1 //===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that SystemZ uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
15 #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
18 #include "SystemZInstrInfo.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetLowering.h"
24 namespace SystemZISD
{
25 enum NodeType
: unsigned {
26 FIRST_NUMBER
= ISD::BUILTIN_OP_END
,
28 // Return with a flag operand. Operand 0 is the chain operand.
31 // Calls a function. Operand 0 is the chain operand and operand 1
32 // is the target address. The arguments start at operand 2.
33 // There is an optional glue operand at the end.
37 // TLS calls. Like regular calls, except operand 1 is the TLS symbol.
38 // (The call target is implicitly __tls_get_offset.)
42 // Wraps a TargetGlobalAddress that should be loaded using PC-relative
43 // accesses (LARL). Operand 0 is the address.
46 // Used in cases where an offset is applied to a TargetGlobalAddress.
47 // Operand 0 is the full TargetGlobalAddress and operand 1 is a
48 // PCREL_WRAPPER for an anchor point. This is used so that we can
49 // cheaply refer to either the full address or the anchor point
50 // as a register base.
56 // Integer comparisons. There are three operands: the two values
57 // to compare, and an integer of type SystemZICMP.
60 // Floating-point comparisons. The two operands are the values to compare.
63 // Test under mask. The first operand is ANDed with the second operand
64 // and the condition codes are set on the result. The third operand is
65 // a boolean that is true if the condition codes need to distinguish
66 // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
67 // register forms do but the memory forms don't).
70 // Branches if a condition is true. Operand 0 is the chain operand;
71 // operand 1 is the 4-bit condition-code mask, with bit N in
72 // big-endian order meaning "branch if CC=N"; operand 2 is the
73 // target block and operand 3 is the flag operand.
76 // Selects between operand 0 and operand 1. Operand 2 is the
77 // mask of condition-code values for which operand 0 should be
78 // chosen over operand 1; it has the same form as BR_CCMASK.
79 // Operand 3 is the flag operand.
82 // Evaluates to the gap between the stack pointer and the
83 // base of the dynamically-allocatable area.
86 // Count number of bits set in operand 0 per byte.
89 // Wrappers around the ISD opcodes of the same name. The output is GR128.
90 // Input operands may be GR64 or GR32, depending on the instruction.
96 // Add/subtract with overflow/carry. These have the same operands as
97 // the corresponding standard operations, except with the carry flag
98 // replaced by a condition code value.
99 SADDO
, SSUBO
, UADDO
, USUBO
, ADDCARRY
, SUBCARRY
,
101 // Set the condition code from a boolean value in operand 0.
102 // Operand 1 is a mask of all condition-code values that may result of this
103 // operation, operand 2 is a mask of condition-code values that may result
104 // if the boolean is true.
105 // Note that this operation is always optimized away, we will never
106 // generate any code for it.
109 // Use a series of MVCs to copy bytes from one memory location to another.
111 // - the target address
112 // - the source address
113 // - the constant length
115 // This isn't a memory opcode because we'd need to attach two
116 // MachineMemOperands rather than one.
119 // Like MVC, but implemented as a loop that handles X*256 bytes
120 // followed by straight-line code to handle the rest (if any).
121 // The value of X is passed as an additional operand.
124 // Similar to MVC and MVC_LOOP, but for logic operations (AND, OR, XOR).
132 // Use CLC to compare two blocks of memory, with the same comments
133 // as for MVC and MVC_LOOP.
137 // Use an MVST-based sequence to implement stpcpy().
140 // Use a CLST-based sequence to implement strcmp(). The two input operands
141 // are the addresses of the strings to compare.
144 // Use an SRST-based sequence to search a block of memory. The first
145 // operand is the end address, the second is the start, and the third
146 // is the character to search for. CC is set to 1 on success and 2
150 // Store the CC value in bits 29 and 28 of an integer.
153 // Compiler barrier only; generate a no-op.
156 // Transaction begin. The first operand is the chain, the second
157 // the TDB pointer, and the third the immediate control field.
158 // Returns CC value and chain.
162 // Transaction end. Just the chain operand. Returns CC value and chain.
165 // Create a vector constant by filling byte N of the result with bit
166 // 15-N of the single operand.
169 // Create a vector constant by replicating an element-sized RISBG-style mask.
170 // The first operand specifies the starting set bit and the second operand
171 // specifies the ending set bit. Both operands count from the MSB of the
175 // Replicate a GPR scalar value into all elements of a vector.
178 // Create a vector from two i64 GPRs.
181 // Replicate one element of a vector into all elements. The first operand
182 // is the vector and the second is the index of the element to replicate.
185 // Interleave elements from the high half of operand 0 and the high half
189 // Likewise for the low halves.
192 // Concatenate the vectors in the first two operands, shift them left
193 // by the third operand, and take the first half of the result.
196 // Take one element of the first v2i64 operand and the one element of
197 // the second v2i64 operand and concatenate them to form a v2i64 result.
198 // The third operand is a 4-bit value of the form 0A0B, where A and B
199 // are the element selectors for the first operand and second operands
203 // Perform a general vector permute on vector operands 0 and 1.
204 // Each byte of operand 2 controls the corresponding byte of the result,
205 // in the same way as a byte-level VECTOR_SHUFFLE mask.
208 // Pack vector operands 0 and 1 into a single vector with half-sized elements.
211 // Likewise, but saturate the result and set CC. PACKS_CC does signed
212 // saturation and PACKLS_CC does unsigned saturation.
216 // Unpack the first half of vector operand 0 into double-sized elements.
217 // UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends.
221 // Likewise for the second half.
225 // Shift each element of vector operand 0 by the number of bits specified
226 // by scalar operand 1.
231 // For each element of the output type, sum across all sub-elements of
232 // operand 0 belonging to the corresponding element, and add in the
233 // rightmost sub-element of the corresponding element of operand 1.
236 // Compare integer vector operands 0 and 1 to produce the usual 0/-1
237 // vector result. VICMPE is for equality, VICMPH for "signed greater than"
238 // and VICMPHL for "unsigned greater than".
243 // Likewise, but also set the condition codes on the result.
248 // Compare floating-point vector operands 0 and 1 to preoduce the usual 0/-1
249 // vector result. VFCMPE is for "ordered and equal", VFCMPH for "ordered and
250 // greater than" and VFCMPHE for "ordered and greater than or equal to".
255 // Likewise, but also set the condition codes on the result.
260 // Test floating-point data class for vectors.
263 // Extend the even f32 elements of vector operand 0 to produce a vector
267 // Round the f64 elements of vector operand 0 to f32s and store them in the
268 // even elements of the result.
271 // AND the two vector operands together and set CC based on the result.
274 // String operations that set CC as a side-effect.
289 // Operand 0: the value to test
290 // Operand 1: the bit mask
293 // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
296 // Operand 0: the address of the containing 32-bit-aligned field
297 // Operand 1: the second operand of <op>, in the high bits of an i32
298 // for everything except ATOMIC_SWAPW
299 // Operand 2: how many bits to rotate the i32 left to bring the first
300 // operand into the high bits
301 // Operand 3: the negative of operand 2, for rotating the other way
302 // Operand 4: the width of the field in bits (8 or 16)
303 ATOMIC_SWAPW
= ISD::FIRST_TARGET_MEMORY_OPCODE
,
315 // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
317 // Operand 0: the address of the containing 32-bit-aligned field
318 // Operand 1: the compare value, in the low bits of an i32
319 // Operand 2: the swap value, in the low bits of an i32
320 // Operand 3: how many bits to rotate the i32 left to bring the first
321 // operand into the high bits
322 // Operand 4: the negative of operand 2, for rotating the other way
323 // Operand 5: the width of the field in bits (8 or 16)
326 // Atomic compare-and-swap returning CC value.
327 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
330 // 128-bit atomic load.
331 // Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr)
334 // 128-bit atomic store.
335 // OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr)
338 // 128-bit atomic compare-and-swap.
339 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
342 // Byte swapping load/store. Same operands as regular load/store.
345 // Element swapping load/store. Same operands as regular load/store.
348 // Prefetch from the second operand using the 4-bit control code in
349 // the first operand. The code is 1 for a load prefetch and 2 for
354 // Return true if OPCODE is some kind of PC-relative address.
355 inline bool isPCREL(unsigned Opcode
) {
356 return Opcode
== PCREL_WRAPPER
|| Opcode
== PCREL_OFFSET
;
358 } // end namespace SystemZISD
360 namespace SystemZICMP
{
361 // Describes whether an integer comparison needs to be signed or unsigned,
362 // or whether either type is OK.
368 } // end namespace SystemZICMP
370 class SystemZSubtarget
;
371 class SystemZTargetMachine
;
373 class SystemZTargetLowering
: public TargetLowering
{
375 explicit SystemZTargetLowering(const TargetMachine
&TM
,
376 const SystemZSubtarget
&STI
);
378 // Override TargetLowering.
379 MVT
getScalarShiftAmountTy(const DataLayout
&, EVT
) const override
{
382 MVT
getVectorIdxTy(const DataLayout
&DL
) const override
{
383 // Only the lower 12 bits of an element index are used, so we don't
384 // want to clobber the upper 32 bits of a GPR unnecessarily.
387 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT
)
389 // Widen subvectors to the full width rather than promoting integer
390 // elements. This is better because:
392 // (a) it means that we can handle the ABI for passing and returning
393 // sub-128 vectors without having to handle them as legal types.
395 // (b) we don't have instructions to extend on load and truncate on store,
396 // so promoting the integers is less efficient.
398 // (c) there are no multiplication instructions for the widest integer
400 if (VT
.getScalarSizeInBits() % 8 == 0)
401 return TypeWidenVector
;
402 return TargetLoweringBase::getPreferredVectorAction(VT
);
404 bool isCheapToSpeculateCtlz() const override
{ return true; }
405 EVT
getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
407 bool isFMAFasterThanFMulAndFAdd(EVT VT
) const override
;
408 bool isFPImmLegal(const APFloat
&Imm
, EVT VT
,
409 bool ForCodeSize
) const override
;
410 bool isLegalICmpImmediate(int64_t Imm
) const override
;
411 bool isLegalAddImmediate(int64_t Imm
) const override
;
412 bool isLegalAddressingMode(const DataLayout
&DL
, const AddrMode
&AM
, Type
*Ty
,
414 Instruction
*I
= nullptr) const override
;
415 bool allowsMisalignedMemoryAccesses(EVT VT
, unsigned AS
,
417 MachineMemOperand::Flags Flags
,
418 bool *Fast
) const override
;
419 bool isTruncateFree(Type
*, Type
*) const override
;
420 bool isTruncateFree(EVT
, EVT
) const override
;
421 const char *getTargetNodeName(unsigned Opcode
) const override
;
422 std::pair
<unsigned, const TargetRegisterClass
*>
423 getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
424 StringRef Constraint
, MVT VT
) const override
;
425 TargetLowering::ConstraintType
426 getConstraintType(StringRef Constraint
) const override
;
427 TargetLowering::ConstraintWeight
428 getSingleConstraintMatchWeight(AsmOperandInfo
&info
,
429 const char *constraint
) const override
;
430 void LowerAsmOperandForConstraint(SDValue Op
,
431 std::string
&Constraint
,
432 std::vector
<SDValue
> &Ops
,
433 SelectionDAG
&DAG
) const override
;
435 unsigned getInlineAsmMemConstraint(StringRef ConstraintCode
) const override
{
436 if (ConstraintCode
.size() == 1) {
437 switch(ConstraintCode
[0]) {
441 return InlineAsm::Constraint_o
;
443 return InlineAsm::Constraint_Q
;
445 return InlineAsm::Constraint_R
;
447 return InlineAsm::Constraint_S
;
449 return InlineAsm::Constraint_T
;
452 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode
);
455 /// If a physical register, this returns the register that receives the
456 /// exception address on entry to an EH pad.
458 getExceptionPointerRegister(const Constant
*PersonalityFn
) const override
{
462 /// If a physical register, this returns the register that receives the
463 /// exception typeid on entry to a landing pad.
465 getExceptionSelectorRegister(const Constant
*PersonalityFn
) const override
{
469 /// Override to support customized stack guard loading.
470 bool useLoadStackGuardNode() const override
{
473 void insertSSPDeclarations(Module
&M
) const override
{
477 EmitInstrWithCustomInserter(MachineInstr
&MI
,
478 MachineBasicBlock
*BB
) const override
;
479 SDValue
LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const override
;
480 void LowerOperationWrapper(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
481 SelectionDAG
&DAG
) const override
;
482 void ReplaceNodeResults(SDNode
*N
, SmallVectorImpl
<SDValue
>&Results
,
483 SelectionDAG
&DAG
) const override
;
484 const MCPhysReg
*getScratchRegisters(CallingConv::ID CC
) const override
;
485 bool allowTruncateForTailCall(Type
*, Type
*) const override
;
486 bool mayBeEmittedAsTailCall(const CallInst
*CI
) const override
;
487 SDValue
LowerFormalArguments(SDValue Chain
, CallingConv::ID CallConv
,
489 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
490 const SDLoc
&DL
, SelectionDAG
&DAG
,
491 SmallVectorImpl
<SDValue
> &InVals
) const override
;
492 SDValue
LowerCall(CallLoweringInfo
&CLI
,
493 SmallVectorImpl
<SDValue
> &InVals
) const override
;
495 bool CanLowerReturn(CallingConv::ID CallConv
, MachineFunction
&MF
,
497 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
498 LLVMContext
&Context
) const override
;
499 SDValue
LowerReturn(SDValue Chain
, CallingConv::ID CallConv
, bool IsVarArg
,
500 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
501 const SmallVectorImpl
<SDValue
> &OutVals
, const SDLoc
&DL
,
502 SelectionDAG
&DAG
) const override
;
503 SDValue
PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const override
;
505 /// Determine which of the bits specified in Mask are known to be either
506 /// zero or one and return them in the KnownZero/KnownOne bitsets.
507 void computeKnownBitsForTargetNode(const SDValue Op
,
509 const APInt
&DemandedElts
,
510 const SelectionDAG
&DAG
,
511 unsigned Depth
= 0) const override
;
513 /// Determine the number of bits in the operation that are sign bits.
514 unsigned ComputeNumSignBitsForTargetNode(SDValue Op
,
515 const APInt
&DemandedElts
,
516 const SelectionDAG
&DAG
,
517 unsigned Depth
) const override
;
519 ISD::NodeType
getExtendForAtomicOps() const override
{
520 return ISD::ANY_EXTEND
;
523 bool supportSwiftError() const override
{
528 const SystemZSubtarget
&Subtarget
;
530 // Implement LowerOperation for individual opcodes.
531 SDValue
getVectorCmp(SelectionDAG
&DAG
, unsigned Opcode
,
532 const SDLoc
&DL
, EVT VT
,
533 SDValue CmpOp0
, SDValue CmpOp1
) const;
534 SDValue
lowerVectorSETCC(SelectionDAG
&DAG
, const SDLoc
&DL
,
535 EVT VT
, ISD::CondCode CC
,
536 SDValue CmpOp0
, SDValue CmpOp1
) const;
537 SDValue
lowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const;
538 SDValue
lowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const;
539 SDValue
lowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const;
540 SDValue
lowerGlobalAddress(GlobalAddressSDNode
*Node
,
541 SelectionDAG
&DAG
) const;
542 SDValue
lowerTLSGetOffset(GlobalAddressSDNode
*Node
,
543 SelectionDAG
&DAG
, unsigned Opcode
,
544 SDValue GOTOffset
) const;
545 SDValue
lowerThreadPointer(const SDLoc
&DL
, SelectionDAG
&DAG
) const;
546 SDValue
lowerGlobalTLSAddress(GlobalAddressSDNode
*Node
,
547 SelectionDAG
&DAG
) const;
548 SDValue
lowerBlockAddress(BlockAddressSDNode
*Node
,
549 SelectionDAG
&DAG
) const;
550 SDValue
lowerJumpTable(JumpTableSDNode
*JT
, SelectionDAG
&DAG
) const;
551 SDValue
lowerConstantPool(ConstantPoolSDNode
*CP
, SelectionDAG
&DAG
) const;
552 SDValue
lowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const;
553 SDValue
lowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
554 SDValue
lowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const;
555 SDValue
lowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) const;
556 SDValue
lowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const;
557 SDValue
lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op
, SelectionDAG
&DAG
) const;
558 SDValue
lowerSMUL_LOHI(SDValue Op
, SelectionDAG
&DAG
) const;
559 SDValue
lowerUMUL_LOHI(SDValue Op
, SelectionDAG
&DAG
) const;
560 SDValue
lowerSDIVREM(SDValue Op
, SelectionDAG
&DAG
) const;
561 SDValue
lowerUDIVREM(SDValue Op
, SelectionDAG
&DAG
) const;
562 SDValue
lowerXALUO(SDValue Op
, SelectionDAG
&DAG
) const;
563 SDValue
lowerADDSUBCARRY(SDValue Op
, SelectionDAG
&DAG
) const;
564 SDValue
lowerBITCAST(SDValue Op
, SelectionDAG
&DAG
) const;
565 SDValue
lowerOR(SDValue Op
, SelectionDAG
&DAG
) const;
566 SDValue
lowerCTPOP(SDValue Op
, SelectionDAG
&DAG
) const;
567 SDValue
lowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
) const;
568 SDValue
lowerATOMIC_LOAD(SDValue Op
, SelectionDAG
&DAG
) const;
569 SDValue
lowerATOMIC_STORE(SDValue Op
, SelectionDAG
&DAG
) const;
570 SDValue
lowerATOMIC_LOAD_OP(SDValue Op
, SelectionDAG
&DAG
,
571 unsigned Opcode
) const;
572 SDValue
lowerATOMIC_LOAD_SUB(SDValue Op
, SelectionDAG
&DAG
) const;
573 SDValue
lowerATOMIC_CMP_SWAP(SDValue Op
, SelectionDAG
&DAG
) const;
574 SDValue
lowerSTACKSAVE(SDValue Op
, SelectionDAG
&DAG
) const;
575 SDValue
lowerSTACKRESTORE(SDValue Op
, SelectionDAG
&DAG
) const;
576 SDValue
lowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
) const;
577 SDValue
lowerINTRINSIC_W_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const;
578 SDValue
lowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const;
579 bool isVectorElementLoad(SDValue Op
) const;
580 SDValue
buildVector(SelectionDAG
&DAG
, const SDLoc
&DL
, EVT VT
,
581 SmallVectorImpl
<SDValue
> &Elems
) const;
582 SDValue
lowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
583 SDValue
lowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) const;
584 SDValue
lowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
585 SDValue
lowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
586 SDValue
lowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
587 SDValue
lowerExtendVectorInreg(SDValue Op
, SelectionDAG
&DAG
,
588 unsigned UnpackHigh
) const;
589 SDValue
lowerShift(SDValue Op
, SelectionDAG
&DAG
, unsigned ByScalar
) const;
591 bool canTreatAsByteVector(EVT VT
) const;
592 SDValue
combineExtract(const SDLoc
&DL
, EVT ElemVT
, EVT VecVT
, SDValue OrigOp
,
593 unsigned Index
, DAGCombinerInfo
&DCI
,
595 SDValue
combineTruncateExtract(const SDLoc
&DL
, EVT TruncVT
, SDValue Op
,
596 DAGCombinerInfo
&DCI
) const;
597 SDValue
combineZERO_EXTEND(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
598 SDValue
combineSIGN_EXTEND(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
599 SDValue
combineSIGN_EXTEND_INREG(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
600 SDValue
combineMERGE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
601 bool canLoadStoreByteSwapped(EVT VT
) const;
602 SDValue
combineLOAD(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
603 SDValue
combineSTORE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
604 SDValue
combineVECTOR_SHUFFLE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
605 SDValue
combineEXTRACT_VECTOR_ELT(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
606 SDValue
combineJOIN_DWORDS(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
607 SDValue
combineFP_ROUND(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
608 SDValue
combineFP_EXTEND(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
609 SDValue
combineBSWAP(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
610 SDValue
combineBR_CCMASK(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
611 SDValue
combineSELECT_CCMASK(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
612 SDValue
combineGET_CCMASK(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
613 SDValue
combineIntDIVREM(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
615 SDValue
unwrapAddress(SDValue N
) const override
;
617 // If the last instruction before MBBI in MBB was some form of COMPARE,
618 // try to replace it with a COMPARE AND BRANCH just before MBBI.
619 // CCMask and Target are the BRC-like operands for the branch.
620 // Return true if the change was made.
621 bool convertPrevCompareToBranch(MachineBasicBlock
*MBB
,
622 MachineBasicBlock::iterator MBBI
,
624 MachineBasicBlock
*Target
) const;
626 // Implement EmitInstrWithCustomInserter for individual operation types.
627 MachineBasicBlock
*emitSelect(MachineInstr
&MI
, MachineBasicBlock
*BB
) const;
628 MachineBasicBlock
*emitCondStore(MachineInstr
&MI
, MachineBasicBlock
*BB
,
629 unsigned StoreOpcode
, unsigned STOCOpcode
,
631 MachineBasicBlock
*emitPair128(MachineInstr
&MI
,
632 MachineBasicBlock
*MBB
) const;
633 MachineBasicBlock
*emitExt128(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
634 bool ClearEven
) const;
635 MachineBasicBlock
*emitAtomicLoadBinary(MachineInstr
&MI
,
636 MachineBasicBlock
*BB
,
637 unsigned BinOpcode
, unsigned BitSize
,
638 bool Invert
= false) const;
639 MachineBasicBlock
*emitAtomicLoadMinMax(MachineInstr
&MI
,
640 MachineBasicBlock
*MBB
,
641 unsigned CompareOpcode
,
642 unsigned KeepOldMask
,
643 unsigned BitSize
) const;
644 MachineBasicBlock
*emitAtomicCmpSwapW(MachineInstr
&MI
,
645 MachineBasicBlock
*BB
) const;
646 MachineBasicBlock
*emitMemMemWrapper(MachineInstr
&MI
, MachineBasicBlock
*BB
,
647 unsigned Opcode
) const;
648 MachineBasicBlock
*emitStringWrapper(MachineInstr
&MI
, MachineBasicBlock
*BB
,
649 unsigned Opcode
) const;
650 MachineBasicBlock
*emitTransactionBegin(MachineInstr
&MI
,
651 MachineBasicBlock
*MBB
,
652 unsigned Opcode
, bool NoFloat
) const;
653 MachineBasicBlock
*emitLoadAndTestCmp0(MachineInstr
&MI
,
654 MachineBasicBlock
*MBB
,
655 unsigned Opcode
) const;
657 MachineMemOperand::Flags
getMMOFlags(const Instruction
&I
) const override
;
658 const TargetRegisterClass
*getRepRegClassFor(MVT VT
) const override
;
661 struct SystemZVectorConstantInfo
{
663 APInt IntBits
; // The 128 bits as an integer.
664 APInt SplatBits
; // Smallest splat value.
665 APInt SplatUndef
; // Bits correspoding to undef operands of the BVN.
666 unsigned SplatBitSize
= 0;
667 bool isFP128
= false;
671 SmallVector
<unsigned, 2> OpVals
;
673 SystemZVectorConstantInfo(APFloat FPImm
);
674 SystemZVectorConstantInfo(BuildVectorSDNode
*BVN
);
675 bool isVectorConstantLegal(const SystemZSubtarget
&Subtarget
);
678 } // end namespace llvm