8_5aOps; }
581 bool hasV8MBaselineOps() const { return HasV8MBaselineOps; }
582 bool hasV8MMainlineOps() const { return HasV8MMainlineOps; }
583 bool hasV8_1MMainlineOps() const { return HasV8_1MMainlineOps; }
584 bool hasMVEIntegerOps() const { return HasMVEIntegerOps; }
585 bool hasMVEFloatOps() const { return HasMVEFloatOps; }
586 bool hasFPRegs() const { return HasFPRegs; }
587 bool hasFPRegs16() const { return HasFPRegs16; }
588 bool hasFPRegs64() const { return HasFPRegs64; }
590 /// @{
591 /// These functions are obsolete, please consider adding subtarget features
592 /// or properties instead of calling them.
593 bool isCortexA5() const { return ARMProcFamily == CortexA5; }
594 bool isCortexA7() const { return ARMProcFamily == CortexA7; }
595 bool isCortexA8() const { return ARMProcFamily == CortexA8; }
596 bool isCortexA9() const { return ARMProcFamily == CortexA9; }
597 bool isCortexA15() const { return ARMProcFamily == CortexA15; }
598 bool isSwift() const { return ARMProcFamily == Swift; }
599 bool isCortexM3() const { return ARMProcFamily == CortexM3; }
600 bool isLikeA9() const { return isCortexA9() || isCortexA15() || isKrait(); }
601 bool isCortexR5() const { return ARMProcFamily == CortexR5; }
602 bool isKrait() const { return ARMProcFamily == Krait; }
603 /// @}
605 bool hasARMOps() const { return !NoARM; }
607 bool hasVFP2Base() const { return HasVFPv2SP; }
608 bool hasVFP3Base() const { return HasVFPv3D16SP; }
609 bool hasVFP4Base() const { return HasVFPv4D16SP; }
610 bool hasFPARMv8Base() const { return HasFPARMv8D16SP; }
611 bool hasNEON() const { return HasNEON; }
612 bool hasSHA2() const { return HasSHA2; }
613 bool hasAES() const { return HasAES; }
614 bool hasCrypto() const { return HasCrypto; }
615 bool hasDotProd() const { return HasDotProd; }
616 bool hasCRC() const { return HasCRC; }
617 bool hasRAS() const { return HasRAS; }
618 bool hasLOB() const { return HasLOB; }
619 bool hasVirtualization() const { return HasVirtualization; }
621 bool useNEONForSinglePrecisionFP() const {
622 return hasNEON() && UseNEONForSinglePrecisionFP;
625 bool hasDivideInThumbMode() const { return HasHardwareDivideInThumb; }
626 bool hasDivideInARMMode() const { return HasHardwareDivideInARM; }
627 bool hasDataBarrier() const { return HasDataBarrier; }
628 bool hasFullDataBarrier() const { return HasFullDataBarrier; }
629 bool hasV7Clrex() const { return HasV7Clrex; }
630 bool hasAcquireRelease() const { return HasAcquireRelease; }
632 bool hasAnyDataBarrier() const {
633 return HasDataBarrier || (hasV6Ops() && !isThumb());
636 bool useMulOps() const { return UseMulOps; }
637 bool useFPVMLx() const { return !SlowFPVMLx; }
638 bool hasVMLxForwarding() const { return HasVMLxForwarding; }
639 bool isFPBrccSlow() const { return SlowFPBrcc; }
640 bool hasFP64() const { return HasFP64; }
641 bool hasPerfMon() const { return HasPerfMon; }
642 bool hasTrustZone() const { return HasTrustZone; }
643 bool has8MSecExt() const { return Has8MSecExt; }
644 bool hasZeroCycleZeroing() const { return HasZeroCycleZeroing; }
645 bool hasFPAO() const { return HasFPAO; }
646 bool isProfitableToUnpredicate() const { return IsProfitableToUnpredicate; }
647 bool hasSlowVGETLNi32() const { return HasSlowVGETLNi32; }
648 bool hasSlowVDUP32() const { return HasSlowVDUP32; }
649 bool preferVMOVSR() const { return PreferVMOVSR; }
650 bool preferISHSTBarriers() const { return PreferISHST; }
651 bool expandMLx() const { return ExpandMLx; }
652 bool hasVMLxHazards() const { return HasVMLxHazards; }
653 bool hasSlowOddRegister() const { return SlowOddRegister; }
654 bool hasSlowLoadDSubregister() const { return SlowLoadDSubregister; }
655 bool useWideStrideVFP() const { return UseWideStrideVFP; }
656 bool hasMuxedUnits() const { return HasMuxedUnits; }
657 bool dontWidenVMOVS() const { return DontWidenVMOVS; }
658 bool useSplatVFPToNeon() const { return SplatVFPToNeon; }
659 bool useNEONForFPMovs() const { return UseNEONForFPMovs; }
660 bool checkVLDnAccessAlignment() const { return CheckVLDnAlign; }
661 bool nonpipelinedVFP() const { return NonpipelinedVFP; }
662 bool prefers32BitThumb() const { return Pref32BitThumb; }
663 bool avoidCPSRPartialUpdate() const { return AvoidCPSRPartialUpdate; }
664 bool cheapPredicableCPSRDef() const { return CheapPredicableCPSRDef; }
665 bool avoidMOVsShifterOperand() const { return AvoidMOVsShifterOperand; }
666 bool hasRetAddrStack() const { return HasRetAddrStack; }
667 bool hasBranchPredictor() const { return HasBranchPredictor; }
668 bool hasMPExtension() const { return HasMPExtension; }
669 bool hasDSP() const { return HasDSP; }
670 bool useNaClTrap() const { return UseNaClTrap; }
671 bool useSjLjEH() const { return UseSjLjEH; }
672 bool hasSB() const { return HasSB; }
673 bool genLongCalls() const { return GenLongCalls; }
674 bool genExecuteOnly() const { return GenExecuteOnly; }
675 bool hasBaseDSP() const {
676 if (isThumb())
677 return hasDSP();
678 else
679 return hasV5TEOps();
682 bool hasFP16() const { return HasFP16; }
683 bool hasD32() const { return HasD32; }
684 bool hasFullFP16() const { return HasFullFP16; }
685 bool hasFP16FML() const { return HasFP16FML; }
687 bool hasFuseAES() const { return HasFuseAES; }
688 bool hasFuseLiterals() const { return HasFuseLiterals; }
689 /// Return true if the CPU supports any kind of instruction fusion.
690 bool hasFusion() const { return hasFuseAES() || hasFuseLiterals(); }
692 const Triple &getTargetTriple() const { return TargetTriple; }
694 bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
695 bool isTargetIOS() const { return TargetTriple.isiOS(); }
696 bool isTargetWatchOS() const { return TargetTriple.isWatchOS(); }
697 bool isTargetWatchABI() const { return TargetTriple.isWatchABI(); }
698 bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
699 bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
700 bool isTargetNetBSD() const { return TargetTriple.isOSNetBSD(); }
701 bool isTargetWindows() const { return TargetTriple.isOSWindows(); }
703 bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
704 bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
705 bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
707 // ARM EABI is the bare-metal EABI described in ARM ABI documents and
708 // can be accessed via -target arm-none-eabi. This is NOT GNUEABI.
709 // FIXME: Add a flag for bare-metal for that target and set Triple::EABI
710 // even for GNUEABI, so we can make a distinction here and still conform to
711 // the EABI on GNU (and Android) mode. This requires change in Clang, too.
712 // FIXME: The Darwin exception is temporary, while we move users to
713 // "*-*-*-macho" triples as quickly as possible.
714 bool isTargetAEABI() const {
715 return (TargetTriple.getEnvironment() == Triple::EABI ||
716 TargetTriple.getEnvironment() == Triple::EABIHF) &&
717 !isTargetDarwin() && !isTargetWindows();
719 bool isTargetGNUAEABI() const {
720 return (TargetTriple.getEnvironment() == Triple::GNUEABI ||
721 TargetTriple.getEnvironment() == Triple::GNUEABIHF) &&
722 !isTargetDarwin() && !isTargetWindows();
724 bool isTargetMuslAEABI() const {
725 return (TargetTriple.getEnvironment() == Triple::MuslEABI ||
726 TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
727 !isTargetDarwin() && !isTargetWindows();
730 // ARM Targets that support EHABI exception handling standard
731 // Darwin uses SjLj. Other targets might need more checks.
732 bool isTargetEHABICompatible() const {
733 return (TargetTriple.getEnvironment() == Triple::EABI ||
734 TargetTriple.getEnvironment() == Triple::GNUEABI ||
735 TargetTriple.getEnvironment() == Triple::MuslEABI ||
736 TargetTriple.getEnvironment() == Triple::EABIHF ||
737 TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
738 TargetTriple.getEnvironment() == Triple::MuslEABIHF ||
739 isTargetAndroid()) &&
740 !isTargetDarwin() && !isTargetWindows();
743 bool isTargetHardFloat() const;
745 bool isTargetAndroid() const { return TargetTriple.isAndroid(); }
747 bool isXRaySupported() const override;
749 bool isAPCS_ABI() const;
750 bool isAAPCS_ABI() const;
751 bool isAAPCS16_ABI() const;
753 bool isROPI() const;
754 bool isRWPI() const;
756 bool useMachineScheduler() const { return UseMISched; }
757 bool disablePostRAScheduler() const { return DisablePostRAScheduler; }
758 bool useSoftFloat() const { return UseSoftFloat; }
759 bool isThumb() const { return InThumbMode; }
760 bool hasMinSize() const { return OptMinSize; }
761 bool isThumb1Only() const { return InThumbMode && !HasThumb2; }
762 bool isThumb2() const { return InThumbMode && HasThumb2; }
763 bool hasThumb2() const { return HasThumb2; }
764 bool isMClass() const { return ARMProcClass == MClass; }
765 bool isRClass() const { return ARMProcClass == RClass; }
766 bool isAClass() const { return ARMProcClass == AClass; }
767 bool isReadTPHard() const { return ReadTPHard; }
769 bool isR9Reserved() const {
770 return isTargetMachO() ? (ReserveR9 || !HasV6Ops) : ReserveR9;
773 bool useR7AsFramePointer() const {
774 return isTargetDarwin() || (!isTargetWindows() && isThumb());
777 /// Returns true if the frame setup is split into two separate pushes (first
778 /// r0-r7,lr then r8-r11), principally so that the frame pointer is adjacent
779 /// to lr. This is always required on Thumb1-only targets, as the push and
780 /// pop instructions can't access the high registers.
781 bool splitFramePushPop(const MachineFunction &MF) const {
782 return (useR7AsFramePointer() &&
783 MF.getTarget().Options.DisableFramePointerElim(MF)) ||
784 isThumb1Only();
787 bool useStride4VFPs() const;
789 bool useMovt() const;
791 bool supportsTailCall() const { return SupportsTailCall; }
793 bool allowsUnalignedMem() const { return !StrictAlign; }
795 bool restrictIT() const { return RestrictIT; }
797 const std::string & getCPUString() const { return CPUString; }
799 bool isLittle() const { return IsLittle; }
801 unsigned getMispredictionPenalty() const;
803 /// Returns true if machine scheduler should be enabled.
804 bool enableMachineScheduler() const override;
806 /// True for some subtargets at > -O0.
807 bool enablePostRAScheduler() const override;
809 /// Enable use of alias analysis during code generation (during MI
810 /// scheduling, DAGCombine, etc.).
811 bool useAA() const override { return UseAA; }
813 // enableAtomicExpand- True if we need to expand our atomics.
814 bool enableAtomicExpand() const override;
816 /// getInstrItins - Return the instruction itineraries based on subtarget
817 /// selection.
818 const InstrItineraryData *getInstrItineraryData() const override {
819 return &InstrItins;
822 /// getStackAlignment - Returns the minimum alignment known to hold of the
823 /// stack frame on entry to the function and which must be maintained by every
824 /// function for this subtarget.
825 Align getStackAlignment() const { return stackAlignment; }
827 unsigned getMaxInterleaveFactor() const { return MaxInterleaveFactor; }
829 unsigned getPartialUpdateClearance() const { return PartialUpdateClearance; }
831 ARMLdStMultipleTiming getLdStMultipleTiming() const {
832 return LdStMultipleTiming;
835 int getPreISelOperandLatencyAdjustment() const {
836 return PreISelOperandLatencyAdjustment;
839 /// True if the GV will be accessed via an indirect symbol.
840 bool isGVIndirectSymbol(const GlobalValue *GV) const;
842 /// Returns the constant pool modifier needed to access the GV.
843 bool isGVInGOT(const GlobalValue *GV) const;
845 /// True if fast-isel is used.
846 bool useFastISel() const;
848 /// Returns the correct return opcode for the current feature set.
849 /// Use BX if available to allow mixing thumb/arm code, but fall back
850 /// to plain mov pc,lr on ARMv4.
851 unsigned getReturnOpcode() const {
852 if (isThumb())
853 return ARM::tBX_RET;
854 if (hasV4TOps())
855 return ARM::BX_RET;
856 return ARM::MOVPCLR;
859 /// Allow movt+movw for PIC global address calculation.
860 /// ELF does not have GOT relocations for movt+movw.
861 /// ROPI does not use GOT.
862 bool allowPositionIndependentMovt() const {
863 return isROPI() || !isTargetELF();
866 unsigned getPrefLoopLogAlignment() const { return PrefLoopLogAlignment; }
868 unsigned getMVEVectorCostFactor() const { return MVEVectorCostFactor; }
870 bool ignoreCSRForAllocationOrder(const MachineFunction &MF,
871 unsigned PhysReg) const override;
872 unsigned getGPRAllocationOrder(const MachineFunction &MF) const;
875 } // end namespace llvm
877 #endif // LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H