[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Target / Hexagon / HexagonISelLowering.h
blob75f553bfec7fbcb98fcd0b5f3cb8c4a61703f446
1 //===-- HexagonISelLowering.h - Hexagon DAG Lowering Interface --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that Hexagon uses to lower LLVM code into a
10 // selection DAG.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H
15 #define LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H
17 #include "Hexagon.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/CodeGen/ISDOpcodes.h"
20 #include "llvm/CodeGen/SelectionDAGNodes.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/CodeGen/ValueTypes.h"
23 #include "llvm/IR/CallingConv.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/Support/MachineValueType.h"
26 #include <cstdint>
27 #include <utility>
29 namespace llvm {
31 namespace HexagonISD {
33 enum NodeType : unsigned {
34 OP_BEGIN = ISD::BUILTIN_OP_END,
36 CONST32 = OP_BEGIN,
37 CONST32_GP, // For marking data present in GP.
38 ADDC, // Add with carry: (X, Y, Cin) -> (X+Y, Cout).
39 SUBC, // Sub with carry: (X, Y, Cin) -> (X+~Y+Cin, Cout).
40 ALLOCA,
42 AT_GOT, // Index in GOT.
43 AT_PCREL, // Offset relative to PC.
45 CALL, // Function call.
46 CALLnr, // Function call that does not return.
47 CALLR,
49 RET_FLAG, // Return with a flag operand.
50 BARRIER, // Memory barrier.
51 JT, // Jump table.
52 CP, // Constant pool.
54 COMBINE,
55 VSPLAT, // Generic splat, selection depends on argument/return
56 // types.
57 VASL,
58 VASR,
59 VLSR,
61 TSTBIT,
62 INSERT,
63 EXTRACTU,
64 VEXTRACTW,
65 VINSERTW0,
66 VROR,
67 TC_RETURN,
68 EH_RETURN,
69 DCFETCH,
70 READCYCLE,
71 PTRUE,
72 PFALSE,
73 D2P, // Convert 8-byte value to 8-bit predicate register. [*]
74 P2D, // Convert 8-bit predicate register to 8-byte value. [*]
75 V2Q, // Convert HVX vector to a vector predicate reg. [*]
76 Q2V, // Convert vector predicate to an HVX vector. [*]
77 // [*] The equivalence is defined as "Q <=> (V != 0)",
78 // where the != operation compares bytes.
79 // Note: V != 0 is implemented as V >u 0.
80 QCAT,
81 QTRUE,
82 QFALSE,
83 VZERO,
84 VSPLATW, // HVX splat of a 32-bit word with an arbitrary result type.
85 TYPECAST, // No-op that's used to convert between different legal
86 // types in a register.
87 VALIGN, // Align two vectors (in Op0, Op1) to one that would have
88 // been loaded from address in Op2.
89 VALIGNADDR, // Align vector address: Op0 & -Op1, except when it is
90 // an address in a vector load, then it's a no-op.
91 OP_END
94 } // end namespace HexagonISD
96 class HexagonSubtarget;
98 class HexagonTargetLowering : public TargetLowering {
99 int VarArgsFrameOffset; // Frame offset to start of varargs area.
100 const HexagonTargetMachine &HTM;
101 const HexagonSubtarget &Subtarget;
103 bool CanReturnSmallStruct(const Function* CalleeFn, unsigned& RetSize)
104 const;
106 public:
107 explicit HexagonTargetLowering(const TargetMachine &TM,
108 const HexagonSubtarget &ST);
110 bool isHVXVectorType(MVT Ty) const;
112 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
113 /// for tail call optimization. Targets which want to do tail call
114 /// optimization should implement this function.
115 bool IsEligibleForTailCallOptimization(SDValue Callee,
116 CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet,
117 bool isCallerStructRet, const SmallVectorImpl<ISD::OutputArg> &Outs,
118 const SmallVectorImpl<SDValue> &OutVals,
119 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG& DAG) const;
121 bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
122 MachineFunction &MF,
123 unsigned Intrinsic) const override;
125 bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
126 bool isTruncateFree(EVT VT1, EVT VT2) const override;
128 bool isCheapToSpeculateCttz() const override { return true; }
129 bool isCheapToSpeculateCtlz() const override { return true; }
130 bool isCtlzFast() const override { return true; }
132 bool hasBitTest(SDValue X, SDValue Y) const override;
134 bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
136 /// Return true if an FMA operation is faster than a pair of mul and add
137 /// instructions. fmuladd intrinsics will be expanded to FMAs when this
138 /// method returns true (and FMAs are legal), otherwise fmuladd is
139 /// expanded to mul + add.
140 bool isFMAFasterThanFMulAndFAdd(EVT) const override;
142 // Should we expand the build vector with shuffles?
143 bool shouldExpandBuildVectorWithShuffles(EVT VT,
144 unsigned DefinedValues) const override;
146 bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
147 TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
148 const override;
150 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
151 void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results,
152 SelectionDAG &DAG) const override;
153 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
154 SelectionDAG &DAG) const override;
156 const char *getTargetNodeName(unsigned Opcode) const override;
158 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
159 SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
160 SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
161 SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
162 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
163 SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
164 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
165 SDValue LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const;
166 SDValue LowerROTL(SDValue Op, SelectionDAG &DAG) const;
167 SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
168 SDValue LowerANY_EXTEND(SDValue Op, SelectionDAG &DAG) const;
169 SDValue LowerSIGN_EXTEND(SDValue Op, SelectionDAG &DAG) const;
170 SDValue LowerZERO_EXTEND(SDValue Op, SelectionDAG &DAG) const;
171 SDValue LowerLoad(SDValue Op, SelectionDAG &DAG) const;
172 SDValue LowerStore(SDValue Op, SelectionDAG &DAG) const;
173 SDValue LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG) const;
174 SDValue LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const;
175 SDValue LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const;
177 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
178 SDValue LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const;
179 SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
180 SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
181 SDValue LowerEH_LABEL(SDValue Op, SelectionDAG &DAG) const;
182 SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
183 SDValue
184 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
185 const SmallVectorImpl<ISD::InputArg> &Ins,
186 const SDLoc &dl, SelectionDAG &DAG,
187 SmallVectorImpl<SDValue> &InVals) const override;
188 SDValue LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const;
189 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
190 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
191 SDValue LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
192 SelectionDAG &DAG) const;
193 SDValue LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
194 SelectionDAG &DAG) const;
195 SDValue LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
196 SelectionDAG &DAG) const;
197 SDValue GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
198 GlobalAddressSDNode *GA, SDValue InFlag, EVT PtrVT,
199 unsigned ReturnReg, unsigned char OperandFlags) const;
200 SDValue LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) const;
202 SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
203 SmallVectorImpl<SDValue> &InVals) const override;
204 SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
205 CallingConv::ID CallConv, bool isVarArg,
206 const SmallVectorImpl<ISD::InputArg> &Ins,
207 const SDLoc &dl, SelectionDAG &DAG,
208 SmallVectorImpl<SDValue> &InVals,
209 const SmallVectorImpl<SDValue> &OutVals,
210 SDValue Callee) const;
212 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
213 SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
214 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
215 SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const;
216 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
218 bool CanLowerReturn(CallingConv::ID CallConv,
219 MachineFunction &MF, bool isVarArg,
220 const SmallVectorImpl<ISD::OutputArg> &Outs,
221 LLVMContext &Context) const override;
223 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
224 const SmallVectorImpl<ISD::OutputArg> &Outs,
225 const SmallVectorImpl<SDValue> &OutVals,
226 const SDLoc &dl, SelectionDAG &DAG) const override;
228 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
230 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
232 Register getRegisterByName(const char* RegName, EVT VT,
233 const MachineFunction &MF) const override;
235 /// If a physical register, this returns the register that receives the
236 /// exception address on entry to an EH pad.
237 unsigned
238 getExceptionPointerRegister(const Constant *PersonalityFn) const override {
239 return Hexagon::R0;
242 /// If a physical register, this returns the register that receives the
243 /// exception typeid on entry to a landing pad.
244 unsigned
245 getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
246 return Hexagon::R1;
249 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
250 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
251 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
253 EVT getSetCCResultType(const DataLayout &, LLVMContext &C,
254 EVT VT) const override {
255 if (!VT.isVector())
256 return MVT::i1;
257 else
258 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
261 bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
262 SDValue &Base, SDValue &Offset,
263 ISD::MemIndexedMode &AM,
264 SelectionDAG &DAG) const override;
266 ConstraintType getConstraintType(StringRef Constraint) const override;
268 std::pair<unsigned, const TargetRegisterClass *>
269 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
270 StringRef Constraint, MVT VT) const override;
272 unsigned
273 getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
274 if (ConstraintCode == "o")
275 return InlineAsm::Constraint_o;
276 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
279 // Intrinsics
280 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
281 SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
282 /// isLegalAddressingMode - Return true if the addressing mode represented
283 /// by AM is legal for this target, for a load/store of the specified type.
284 /// The type may be VoidTy, in which case only return true if the addressing
285 /// mode is legal for a load/store of any legal type.
286 /// TODO: Handle pre/postinc as well.
287 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
288 Type *Ty, unsigned AS,
289 Instruction *I = nullptr) const override;
290 /// Return true if folding a constant offset with the given GlobalAddress
291 /// is legal. It is frequently not legal in PIC relocation models.
292 bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
294 bool isFPImmLegal(const APFloat &Imm, EVT VT,
295 bool ForCodeSize) const override;
297 /// isLegalICmpImmediate - Return true if the specified immediate is legal
298 /// icmp immediate, that is the target has icmp instructions which can
299 /// compare a register against the immediate without having to materialize
300 /// the immediate into a register.
301 bool isLegalICmpImmediate(int64_t Imm) const override;
303 EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
304 unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
305 const AttributeList &FuncAttributes) const override;
307 bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace,
308 unsigned Align, MachineMemOperand::Flags Flags, bool *Fast)
309 const override;
311 /// Returns relocation base for the given PIC jumptable.
312 SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG)
313 const override;
315 bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
316 EVT NewVT) const override;
318 // Handling of atomic RMW instructions.
319 Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
320 AtomicOrdering Ord) const override;
321 Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
322 Value *Addr, AtomicOrdering Ord) const override;
323 AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const override;
324 bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
325 AtomicExpansionKind
326 shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override;
328 AtomicExpansionKind
329 shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override {
330 return AtomicExpansionKind::LLSC;
333 private:
334 void initializeHVXLowering();
335 void validateConstPtrAlignment(SDValue Ptr, const SDLoc &dl,
336 unsigned NeedAlign) const;
338 std::pair<SDValue,int> getBaseAndOffset(SDValue Addr) const;
340 bool getBuildVectorConstInts(ArrayRef<SDValue> Values, MVT VecTy,
341 SelectionDAG &DAG,
342 MutableArrayRef<ConstantInt*> Consts) const;
343 SDValue buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl, MVT VecTy,
344 SelectionDAG &DAG) const;
345 SDValue buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl, MVT VecTy,
346 SelectionDAG &DAG) const;
347 SDValue extractVector(SDValue VecV, SDValue IdxV, const SDLoc &dl,
348 MVT ValTy, MVT ResTy, SelectionDAG &DAG) const;
349 SDValue insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
350 const SDLoc &dl, MVT ValTy, SelectionDAG &DAG) const;
351 SDValue expandPredicate(SDValue Vec32, const SDLoc &dl,
352 SelectionDAG &DAG) const;
353 SDValue contractPredicate(SDValue Vec64, const SDLoc &dl,
354 SelectionDAG &DAG) const;
355 SDValue getVectorShiftByInt(SDValue Op, SelectionDAG &DAG) const;
357 bool isUndef(SDValue Op) const {
358 if (Op.isMachineOpcode())
359 return Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF;
360 return Op.getOpcode() == ISD::UNDEF;
362 SDValue getInstr(unsigned MachineOpc, const SDLoc &dl, MVT Ty,
363 ArrayRef<SDValue> Ops, SelectionDAG &DAG) const {
364 SDNode *N = DAG.getMachineNode(MachineOpc, dl, Ty, Ops);
365 return SDValue(N, 0);
367 SDValue getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG) const;
369 using VectorPair = std::pair<SDValue, SDValue>;
370 using TypePair = std::pair<MVT, MVT>;
372 SDValue getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
373 const SDLoc &dl, SelectionDAG &DAG) const;
375 MVT ty(SDValue Op) const {
376 return Op.getValueType().getSimpleVT();
378 TypePair ty(const VectorPair &Ops) const {
379 return { Ops.first.getValueType().getSimpleVT(),
380 Ops.second.getValueType().getSimpleVT() };
382 MVT tyScalar(MVT Ty) const {
383 if (!Ty.isVector())
384 return Ty;
385 return MVT::getIntegerVT(Ty.getSizeInBits());
387 MVT tyVector(MVT Ty, MVT ElemTy) const {
388 if (Ty.isVector() && Ty.getVectorElementType() == ElemTy)
389 return Ty;
390 unsigned TyWidth = Ty.getSizeInBits();
391 unsigned ElemWidth = ElemTy.getSizeInBits();
392 assert((TyWidth % ElemWidth) == 0);
393 return MVT::getVectorVT(ElemTy, TyWidth/ElemWidth);
396 MVT typeJoin(const TypePair &Tys) const;
397 TypePair typeSplit(MVT Ty) const;
398 MVT typeExtElem(MVT VecTy, unsigned Factor) const;
399 MVT typeTruncElem(MVT VecTy, unsigned Factor) const;
401 SDValue opJoin(const VectorPair &Ops, const SDLoc &dl,
402 SelectionDAG &DAG) const;
403 VectorPair opSplit(SDValue Vec, const SDLoc &dl, SelectionDAG &DAG) const;
404 SDValue opCastElem(SDValue Vec, MVT ElemTy, SelectionDAG &DAG) const;
406 bool isHvxSingleTy(MVT Ty) const;
407 bool isHvxPairTy(MVT Ty) const;
408 SDValue convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
409 SelectionDAG &DAG) const;
410 SDValue getIndexInWord32(SDValue Idx, MVT ElemTy, SelectionDAG &DAG) const;
411 SDValue getByteShuffle(const SDLoc &dl, SDValue Op0, SDValue Op1,
412 ArrayRef<int> Mask, SelectionDAG &DAG) const;
414 SDValue buildHvxVectorReg(ArrayRef<SDValue> Values, const SDLoc &dl,
415 MVT VecTy, SelectionDAG &DAG) const;
416 SDValue buildHvxVectorPred(ArrayRef<SDValue> Values, const SDLoc &dl,
417 MVT VecTy, SelectionDAG &DAG) const;
418 SDValue createHvxPrefixPred(SDValue PredV, const SDLoc &dl,
419 unsigned BitBytes, bool ZeroFill,
420 SelectionDAG &DAG) const;
421 SDValue extractHvxElementReg(SDValue VecV, SDValue IdxV, const SDLoc &dl,
422 MVT ResTy, SelectionDAG &DAG) const;
423 SDValue extractHvxElementPred(SDValue VecV, SDValue IdxV, const SDLoc &dl,
424 MVT ResTy, SelectionDAG &DAG) const;
425 SDValue insertHvxElementReg(SDValue VecV, SDValue IdxV, SDValue ValV,
426 const SDLoc &dl, SelectionDAG &DAG) const;
427 SDValue insertHvxElementPred(SDValue VecV, SDValue IdxV, SDValue ValV,
428 const SDLoc &dl, SelectionDAG &DAG) const;
429 SDValue extractHvxSubvectorReg(SDValue VecV, SDValue IdxV, const SDLoc &dl,
430 MVT ResTy, SelectionDAG &DAG) const;
431 SDValue extractHvxSubvectorPred(SDValue VecV, SDValue IdxV, const SDLoc &dl,
432 MVT ResTy, SelectionDAG &DAG) const;
433 SDValue insertHvxSubvectorReg(SDValue VecV, SDValue SubV, SDValue IdxV,
434 const SDLoc &dl, SelectionDAG &DAG) const;
435 SDValue insertHvxSubvectorPred(SDValue VecV, SDValue SubV, SDValue IdxV,
436 const SDLoc &dl, SelectionDAG &DAG) const;
437 SDValue extendHvxVectorPred(SDValue VecV, const SDLoc &dl, MVT ResTy,
438 bool ZeroExt, SelectionDAG &DAG) const;
440 SDValue LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG) const;
441 SDValue LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG) const;
442 SDValue LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG) const;
443 SDValue LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG) const;
444 SDValue LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG) const;
445 SDValue LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG) const;
447 SDValue LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const;
448 SDValue LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const;
449 SDValue LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const;
450 SDValue LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const;
451 SDValue LowerHvxMul(SDValue Op, SelectionDAG &DAG) const;
452 SDValue LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const;
453 SDValue LowerHvxSetCC(SDValue Op, SelectionDAG &DAG) const;
454 SDValue LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const;
455 SDValue LowerHvxShift(SDValue Op, SelectionDAG &DAG) const;
457 SDValue SplitHvxPairOp(SDValue Op, SelectionDAG &DAG) const;
458 SDValue SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const;
460 std::pair<const TargetRegisterClass*, uint8_t>
461 findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT)
462 const override;
464 bool isHvxOperation(SDValue Op) const;
465 SDValue LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const;
467 SDValue PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
470 } // end namespace llvm
472 #endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H