[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Target / Mips / MipsSEISelDAGToDAG.cpp
blobc8313240a67891affb88b373a2378e7057195634
1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Subclass of MipsDAGToDAGISel specialized for mips32/64.
11 //===----------------------------------------------------------------------===//
13 #include "MipsSEISelDAGToDAG.h"
14 #include "MCTargetDesc/MipsBaseInfo.h"
15 #include "Mips.h"
16 #include "MipsAnalyzeImmediate.h"
17 #include "MipsMachineFunction.h"
18 #include "MipsRegisterInfo.h"
19 #include "llvm/CodeGen/MachineConstantPool.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAGNodes.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 using namespace llvm;
37 #define DEBUG_TYPE "mips-isel"
39 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
40 Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget());
41 if (Subtarget->inMips16Mode())
42 return false;
43 return MipsDAGToDAGISel::runOnMachineFunction(MF);
46 void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
47 AU.addRequired<DominatorTreeWrapperPass>();
48 SelectionDAGISel::getAnalysisUsage(AU);
51 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
52 MachineFunction &MF) {
53 MachineInstrBuilder MIB(MF, &MI);
54 unsigned Mask = MI.getOperand(1).getImm();
55 unsigned Flag =
56 IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef;
58 if (Mask & 1)
59 MIB.addReg(Mips::DSPPos, Flag);
61 if (Mask & 2)
62 MIB.addReg(Mips::DSPSCount, Flag);
64 if (Mask & 4)
65 MIB.addReg(Mips::DSPCarry, Flag);
67 if (Mask & 8)
68 MIB.addReg(Mips::DSPOutFlag, Flag);
70 if (Mask & 16)
71 MIB.addReg(Mips::DSPCCond, Flag);
73 if (Mask & 32)
74 MIB.addReg(Mips::DSPEFI, Flag);
77 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
78 uint64_t RegNum = cast<ConstantSDNode>(RegIdx)->getZExtValue();
79 return Mips::MSACtrlRegClass.getRegister(RegNum);
82 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
83 const MachineInstr& MI) {
84 unsigned DstReg = 0, ZeroReg = 0;
86 // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
87 if ((MI.getOpcode() == Mips::ADDiu) &&
88 (MI.getOperand(1).getReg() == Mips::ZERO) &&
89 (MI.getOperand(2).isImm()) &&
90 (MI.getOperand(2).getImm() == 0)) {
91 DstReg = MI.getOperand(0).getReg();
92 ZeroReg = Mips::ZERO;
93 } else if ((MI.getOpcode() == Mips::DADDiu) &&
94 (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
95 (MI.getOperand(2).isImm()) &&
96 (MI.getOperand(2).getImm() == 0)) {
97 DstReg = MI.getOperand(0).getReg();
98 ZeroReg = Mips::ZERO_64;
101 if (!DstReg)
102 return false;
104 // Replace uses with ZeroReg.
105 for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
106 E = MRI->use_end(); U != E;) {
107 MachineOperand &MO = *U;
108 unsigned OpNo = U.getOperandNo();
109 MachineInstr *MI = MO.getParent();
110 ++U;
112 // Do not replace if it is a phi's operand or is tied to def operand.
113 if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
114 continue;
116 // Also, we have to check that the register class of the operand
117 // contains the zero register.
118 if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg))
119 continue;
121 MO.setReg(ZeroReg);
124 return true;
127 void MipsSEDAGToDAGISel::emitMCountABI(MachineInstr &MI, MachineBasicBlock &MBB,
128 MachineFunction &MF) {
129 MachineInstrBuilder MIB(MF, &MI);
130 if (!Subtarget->isABI_O32()) { // N32, N64
131 // Save current return address.
132 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(Mips::OR64))
133 .addDef(Mips::AT_64)
134 .addUse(Mips::RA_64, RegState::Undef)
135 .addUse(Mips::ZERO_64);
136 // Stops instruction above from being removed later on.
137 MIB.addUse(Mips::AT_64, RegState::Implicit);
138 } else { // O32
139 // Save current return address.
140 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(Mips::OR))
141 .addDef(Mips::AT)
142 .addUse(Mips::RA, RegState::Undef)
143 .addUse(Mips::ZERO);
144 // _mcount pops 2 words from stack.
145 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(Mips::ADDiu))
146 .addDef(Mips::SP)
147 .addUse(Mips::SP)
148 .addImm(-8);
149 // Stops first instruction above from being removed later on.
150 MIB.addUse(Mips::AT, RegState::Implicit);
154 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
155 MF.getInfo<MipsFunctionInfo>()->initGlobalBaseReg();
157 MachineRegisterInfo *MRI = &MF.getRegInfo();
159 for (auto &MBB: MF) {
160 for (auto &MI: MBB) {
161 switch (MI.getOpcode()) {
162 case Mips::RDDSP:
163 addDSPCtrlRegOperands(false, MI, MF);
164 break;
165 case Mips::WRDSP:
166 addDSPCtrlRegOperands(true, MI, MF);
167 break;
168 case Mips::BuildPairF64_64:
169 case Mips::ExtractElementF64_64:
170 if (!Subtarget->useOddSPReg()) {
171 MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
172 break;
174 LLVM_FALLTHROUGH;
175 case Mips::BuildPairF64:
176 case Mips::ExtractElementF64:
177 if (Subtarget->isABI_FPXX() && !Subtarget->hasMTHC1())
178 MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
179 break;
180 case Mips::JAL:
181 case Mips::JAL_MM:
182 if (MI.getOperand(0).isGlobal() &&
183 MI.getOperand(0).getGlobal()->getGlobalIdentifier() == "_mcount")
184 emitMCountABI(MI, MBB, MF);
185 break;
186 case Mips::JALRPseudo:
187 case Mips::JALR64Pseudo:
188 case Mips::JALR16_MM:
189 if (MI.getOperand(2).isMCSymbol() &&
190 MI.getOperand(2).getMCSymbol()->getName() == "_mcount")
191 emitMCountABI(MI, MBB, MF);
192 break;
193 case Mips::JALR:
194 if (MI.getOperand(3).isMCSymbol() &&
195 MI.getOperand(3).getMCSymbol()->getName() == "_mcount")
196 emitMCountABI(MI, MBB, MF);
197 break;
198 default:
199 replaceUsesWithZeroReg(MRI, MI);
205 void MipsSEDAGToDAGISel::selectAddE(SDNode *Node, const SDLoc &DL) const {
206 SDValue InFlag = Node->getOperand(2);
207 unsigned Opc = InFlag.getOpcode();
208 SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
209 EVT VT = LHS.getValueType();
211 // In the base case, we can rely on the carry bit from the addsc
212 // instruction.
213 if (Opc == ISD::ADDC) {
214 SDValue Ops[3] = {LHS, RHS, InFlag};
215 CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Ops);
216 return;
219 assert(Opc == ISD::ADDE && "ISD::ADDE not in a chain of ADDE nodes!");
221 // The more complex case is when there is a chain of ISD::ADDE nodes like:
222 // (adde (adde (adde (addc a b) c) d) e).
224 // The addwc instruction does not write to the carry bit, instead it writes
225 // to bit 20 of the dsp control register. To match this series of nodes, each
226 // intermediate adde node must be expanded to write the carry bit before the
227 // addition.
229 // Start by reading the overflow field for addsc and moving the value to the
230 // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP
231 // corresponds to reading/writing the entire control register to/from a GPR.
233 SDValue CstOne = CurDAG->getTargetConstant(1, DL, MVT::i32);
235 SDValue OuFlag = CurDAG->getTargetConstant(20, DL, MVT::i32);
237 SDNode *DSPCtrlField =
238 CurDAG->getMachineNode(Mips::RDDSP, DL, MVT::i32, MVT::Glue, CstOne, InFlag);
240 SDNode *Carry = CurDAG->getMachineNode(
241 Mips::EXT, DL, MVT::i32, SDValue(DSPCtrlField, 0), OuFlag, CstOne);
243 SDValue Ops[4] = {SDValue(DSPCtrlField, 0),
244 CurDAG->getTargetConstant(6, DL, MVT::i32), CstOne,
245 SDValue(Carry, 0)};
246 SDNode *DSPCFWithCarry = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, Ops);
248 // My reading of the MIPS DSP 3.01 specification isn't as clear as I
249 // would like about whether bit 20 always gets overwritten by addwc.
250 // Hence take an extremely conservative view and presume it's sticky. We
251 // therefore need to clear it.
253 SDValue Zero = CurDAG->getRegister(Mips::ZERO, MVT::i32);
255 SDValue InsOps[4] = {Zero, OuFlag, CstOne, SDValue(DSPCFWithCarry, 0)};
256 SDNode *DSPCtrlFinal = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, InsOps);
258 SDNode *WrDSP = CurDAG->getMachineNode(Mips::WRDSP, DL, MVT::Glue,
259 SDValue(DSPCtrlFinal, 0), CstOne);
261 SDValue Operands[3] = {LHS, RHS, SDValue(WrDSP, 0)};
262 CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Operands);
265 /// Match frameindex
266 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
267 SDValue &Offset) const {
268 if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
269 EVT ValTy = Addr.getValueType();
271 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
272 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy);
273 return true;
275 return false;
278 /// Match frameindex+offset and frameindex|offset
279 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(
280 SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits,
281 unsigned ShiftAmount = 0) const {
282 if (CurDAG->isBaseWithConstantOffset(Addr)) {
283 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
284 if (isIntN(OffsetBits + ShiftAmount, CN->getSExtValue())) {
285 EVT ValTy = Addr.getValueType();
287 // If the first operand is a FI, get the TargetFI Node
288 if (FrameIndexSDNode *FIN =
289 dyn_cast<FrameIndexSDNode>(Addr.getOperand(0)))
290 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
291 else {
292 Base = Addr.getOperand(0);
293 // If base is a FI, additional offset calculation is done in
294 // eliminateFrameIndex, otherwise we need to check the alignment
295 const Align Alignment(1ULL << ShiftAmount);
296 if (!isAligned(Alignment, CN->getZExtValue()))
297 return false;
300 Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr),
301 ValTy);
302 return true;
305 return false;
308 /// ComplexPattern used on MipsInstrInfo
309 /// Used on Mips Load/Store instructions
310 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
311 SDValue &Offset) const {
312 // if Address is FI, get the TargetFrameIndex.
313 if (selectAddrFrameIndex(Addr, Base, Offset))
314 return true;
316 // on PIC code Load GA
317 if (Addr.getOpcode() == MipsISD::Wrapper) {
318 Base = Addr.getOperand(0);
319 Offset = Addr.getOperand(1);
320 return true;
323 if (!TM.isPositionIndependent()) {
324 if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
325 Addr.getOpcode() == ISD::TargetGlobalAddress))
326 return false;
329 // Addresses of the form FI+const or FI|const
330 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
331 return true;
333 // Operand is a result from an ADD.
334 if (Addr.getOpcode() == ISD::ADD) {
335 // When loading from constant pools, load the lower address part in
336 // the instruction itself. Example, instead of:
337 // lui $2, %hi($CPI1_0)
338 // addiu $2, $2, %lo($CPI1_0)
339 // lwc1 $f0, 0($2)
340 // Generate:
341 // lui $2, %hi($CPI1_0)
342 // lwc1 $f0, %lo($CPI1_0)($2)
343 if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
344 Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
345 SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
346 if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
347 isa<JumpTableSDNode>(Opnd0)) {
348 Base = Addr.getOperand(0);
349 Offset = Opnd0;
350 return true;
355 return false;
358 /// ComplexPattern used on MipsInstrInfo
359 /// Used on Mips Load/Store instructions
360 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
361 SDValue &Offset) const {
362 Base = Addr;
363 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType());
364 return true;
367 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
368 SDValue &Offset) const {
369 return selectAddrRegImm(Addr, Base, Offset) ||
370 selectAddrDefault(Addr, Base, Offset);
373 bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base,
374 SDValue &Offset) const {
375 if (selectAddrFrameIndex(Addr, Base, Offset))
376 return true;
378 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9))
379 return true;
381 return false;
384 /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset)
385 bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base,
386 SDValue &Offset) const {
387 if (selectAddrFrameIndex(Addr, Base, Offset))
388 return true;
390 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11))
391 return true;
393 return false;
396 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
397 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
398 SDValue &Offset) const {
399 if (selectAddrFrameIndex(Addr, Base, Offset))
400 return true;
402 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
403 return true;
405 return false;
408 bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base,
409 SDValue &Offset) const {
410 if (selectAddrFrameIndex(Addr, Base, Offset))
411 return true;
413 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
414 return true;
416 return false;
419 bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base,
420 SDValue &Offset) const {
421 return selectAddrRegImm11(Addr, Base, Offset) ||
422 selectAddrDefault(Addr, Base, Offset);
425 bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base,
426 SDValue &Offset) const {
427 return selectAddrRegImm12(Addr, Base, Offset) ||
428 selectAddrDefault(Addr, Base, Offset);
431 bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base,
432 SDValue &Offset) const {
433 return selectAddrRegImm16(Addr, Base, Offset) ||
434 selectAddrDefault(Addr, Base, Offset);
437 bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base,
438 SDValue &Offset) const {
439 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) {
440 if (isa<FrameIndexSDNode>(Base))
441 return false;
443 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) {
444 unsigned CnstOff = CN->getZExtValue();
445 return (CnstOff == (CnstOff & 0x3c));
448 return false;
451 // For all other cases where "lw" would be selected, don't select "lw16"
452 // because it would result in additional instructions to prepare operands.
453 if (selectAddrRegImm(Addr, Base, Offset))
454 return false;
456 return selectAddrDefault(Addr, Base, Offset);
459 bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base,
460 SDValue &Offset) const {
462 if (selectAddrFrameIndex(Addr, Base, Offset))
463 return true;
465 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
466 return true;
468 return selectAddrDefault(Addr, Base, Offset);
471 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base,
472 SDValue &Offset) const {
473 if (selectAddrFrameIndex(Addr, Base, Offset))
474 return true;
476 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 1))
477 return true;
479 return selectAddrDefault(Addr, Base, Offset);
482 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base,
483 SDValue &Offset) const {
484 if (selectAddrFrameIndex(Addr, Base, Offset))
485 return true;
487 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 2))
488 return true;
490 return selectAddrDefault(Addr, Base, Offset);
493 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base,
494 SDValue &Offset) const {
495 if (selectAddrFrameIndex(Addr, Base, Offset))
496 return true;
498 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 3))
499 return true;
501 return selectAddrDefault(Addr, Base, Offset);
504 // Select constant vector splats.
506 // Returns true and sets Imm if:
507 // * MSA is enabled
508 // * N is a ISD::BUILD_VECTOR representing a constant splat
509 bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm,
510 unsigned MinSizeInBits) const {
511 if (!Subtarget->hasMSA())
512 return false;
514 BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
516 if (!Node)
517 return false;
519 APInt SplatValue, SplatUndef;
520 unsigned SplatBitSize;
521 bool HasAnyUndefs;
523 if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
524 MinSizeInBits, !Subtarget->isLittle()))
525 return false;
527 Imm = SplatValue;
529 return true;
532 // Select constant vector splats.
534 // In addition to the requirements of selectVSplat(), this function returns
535 // true and sets Imm if:
536 // * The splat value is the same width as the elements of the vector
537 // * The splat value fits in an integer with the specified signed-ness and
538 // width.
540 // This function looks through ISD::BITCAST nodes.
541 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
542 // sometimes a shuffle in big-endian mode.
544 // It's worth noting that this function is not used as part of the selection
545 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
546 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
547 // MipsSEDAGToDAGISel::selectNode.
548 bool MipsSEDAGToDAGISel::
549 selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
550 unsigned ImmBitSize) const {
551 APInt ImmValue;
552 EVT EltTy = N->getValueType(0).getVectorElementType();
554 if (N->getOpcode() == ISD::BITCAST)
555 N = N->getOperand(0);
557 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
558 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
560 if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
561 (!Signed && ImmValue.isIntN(ImmBitSize))) {
562 Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy);
563 return true;
567 return false;
570 // Select constant vector splats.
571 bool MipsSEDAGToDAGISel::
572 selectVSplatUimm1(SDValue N, SDValue &Imm) const {
573 return selectVSplatCommon(N, Imm, false, 1);
576 bool MipsSEDAGToDAGISel::
577 selectVSplatUimm2(SDValue N, SDValue &Imm) const {
578 return selectVSplatCommon(N, Imm, false, 2);
581 bool MipsSEDAGToDAGISel::
582 selectVSplatUimm3(SDValue N, SDValue &Imm) const {
583 return selectVSplatCommon(N, Imm, false, 3);
586 // Select constant vector splats.
587 bool MipsSEDAGToDAGISel::
588 selectVSplatUimm4(SDValue N, SDValue &Imm) const {
589 return selectVSplatCommon(N, Imm, false, 4);
592 // Select constant vector splats.
593 bool MipsSEDAGToDAGISel::
594 selectVSplatUimm5(SDValue N, SDValue &Imm) const {
595 return selectVSplatCommon(N, Imm, false, 5);
598 // Select constant vector splats.
599 bool MipsSEDAGToDAGISel::
600 selectVSplatUimm6(SDValue N, SDValue &Imm) const {
601 return selectVSplatCommon(N, Imm, false, 6);
604 // Select constant vector splats.
605 bool MipsSEDAGToDAGISel::
606 selectVSplatUimm8(SDValue N, SDValue &Imm) const {
607 return selectVSplatCommon(N, Imm, false, 8);
610 // Select constant vector splats.
611 bool MipsSEDAGToDAGISel::
612 selectVSplatSimm5(SDValue N, SDValue &Imm) const {
613 return selectVSplatCommon(N, Imm, true, 5);
616 // Select constant vector splats whose value is a power of 2.
618 // In addition to the requirements of selectVSplat(), this function returns
619 // true and sets Imm if:
620 // * The splat value is the same width as the elements of the vector
621 // * The splat value is a power of two.
623 // This function looks through ISD::BITCAST nodes.
624 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
625 // sometimes a shuffle in big-endian mode.
626 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
627 APInt ImmValue;
628 EVT EltTy = N->getValueType(0).getVectorElementType();
630 if (N->getOpcode() == ISD::BITCAST)
631 N = N->getOperand(0);
633 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
634 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
635 int32_t Log2 = ImmValue.exactLogBase2();
637 if (Log2 != -1) {
638 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
639 return true;
643 return false;
646 // Select constant vector splats whose value only has a consecutive sequence
647 // of left-most bits set (e.g. 0b11...1100...00).
649 // In addition to the requirements of selectVSplat(), this function returns
650 // true and sets Imm if:
651 // * The splat value is the same width as the elements of the vector
652 // * The splat value is a consecutive sequence of left-most bits.
654 // This function looks through ISD::BITCAST nodes.
655 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
656 // sometimes a shuffle in big-endian mode.
657 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
658 APInt ImmValue;
659 EVT EltTy = N->getValueType(0).getVectorElementType();
661 if (N->getOpcode() == ISD::BITCAST)
662 N = N->getOperand(0);
664 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
665 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
666 // Extract the run of set bits starting with bit zero from the bitwise
667 // inverse of ImmValue, and test that the inverse of this is the same
668 // as the original value.
669 if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
671 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
672 EltTy);
673 return true;
677 return false;
680 // Select constant vector splats whose value only has a consecutive sequence
681 // of right-most bits set (e.g. 0b00...0011...11).
683 // In addition to the requirements of selectVSplat(), this function returns
684 // true and sets Imm if:
685 // * The splat value is the same width as the elements of the vector
686 // * The splat value is a consecutive sequence of right-most bits.
688 // This function looks through ISD::BITCAST nodes.
689 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
690 // sometimes a shuffle in big-endian mode.
691 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
692 APInt ImmValue;
693 EVT EltTy = N->getValueType(0).getVectorElementType();
695 if (N->getOpcode() == ISD::BITCAST)
696 N = N->getOperand(0);
698 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
699 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
700 // Extract the run of set bits starting with bit zero, and test that the
701 // result is the same as the original value
702 if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
703 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
704 EltTy);
705 return true;
709 return false;
712 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
713 SDValue &Imm) const {
714 APInt ImmValue;
715 EVT EltTy = N->getValueType(0).getVectorElementType();
717 if (N->getOpcode() == ISD::BITCAST)
718 N = N->getOperand(0);
720 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
721 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
722 int32_t Log2 = (~ImmValue).exactLogBase2();
724 if (Log2 != -1) {
725 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
726 return true;
730 return false;
733 bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) {
734 unsigned Opcode = Node->getOpcode();
735 SDLoc DL(Node);
738 // Instruction Selection not handled by the auto-generated
739 // tablegen selection should be handled here.
741 switch(Opcode) {
742 default: break;
744 case Mips::PseudoD_SELECT_I:
745 case Mips::PseudoD_SELECT_I64: {
746 MVT VT = Subtarget->isGP64bit() ? MVT::i64 : MVT::i32;
747 SDValue cond = Node->getOperand(0);
748 SDValue Hi1 = Node->getOperand(1);
749 SDValue Lo1 = Node->getOperand(2);
750 SDValue Hi2 = Node->getOperand(3);
751 SDValue Lo2 = Node->getOperand(4);
753 SDValue ops[] = {cond, Hi1, Lo1, Hi2, Lo2};
754 EVT NodeTys[] = {VT, VT};
755 ReplaceNode(Node, CurDAG->getMachineNode(Subtarget->isGP64bit()
756 ? Mips::PseudoD_SELECT_I64
757 : Mips::PseudoD_SELECT_I,
758 DL, NodeTys, ops));
759 return true;
762 case ISD::ADDE: {
763 selectAddE(Node, DL);
764 return true;
767 case ISD::ConstantFP: {
768 auto *CN = cast<ConstantFPSDNode>(Node);
769 if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
770 if (Subtarget->isGP64bit()) {
771 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
772 Mips::ZERO_64, MVT::i64);
773 ReplaceNode(Node,
774 CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero));
775 } else if (Subtarget->isFP64bit()) {
776 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
777 Mips::ZERO, MVT::i32);
778 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL,
779 MVT::f64, Zero, Zero));
780 } else {
781 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
782 Mips::ZERO, MVT::i32);
783 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL,
784 MVT::f64, Zero, Zero));
786 return true;
788 break;
791 case ISD::Constant: {
792 auto *CN = cast<ConstantSDNode>(Node);
793 int64_t Imm = CN->getSExtValue();
794 unsigned Size = CN->getValueSizeInBits(0);
796 if (isInt<32>(Imm))
797 break;
799 MipsAnalyzeImmediate AnalyzeImm;
801 const MipsAnalyzeImmediate::InstSeq &Seq =
802 AnalyzeImm.Analyze(Imm, Size, false);
804 MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
805 SDLoc DL(CN);
806 SDNode *RegOpnd;
807 SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
808 DL, MVT::i64);
810 // The first instruction can be a LUi which is different from other
811 // instructions (ADDiu, ORI and SLL) in that it does not have a register
812 // operand.
813 if (Inst->Opc == Mips::LUi64)
814 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
815 else
816 RegOpnd =
817 CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
818 CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
819 ImmOpnd);
821 // The remaining instructions in the sequence are handled here.
822 for (++Inst; Inst != Seq.end(); ++Inst) {
823 ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL,
824 MVT::i64);
825 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
826 SDValue(RegOpnd, 0), ImmOpnd);
829 ReplaceNode(Node, RegOpnd);
830 return true;
833 case ISD::INTRINSIC_W_CHAIN: {
834 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
835 default:
836 break;
838 case Intrinsic::mips_cfcmsa: {
839 SDValue ChainIn = Node->getOperand(0);
840 SDValue RegIdx = Node->getOperand(2);
841 SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
842 getMSACtrlReg(RegIdx), MVT::i32);
843 ReplaceNode(Node, Reg.getNode());
844 return true;
847 break;
850 case ISD::INTRINSIC_WO_CHAIN: {
851 switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
852 default:
853 break;
855 case Intrinsic::mips_move_v:
856 // Like an assignment but will always produce a move.v even if
857 // unnecessary.
858 ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL,
859 Node->getValueType(0),
860 Node->getOperand(1)));
861 return true;
863 break;
866 case ISD::INTRINSIC_VOID: {
867 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
868 default:
869 break;
871 case Intrinsic::mips_ctcmsa: {
872 SDValue ChainIn = Node->getOperand(0);
873 SDValue RegIdx = Node->getOperand(2);
874 SDValue Value = Node->getOperand(3);
875 SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
876 getMSACtrlReg(RegIdx), Value);
877 ReplaceNode(Node, ChainOut.getNode());
878 return true;
881 break;
884 // Manually match MipsISD::Ins nodes to get the correct instruction. It has
885 // to be done in this fashion so that we respect the differences between
886 // dins and dinsm, as the difference is that the size operand has the range
887 // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which
888 // means SelectionDAGISel would have to test all the operands at once to
889 // match the instruction.
890 case MipsISD::Ins: {
892 // Sanity checking for the node operands.
893 if (Node->getValueType(0) != MVT::i32 && Node->getValueType(0) != MVT::i64)
894 return false;
896 if (Node->getNumOperands() != 4)
897 return false;
899 if (Node->getOperand(1)->getOpcode() != ISD::Constant ||
900 Node->getOperand(2)->getOpcode() != ISD::Constant)
901 return false;
903 MVT ResTy = Node->getSimpleValueType(0);
904 uint64_t Pos = Node->getConstantOperandVal(1);
905 uint64_t Size = Node->getConstantOperandVal(2);
907 // Size has to be >0 for 'ins', 'dins' and 'dinsu'.
908 if (!Size)
909 return false;
911 if (Pos + Size > 64)
912 return false;
914 if (ResTy != MVT::i32 && ResTy != MVT::i64)
915 return false;
917 unsigned Opcode = 0;
918 if (ResTy == MVT::i32) {
919 if (Pos + Size <= 32)
920 Opcode = Mips::INS;
921 } else {
922 if (Pos + Size <= 32)
923 Opcode = Mips::DINS;
924 else if (Pos < 32 && 1 < Size)
925 Opcode = Mips::DINSM;
926 else
927 Opcode = Mips::DINSU;
930 if (Opcode) {
931 SDValue Ops[4] = {
932 Node->getOperand(0), CurDAG->getTargetConstant(Pos, DL, MVT::i32),
933 CurDAG->getTargetConstant(Size, DL, MVT::i32), Node->getOperand(3)};
935 ReplaceNode(Node, CurDAG->getMachineNode(Opcode, DL, ResTy, Ops));
936 return true;
939 return false;
942 case MipsISD::ThreadPointer: {
943 EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
944 unsigned RdhwrOpc, DestReg;
946 if (PtrVT == MVT::i32) {
947 RdhwrOpc = Mips::RDHWR;
948 DestReg = Mips::V1;
949 } else {
950 RdhwrOpc = Mips::RDHWR64;
951 DestReg = Mips::V1_64;
954 SDNode *Rdhwr =
955 CurDAG->getMachineNode(RdhwrOpc, DL, Node->getValueType(0),
956 CurDAG->getRegister(Mips::HWR29, MVT::i32),
957 CurDAG->getTargetConstant(0, DL, MVT::i32));
958 SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
959 SDValue(Rdhwr, 0));
960 SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
961 ReplaceNode(Node, ResNode.getNode());
962 return true;
965 case ISD::BUILD_VECTOR: {
966 // Select appropriate ldi.[bhwd] instructions for constant splats of
967 // 128-bit when MSA is enabled. Fixup any register class mismatches that
968 // occur as a result.
970 // This allows the compiler to use a wider range of immediates than would
971 // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
972 // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
973 // 0x01010101 } without using a constant pool. This would be sub-optimal
974 // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
975 // same set/ of registers. Similarly, ldi.h isn't capable of producing {
976 // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
978 const MipsABIInfo &ABI =
979 static_cast<const MipsTargetMachine &>(TM).getABI();
981 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
982 APInt SplatValue, SplatUndef;
983 unsigned SplatBitSize;
984 bool HasAnyUndefs;
985 unsigned LdiOp;
986 EVT ResVecTy = BVN->getValueType(0);
987 EVT ViaVecTy;
989 if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
990 return false;
992 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
993 HasAnyUndefs, 8,
994 !Subtarget->isLittle()))
995 return false;
997 switch (SplatBitSize) {
998 default:
999 return false;
1000 case 8:
1001 LdiOp = Mips::LDI_B;
1002 ViaVecTy = MVT::v16i8;
1003 break;
1004 case 16:
1005 LdiOp = Mips::LDI_H;
1006 ViaVecTy = MVT::v8i16;
1007 break;
1008 case 32:
1009 LdiOp = Mips::LDI_W;
1010 ViaVecTy = MVT::v4i32;
1011 break;
1012 case 64:
1013 LdiOp = Mips::LDI_D;
1014 ViaVecTy = MVT::v2i64;
1015 break;
1018 SDNode *Res = nullptr;
1020 // If we have a signed 10 bit integer, we can splat it directly.
1022 // If we have something bigger we can synthesize the value into a GPR and
1023 // splat from there.
1024 if (SplatValue.isSignedIntN(10)) {
1025 SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL,
1026 ViaVecTy.getVectorElementType());
1028 Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm);
1029 } else if (SplatValue.isSignedIntN(16) &&
1030 ((ABI.IsO32() && SplatBitSize < 64) ||
1031 (ABI.IsN32() || ABI.IsN64()))) {
1032 // Only handle signed 16 bit values when the element size is GPR width.
1033 // MIPS64 can handle all the cases but MIPS32 would need to handle
1034 // negative cases specifically here. Instead, handle those cases as
1035 // 64bit values.
1037 bool Is32BitSplat = ABI.IsO32() || SplatBitSize < 64;
1038 const unsigned ADDiuOp = Is32BitSplat ? Mips::ADDiu : Mips::DADDiu;
1039 const MVT SplatMVT = Is32BitSplat ? MVT::i32 : MVT::i64;
1040 SDValue ZeroVal = CurDAG->getRegister(
1041 Is32BitSplat ? Mips::ZERO : Mips::ZERO_64, SplatMVT);
1043 const unsigned FILLOp =
1044 SplatBitSize == 16
1045 ? Mips::FILL_H
1046 : (SplatBitSize == 32 ? Mips::FILL_W
1047 : (SplatBitSize == 64 ? Mips::FILL_D : 0));
1049 assert(FILLOp != 0 && "Unknown FILL Op for splat synthesis!");
1050 assert((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) &&
1051 "Attempting to use fill.d on MIPS32!");
1053 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1054 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, SplatMVT);
1056 Res = CurDAG->getMachineNode(ADDiuOp, DL, SplatMVT, ZeroVal, LoVal);
1057 Res = CurDAG->getMachineNode(FILLOp, DL, ViaVecTy, SDValue(Res, 0));
1059 } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 32) {
1060 // Only handle the cases where the splat size agrees with the size
1061 // of the SplatValue here.
1062 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1063 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1064 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1066 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1067 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1069 if (Hi)
1070 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1072 if (Lo)
1073 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1074 Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1076 assert((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!");
1077 Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, SDValue(Res, 0));
1079 } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 64 &&
1080 (ABI.IsN32() || ABI.IsN64())) {
1081 // N32 and N64 can perform some tricks that O32 can't for signed 32 bit
1082 // integers due to having 64bit registers. lui will cause the necessary
1083 // zero/sign extension.
1084 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1085 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1086 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1088 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1089 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1091 if (Hi)
1092 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1094 if (Lo)
1095 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1096 Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1098 Res = CurDAG->getMachineNode(
1099 Mips::SUBREG_TO_REG, DL, MVT::i64,
1100 CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
1101 SDValue(Res, 0),
1102 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1104 Res =
1105 CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
1107 } else if (SplatValue.isSignedIntN(64)) {
1108 // If we have a 64 bit Splat value, we perform a similar sequence to the
1109 // above:
1111 // MIPS32: MIPS64:
1112 // lui $res, %highest(val) lui $res, %highest(val)
1113 // ori $res, $res, %higher(val) ori $res, $res, %higher(val)
1114 // lui $res2, %hi(val) lui $res2, %hi(val)
1115 // ori $res2, %res2, %lo(val) ori $res2, %res2, %lo(val)
1116 // $res3 = fill $res2 dinsu $res, $res2, 0, 32
1117 // $res4 = insert.w $res3[1], $res fill.d $res
1118 // splat.d $res4, 0
1120 // The ability to use dinsu is guaranteed as MSA requires MIPSR5. This saves
1121 // having to materialize the value by shifts and ors.
1123 // FIXME: Implement the preferred sequence for MIPS64R6:
1125 // MIPS64R6:
1126 // ori $res, $zero, %lo(val)
1127 // daui $res, $res, %hi(val)
1128 // dahi $res, $res, %higher(val)
1129 // dati $res, $res, %highest(cal)
1130 // fill.d $res
1133 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1134 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1135 const unsigned Higher = SplatValue.lshr(32).getLoBits(16).getZExtValue();
1136 const unsigned Highest = SplatValue.lshr(48).getLoBits(16).getZExtValue();
1138 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1139 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1140 SDValue HigherVal = CurDAG->getTargetConstant(Higher, DL, MVT::i32);
1141 SDValue HighestVal = CurDAG->getTargetConstant(Highest, DL, MVT::i32);
1142 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1144 // Independent of whether we're targeting MIPS64 or not, the basic
1145 // operations are the same. Also, directly use the $zero register if
1146 // the 16 bit chunk is zero.
1148 // For optimization purposes we always synthesize the splat value as
1149 // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG
1150 // just before combining the values with dinsu to produce an i64. This
1151 // enables SelectionDAG to aggressively share components of splat values
1152 // where possible.
1154 // FIXME: This is the general constant synthesis problem. This code
1155 // should be factored out into a class shared between all the
1156 // classes that need it. Specifically, for a splat size of 64
1157 // bits that's a negative number we can do better than LUi/ORi
1158 // for the upper 32bits.
1160 if (Hi)
1161 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1163 if (Lo)
1164 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1165 Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1167 SDNode *HiRes;
1168 if (Highest)
1169 HiRes = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HighestVal);
1171 if (Higher)
1172 HiRes = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1173 Highest ? SDValue(HiRes, 0) : ZeroVal,
1174 HigherVal);
1177 if (ABI.IsO32()) {
1178 Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32,
1179 (Hi || Lo) ? SDValue(Res, 0) : ZeroVal);
1181 Res = CurDAG->getMachineNode(
1182 Mips::INSERT_W, DL, MVT::v4i32, SDValue(Res, 0),
1183 (Highest || Higher) ? SDValue(HiRes, 0) : ZeroVal,
1184 CurDAG->getTargetConstant(1, DL, MVT::i32));
1186 const TargetLowering *TLI = getTargetLowering();
1187 const TargetRegisterClass *RC =
1188 TLI->getRegClassFor(ViaVecTy.getSimpleVT());
1190 Res = CurDAG->getMachineNode(
1191 Mips::COPY_TO_REGCLASS, DL, ViaVecTy, SDValue(Res, 0),
1192 CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32));
1194 Res = CurDAG->getMachineNode(
1195 Mips::SPLATI_D, DL, MVT::v2i64, SDValue(Res, 0),
1196 CurDAG->getTargetConstant(0, DL, MVT::i32));
1197 } else if (ABI.IsN64() || ABI.IsN32()) {
1199 SDValue Zero64Val = CurDAG->getRegister(Mips::ZERO_64, MVT::i64);
1200 const bool HiResNonZero = Highest || Higher;
1201 const bool ResNonZero = Hi || Lo;
1203 if (HiResNonZero)
1204 HiRes = CurDAG->getMachineNode(
1205 Mips::SUBREG_TO_REG, DL, MVT::i64,
1206 CurDAG->getTargetConstant(((Highest >> 15) & 0x1), DL, MVT::i64),
1207 SDValue(HiRes, 0),
1208 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1210 if (ResNonZero)
1211 Res = CurDAG->getMachineNode(
1212 Mips::SUBREG_TO_REG, DL, MVT::i64,
1213 CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
1214 SDValue(Res, 0),
1215 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1217 // We have 3 cases:
1218 // The HiRes is nonzero but Res is $zero => dsll32 HiRes, 0
1219 // The Res is nonzero but HiRes is $zero => dinsu Res, $zero, 32, 32
1220 // Both are non zero => dinsu Res, HiRes, 32, 32
1222 // The obvious "missing" case is when both are zero, but that case is
1223 // handled by the ldi case.
1224 if (ResNonZero) {
1225 IntegerType *Int32Ty =
1226 IntegerType::get(MF->getFunction().getContext(), 32);
1227 const ConstantInt *Const32 = ConstantInt::get(Int32Ty, 32);
1228 SDValue Ops[4] = {HiResNonZero ? SDValue(HiRes, 0) : Zero64Val,
1229 CurDAG->getConstant(*Const32, DL, MVT::i32),
1230 CurDAG->getConstant(*Const32, DL, MVT::i32),
1231 SDValue(Res, 0)};
1233 Res = CurDAG->getMachineNode(Mips::DINSU, DL, MVT::i64, Ops);
1234 } else if (HiResNonZero) {
1235 Res = CurDAG->getMachineNode(
1236 Mips::DSLL32, DL, MVT::i64, SDValue(HiRes, 0),
1237 CurDAG->getTargetConstant(0, DL, MVT::i32));
1238 } else
1239 llvm_unreachable(
1240 "Zero splat value handled by non-zero 64bit splat synthesis!");
1242 Res = CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
1243 } else
1244 llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!");
1246 } else
1247 return false;
1249 if (ResVecTy != ViaVecTy) {
1250 // If LdiOp is writing to a different register class to ResVecTy, then
1251 // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
1252 // since the source and destination register sets contain the same
1253 // registers.
1254 const TargetLowering *TLI = getTargetLowering();
1255 MVT ResVecTySimple = ResVecTy.getSimpleVT();
1256 const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
1257 Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL,
1258 ResVecTy, SDValue(Res, 0),
1259 CurDAG->getTargetConstant(RC->getID(), DL,
1260 MVT::i32));
1263 ReplaceNode(Node, Res);
1264 return true;
1269 return false;
1272 bool MipsSEDAGToDAGISel::
1273 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
1274 std::vector<SDValue> &OutOps) {
1275 SDValue Base, Offset;
1277 switch(ConstraintID) {
1278 default:
1279 llvm_unreachable("Unexpected asm memory constraint");
1280 // All memory constraints can at least accept raw pointers.
1281 case InlineAsm::Constraint_i:
1282 OutOps.push_back(Op);
1283 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1284 return false;
1285 case InlineAsm::Constraint_m:
1286 case InlineAsm::Constraint_o:
1287 if (selectAddrRegImm16(Op, Base, Offset)) {
1288 OutOps.push_back(Base);
1289 OutOps.push_back(Offset);
1290 return false;
1292 OutOps.push_back(Op);
1293 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1294 return false;
1295 case InlineAsm::Constraint_R:
1296 // The 'R' constraint is supposed to be much more complicated than this.
1297 // However, it's becoming less useful due to architectural changes and
1298 // ought to be replaced by other constraints such as 'ZC'.
1299 // For now, support 9-bit signed offsets which is supportable by all
1300 // subtargets for all instructions.
1301 if (selectAddrRegImm9(Op, Base, Offset)) {
1302 OutOps.push_back(Base);
1303 OutOps.push_back(Offset);
1304 return false;
1306 OutOps.push_back(Op);
1307 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1308 return false;
1309 case InlineAsm::Constraint_ZC:
1310 // ZC matches whatever the pref, ll, and sc instructions can handle for the
1311 // given subtarget.
1312 if (Subtarget->inMicroMipsMode()) {
1313 // On microMIPS, they can handle 12-bit offsets.
1314 if (selectAddrRegImm12(Op, Base, Offset)) {
1315 OutOps.push_back(Base);
1316 OutOps.push_back(Offset);
1317 return false;
1319 } else if (Subtarget->hasMips32r6()) {
1320 // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
1321 if (selectAddrRegImm9(Op, Base, Offset)) {
1322 OutOps.push_back(Base);
1323 OutOps.push_back(Offset);
1324 return false;
1326 } else if (selectAddrRegImm16(Op, Base, Offset)) {
1327 // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
1328 OutOps.push_back(Base);
1329 OutOps.push_back(Offset);
1330 return false;
1332 // In all cases, 0-bit offsets are acceptable.
1333 OutOps.push_back(Op);
1334 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1335 return false;
1337 return true;
1340 FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM,
1341 CodeGenOpt::Level OptLevel) {
1342 return new MipsSEDAGToDAGISel(TM, OptLevel);