[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Target / X86 / MCTargetDesc / X86MCCodeEmitter.cpp
blobac36bf3a12fa8eb4db3805d12e3a22c71d75efb1
1 //===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the X86MCCodeEmitter class.
11 //===----------------------------------------------------------------------===//
13 #include "MCTargetDesc/X86BaseInfo.h"
14 #include "MCTargetDesc/X86FixupKinds.h"
15 #include "MCTargetDesc/X86MCTargetDesc.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/MC/MCCodeEmitter.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCExpr.h"
20 #include "llvm/MC/MCFixup.h"
21 #include "llvm/MC/MCInst.h"
22 #include "llvm/MC/MCInstrDesc.h"
23 #include "llvm/MC/MCInstrInfo.h"
24 #include "llvm/MC/MCRegisterInfo.h"
25 #include "llvm/MC/MCSubtargetInfo.h"
26 #include "llvm/MC/MCSymbol.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <cassert>
30 #include <cstdint>
31 #include <cstdlib>
33 using namespace llvm;
35 #define DEBUG_TYPE "mccodeemitter"
37 namespace {
39 class X86MCCodeEmitter : public MCCodeEmitter {
40 const MCInstrInfo &MCII;
41 MCContext &Ctx;
43 public:
44 X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
45 : MCII(mcii), Ctx(ctx) {
47 X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
48 X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete;
49 ~X86MCCodeEmitter() override = default;
51 bool is64BitMode(const MCSubtargetInfo &STI) const {
52 return STI.getFeatureBits()[X86::Mode64Bit];
55 bool is32BitMode(const MCSubtargetInfo &STI) const {
56 return STI.getFeatureBits()[X86::Mode32Bit];
59 bool is16BitMode(const MCSubtargetInfo &STI) const {
60 return STI.getFeatureBits()[X86::Mode16Bit];
63 /// Is16BitMemOperand - Return true if the specified instruction has
64 /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
65 bool Is16BitMemOperand(const MCInst &MI, unsigned Op,
66 const MCSubtargetInfo &STI) const {
67 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
68 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
69 const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
71 if (is16BitMode(STI) && BaseReg.getReg() == 0 &&
72 Disp.isImm() && Disp.getImm() < 0x10000)
73 return true;
74 if ((BaseReg.getReg() != 0 &&
75 X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
76 (IndexReg.getReg() != 0 &&
77 X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
78 return true;
79 return false;
82 unsigned GetX86RegNum(const MCOperand &MO) const {
83 return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
86 unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const {
87 return Ctx.getRegisterInfo()->getEncodingValue(
88 MI.getOperand(OpNum).getReg());
91 // Does this register require a bit to be set in REX prefix.
92 bool isREXExtendedReg(const MCInst &MI, unsigned OpNum) const {
93 return (getX86RegEncoding(MI, OpNum) >> 3) & 1;
96 void EmitByte(uint8_t C, unsigned &CurByte, raw_ostream &OS) const {
97 OS << (char)C;
98 ++CurByte;
101 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
102 raw_ostream &OS) const {
103 // Output the constant in little endian byte order.
104 for (unsigned i = 0; i != Size; ++i) {
105 EmitByte(Val & 255, CurByte, OS);
106 Val >>= 8;
110 void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
111 unsigned ImmSize, MCFixupKind FixupKind,
112 unsigned &CurByte, raw_ostream &OS,
113 SmallVectorImpl<MCFixup> &Fixups,
114 int ImmOffset = 0) const;
116 static uint8_t ModRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) {
117 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
118 return RM | (RegOpcode << 3) | (Mod << 6);
121 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
122 unsigned &CurByte, raw_ostream &OS) const {
123 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
126 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
127 unsigned &CurByte, raw_ostream &OS) const {
128 // SIB byte is in the same format as the ModRMByte.
129 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
132 void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField,
133 uint64_t TSFlags, bool Rex, unsigned &CurByte,
134 raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups,
135 const MCSubtargetInfo &STI) const;
137 void encodeInstruction(const MCInst &MI, raw_ostream &OS,
138 SmallVectorImpl<MCFixup> &Fixups,
139 const MCSubtargetInfo &STI) const override;
141 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
142 const MCInst &MI, const MCInstrDesc &Desc,
143 raw_ostream &OS) const;
145 void EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
146 const MCInst &MI, raw_ostream &OS) const;
148 bool emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
149 const MCInst &MI, const MCInstrDesc &Desc,
150 const MCSubtargetInfo &STI, raw_ostream &OS) const;
152 uint8_t DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
153 int MemOperand, const MCInstrDesc &Desc) const;
155 bool isPCRel32Branch(const MCInst &MI) const;
158 } // end anonymous namespace
160 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
161 /// sign-extended field.
162 static bool isDisp8(int Value) {
163 return Value == (int8_t)Value;
166 /// isCDisp8 - Return true if this signed displacement fits in a 8-bit
167 /// compressed dispacement field.
168 static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
169 assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) &&
170 "Compressed 8-bit displacement is only valid for EVEX inst.");
172 unsigned CD8_Scale =
173 (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
174 if (CD8_Scale == 0) {
175 CValue = Value;
176 return isDisp8(Value);
179 unsigned Mask = CD8_Scale - 1;
180 assert((CD8_Scale & Mask) == 0 && "Invalid memory object size.");
181 if (Value & Mask) // Unaligned offset
182 return false;
183 Value /= (int)CD8_Scale;
184 bool Ret = (Value == (int8_t)Value);
186 if (Ret)
187 CValue = Value;
188 return Ret;
191 /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
192 /// in an instruction with the specified TSFlags.
193 static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
194 unsigned Size = X86II::getSizeOfImm(TSFlags);
195 bool isPCRel = X86II::isImmPCRel(TSFlags);
197 if (X86II::isImmSigned(TSFlags)) {
198 switch (Size) {
199 default: llvm_unreachable("Unsupported signed fixup size!");
200 case 4: return MCFixupKind(X86::reloc_signed_4byte);
203 return MCFixup::getKindForSize(Size, isPCRel);
206 /// Is32BitMemOperand - Return true if the specified instruction has
207 /// a 32-bit memory operand. Op specifies the operand # of the memoperand.
208 static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
209 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
210 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
212 if ((BaseReg.getReg() != 0 &&
213 X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
214 (IndexReg.getReg() != 0 &&
215 X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
216 return true;
217 if (BaseReg.getReg() == X86::EIP) {
218 assert(IndexReg.getReg() == 0 && "Invalid eip-based address.");
219 return true;
221 if (IndexReg.getReg() == X86::EIZ)
222 return true;
223 return false;
226 /// Is64BitMemOperand - Return true if the specified instruction has
227 /// a 64-bit memory operand. Op specifies the operand # of the memoperand.
228 #ifndef NDEBUG
229 static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
230 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
231 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
233 if ((BaseReg.getReg() != 0 &&
234 X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
235 (IndexReg.getReg() != 0 &&
236 X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
237 return true;
238 return false;
240 #endif
242 /// StartsWithGlobalOffsetTable - Check if this expression starts with
243 /// _GLOBAL_OFFSET_TABLE_ and if it is of the form
244 /// _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
245 /// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
246 /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
247 /// of a binary expression.
248 enum GlobalOffsetTableExprKind {
249 GOT_None,
250 GOT_Normal,
251 GOT_SymDiff
253 static GlobalOffsetTableExprKind
254 StartsWithGlobalOffsetTable(const MCExpr *Expr) {
255 const MCExpr *RHS = nullptr;
256 if (Expr->getKind() == MCExpr::Binary) {
257 const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
258 Expr = BE->getLHS();
259 RHS = BE->getRHS();
262 if (Expr->getKind() != MCExpr::SymbolRef)
263 return GOT_None;
265 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
266 const MCSymbol &S = Ref->getSymbol();
267 if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
268 return GOT_None;
269 if (RHS && RHS->getKind() == MCExpr::SymbolRef)
270 return GOT_SymDiff;
271 return GOT_Normal;
274 static bool HasSecRelSymbolRef(const MCExpr *Expr) {
275 if (Expr->getKind() == MCExpr::SymbolRef) {
276 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
277 return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
279 return false;
282 bool X86MCCodeEmitter::isPCRel32Branch(const MCInst &MI) const {
283 unsigned Opcode = MI.getOpcode();
284 const MCInstrDesc &Desc = MCII.get(Opcode);
285 if ((Opcode != X86::CALL64pcrel32 && Opcode != X86::JMP_4) ||
286 getImmFixupKind(Desc.TSFlags) != FK_PCRel_4)
287 return false;
289 unsigned CurOp = X86II::getOperandBias(Desc);
290 const MCOperand &Op = MI.getOperand(CurOp);
291 if (!Op.isExpr())
292 return false;
294 const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Op.getExpr());
295 return Ref && Ref->getKind() == MCSymbolRefExpr::VK_None;
298 void X86MCCodeEmitter::
299 EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
300 MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
301 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
302 const MCExpr *Expr = nullptr;
303 if (DispOp.isImm()) {
304 // If this is a simple integer displacement that doesn't require a
305 // relocation, emit it now.
306 if (FixupKind != FK_PCRel_1 &&
307 FixupKind != FK_PCRel_2 &&
308 FixupKind != FK_PCRel_4) {
309 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
310 return;
312 Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
313 } else {
314 Expr = DispOp.getExpr();
317 // If we have an immoffset, add it to the expression.
318 if ((FixupKind == FK_Data_4 ||
319 FixupKind == FK_Data_8 ||
320 FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
321 GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
322 if (Kind != GOT_None) {
323 assert(ImmOffset == 0);
325 if (Size == 8) {
326 FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
327 } else {
328 assert(Size == 4);
329 FixupKind = MCFixupKind(X86::reloc_global_offset_table);
332 if (Kind == GOT_Normal)
333 ImmOffset = CurByte;
334 } else if (Expr->getKind() == MCExpr::SymbolRef) {
335 if (HasSecRelSymbolRef(Expr)) {
336 FixupKind = MCFixupKind(FK_SecRel_4);
338 } else if (Expr->getKind() == MCExpr::Binary) {
339 const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
340 if (HasSecRelSymbolRef(Bin->getLHS())
341 || HasSecRelSymbolRef(Bin->getRHS())) {
342 FixupKind = MCFixupKind(FK_SecRel_4);
347 // If the fixup is pc-relative, we need to bias the value to be relative to
348 // the start of the field, not the end of the field.
349 if (FixupKind == FK_PCRel_4 ||
350 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
351 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) ||
352 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) ||
353 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex) ||
354 FixupKind == MCFixupKind(X86::reloc_branch_4byte_pcrel)) {
355 ImmOffset -= 4;
356 // If this is a pc-relative load off _GLOBAL_OFFSET_TABLE_:
357 // leaq _GLOBAL_OFFSET_TABLE_(%rip), %r15
358 // this needs to be a GOTPC32 relocation.
359 if (StartsWithGlobalOffsetTable(Expr) != GOT_None)
360 FixupKind = MCFixupKind(X86::reloc_global_offset_table);
362 if (FixupKind == FK_PCRel_2)
363 ImmOffset -= 2;
364 if (FixupKind == FK_PCRel_1)
365 ImmOffset -= 1;
367 if (ImmOffset)
368 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
369 Ctx);
371 // Emit a symbolic constant as a fixup and 4 zeros.
372 Fixups.push_back(MCFixup::create(CurByte, Expr, FixupKind, Loc));
373 EmitConstant(0, Size, CurByte, OS);
376 void X86MCCodeEmitter::emitMemModRMByte(const MCInst &MI, unsigned Op,
377 unsigned RegOpcodeField,
378 uint64_t TSFlags, bool Rex,
379 unsigned &CurByte, raw_ostream &OS,
380 SmallVectorImpl<MCFixup> &Fixups,
381 const MCSubtargetInfo &STI) const {
382 const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
383 const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg);
384 const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt);
385 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
386 unsigned BaseReg = Base.getReg();
387 bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
389 // Handle %rip relative addressing.
390 if (BaseReg == X86::RIP ||
391 BaseReg == X86::EIP) { // [disp32+rIP] in X86-64 mode
392 assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode");
393 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
394 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
396 unsigned Opcode = MI.getOpcode();
397 // movq loads are handled with a special relocation form which allows the
398 // linker to eliminate some loads for GOT references which end up in the
399 // same linkage unit.
400 unsigned FixupKind = [=]() {
401 switch (Opcode) {
402 default:
403 return X86::reloc_riprel_4byte;
404 case X86::MOV64rm:
405 assert(Rex);
406 return X86::reloc_riprel_4byte_movq_load;
407 case X86::CALL64m:
408 case X86::JMP64m:
409 case X86::TAILJMPm64:
410 case X86::TEST64mr:
411 case X86::ADC64rm:
412 case X86::ADD64rm:
413 case X86::AND64rm:
414 case X86::CMP64rm:
415 case X86::OR64rm:
416 case X86::SBB64rm:
417 case X86::SUB64rm:
418 case X86::XOR64rm:
419 return Rex ? X86::reloc_riprel_4byte_relax_rex
420 : X86::reloc_riprel_4byte_relax;
422 }();
424 // rip-relative addressing is actually relative to the *next* instruction.
425 // Since an immediate can follow the mod/rm byte for an instruction, this
426 // means that we need to bias the displacement field of the instruction with
427 // the size of the immediate field. If we have this case, add it into the
428 // expression to emit.
429 // Note: rip-relative addressing using immediate displacement values should
430 // not be adjusted, assuming it was the user's intent.
431 int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags)
432 ? X86II::getSizeOfImm(TSFlags)
433 : 0;
435 EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
436 CurByte, OS, Fixups, -ImmSize);
437 return;
440 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
442 // 16-bit addressing forms of the ModR/M byte have a different encoding for
443 // the R/M field and are far more limited in which registers can be used.
444 if (Is16BitMemOperand(MI, Op, STI)) {
445 if (BaseReg) {
446 // For 32-bit addressing, the row and column values in Table 2-2 are
447 // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
448 // some special cases. And GetX86RegNum reflects that numbering.
449 // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
450 // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
451 // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
452 // while values 0-3 indicate the allowed combinations (base+index) of
453 // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
455 // R16Table[] is a lookup from the normal RegNo, to the row values from
456 // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
457 static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 };
458 unsigned RMfield = R16Table[BaseRegNo];
460 assert(RMfield && "invalid 16-bit base register");
462 if (IndexReg.getReg()) {
463 unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)];
465 assert(IndexReg16 && "invalid 16-bit index register");
466 // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
467 assert(((IndexReg16 ^ RMfield) & 2) &&
468 "invalid 16-bit base/index register combination");
469 assert(Scale.getImm() == 1 &&
470 "invalid scale for 16-bit memory reference");
472 // Allow base/index to appear in either order (although GAS doesn't).
473 if (IndexReg16 & 2)
474 RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
475 else
476 RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
479 if (Disp.isImm() && isDisp8(Disp.getImm())) {
480 if (Disp.getImm() == 0 && RMfield != 6) {
481 // There is no displacement; just the register.
482 EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
483 return;
485 // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
486 EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
487 EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
488 return;
490 // This is the [REG]+disp16 case.
491 EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
492 } else {
493 // There is no BaseReg; this is the plain [disp16] case.
494 EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS);
497 // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
498 EmitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
499 return;
502 // Determine whether a SIB byte is needed.
503 // If no BaseReg, issue a RIP relative instruction only if the MCE can
504 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
505 // 2-7) and absolute references.
507 if (// The SIB byte must be used if there is an index register.
508 IndexReg.getReg() == 0 &&
509 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
510 // encode to an R/M value of 4, which indicates that a SIB byte is
511 // present.
512 BaseRegNo != N86::ESP &&
513 // If there is no base register and we're in 64-bit mode, we need a SIB
514 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
515 (!is64BitMode(STI) || BaseReg != 0)) {
517 if (BaseReg == 0) { // [disp32] in X86-32 mode
518 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
519 EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
520 return;
523 // If the base is not EBP/ESP and there is no displacement, use simple
524 // indirect register encoding, this handles addresses like [EAX]. The
525 // encoding for [EBP] with no displacement means [disp32] so we handle it
526 // by emitting a displacement of 0 below.
527 if (BaseRegNo != N86::EBP) {
528 if (Disp.isImm() && Disp.getImm() == 0) {
529 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
530 return;
533 // If the displacement is @tlscall, treat it as a zero.
534 if (Disp.isExpr()) {
535 auto *Sym = dyn_cast<MCSymbolRefExpr>(Disp.getExpr());
536 if (Sym && Sym->getKind() == MCSymbolRefExpr::VK_TLSCALL) {
537 // This is exclusively used by call *a@tlscall(base). The relocation
538 // (R_386_TLSCALL or R_X86_64_TLSCALL) applies to the beginning.
539 Fixups.push_back(MCFixup::create(0, Sym, FK_NONE, MI.getLoc()));
540 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
541 return;
546 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
547 if (Disp.isImm()) {
548 if (!HasEVEX && isDisp8(Disp.getImm())) {
549 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
550 EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
551 return;
553 // Try EVEX compressed 8-bit displacement first; if failed, fall back to
554 // 32-bit displacement.
555 int CDisp8 = 0;
556 if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
557 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
558 EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
559 CDisp8 - Disp.getImm());
560 return;
564 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
565 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
566 unsigned Opcode = MI.getOpcode();
567 unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax
568 : X86::reloc_signed_4byte;
569 EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), CurByte, OS,
570 Fixups);
571 return;
574 // We need a SIB byte, so start by outputting the ModR/M byte first
575 assert(IndexReg.getReg() != X86::ESP &&
576 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
578 bool ForceDisp32 = false;
579 bool ForceDisp8 = false;
580 int CDisp8 = 0;
581 int ImmOffset = 0;
582 if (BaseReg == 0) {
583 // If there is no base register, we emit the special case SIB byte with
584 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
585 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
586 ForceDisp32 = true;
587 } else if (!Disp.isImm()) {
588 // Emit the normal disp32 encoding.
589 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
590 ForceDisp32 = true;
591 } else if (Disp.getImm() == 0 &&
592 // Base reg can't be anything that ends up with '5' as the base
593 // reg, it is the magic [*] nomenclature that indicates no base.
594 BaseRegNo != N86::EBP) {
595 // Emit no displacement ModR/M byte
596 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
597 } else if (!HasEVEX && isDisp8(Disp.getImm())) {
598 // Emit the disp8 encoding.
599 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
600 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
601 } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
602 // Emit the disp8 encoding.
603 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
604 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
605 ImmOffset = CDisp8 - Disp.getImm();
606 } else {
607 // Emit the normal disp32 encoding.
608 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
611 // Calculate what the SS field value should be...
612 static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
613 unsigned SS = SSTable[Scale.getImm()];
615 if (BaseReg == 0) {
616 // Handle the SIB byte for the case where there is no base, see Intel
617 // Manual 2A, table 2-7. The displacement has already been output.
618 unsigned IndexRegNo;
619 if (IndexReg.getReg())
620 IndexRegNo = GetX86RegNum(IndexReg);
621 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
622 IndexRegNo = 4;
623 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
624 } else {
625 unsigned IndexRegNo;
626 if (IndexReg.getReg())
627 IndexRegNo = GetX86RegNum(IndexReg);
628 else
629 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
630 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
633 // Do we need to output a displacement?
634 if (ForceDisp8)
635 EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset);
636 else if (ForceDisp32 || Disp.getImm() != 0)
637 EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
638 CurByte, OS, Fixups);
641 /// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
642 /// called VEX.
643 void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
644 int MemOperand, const MCInst &MI,
645 const MCInstrDesc &Desc,
646 raw_ostream &OS) const {
647 assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
649 uint64_t Encoding = TSFlags & X86II::EncodingMask;
650 bool HasEVEX_K = TSFlags & X86II::EVEX_K;
651 bool HasVEX_4V = TSFlags & X86II::VEX_4V;
652 bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
654 // VEX_R: opcode externsion equivalent to REX.R in
655 // 1's complement (inverted) form
657 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
658 // 0: Same as REX_R=1 (64 bit mode only)
660 uint8_t VEX_R = 0x1;
661 uint8_t EVEX_R2 = 0x1;
663 // VEX_X: equivalent to REX.X, only used when a
664 // register is used for index in SIB Byte.
666 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
667 // 0: Same as REX.X=1 (64-bit mode only)
668 uint8_t VEX_X = 0x1;
670 // VEX_B:
672 // 1: Same as REX_B=0 (ignored in 32-bit mode)
673 // 0: Same as REX_B=1 (64 bit mode only)
675 uint8_t VEX_B = 0x1;
677 // VEX_W: opcode specific (use like REX.W, or used for
678 // opcode extension, or ignored, depending on the opcode byte)
679 uint8_t VEX_W = (TSFlags & X86II::VEX_W) ? 1 : 0;
681 // VEX_5M (VEX m-mmmmm field):
683 // 0b00000: Reserved for future use
684 // 0b00001: implied 0F leading opcode
685 // 0b00010: implied 0F 38 leading opcode bytes
686 // 0b00011: implied 0F 3A leading opcode bytes
687 // 0b00100-0b11111: Reserved for future use
688 // 0b01000: XOP map select - 08h instructions with imm byte
689 // 0b01001: XOP map select - 09h instructions with no imm byte
690 // 0b01010: XOP map select - 0Ah instructions with imm dword
691 uint8_t VEX_5M;
692 switch (TSFlags & X86II::OpMapMask) {
693 default: llvm_unreachable("Invalid prefix!");
694 case X86II::TB: VEX_5M = 0x1; break; // 0F
695 case X86II::T8: VEX_5M = 0x2; break; // 0F 38
696 case X86II::TA: VEX_5M = 0x3; break; // 0F 3A
697 case X86II::XOP8: VEX_5M = 0x8; break;
698 case X86II::XOP9: VEX_5M = 0x9; break;
699 case X86II::XOPA: VEX_5M = 0xA; break;
702 // VEX_4V (VEX vvvv field): a register specifier
703 // (in 1's complement form) or 1111 if unused.
704 uint8_t VEX_4V = 0xf;
705 uint8_t EVEX_V2 = 0x1;
707 // EVEX_L2/VEX_L (Vector Length):
709 // L2 L
710 // 0 0: scalar or 128-bit vector
711 // 0 1: 256-bit vector
712 // 1 0: 512-bit vector
714 uint8_t VEX_L = (TSFlags & X86II::VEX_L) ? 1 : 0;
715 uint8_t EVEX_L2 = (TSFlags & X86II::EVEX_L2) ? 1 : 0;
717 // VEX_PP: opcode extension providing equivalent
718 // functionality of a SIMD prefix
720 // 0b00: None
721 // 0b01: 66
722 // 0b10: F3
723 // 0b11: F2
725 uint8_t VEX_PP = 0;
726 switch (TSFlags & X86II::OpPrefixMask) {
727 case X86II::PD: VEX_PP = 0x1; break; // 66
728 case X86II::XS: VEX_PP = 0x2; break; // F3
729 case X86II::XD: VEX_PP = 0x3; break; // F2
732 // EVEX_U
733 uint8_t EVEX_U = 1; // Always '1' so far
735 // EVEX_z
736 uint8_t EVEX_z = (HasEVEX_K && (TSFlags & X86II::EVEX_Z)) ? 1 : 0;
738 // EVEX_b
739 uint8_t EVEX_b = (TSFlags & X86II::EVEX_B) ? 1 : 0;
741 // EVEX_rc
742 uint8_t EVEX_rc = 0;
744 // EVEX_aaa
745 uint8_t EVEX_aaa = 0;
747 bool EncodeRC = false;
749 // Classify VEX_B, VEX_4V, VEX_R, VEX_X
750 unsigned NumOps = Desc.getNumOperands();
751 unsigned CurOp = X86II::getOperandBias(Desc);
753 switch (TSFlags & X86II::FormMask) {
754 default: llvm_unreachable("Unexpected form in EmitVEXOpcodePrefix!");
755 case X86II::RawFrm:
756 break;
757 case X86II::MRMDestMem: {
758 // MRMDestMem instructions forms:
759 // MemAddr, src1(ModR/M)
760 // MemAddr, src1(VEX_4V), src2(ModR/M)
761 // MemAddr, src1(ModR/M), imm8
763 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
764 VEX_B = ~(BaseRegEnc >> 3) & 1;
765 unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
766 VEX_X = ~(IndexRegEnc >> 3) & 1;
767 if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
768 EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
770 CurOp += X86::AddrNumOperands;
772 if (HasEVEX_K)
773 EVEX_aaa = getX86RegEncoding(MI, CurOp++);
775 if (HasVEX_4V) {
776 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
777 VEX_4V = ~VRegEnc & 0xf;
778 EVEX_V2 = ~(VRegEnc >> 4) & 1;
781 unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
782 VEX_R = ~(RegEnc >> 3) & 1;
783 EVEX_R2 = ~(RegEnc >> 4) & 1;
784 break;
786 case X86II::MRMSrcMem: {
787 // MRMSrcMem instructions forms:
788 // src1(ModR/M), MemAddr
789 // src1(ModR/M), src2(VEX_4V), MemAddr
790 // src1(ModR/M), MemAddr, imm8
791 // src1(ModR/M), MemAddr, src2(Imm[7:4])
793 // FMA4:
794 // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
795 unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
796 VEX_R = ~(RegEnc >> 3) & 1;
797 EVEX_R2 = ~(RegEnc >> 4) & 1;
799 if (HasEVEX_K)
800 EVEX_aaa = getX86RegEncoding(MI, CurOp++);
802 if (HasVEX_4V) {
803 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
804 VEX_4V = ~VRegEnc & 0xf;
805 EVEX_V2 = ~(VRegEnc >> 4) & 1;
808 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
809 VEX_B = ~(BaseRegEnc >> 3) & 1;
810 unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
811 VEX_X = ~(IndexRegEnc >> 3) & 1;
812 if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
813 EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
815 break;
817 case X86II::MRMSrcMem4VOp3: {
818 // Instruction format for 4VOp3:
819 // src1(ModR/M), MemAddr, src3(VEX_4V)
820 unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
821 VEX_R = ~(RegEnc >> 3) & 1;
823 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
824 VEX_B = ~(BaseRegEnc >> 3) & 1;
825 unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
826 VEX_X = ~(IndexRegEnc >> 3) & 1;
828 VEX_4V = ~getX86RegEncoding(MI, CurOp + X86::AddrNumOperands) & 0xf;
829 break;
831 case X86II::MRMSrcMemOp4: {
832 // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
833 unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
834 VEX_R = ~(RegEnc >> 3) & 1;
836 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
837 VEX_4V = ~VRegEnc & 0xf;
839 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
840 VEX_B = ~(BaseRegEnc >> 3) & 1;
841 unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
842 VEX_X = ~(IndexRegEnc >> 3) & 1;
843 break;
845 case X86II::MRM0m: case X86II::MRM1m:
846 case X86II::MRM2m: case X86II::MRM3m:
847 case X86II::MRM4m: case X86II::MRM5m:
848 case X86II::MRM6m: case X86II::MRM7m: {
849 // MRM[0-9]m instructions forms:
850 // MemAddr
851 // src1(VEX_4V), MemAddr
852 if (HasVEX_4V) {
853 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
854 VEX_4V = ~VRegEnc & 0xf;
855 EVEX_V2 = ~(VRegEnc >> 4) & 1;
858 if (HasEVEX_K)
859 EVEX_aaa = getX86RegEncoding(MI, CurOp++);
861 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
862 VEX_B = ~(BaseRegEnc >> 3) & 1;
863 unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
864 VEX_X = ~(IndexRegEnc >> 3) & 1;
865 if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
866 EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
868 break;
870 case X86II::MRMSrcReg: {
871 // MRMSrcReg instructions forms:
872 // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
873 // dst(ModR/M), src1(ModR/M)
874 // dst(ModR/M), src1(ModR/M), imm8
876 // FMA4:
877 // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
878 unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
879 VEX_R = ~(RegEnc >> 3) & 1;
880 EVEX_R2 = ~(RegEnc >> 4) & 1;
882 if (HasEVEX_K)
883 EVEX_aaa = getX86RegEncoding(MI, CurOp++);
885 if (HasVEX_4V) {
886 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
887 VEX_4V = ~VRegEnc & 0xf;
888 EVEX_V2 = ~(VRegEnc >> 4) & 1;
891 RegEnc = getX86RegEncoding(MI, CurOp++);
892 VEX_B = ~(RegEnc >> 3) & 1;
893 VEX_X = ~(RegEnc >> 4) & 1;
895 if (EVEX_b) {
896 if (HasEVEX_RC) {
897 unsigned RcOperand = NumOps-1;
898 assert(RcOperand >= CurOp);
899 EVEX_rc = MI.getOperand(RcOperand).getImm();
900 assert(EVEX_rc <= 3 && "Invalid rounding control!");
902 EncodeRC = true;
904 break;
906 case X86II::MRMSrcReg4VOp3: {
907 // Instruction format for 4VOp3:
908 // src1(ModR/M), src2(ModR/M), src3(VEX_4V)
909 unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
910 VEX_R = ~(RegEnc >> 3) & 1;
912 RegEnc = getX86RegEncoding(MI, CurOp++);
913 VEX_B = ~(RegEnc >> 3) & 1;
915 VEX_4V = ~getX86RegEncoding(MI, CurOp++) & 0xf;
916 break;
918 case X86II::MRMSrcRegOp4: {
919 // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
920 unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
921 VEX_R = ~(RegEnc >> 3) & 1;
923 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
924 VEX_4V = ~VRegEnc & 0xf;
926 // Skip second register source (encoded in Imm[7:4])
927 ++CurOp;
929 RegEnc = getX86RegEncoding(MI, CurOp++);
930 VEX_B = ~(RegEnc >> 3) & 1;
931 VEX_X = ~(RegEnc >> 4) & 1;
932 break;
934 case X86II::MRMDestReg: {
935 // MRMDestReg instructions forms:
936 // dst(ModR/M), src(ModR/M)
937 // dst(ModR/M), src(ModR/M), imm8
938 // dst(ModR/M), src1(VEX_4V), src2(ModR/M)
939 unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
940 VEX_B = ~(RegEnc >> 3) & 1;
941 VEX_X = ~(RegEnc >> 4) & 1;
943 if (HasEVEX_K)
944 EVEX_aaa = getX86RegEncoding(MI, CurOp++);
946 if (HasVEX_4V) {
947 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
948 VEX_4V = ~VRegEnc & 0xf;
949 EVEX_V2 = ~(VRegEnc >> 4) & 1;
952 RegEnc = getX86RegEncoding(MI, CurOp++);
953 VEX_R = ~(RegEnc >> 3) & 1;
954 EVEX_R2 = ~(RegEnc >> 4) & 1;
955 if (EVEX_b)
956 EncodeRC = true;
957 break;
959 case X86II::MRM0r: case X86II::MRM1r:
960 case X86II::MRM2r: case X86II::MRM3r:
961 case X86II::MRM4r: case X86II::MRM5r:
962 case X86II::MRM6r: case X86II::MRM7r: {
963 // MRM0r-MRM7r instructions forms:
964 // dst(VEX_4V), src(ModR/M), imm8
965 if (HasVEX_4V) {
966 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
967 VEX_4V = ~VRegEnc & 0xf;
968 EVEX_V2 = ~(VRegEnc >> 4) & 1;
970 if (HasEVEX_K)
971 EVEX_aaa = getX86RegEncoding(MI, CurOp++);
973 unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
974 VEX_B = ~(RegEnc >> 3) & 1;
975 VEX_X = ~(RegEnc >> 4) & 1;
976 break;
980 if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
981 // VEX opcode prefix can have 2 or 3 bytes
983 // 3 bytes:
984 // +-----+ +--------------+ +-------------------+
985 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
986 // +-----+ +--------------+ +-------------------+
987 // 2 bytes:
988 // +-----+ +-------------------+
989 // | C5h | | R | vvvv | L | pp |
990 // +-----+ +-------------------+
992 // XOP uses a similar prefix:
993 // +-----+ +--------------+ +-------------------+
994 // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
995 // +-----+ +--------------+ +-------------------+
996 uint8_t LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
998 // Can we use the 2 byte VEX prefix?
999 if (!(MI.getFlags() & X86::IP_USE_VEX3) &&
1000 Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
1001 EmitByte(0xC5, CurByte, OS);
1002 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
1003 return;
1006 // 3 byte VEX prefix
1007 EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
1008 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
1009 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
1010 } else {
1011 assert(Encoding == X86II::EVEX && "unknown encoding!");
1012 // EVEX opcode prefix can have 4 bytes
1014 // +-----+ +--------------+ +-------------------+ +------------------------+
1015 // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
1016 // +-----+ +--------------+ +-------------------+ +------------------------+
1017 assert((VEX_5M & 0x3) == VEX_5M
1018 && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
1020 EmitByte(0x62, CurByte, OS);
1021 EmitByte((VEX_R << 7) |
1022 (VEX_X << 6) |
1023 (VEX_B << 5) |
1024 (EVEX_R2 << 4) |
1025 VEX_5M, CurByte, OS);
1026 EmitByte((VEX_W << 7) |
1027 (VEX_4V << 3) |
1028 (EVEX_U << 2) |
1029 VEX_PP, CurByte, OS);
1030 if (EncodeRC)
1031 EmitByte((EVEX_z << 7) |
1032 (EVEX_rc << 5) |
1033 (EVEX_b << 4) |
1034 (EVEX_V2 << 3) |
1035 EVEX_aaa, CurByte, OS);
1036 else
1037 EmitByte((EVEX_z << 7) |
1038 (EVEX_L2 << 6) |
1039 (VEX_L << 5) |
1040 (EVEX_b << 4) |
1041 (EVEX_V2 << 3) |
1042 EVEX_aaa, CurByte, OS);
1046 /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
1047 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
1048 /// size, and 3) use of X86-64 extended registers.
1049 uint8_t X86MCCodeEmitter::DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
1050 int MemOperand,
1051 const MCInstrDesc &Desc) const {
1052 uint8_t REX = 0;
1053 bool UsesHighByteReg = false;
1055 if (TSFlags & X86II::REX_W)
1056 REX |= 1 << 3; // set REX.W
1058 if (MI.getNumOperands() == 0) return REX;
1060 unsigned NumOps = MI.getNumOperands();
1061 unsigned CurOp = X86II::getOperandBias(Desc);
1063 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
1064 for (unsigned i = CurOp; i != NumOps; ++i) {
1065 const MCOperand &MO = MI.getOperand(i);
1066 if (!MO.isReg()) continue;
1067 unsigned Reg = MO.getReg();
1068 if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
1069 UsesHighByteReg = true;
1070 if (X86II::isX86_64NonExtLowByteReg(Reg))
1071 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
1072 // that returns non-zero.
1073 REX |= 0x40; // REX fixed encoding prefix
1076 switch (TSFlags & X86II::FormMask) {
1077 case X86II::AddRegFrm:
1078 REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1079 break;
1080 case X86II::MRMSrcReg:
1081 case X86II::MRMSrcRegCC:
1082 REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1083 REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1084 break;
1085 case X86II::MRMSrcMem:
1086 case X86II::MRMSrcMemCC:
1087 REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1088 REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B
1089 REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X
1090 CurOp += X86::AddrNumOperands;
1091 break;
1092 case X86II::MRMDestReg:
1093 REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1094 REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1095 break;
1096 case X86II::MRMDestMem:
1097 REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B
1098 REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X
1099 CurOp += X86::AddrNumOperands;
1100 REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1101 break;
1102 case X86II::MRMXmCC: case X86II::MRMXm:
1103 case X86II::MRM0m: case X86II::MRM1m:
1104 case X86II::MRM2m: case X86II::MRM3m:
1105 case X86II::MRM4m: case X86II::MRM5m:
1106 case X86II::MRM6m: case X86II::MRM7m:
1107 REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B
1108 REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X
1109 break;
1110 case X86II::MRMXrCC: case X86II::MRMXr:
1111 case X86II::MRM0r: case X86II::MRM1r:
1112 case X86II::MRM2r: case X86II::MRM3r:
1113 case X86II::MRM4r: case X86II::MRM5r:
1114 case X86II::MRM6r: case X86II::MRM7r:
1115 REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1116 break;
1118 if (REX && UsesHighByteReg)
1119 report_fatal_error("Cannot encode high byte register in REX-prefixed instruction");
1121 return REX;
1124 /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
1125 void X86MCCodeEmitter::EmitSegmentOverridePrefix(unsigned &CurByte,
1126 unsigned SegOperand,
1127 const MCInst &MI,
1128 raw_ostream &OS) const {
1129 // Check for explicit segment override on memory operand.
1130 switch (MI.getOperand(SegOperand).getReg()) {
1131 default: llvm_unreachable("Unknown segment register!");
1132 case 0: break;
1133 case X86::CS: EmitByte(0x2E, CurByte, OS); break;
1134 case X86::SS: EmitByte(0x36, CurByte, OS); break;
1135 case X86::DS: EmitByte(0x3E, CurByte, OS); break;
1136 case X86::ES: EmitByte(0x26, CurByte, OS); break;
1137 case X86::FS: EmitByte(0x64, CurByte, OS); break;
1138 case X86::GS: EmitByte(0x65, CurByte, OS); break;
1142 /// Emit all instruction prefixes prior to the opcode.
1144 /// MemOperand is the operand # of the start of a memory operand if present. If
1145 /// Not present, it is -1.
1147 /// Returns true if a REX prefix was used.
1148 bool X86MCCodeEmitter::emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
1149 int MemOperand, const MCInst &MI,
1150 const MCInstrDesc &Desc,
1151 const MCSubtargetInfo &STI,
1152 raw_ostream &OS) const {
1153 bool Ret = false;
1154 // Emit the operand size opcode prefix as needed.
1155 if ((TSFlags & X86II::OpSizeMask) == (is16BitMode(STI) ? X86II::OpSize32
1156 : X86II::OpSize16))
1157 EmitByte(0x66, CurByte, OS);
1159 // Emit the LOCK opcode prefix.
1160 if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK)
1161 EmitByte(0xF0, CurByte, OS);
1163 // Emit the NOTRACK opcode prefix.
1164 if (TSFlags & X86II::NOTRACK || MI.getFlags() & X86::IP_HAS_NOTRACK)
1165 EmitByte(0x3E, CurByte, OS);
1167 switch (TSFlags & X86II::OpPrefixMask) {
1168 case X86II::PD: // 66
1169 EmitByte(0x66, CurByte, OS);
1170 break;
1171 case X86II::XS: // F3
1172 EmitByte(0xF3, CurByte, OS);
1173 break;
1174 case X86II::XD: // F2
1175 EmitByte(0xF2, CurByte, OS);
1176 break;
1179 // Handle REX prefix.
1180 // FIXME: Can this come before F2 etc to simplify emission?
1181 if (is64BitMode(STI)) {
1182 if (uint8_t REX = DetermineREXPrefix(MI, TSFlags, MemOperand, Desc)) {
1183 EmitByte(0x40 | REX, CurByte, OS);
1184 Ret = true;
1186 } else {
1187 assert(!(TSFlags & X86II::REX_W) && "REX.W requires 64bit mode.");
1190 // 0x0F escape code must be emitted just before the opcode.
1191 switch (TSFlags & X86II::OpMapMask) {
1192 case X86II::TB: // Two-byte opcode map
1193 case X86II::T8: // 0F 38
1194 case X86II::TA: // 0F 3A
1195 case X86II::ThreeDNow: // 0F 0F, second 0F emitted by caller.
1196 EmitByte(0x0F, CurByte, OS);
1197 break;
1200 switch (TSFlags & X86II::OpMapMask) {
1201 case X86II::T8: // 0F 38
1202 EmitByte(0x38, CurByte, OS);
1203 break;
1204 case X86II::TA: // 0F 3A
1205 EmitByte(0x3A, CurByte, OS);
1206 break;
1208 return Ret;
1211 void X86MCCodeEmitter::
1212 encodeInstruction(const MCInst &MI, raw_ostream &OS,
1213 SmallVectorImpl<MCFixup> &Fixups,
1214 const MCSubtargetInfo &STI) const {
1215 unsigned Opcode = MI.getOpcode();
1216 const MCInstrDesc &Desc = MCII.get(Opcode);
1217 uint64_t TSFlags = Desc.TSFlags;
1218 unsigned Flags = MI.getFlags();
1220 // Pseudo instructions don't get encoded.
1221 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
1222 return;
1224 unsigned NumOps = Desc.getNumOperands();
1225 unsigned CurOp = X86II::getOperandBias(Desc);
1227 // Keep track of the current byte being emitted.
1228 unsigned CurByte = 0;
1230 // Encoding type for this instruction.
1231 uint64_t Encoding = TSFlags & X86II::EncodingMask;
1233 // It uses the VEX.VVVV field?
1234 bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1235 bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg;
1237 // It uses the EVEX.aaa field?
1238 bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1239 bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
1241 // Used if a register is encoded in 7:4 of immediate.
1242 unsigned I8RegNum = 0;
1244 // Determine where the memory operand starts, if present.
1245 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
1246 if (MemoryOperand != -1) MemoryOperand += CurOp;
1248 // Emit segment override opcode prefix as needed.
1249 if (MemoryOperand >= 0)
1250 EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg,
1251 MI, OS);
1253 // Emit the repeat opcode prefix as needed.
1254 if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT)
1255 EmitByte(0xF3, CurByte, OS);
1256 if (Flags & X86::IP_HAS_REPEAT_NE)
1257 EmitByte(0xF2, CurByte, OS);
1259 // Emit the address size opcode prefix as needed.
1260 bool need_address_override;
1261 uint64_t AdSize = TSFlags & X86II::AdSizeMask;
1262 if ((is16BitMode(STI) && AdSize == X86II::AdSize32) ||
1263 (is32BitMode(STI) && AdSize == X86II::AdSize16) ||
1264 (is64BitMode(STI) && AdSize == X86II::AdSize32)) {
1265 need_address_override = true;
1266 } else if (MemoryOperand < 0) {
1267 need_address_override = false;
1268 } else if (is64BitMode(STI)) {
1269 assert(!Is16BitMemOperand(MI, MemoryOperand, STI));
1270 need_address_override = Is32BitMemOperand(MI, MemoryOperand);
1271 } else if (is32BitMode(STI)) {
1272 assert(!Is64BitMemOperand(MI, MemoryOperand));
1273 need_address_override = Is16BitMemOperand(MI, MemoryOperand, STI);
1274 } else {
1275 assert(is16BitMode(STI));
1276 assert(!Is64BitMemOperand(MI, MemoryOperand));
1277 need_address_override = !Is16BitMemOperand(MI, MemoryOperand, STI);
1280 if (need_address_override)
1281 EmitByte(0x67, CurByte, OS);
1283 bool Rex = false;
1284 if (Encoding == 0)
1285 Rex = emitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
1286 else
1287 EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
1289 uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1291 if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
1292 BaseOpcode = 0x0F; // Weird 3DNow! encoding.
1294 unsigned OpcodeOffset = 0;
1296 uint64_t Form = TSFlags & X86II::FormMask;
1297 switch (Form) {
1298 default: errs() << "FORM: " << Form << "\n";
1299 llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1300 case X86II::Pseudo:
1301 llvm_unreachable("Pseudo instruction shouldn't be emitted");
1302 case X86II::RawFrmDstSrc: {
1303 unsigned siReg = MI.getOperand(1).getReg();
1304 assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
1305 (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
1306 (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
1307 "SI and DI register sizes do not match");
1308 // Emit segment override opcode prefix as needed (not for %ds).
1309 if (MI.getOperand(2).getReg() != X86::DS)
1310 EmitSegmentOverridePrefix(CurByte, 2, MI, OS);
1311 // Emit AdSize prefix as needed.
1312 if ((!is32BitMode(STI) && siReg == X86::ESI) ||
1313 (is32BitMode(STI) && siReg == X86::SI))
1314 EmitByte(0x67, CurByte, OS);
1315 CurOp += 3; // Consume operands.
1316 EmitByte(BaseOpcode, CurByte, OS);
1317 break;
1319 case X86II::RawFrmSrc: {
1320 unsigned siReg = MI.getOperand(0).getReg();
1321 // Emit segment override opcode prefix as needed (not for %ds).
1322 if (MI.getOperand(1).getReg() != X86::DS)
1323 EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
1324 // Emit AdSize prefix as needed.
1325 if ((!is32BitMode(STI) && siReg == X86::ESI) ||
1326 (is32BitMode(STI) && siReg == X86::SI))
1327 EmitByte(0x67, CurByte, OS);
1328 CurOp += 2; // Consume operands.
1329 EmitByte(BaseOpcode, CurByte, OS);
1330 break;
1332 case X86II::RawFrmDst: {
1333 unsigned siReg = MI.getOperand(0).getReg();
1334 // Emit AdSize prefix as needed.
1335 if ((!is32BitMode(STI) && siReg == X86::EDI) ||
1336 (is32BitMode(STI) && siReg == X86::DI))
1337 EmitByte(0x67, CurByte, OS);
1338 ++CurOp; // Consume operand.
1339 EmitByte(BaseOpcode, CurByte, OS);
1340 break;
1342 case X86II::AddCCFrm: {
1343 // This will be added to the opcode in the fallthrough.
1344 OpcodeOffset = MI.getOperand(NumOps - 1).getImm();
1345 assert(OpcodeOffset < 16 && "Unexpected opcode offset!");
1346 --NumOps; // Drop the operand from the end.
1347 LLVM_FALLTHROUGH;
1348 case X86II::RawFrm:
1349 EmitByte(BaseOpcode + OpcodeOffset, CurByte, OS);
1351 if (!is64BitMode(STI) || !isPCRel32Branch(MI))
1352 break;
1354 const MCOperand &Op = MI.getOperand(CurOp++);
1355 EmitImmediate(Op, MI.getLoc(), X86II::getSizeOfImm(TSFlags),
1356 MCFixupKind(X86::reloc_branch_4byte_pcrel), CurByte, OS,
1357 Fixups);
1358 break;
1360 case X86II::RawFrmMemOffs:
1361 // Emit segment override opcode prefix as needed.
1362 EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
1363 EmitByte(BaseOpcode, CurByte, OS);
1364 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1365 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1366 CurByte, OS, Fixups);
1367 ++CurOp; // skip segment operand
1368 break;
1369 case X86II::RawFrmImm8:
1370 EmitByte(BaseOpcode, CurByte, OS);
1371 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1372 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1373 CurByte, OS, Fixups);
1374 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1375 OS, Fixups);
1376 break;
1377 case X86II::RawFrmImm16:
1378 EmitByte(BaseOpcode, CurByte, OS);
1379 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1380 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1381 CurByte, OS, Fixups);
1382 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1383 OS, Fixups);
1384 break;
1386 case X86II::AddRegFrm:
1387 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1388 break;
1390 case X86II::MRMDestReg: {
1391 EmitByte(BaseOpcode, CurByte, OS);
1392 unsigned SrcRegNum = CurOp + 1;
1394 if (HasEVEX_K) // Skip writemask
1395 ++SrcRegNum;
1397 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1398 ++SrcRegNum;
1400 EmitRegModRMByte(MI.getOperand(CurOp),
1401 GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
1402 CurOp = SrcRegNum + 1;
1403 break;
1405 case X86II::MRMDestMem: {
1406 EmitByte(BaseOpcode, CurByte, OS);
1407 unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
1409 if (HasEVEX_K) // Skip writemask
1410 ++SrcRegNum;
1412 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1413 ++SrcRegNum;
1415 emitMemModRMByte(MI, CurOp, GetX86RegNum(MI.getOperand(SrcRegNum)), TSFlags,
1416 Rex, CurByte, OS, Fixups, STI);
1417 CurOp = SrcRegNum + 1;
1418 break;
1420 case X86II::MRMSrcReg: {
1421 EmitByte(BaseOpcode, CurByte, OS);
1422 unsigned SrcRegNum = CurOp + 1;
1424 if (HasEVEX_K) // Skip writemask
1425 ++SrcRegNum;
1427 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1428 ++SrcRegNum;
1430 EmitRegModRMByte(MI.getOperand(SrcRegNum),
1431 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1432 CurOp = SrcRegNum + 1;
1433 if (HasVEX_I8Reg)
1434 I8RegNum = getX86RegEncoding(MI, CurOp++);
1435 // do not count the rounding control operand
1436 if (HasEVEX_RC)
1437 --NumOps;
1438 break;
1440 case X86II::MRMSrcReg4VOp3: {
1441 EmitByte(BaseOpcode, CurByte, OS);
1442 unsigned SrcRegNum = CurOp + 1;
1444 EmitRegModRMByte(MI.getOperand(SrcRegNum),
1445 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1446 CurOp = SrcRegNum + 1;
1447 ++CurOp; // Encoded in VEX.VVVV
1448 break;
1450 case X86II::MRMSrcRegOp4: {
1451 EmitByte(BaseOpcode, CurByte, OS);
1452 unsigned SrcRegNum = CurOp + 1;
1454 // Skip 1st src (which is encoded in VEX_VVVV)
1455 ++SrcRegNum;
1457 // Capture 2nd src (which is encoded in Imm[7:4])
1458 assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
1459 I8RegNum = getX86RegEncoding(MI, SrcRegNum++);
1461 EmitRegModRMByte(MI.getOperand(SrcRegNum),
1462 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1463 CurOp = SrcRegNum + 1;
1464 break;
1466 case X86II::MRMSrcRegCC: {
1467 unsigned FirstOp = CurOp++;
1468 unsigned SecondOp = CurOp++;
1470 unsigned CC = MI.getOperand(CurOp++).getImm();
1471 EmitByte(BaseOpcode + CC, CurByte, OS);
1473 EmitRegModRMByte(MI.getOperand(SecondOp),
1474 GetX86RegNum(MI.getOperand(FirstOp)), CurByte, OS);
1475 break;
1477 case X86II::MRMSrcMem: {
1478 unsigned FirstMemOp = CurOp+1;
1480 if (HasEVEX_K) // Skip writemask
1481 ++FirstMemOp;
1483 if (HasVEX_4V)
1484 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1486 EmitByte(BaseOpcode, CurByte, OS);
1488 emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1489 TSFlags, Rex, CurByte, OS, Fixups, STI);
1490 CurOp = FirstMemOp + X86::AddrNumOperands;
1491 if (HasVEX_I8Reg)
1492 I8RegNum = getX86RegEncoding(MI, CurOp++);
1493 break;
1495 case X86II::MRMSrcMem4VOp3: {
1496 unsigned FirstMemOp = CurOp+1;
1498 EmitByte(BaseOpcode, CurByte, OS);
1500 emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1501 TSFlags, Rex, CurByte, OS, Fixups, STI);
1502 CurOp = FirstMemOp + X86::AddrNumOperands;
1503 ++CurOp; // Encoded in VEX.VVVV.
1504 break;
1506 case X86II::MRMSrcMemOp4: {
1507 unsigned FirstMemOp = CurOp+1;
1509 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1511 // Capture second register source (encoded in Imm[7:4])
1512 assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
1513 I8RegNum = getX86RegEncoding(MI, FirstMemOp++);
1515 EmitByte(BaseOpcode, CurByte, OS);
1517 emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1518 TSFlags, Rex, CurByte, OS, Fixups, STI);
1519 CurOp = FirstMemOp + X86::AddrNumOperands;
1520 break;
1522 case X86II::MRMSrcMemCC: {
1523 unsigned RegOp = CurOp++;
1524 unsigned FirstMemOp = CurOp;
1525 CurOp = FirstMemOp + X86::AddrNumOperands;
1527 unsigned CC = MI.getOperand(CurOp++).getImm();
1528 EmitByte(BaseOpcode + CC, CurByte, OS);
1530 emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(RegOp)),
1531 TSFlags, Rex, CurByte, OS, Fixups, STI);
1532 break;
1535 case X86II::MRMXrCC: {
1536 unsigned RegOp = CurOp++;
1538 unsigned CC = MI.getOperand(CurOp++).getImm();
1539 EmitByte(BaseOpcode + CC, CurByte, OS);
1540 EmitRegModRMByte(MI.getOperand(RegOp), 0, CurByte, OS);
1541 break;
1544 case X86II::MRMXr:
1545 case X86II::MRM0r: case X86II::MRM1r:
1546 case X86II::MRM2r: case X86II::MRM3r:
1547 case X86II::MRM4r: case X86II::MRM5r:
1548 case X86II::MRM6r: case X86II::MRM7r:
1549 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1550 ++CurOp;
1551 if (HasEVEX_K) // Skip writemask
1552 ++CurOp;
1553 EmitByte(BaseOpcode, CurByte, OS);
1554 EmitRegModRMByte(MI.getOperand(CurOp++),
1555 (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r,
1556 CurByte, OS);
1557 break;
1559 case X86II::MRMXmCC: {
1560 unsigned FirstMemOp = CurOp;
1561 CurOp = FirstMemOp + X86::AddrNumOperands;
1563 unsigned CC = MI.getOperand(CurOp++).getImm();
1564 EmitByte(BaseOpcode + CC, CurByte, OS);
1566 emitMemModRMByte(MI, FirstMemOp, 0, TSFlags, Rex, CurByte, OS, Fixups, STI);
1567 break;
1570 case X86II::MRMXm:
1571 case X86II::MRM0m: case X86II::MRM1m:
1572 case X86II::MRM2m: case X86II::MRM3m:
1573 case X86II::MRM4m: case X86II::MRM5m:
1574 case X86II::MRM6m: case X86II::MRM7m:
1575 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1576 ++CurOp;
1577 if (HasEVEX_K) // Skip writemask
1578 ++CurOp;
1579 EmitByte(BaseOpcode, CurByte, OS);
1580 emitMemModRMByte(MI, CurOp,
1581 (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags,
1582 Rex, CurByte, OS, Fixups, STI);
1583 CurOp += X86::AddrNumOperands;
1584 break;
1586 case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
1587 case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
1588 case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
1589 case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
1590 case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
1591 case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
1592 case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
1593 case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
1594 case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
1595 case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
1596 case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
1597 case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
1598 case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
1599 case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
1600 case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
1601 case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
1602 case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
1603 case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
1604 case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
1605 case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
1606 case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
1607 case X86II::MRM_FF:
1608 EmitByte(BaseOpcode, CurByte, OS);
1609 EmitByte(0xC0 + Form - X86II::MRM_C0, CurByte, OS);
1610 break;
1613 if (HasVEX_I8Reg) {
1614 // The last source register of a 4 operand instruction in AVX is encoded
1615 // in bits[7:4] of a immediate byte.
1616 assert(I8RegNum < 16 && "Register encoding out of range");
1617 I8RegNum <<= 4;
1618 if (CurOp != NumOps) {
1619 unsigned Val = MI.getOperand(CurOp++).getImm();
1620 assert(Val < 16 && "Immediate operand value out of range");
1621 I8RegNum |= Val;
1623 EmitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1,
1624 CurByte, OS, Fixups);
1625 } else {
1626 // If there is a remaining operand, it must be a trailing immediate. Emit it
1627 // according to the right size for the instruction. Some instructions
1628 // (SSE4a extrq and insertq) have two trailing immediates.
1629 while (CurOp != NumOps && NumOps - CurOp <= 2) {
1630 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1631 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1632 CurByte, OS, Fixups);
1636 if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
1637 EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1639 #ifndef NDEBUG
1640 // FIXME: Verify.
1641 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1642 errs() << "Cannot encode all operands of: ";
1643 MI.dump();
1644 errs() << '\n';
1645 abort();
1647 #endif
1650 MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
1651 const MCRegisterInfo &MRI,
1652 MCContext &Ctx) {
1653 return new X86MCCodeEmitter(MCII, Ctx);