[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Target / SystemZ / SystemZTargetMachine.cpp
blob20865037fe3858e3779cf46341d74b2ed5926a56
1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "SystemZTargetMachine.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "SystemZ.h"
12 #include "SystemZMachineScheduler.h"
13 #include "SystemZTargetTransformInfo.h"
14 #include "TargetInfo/SystemZTargetInfo.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/Support/CodeGen.h"
25 #include "llvm/Support/TargetRegistry.h"
26 #include "llvm/Target/TargetLoweringObjectFile.h"
27 #include "llvm/Transforms/Scalar.h"
28 #include <string>
30 using namespace llvm;
32 extern "C" void LLVMInitializeSystemZTarget() {
33 // Register the target.
34 RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
37 // Determine whether we use the vector ABI.
38 static bool UsesVectorABI(StringRef CPU, StringRef FS) {
39 // We use the vector ABI whenever the vector facility is avaiable.
40 // This is the case by default if CPU is z13 or later, and can be
41 // overridden via "[+-]vector" feature string elements.
42 bool VectorABI = true;
43 if (CPU.empty() || CPU == "generic" ||
44 CPU == "z10" || CPU == "z196" || CPU == "zEC12")
45 VectorABI = false;
47 SmallVector<StringRef, 3> Features;
48 FS.split(Features, ',', -1, false /* KeepEmpty */);
49 for (auto &Feature : Features) {
50 if (Feature == "vector" || Feature == "+vector")
51 VectorABI = true;
52 if (Feature == "-vector")
53 VectorABI = false;
56 return VectorABI;
59 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
60 StringRef FS) {
61 bool VectorABI = UsesVectorABI(CPU, FS);
62 std::string Ret;
64 // Big endian.
65 Ret += "E";
67 // Data mangling.
68 Ret += DataLayout::getManglingComponent(TT);
70 // Make sure that global data has at least 16 bits of alignment by
71 // default, so that we can refer to it using LARL. We don't have any
72 // special requirements for stack variables though.
73 Ret += "-i1:8:16-i8:8:16";
75 // 64-bit integers are naturally aligned.
76 Ret += "-i64:64";
78 // 128-bit floats are aligned only to 64 bits.
79 Ret += "-f128:64";
81 // When using the vector ABI, 128-bit vectors are also aligned to 64 bits.
82 if (VectorABI)
83 Ret += "-v128:64";
85 // We prefer 16 bits of aligned for all globals; see above.
86 Ret += "-a:8:16";
88 // Integer registers are 32 or 64 bits.
89 Ret += "-n32:64";
91 return Ret;
94 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
95 // Static code is suitable for use in a dynamic executable; there is no
96 // separate DynamicNoPIC model.
97 if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC)
98 return Reloc::Static;
99 return *RM;
102 // For SystemZ we define the models as follows:
104 // Small: BRASL can call any function and will use a stub if necessary.
105 // Locally-binding symbols will always be in range of LARL.
107 // Medium: BRASL can call any function and will use a stub if necessary.
108 // GOT slots and locally-defined text will always be in range
109 // of LARL, but other symbols might not be.
111 // Large: Equivalent to Medium for now.
113 // Kernel: Equivalent to Medium for now.
115 // This means that any PIC module smaller than 4GB meets the
116 // requirements of Small, so Small seems like the best default there.
118 // All symbols bind locally in a non-PIC module, so the choice is less
119 // obvious. There are two cases:
121 // - When creating an executable, PLTs and copy relocations allow
122 // us to treat external symbols as part of the executable.
123 // Any executable smaller than 4GB meets the requirements of Small,
124 // so that seems like the best default.
126 // - When creating JIT code, stubs will be in range of BRASL if the
127 // image is less than 4GB in size. GOT entries will likewise be
128 // in range of LARL. However, the JIT environment has no equivalent
129 // of copy relocs, so locally-binding data symbols might not be in
130 // the range of LARL. We need the Medium model in that case.
131 static CodeModel::Model
132 getEffectiveSystemZCodeModel(Optional<CodeModel::Model> CM, Reloc::Model RM,
133 bool JIT) {
134 if (CM) {
135 if (*CM == CodeModel::Tiny)
136 report_fatal_error("Target does not support the tiny CodeModel", false);
137 if (*CM == CodeModel::Kernel)
138 report_fatal_error("Target does not support the kernel CodeModel", false);
139 return *CM;
141 if (JIT)
142 return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
143 return CodeModel::Small;
146 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
147 StringRef CPU, StringRef FS,
148 const TargetOptions &Options,
149 Optional<Reloc::Model> RM,
150 Optional<CodeModel::Model> CM,
151 CodeGenOpt::Level OL, bool JIT)
152 : LLVMTargetMachine(
153 T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options,
154 getEffectiveRelocModel(RM),
155 getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
156 OL),
157 TLOF(std::make_unique<TargetLoweringObjectFileELF>()),
158 Subtarget(TT, CPU, FS, *this) {
159 initAsmInfo();
162 SystemZTargetMachine::~SystemZTargetMachine() = default;
164 namespace {
166 /// SystemZ Code Generator Pass Configuration Options.
167 class SystemZPassConfig : public TargetPassConfig {
168 public:
169 SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
170 : TargetPassConfig(TM, PM) {}
172 SystemZTargetMachine &getSystemZTargetMachine() const {
173 return getTM<SystemZTargetMachine>();
176 ScheduleDAGInstrs *
177 createPostMachineScheduler(MachineSchedContext *C) const override {
178 return new ScheduleDAGMI(C,
179 std::make_unique<SystemZPostRASchedStrategy>(C),
180 /*RemoveKillFlags=*/true);
183 void addIRPasses() override;
184 bool addInstSelector() override;
185 bool addILPOpts() override;
186 void addPostRewrite() override;
187 void addPostRegAlloc() override;
188 void addPreSched2() override;
189 void addPreEmitPass() override;
192 } // end anonymous namespace
194 void SystemZPassConfig::addIRPasses() {
195 if (getOptLevel() != CodeGenOpt::None) {
196 addPass(createSystemZTDCPass());
197 addPass(createLoopDataPrefetchPass());
200 TargetPassConfig::addIRPasses();
203 bool SystemZPassConfig::addInstSelector() {
204 addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
206 if (getOptLevel() != CodeGenOpt::None)
207 addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
209 return false;
212 bool SystemZPassConfig::addILPOpts() {
213 addPass(&EarlyIfConverterID);
214 return true;
217 void SystemZPassConfig::addPostRewrite() {
218 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
221 void SystemZPassConfig::addPostRegAlloc() {
222 // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
223 // is not called).
224 if (getOptLevel() == CodeGenOpt::None)
225 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
228 void SystemZPassConfig::addPreSched2() {
229 if (getOptLevel() != CodeGenOpt::None)
230 addPass(&IfConverterID);
233 void SystemZPassConfig::addPreEmitPass() {
234 // Do instruction shortening before compare elimination because some
235 // vector instructions will be shortened into opcodes that compare
236 // elimination recognizes.
237 if (getOptLevel() != CodeGenOpt::None)
238 addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
240 // We eliminate comparisons here rather than earlier because some
241 // transformations can change the set of available CC values and we
242 // generally want those transformations to have priority. This is
243 // especially true in the commonest case where the result of the comparison
244 // is used by a single in-range branch instruction, since we will then
245 // be able to fuse the compare and the branch instead.
247 // For example, two-address NILF can sometimes be converted into
248 // three-address RISBLG. NILF produces a CC value that indicates whether
249 // the low word is zero, but RISBLG does not modify CC at all. On the
250 // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
251 // The CC value produced by NILL isn't useful for our purposes, but the
252 // value produced by RISBG can be used for any comparison with zero
253 // (not just equality). So there are some transformations that lose
254 // CC values (while still being worthwhile) and others that happen to make
255 // the CC result more useful than it was originally.
257 // Another reason is that we only want to use BRANCH ON COUNT in cases
258 // where we know that the count register is not going to be spilled.
260 // Doing it so late makes it more likely that a register will be reused
261 // between the comparison and the branch, but it isn't clear whether
262 // preventing that would be a win or not.
263 if (getOptLevel() != CodeGenOpt::None)
264 addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
265 addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
267 // Do final scheduling after all other optimizations, to get an
268 // optimal input for the decoder (branch relaxation must happen
269 // after block placement).
270 if (getOptLevel() != CodeGenOpt::None)
271 addPass(&PostMachineSchedulerID);
274 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
275 return new SystemZPassConfig(*this, PM);
278 TargetTransformInfo
279 SystemZTargetMachine::getTargetTransformInfo(const Function &F) {
280 return TargetTransformInfo(SystemZTTIImpl(this, F));